WorldWideScience

Sample records for fluid patterns liquid

  1. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  2. Substitute fluid examinations for liquid manure

    Directory of Open Access Journals (Sweden)

    Schrader Kevin

    2017-01-01

    Full Text Available For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  3. Substitute fluid examinations for liquid manure

    Science.gov (United States)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  4. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  5. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  6. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  7. Controlling statics and dynamics of colloids by photo-patterned liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lavrentovich, Oleg D.; Peng, Chenhui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo

    2016-09-01

    Transport of fluids and particles at the microscale is an important theme both in fundamental and applied science. We demonstrate how an advanced approach to photo-induced alignment of liquid crystals can be used to generate nonlinear electrokinetics. The photoalignment technique is based on irradiation of a photosensitive substrate with light through nanoaperture arrays in metal films. The resulting pattern of surface alignment induces predesigned 2D and 3D distortions of local molecular orientation. In presence of a static electric field, these distortions generate spatial charge and drive electrokinetic flows of the new type, in which the velocities depend on the square of the applied electric field. The patterned liquid crystal electrolyte converts the electric energy into the flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned liquid crystal electrolyte induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  8. Design optimization of seal structure for sealing liquid by magnetic fluids

    International Nuclear Information System (INIS)

    Liu Tonggang; Cheng Yusheng; Yang Zhiyi

    2005-01-01

    The durability of the magnetic fluid seal clearly decreases when sealing another liquid because of the interface instability caused by the applied magnetic field and the velocity difference of the two liquids. With an intention to establish a stable interface during sealing liquid, a new magnetic fluid seal was developed in this paper. The parameters of the structure were optimized by a simulation apparatus. And the magnetic fluid seal designed based on the optimum parameters shows good performance and long life for sealing lubricating oil

  9. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  10. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  11. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  12. A high-force controllable MR fluid damper–liquid spring suspension system

    International Nuclear Information System (INIS)

    Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-01-01

    The goal of the present research is to investigate the feasibility of incorporating a liquid spring in a semi-active suspension system for use in heavy off-road vehicles. A compact compressible magneto-rheological (MR) fluid damper–liquid spring (CMRFD–LS) with high spring rate is designed, developed and tested. Compressible MR fluids with liquid spring and variable damping characteristics are used. These fluids can offer unique functions in reducing the volume/weight of vehicle struts and improving vehicle dynamic stability and safety. The proposed device consists of a cylinder and piston–rod arrangement with an internal annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. Harmonic characterization of the CMRFD–LS is performed and the force–displacement results are presented. A fluid-mechanics based model is also developed to predict the performance of the system at different operating conditions and compared to the experimental results. Good agreement between the experimental results and theoretical predictions has been achieved. (paper)

  13. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  14. Coexistence of monatomic and diatomic molecular fluid character in liquid gallium

    Energy Technology Data Exchange (ETDEWEB)

    Gong, X.G. (International Centre for Theoretical Physics (ICTP), Trieste (Italy)); Chiarotti, G.L. (International School for Advanced Studies (SISSA), Trieste (Italy) Lab. Tecnologie Avanzate Superfici e Catalisi (TASC), Consorzio Interuniv. Nazionale per la Fisica della Materia (INFM), Trieste (Italy)); Parrinello, M. (IBM Research Div., Zurich Forschungslab., Rueschlikon (Switzerland) International School for Advanced Studies (SISSA), Trieste (Italy)); Tosatti, E. (International School for Advanced Studies (SISSA), Trieste (Italy) International Centre for Theoretical Physics (ICTP), Trieste (Italy) IBM Research Div., Zurich Forschungslab., Rueschlikon (Switzerland))

    1993-02-01

    We have performed an ab initio molecular-dynamics simulation of liquid Ga at high temperature (1000 K). Our results are in good agreement with scattering data and with Knight-shift experiments. A remarkable feature of our findings is the coexistence in the liquid state of metallic and covalent characters. Covalency manifests itself in the appearance of very short-lived Ga-Ga bonds, which represent remnants in the liquid of the crystalline form [alpha]-Ga. We set up a two-fluid scheme which can be used for the analysis of fluids where metallic and covalent characters coexist. (orig.).

  15. Coexistence of monatomic and diatomic molecular fluid character in liquid gallium

    International Nuclear Information System (INIS)

    Gong, X.G.; Chiarotti, G.L.; Parrinello, M.; Tosatti, E.

    1993-01-01

    We have performed an ab initio molecular-dynamics simulation of liquid Ga at high temperature (1000 K). Our results are in good agreement with scattering data and with Knight-shift experiments. A remarkable feature of our findings is the coexistence in the liquid state of metallic and covalent characters. Covalency manifests itself in the appearance of very short-lived Ga-Ga bonds, which represent remnants in the liquid of the crystalline form α-Ga. We set up a two-fluid scheme which can be used for the analysis of fluids where metallic and covalent characters coexist. (orig.)

  16. Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics

    International Nuclear Information System (INIS)

    Bird, R.B.; Armstrong, R.C.; Hassager, O.

    1987-01-01

    This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems

  17. [The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    1990-01-01

    This paper discusses pattern formation at liquid interfaces and interfaces within disordered materials. The particular topics discussed are: a racetrack for competing viscous fingers; an experimental realization of periodic boundary conditions; what sets the length scale for patterns between miscible liquids; the fractal dimension of radial Hele-Shaw patterns; detailed analyses of low-contrast Saffman-Taylor flows; and the wetting/absorption properties of polystyrene spheres in binary liquid mixtures

  18. Thermochemistry of ionic liquid heat-transfer fluids

    International Nuclear Information System (INIS)

    Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.

    2005-01-01

    Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications

  19. Stability conditions of stationary rupture of liquid layers on an immiscible fluid surface

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, A. [Seconda Univ. di Napoli, Aversa (Italy). Facolta di Ingegneria; Kostarev, K.; Shmyrov, A.; Zuev, A. [Inst. of Continuous Media Mechanics, Perm (Russian Federation)

    2009-07-01

    The stationary equilibrium shape of a 3-phase liquids-gas system was investigated. The system consisted of a horizontal liquid layer with an upper free boundary placed on the immiscible fluid interface. The study investigated the stability conditions of rupture of the liquid layer surface. The dependence of rupture parameters on the experimental cuvette diameter and layer thickness was investigated, as well as the difference in the values of surface tension of the examined fluids. The 2-layer system of horizontal fluid layers was formed in a glass cylindrical cuvette. The liquid substrate was tetrachloride carbon (CCI{sub 4}), while upper layers included water, glycerine, ethyleneglycol, and aqueous solutions of 1,4-butanediol C{sub 4}H{sub 10}O{sub 2} and isopropanol C{sub 3H8L}. Initially, the surface of the substrate fluid was overlaid with a horizontal liquid layer. The rupture was formed by subjecting the layer surface to short-time actions of a narrow directional air jet. After rupture formation, the layer thickness increased gradually. The measurements demonstrated that the rupture diameter depends on the initial thickness of the upper layer as well as the diameter of the cuvette, and the difference in the values of the surface tension of the examined fluids. Analysis of the experimental relationships indicated that the critical thickness of the breaking layer is a constant value for any specific pairs of fluids. 4 refs., 7 figs.

  20. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2012-04-01

    Full Text Available This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen’s test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG’s length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  1. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  2. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  3. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages

    International Nuclear Information System (INIS)

    Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A

    2015-01-01

    The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references

  4. Liquid metal batteries - materials selection and fluid dynamics

    Science.gov (United States)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  5. The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    Maher, J.V.

    1991-06-01

    This report discusses the following physics of liquid interfaces: pattern formation; perturbing Saffman-Taylor flow with a small gap-gradient; scaling of radial patterns in a viscoelastic solution; dynamic surface tension at an interface between miscible liquids; and random systems

  6. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  7. Liquid Cooling System for CPU by Electroconjugate Fluid

    Directory of Open Access Journals (Sweden)

    Yasuo Sakurai

    2014-06-01

    Full Text Available The dissipated power of CPU for personal computer has been increased because the performance of personal computer becomes higher. Therefore, a liquid cooling system has been employed in some personal computers in order to improve their cooling performance. Electroconjugate fluid (ECF is one of the functional fluids. ECF has a remarkable property that a strong jet flow is generated between electrodes when a high voltage is applied to ECF through the electrodes. By using this strong jet flow, an ECF-pump with simple structure, no sliding portion, no noise, and no vibration seems to be able to be developed. And then, by the use of the ECF-pump, a new liquid cooling system by ECF seems to be realized. In this study, to realize this system, an ECF-pump is proposed and fabricated to investigate the basic characteristics of the ECF-pump experimentally. Next, by utilizing the ECF-pump, a model of a liquid cooling system by ECF is manufactured and some experiments are carried out to investigate the performance of this system. As a result, by using this system, the temperature of heat source of 50 W is kept at 60°C or less. In general, CPU is usually used at this temperature or less.

  8. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  9. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    Science.gov (United States)

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  10. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jianbo, E-mail: zhouyuan@mail.ipc.ac.cn, E-mail: jianbotang@mail.ipc.ac.cn [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Junjie; Liu, Jing; Zhou, Yuan, E-mail: zhouyuan@mail.ipc.ac.cn, E-mail: jianbotang@mail.ipc.ac.cn [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-01-11

    A close-cycle self-driving thermal energy harvester using liquid metal as energy carrier fluid has been proposed. The driving force that pushes the liquid metal against flow resistance and gravity is provided by a resistively heated volatile fluid based on thermo-pneumatic principle. The tested harvester prototype demonstrated its capability to extract thermal energy between small temperature gradient, at a scale of 10 °C. During a 5-h operation, it further demonstrated robust liquid metal recirculating performance at a time-average volume flow rate of 14 ml/min with a 12.25 W heating load. The prototype also managed to self-adjust to variable working conditions which indicated the reliability of this method. Advantages of this method include simple-structural design, rigid-motion free operation, and low-temperature actuation. These advantages make it uniquely suited for solar energy and low-grade heat harvesting, high heat flux electronics cooling, as well as autonomous machines actuating.

  11. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  12. Unfocused beam patterns in nonattenuating and attenuating fluids

    International Nuclear Information System (INIS)

    Goldstein, Albert

    2004-01-01

    The most important aspect of an ultrasound measuring system is knowledge of the transducer beam pattern. At all depths accurate single integral equations have been derived for the full beam pattern of steady state unfocused circular flat piston sources radiating into nonattenuating and attenuating fluids. The axial depth of the beginning of the unattenuated beam pattern far field is found to be at 6.41Y 0 . The unattenuated single integral equations are identical to a Jinc function directivity term at this and deeper depths. For attenuating fluids values of α and z are found that permit the attenuated axial pressure to be represented by a plane wave multiplicative exponential attenuation factor. This knowledge will aid in the experimental design of highly accurate attenuation measurements. Accurate single integral equations for the attenuated full beam pattern are derived using complex Bessel functions

  13. Magnetic movement of biological fluid droplets

    International Nuclear Information System (INIS)

    Garcia, Antonio A.; Egatz-Gomez, Ana; Lindsay, Solitaire A.; Dominguez-Garcia, P.; Melle, Sonia; Marquez, Manuel; Rubio, Miguel A.; Picraux, S.T.; Yang, Dongqing; Aella, P.; Hayes, Mark A.; Gust, Devens; Loyprasert, Suchera; Vazquez-Alvarez, Terannie; Wang, Joseph

    2007-01-01

    Magnetic fields can be used to control the movement of aqueous drops on non-patterned, silicon nanowire superhydrophobic surfaces. Drops of aqueous and biological fluids are controlled by introducing magnetizable carbonyl iron microparticles into the liquid. Key elements of operations such as movement, coalescence, and splitting of water and biological fluid drops, as well as electrochemical measurement of an analyte are demonstrated. Superhydrophobic surfaces were prepared using vapor-liquid-solid (VLS) growth systems followed by coating with a perfluorinated hydrocarbon molecule. Drops were made from aqueous and biological fluid suspensions with magnetizable microparticle concentrations ranging from 0.1 to 10 wt%

  14. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications

    Directory of Open Access Journals (Sweden)

    R.N. Grugel

    Full Text Available Utilizing tanks fabricated from fiber reinforced polymeric composites for storing cryogenic fluids such as liquid oxygen and liquid hydrogen is of great interest to NASA as considerable weight savings can be gained. Unfortunately such composites, especially at cryogenic temperatures, develop a mismatch that initiates detrimental delamination and crack growth, which promotes leaking. On-going work with ionic liquid-based epoxies appears promising in mitigating these detrimental effects. Some recent results are presented and discussed. Keywords: Ionic liquid, Carbon fiber, Epoxy, COPV, Cryogenic fluids

  15. Longwave instabilities and patterns in fluids

    CERN Document Server

    Shklyaev, Sergey

    2017-01-01

    This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems.  Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics. .

  16. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  17. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  18. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    Science.gov (United States)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  19. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  20. Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-06-01

    Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...

  1. Vapour-liquid equilibria of the hard core Yukawa fluid

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1991-01-01

    Techniques which extend the range of applicability of the Gibbs ensemble technique for particles which interact with a hard core potential are described. The power of the new technique is demonstrated in a numerical study of the vapour-liquid coexistence curve of the hard core Yukawa fluid.

  2. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    Science.gov (United States)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  3. Dielectric fluid directional spreading under the action of corona discharge

    Science.gov (United States)

    Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai

    2018-01-01

    Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.

  4. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    Science.gov (United States)

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.

  5. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    Science.gov (United States)

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  6. Distortion of liquid film discharging from twin-fluid atomizer

    Science.gov (United States)

    Mehring, C.; Sirignano, W. A.

    2001-11-01

    The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.

  7. Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory

    International Nuclear Information System (INIS)

    Sauve, R.G.; Morandin, G.D.; Nadeau, E.

    1993-01-01

    In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained

  8. Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes

    Science.gov (United States)

    Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei

    Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.

  9. Simulating the phosphorus fluid-liquid phase transition up to the critical point

    International Nuclear Information System (INIS)

    Ghiringhelli, Luca M; Meijer, Evert Jan

    2007-01-01

    We report a Car-Parrinello molecular dynamics study of the temperature dependence of the fluid-liquid phase transition in phosphorous, involving the transformation of a molecular fluid phase into a network-like phase. We employed density-functional theory (DFT) with a gradient-corrected functional (B-LYP) to describe the electronic structure and interatomic interactions and performed simulations in a constant pressure ensemble. We spanned a temperature interval ranging from 2500 to 3500 K. With increasing temperature, we found that the structural conversion from the molecular P 4 fluid into the network liquid occurs at decreasing pressures, consistent with experimental observations. At lower temperatures the transition is characterized by a sudden increase of density in the sample. The magnitude of the density change decreases with increasing temperature and vanishes at 3500 K. In the temperature range 3100-3500 K we found signals of near- and super-criticality. We identified local structural changes that serve as seeds triggering the overall structural transition

  10. The volume of fluid method in spherical coordinates

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.

    2000-01-01

    The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel

  11. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations.

  12. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  13. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  14. Liquid petroleum gas fracturing fluids for unconventional gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Watkins, H.; Attaway, D. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S.; Wilson, L. [Chevron Canada Resources, Calgary, AB (Canada)

    2006-07-01

    This paper presented details of a gelled liquid petroleum gas (LPG) based fracturing fluid designed to address phase trapping concerns by replacing water with a mixture of LPG and a volatile hydrocarbon fluid. The system eliminates the need for water, which is a growing concern in terms of its availability. In the application process, up to 100 per cent gelled LPG is used for the pad and flush. Sand slurry stages are comprised of a mixture of up to 90 per cent LPG, with the balance of the volume being a volatile hydrocarbon base fluid. The fluid system is not adversely affected by shear, which ensures that acceptable fluid rheology is delivered. Viscosity can be adjusted during the treatment because the surfactant gellant and crosslinker are run in a 1:1 ratio and have good tolerance to concentration variations. The application ratio also allows for fast and accurate visual checks on amounts pumped during the treatment. A portion of the LPG in the fluid can be reproduced as a gas, while the remaining LPG is dissolved in the hydrocarbon fluid and is produced back as a miscible mixture through the use of a methane drive mechanism. Clean-up is facilitated by eliminating water and having LPG as up to 80-90 per cent of the total fluid system, even when wells have low permeability and reservoir pressure. However, LPG and optimized base oils are more expensive than other fluids. It was concluded that the higher costs of the system can be recovered through eliminating the need for swabbing, coiled tubing and nitrogen. Higher final stabilized productions rates may also offset initial costs. 7 refs., 2 tabs., 2 figs.

  15. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  16. Impact simulation of liquid-filled containers including fluid-structure interaction--Part 2: Experimental verification

    International Nuclear Information System (INIS)

    Sauve, R.G.; Morandin, G.D.; Nadeau, E.

    1993-01-01

    In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validation of the theoretical approach. Excellent correlation between predicted and experimental results is obtained

  17. Cavitation and gas-liquid flow in fluid machinery and devices. FED-Volume 190

    International Nuclear Information System (INIS)

    O'Hern, T.J.; Kim, J.H.; Morgan, W.B.; Furuya, O.

    1994-01-01

    Cavitation and gas-liquid two-phase flow have remained important areas in many industrial applications and constantly provided challenges for academic researchers and industrial practitioners alike. Cavitation and two-phase flow commonly occur in fluid machinery such as pumps, propellers, and fluid devices such as orifices, valves, and diffusers. Cavitation not only degrades the performance of these machines and devices but deteriorates the materials. Gas-liquid two-phase flow has also been known to degrade the performance of pumps and propellers and can often induce an instability. The industrial applications of cavitation and two-phase flow can be found in power plants, ship propellers, hydrofoils, and aerospace equipment, to name but a few. The papers presented in this volume reflect the variety and richness of cavitation and gas-liquid two-phase flow in various flow transporting components and the increasing role they play in modern and conventional technologies. Separate abstracts were prepared for 35 papers in this book

  18. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    Science.gov (United States)

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids

    International Nuclear Information System (INIS)

    Ibragimov, Ranis N; Dameron, Michael

    2011-01-01

    The nonlinear solutions of the two-dimensional Boussinesq equations describing internal waves in rotating stratified fluids were obtained as group invariant solutions. The latter nonlinear solutions correspond to the rotation transformation preserving the form of the original nonlinear equations of motion. It is shown that the obtained class of exact solutions can be associated with the spherically pulsating patterns observed in uniformly stratified fluids. It is also shown that the obtained rotationally symmetric solutions are bounded functions that can be visualized as spinning patterns in stratified fluids. It is also shown that the rotational transformation provides the energy conservation law together with other conservation laws for which the spinning phenomena is observed. The effects of nonlinearity and the Earth's rotation on such a phenomenon are also discussed.

  20. Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

    OpenAIRE

    Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.

    2010-01-01

    Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have...

  1. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  2. Numerical method for studying the circulation patterns of a fluid in a cavity

    International Nuclear Information System (INIS)

    Stephani, L.M.; Butler, T.D.

    1975-10-01

    The method incorporates three circulation-inducing mechanisms: (1) buoyancy induced by nonuniform initial distribution of heat throughout the fluid, (2) buoyancy induced by removal of heat from the fluid, and (3) forced convection induced by withdrawal of heated fluid and return of cooled fluid. A two-dimensional computer program, CIRCO, based on the Marker-and-Cell (MAC) technique, is used to study the circulation patterns. The report discusses the code and illustrates its capabilities by means of examples from studies conducted for the Pacer project, which investigates the concept of producing electrical power from energy released by thermonuclear explosions in a salt dome. Efficient engineering for withdrawing energy from the cavity requires an understanding of the circulation patterns of the heated fluid. CIRCO provides this information in the form of computer-generated plots

  3. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  4. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  5. Is an alcoholic fixative fluid used for manual liquid-based cytology accurate to perform HPV tests?

    Directory of Open Access Journals (Sweden)

    Garbar C

    2011-12-01

    Full Text Available Christian Garbar1, Corinne Mascaux1, Philippe De Graeve2, Philippe Delvenne31Department of Biopathology, Institute Jean Godinot, Reims Cedex, France; 2Centre de Pathologie des Coteaux, Toulouse, France; 3Department of Pathology, University of Liege, Tour de Pathologie, Domaine Universitaire du Sart Tilman, Liège, BelgiumAbstract: In Europe, the alternative centrifuge method of liquid-based cytology is widely used in cervical screening. Turbitec® (Labonord SAS, Templemars, France is a centrifuge method of liquid-based cytology using an alcoholic fixative fluid, Easyfix® (Labonord. It is now well accepted that the association of liquid-based cytology and human papillomavirus test is indissociable of cervical screening. The aim of this work was to demonstrate that Easyfix alcoholic fluid is reliable to perform Hybrid Capture® 2 (QIAGEN SAS, Courtaboeuf, France. In this study, 75 patients with colposcopy for cervical lesions served as gold standard. A sample was collected, at random, for Easyfix fixative cytological fluid and for Digene Cervical Sampler (QIAGEN. The results of Hybrid Capture 2 (with relative light unit >1 showed no statistical difference, a positive Spearman’s correlation (r = 0.82, P < 0.0001, and a kappa value of 0.87 (excellent agreement between the two fluids. It was concluded that Easyfix is accurate to use in human papillomavirus tests with Hybrid Capture 2.Keywords: human papillomavirus, hybrid capture 2, Turbitec®, cervix cytology, liquid-based cytology

  6. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    Lai, S.K.; Akinlade, O.; Tosi, M.P.

    1989-12-01

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  7. Fluid intake patterns: an epidemiological study among children and adolescents in Brazil

    Directory of Open Access Journals (Sweden)

    Feferbaum Rubens

    2012-11-01

    Full Text Available Abstract Background Energy from liquids is one of the most important factors that could impact on the high prevalence of children and adolescents obesity around the world. There are few data on the liquid consumption in Brazil. The aim of this study is to evaluate the volume and quality of liquids consumed by Brazilian children and adolescents and to determine the proportion of their daily energy intake composed of liquids. Methods A multicenter study was conducted in five Brazilian cities; the study included 831 participants between 3 and 17 years of age. A four-day dietary record specific to fluids was completed for each individual, and the volume of and Kcal from liquid intake were evaluated. The average number of Kcal in each beverage was determined based on label information, and the daily energy intake data from liquids were compared with the recommendations of the National Health Surveillance Agency (Agência Nacional de Vigilância Sanitária– ANVISA, the Brazilian food regulation authority, according to each subject’s age. Results As the children aged, the volume of carbonated beverages that they consumed increased significantly, and their milk intake decreased significantly. For children between the ages of 3 and 10, milk and dairy products contributed the greatest daily number of Kcal from liquids. Sugar sweetened beverages which included carbonated beverages, nectars and artificial beverages, accounted for 37% and 45% of the total Kcal from liquid intake in the 3- to 6-year-old and 7- to 10- year-old groups, respectively. Among adolescents (participants 11- to 17- years old, most of the energy intake from liquids came from carbonated beverages, which accounted for an average of 207 kcal/day in this group (42% of their total energy intake from liquids. Health professionals should be attentive to the excessive consumption of sugar sweetened beverages in children and adolescents. The movement toward healthier dietary patterns at the

  8. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    Science.gov (United States)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  9. Evaporation of liquids on chemically patterned surfaces

    NARCIS (Netherlands)

    Vieyra Salas, J.A.; Darhuber, A.A.

    2011-01-01

    We studied evaporation rates of volatile liquids deposited onto chemically patterned surfaces by means of experiments and numerical simulations. We quantified the influence of the droplet geometry, in particular circular, triangular, rectangular and square shapes, as well as the influence of contact

  10. Streamline topology: Patterns in fluid flows and their bifurcations

    DEFF Research Database (Denmark)

    Brøns, Morten

    2007-01-01

    Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fix...... walls, and axisymmetric flows are analyzed in detail. We show how to apply the ideas from the theory to analyze numerical simulations of the vortex breakdown in a closed cylindrical container....

  11. Local composition shift of mixed working fluid in gas–liquid flow with phase transition

    International Nuclear Information System (INIS)

    Xu Xiongwen; Liu Jinping; Cao Le; Li Zeyu

    2012-01-01

    Local composition shift is an important characteristic of gas-liquid mixture flow with phase transition. It affects the heat transfer process, stream sonic velocity and the mixture distribution in the thermodynamic cycle. Presently, it is mainly calculated through the empirical models of the void fraction from pure fluid experiments. In this paper, we made efforts to obtain it and its rules basing on conservation equations derivation. The result calculated with propane/i-butane binary mixture was verified by the experiment in the evaporator of a refrigerator. As an extending, it was applied to a ternary mixture with components of methane, propane and butane and more information was presented and analyzed. The calculation approach presented in this paper can be applied any multicomponent mixture, and the rules will be helpful to improve the composition shift theory. - Highlights: ► Local composition shift of mixed working fluid in gas–liquid flow was modelled. ► A solution method for local composition of gas–liquid flow was proposed. ► The solution method was verified by the experimental result. ► Local composition shift mechanism of gas–liquid flow was studied

  12. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  13. A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.

  14. A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid.

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    2011-03-01

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids. We developed an MF seal that has a "shield" mechanism, and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Three types of MF seals were used. Seal A was a conventional seal without a shield. Seal B had the same structure as that of Seal A, but the seal was installed at 1 mm below liquid level. Seal C was a seal with a shield and the MF was set at 1 mm below liquid level. Seal A failed after 6 and 11 days. Seal B showed better results (20 and 73 days). Seal C showed long-term durability (217 and 275 days). The reason for different results in different seal structures was considered to be different flow conditions near the magnetic fluid. Fluid dynamics near the MF in the pump were analyzed using computational fluid dynamics (CFD) software. We have developed an MF seal with a shield that works in liquid for >275 days. The MF seal is promising as a shaft seal for rotary blood pumps.

  15. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Mingfeng; Gao, Yunxia [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-03-15

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10–30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet. - Graphical abstract: High speed videos for the impact of striking GaIn{sub 24.5} based magnetic liquid metal droplets on a magnet plate. - Highlights: • A feasible way to fabricate magnetic nano liquid metal fluid was presented. • Ni nanoparticles sharply increased freezing temperature and latent heat of magnetic nanofluid. • A hysteresis loop phenomenon was observed for the magnetic nanofluid. • Temperature dependent magnetization spanning from 10 K to 400 K was measured. • Impact phenomena of striking magnetic droplets on magnet were disclosed.

  16. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  17. Bifurcated SEN with Fluid Flow Conditioners

    Directory of Open Access Journals (Sweden)

    F. Rivera-Perez

    2014-01-01

    Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.

  18. Probability model of solid to liquid-like transition of a fluid suspension after a shear flow onset

    Czech Academy of Sciences Publication Activity Database

    Nouar, C.; Říha, Pavel

    2008-01-01

    Roč. 34, č. 5 (2008), s. 477-483 ISSN 0301-9322 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : laminar suspension flow * liquid-liquid interface * probability model Subject RIV: BK - Fluid Dynamics Impact factor: 1.497, year: 2008

  19. Vapour-liquid equilibrium properties for two- and three-dimensional Lennard-Jones fluids from equations of state

    International Nuclear Information System (INIS)

    Mulero, A.; Cuadros, F; Faundez, C.A.

    1999-01-01

    Vapour-liquid equilibrium properties for both three- and two-dimensional Lennard-Jones fluids were obtained using simple cubic-in-density equations of state proposed by the authors. Results were compared with those obtained by other workers from computer simulations and also with results given by other more complex semi-theoretical or semi-empirical equations of state. In the three-dimensional case good agreement is found for all properties and all temperatures. In the two-dimensional case only the coexistence densities were compared, producing good agreement for low temperatures only. The present work is the first to give numerical data for the vapour-liquid equilibrium properties of Lennard-Jones fluids calculated from equations of state. Copyright (1999) CSIRO Australia

  20. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  1. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    International Nuclear Information System (INIS)

    Baron, J.; Alexander, T.

    2003-01-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  2. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  3. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  4. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  5. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C. [Institute; División; Li, Xiao [Institute; Martínez-González, José A. [Institute; Smith, Coleman [Institute; Hernández-Ortiz, J. P. [Departamento; Nealey, Paul F. [Institute; Materials; de Pablo, Juan J. [Institute; Materials

    2017-08-17

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  6. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  7. Analysis of new psychoactive substances in human urine by ultra-high performance supercritical fluid and liquid chromatography: Validation and comparison.

    Science.gov (United States)

    Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel

    2018-05-01

    New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  9. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  10. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    Science.gov (United States)

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  11. Patterns of gravity induced aggregate migration during casting of fluid concretes

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...

  12. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks

    International Nuclear Information System (INIS)

    Nicolici, S.; Bilegan, R.M.

    2013-01-01

    Highlights: ► We used Ansys Workbench package to study sloshing phenomena in liquid containers. ► The interaction liquid–structure is modeled considering full and one-way coupling. ► The results obtained with the FSI models were compared against design codes. ► The results have shown that the sloshing is influenced by tank wall elasticity. -- Abstract: The present paper is concerned with the problem of modeling the fluid–structure interaction (FSI) in partially filled liquid containers. The study focuses on the sloshing phenomena and on the coupling computational fluid dynamics (CFD) analysis with the finite element stress analysis (FEA) used to predict the sloshing wave amplitude, convective mode frequency, pressure exerted on the walls and the effect of sloshing on the anchoring points forces. The interaction between fluids (water and air) and tank wall is modeled considering full and one-way coupling. Using the time history of an earthquake excitation, the results of the FSI model are compared with those obtained employing simplified mechanical models given in design codes. The coupling phenomenon was found to influence the sloshing effect, the impulsive pressure being amplified by the wall elasticity. The applied FSI methodology proves to be feasible in analyzing a 3D full coupled CFD/FEA storage tank subjected to a long time history excitation

  13. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  14. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Kuijpers, C.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We studied the deformation of thin liquid films induced by surface charge patterns at the solid–liquid interface quantitatively by experiments and numerical simulations. We deposited a surface charge distribution on dielectric substrates by applying potential differences between a conductive liquid

  15. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  16. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    Science.gov (United States)

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  17. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    Science.gov (United States)

    Erny, G L; Cifuentes, A

    2006-02-24

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.

  18. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  19. Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven self-alignment in micro-assembly

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Jorritsma, Mark; Arnaldo del Cerro, D.; Chang, Bo; Liimatainen, Ville; Zhou, Quan; Huis in 't Veld, Bert

    2011-01-01

    Fluid driven self-alignment is a low cost alternative to fast but relatively inaccurate robotic pickand-place assembly of micro-fabricated components. This fluidic self-alignment technique relies on a hydrophobic-hydrophilic pattern on the surface of the receiving substrate, which confines a fluid

  20. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  1. Sample preparation for liquid chromatographic analysis of phytochemicals in biological fluids.

    Science.gov (United States)

    Oh, Ju-Hee; Lee, Young-Joo

    2014-01-01

    Natural products have been used traditionally for the treatment and prevention of diseases for thousands of years and are nowadays consumed as dietary supplements and herbal medicine. To ensure the safe and effective use of these herbal products, information about bioavailability of active compounds in plasma or target tissues should be provided via validated analytical methods combined with appropriate sampling methods. To provide comprehensive and abridged information about sample preparation methods for the quantification of phytochemicals in biological samples using liquid chromatography analysis. Sample pre-treatment procedures used in analytical methods for in vivo pharmacokinetic studies of natural compounds or herbal medicines were reviewed. These were categorised according to the biological matrices (plasma, bile, urine, faeces and tissues) and sample clean-up processes (protein precipitation, liquid-liquid extraction and solid-phase extraction). Although various kinds of sample pre-treatment methods have been developed, liquid-liquid extraction is still widely used and solid-phase extraction is becoming increasingly popular because of its efficiency for extensive clean up of complex matrix samples. However, protein precipitation is still favoured due to its simplicity. Sample treatment for phytochemical analysis in biological fluids is an indispensable and critical step to obtain high quality results. This step could dominate the overall analytical process because both the duration of the process as well as the reliability of the data depend in large part on its efficiency. Thus, special attention should be given to the choice of a proper sample treatment method that targets analytes and their biomatrix. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The effect of bowl-in-piston geometry layout on fluid flow pattern

    Directory of Open Access Journals (Sweden)

    Jovanovic Zoran S.

    2011-01-01

    Full Text Available In this paper some results concerning the evolution of 3D fluid flow pattern through all four strokes in combustion chambers with entirely different bowl-in-piston geometry layouts ranging from ”omega” to “simple cylinder” were presented. All combustion chambers i.e. those with „omega“ bowls, with different profiles, and those with „cylinder“ bowls, with different squish area ranging from 44% to 62%, were with flat head, vertical valves and identical elevation of intake and exhaust ports. A bunch of results emerged by dint of multidimensional modeling of nonreactive fluid flow in arbitrary geometry with moving objects and boundaries. The fluid flow pattern during induction and compression in all cases was extremely complicated and entirely three-dimensional. It should be noted that significant differences due to geometry of the bowl were encountered only in the vicinity of TDC. Namely, in the case of “omega” bowl all three types of organized macro flows were observed while in the case of “cylinder” bowl no circumferential velocity was registered at all. On the contrary, in the case of “cylinder” bowl some interesting results concerning reverse tumble and its center of rotation shifting from exhaust valve zone to intake valve zone during induction stroke and vice-verse from intake valve zone to exhaust valve zone during compression were observed while in the case of “omega” bowl no such a displacement was legible. During expansion the fluid flow pattern is fully controlled by piston motion and during exhaust it is mainly one-dimensional, except in the close proximity of exhaust valve. For that reason it is not affected by the geometry of the bowl.

  3. Behavior of fluids in a weightless environment

    Science.gov (United States)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  4. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo

    Directory of Open Access Journals (Sweden)

    Mogi Kazue

    2012-04-01

    Full Text Available Abstract Background It has long been known that cerebrospinal fluid (CSF, its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. Methods The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter into the fourth cerebral ventricle at embryonic/larval stages 30-53. Results The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius. In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. Conclusions This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow

  5. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  6. Using artificial intelligence to improve identification of nanofluid gas–liquid two-phase flow pattern in mini-channel

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    2018-01-01

    Full Text Available This work combines fuzzy logic and a support vector machine (SVM with a principal component analysis (PCA to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas–liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  7. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    Science.gov (United States)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  8. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    Science.gov (United States)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  9. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Science.gov (United States)

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  10. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  11. Effect of shear-thinning behaviour on liquid-liquid plug flow in microchannels

    Science.gov (United States)

    Roumpea, Evangelia; Chinaud, Maxime; Weheliye, Weheliye Hashi; Angeli, Panagiota; Kahouadji, Lyes; Matar, Omar K.

    2016-11-01

    The present work investigates the dynamics of plug formation of shear-thinning solutions in a 200 μm microchannel using a two-colour micro-PIV system. Measurements, including phase-averaged velocity fields, have been conducted both at the T-junction inlet and the main channel to enhance understanding of non-Newtonian liquid-liquid flows. Two aqueous glycerol solutions containing xanthan gum are used as the non-Newtonian fluids while 5 cSt silicone oil is the Newtonian phase. The current experimental results revealed a pronounced impact of the xanthan gum (shear-thinning behaviour) on the flow pattern transition boundaries, and enhance the fluid flowrates where plug flow occurred. The addition of polymer resulted also in different hydrodynamic characteristics such as a bullet-shaped plug and an increased film thickness between the plug and the wall. In the present work, the technique allows to capture the velocity field of both phases simultaneously. Experimental results are compared with the numerical simulations provided by the code BLUE. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  12. The questions of liquid metal two-phase flow modelling in the FBR core channels

    International Nuclear Information System (INIS)

    Martsiniouk, D.Ye.; Sorokin, A.P.

    2000-01-01

    The two-fluid model representation for calculations of two-phase flow characteristics in the FBR fuel pin bundles with liquid metal cooling is presented and analysed. Two conservation equations systems of the mass, momentum and energy have been written for each phase. Components accounted the mass-, momentum- and heat transfer throughout the interface occur in the macro-field equations after the averaging procedure realisation. The pattern map and correlations for two-fluid model in vertical liquid metal flows are presented. The description of processes interphase mass- and heat exchange and interphase friction is determined by the two-phase flow regime. The opportunity of the liquid metal two-phase flow regime definition is analysed. (author)

  13. Topology-generating interfacial pattern formation during liquid metal dealloying.

    Science.gov (United States)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  14. Parallelization of simulation code for liquid-gas model of lattice-gas fluid

    International Nuclear Information System (INIS)

    Kawai, Wataru; Ebihara, Kenichi; Kume, Etsuo; Watanabe, Tadashi

    2000-03-01

    A simulation code for hydrodynamical phenomena which is based on the liquid-gas model of lattice-gas fluid is parallelized by using MPI (Message Passing Interface) library. The parallelized code can be applied to the larger size of the simulations than the non-parallelized code. The calculation times of the parallelized code on VPP500 (Vector-Parallel super computer with dispersed memory units), AP3000 (Scalar-parallel server with dispersed memory units), and a workstation cluster decreased in inverse proportion to the number of processors. (author)

  15. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  16. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  17. Faraday instability in a near-critical fluid under weightlessness.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  18. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  19. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  20. Process and device for cooling liquid or vaporised fluids

    International Nuclear Information System (INIS)

    1975-01-01

    The invention relates to a process for the ambient air cooling of liquid fluids or those vaporised under low pressure. An exchanger composing a first circuit for the fluid to be cooled is set up and is separated by a partition from a second circuit swept by the atmospheric air. Each one of these two circuits is made up of pipes of not more than 4 mm hydraulic diameter and on the side of the second circuit swept by the air a quantity of water is brought to the extent of 0 to 50 g/kg of dry air crossing it. The water is sprayed into the second circuit. The tubes of the second circuit are set up so that the water sprayed on, runs down the partition separating the two circuits. The water is sprayed counter-current with respect to the direction of the cooling air. A quantity of water is projected into the second circuit depending on the thermal flow to be exchanged and the desired cooling temperature, the amount of water being limited so that the outgoing air, returned to the atmosphere, contains an amount of water per kilogram of dry air corresponding to the absolute moisture of the saturated air for the dry ambient temperature at the time. The process affords all the advantages of a wet cooling tower, great efficiency and low temperature [fr

  1. Study of pattern formation at liquid interfaces: Progress report, November 1986-October 1987

    International Nuclear Information System (INIS)

    Maher, J.V.

    1987-10-01

    This paper summarizes the work done on the following topics at the University of Pittsburgh: the behavior of a tip-splitting, viscous-fingering system and the role of interfacial noise in pattern formation on planar interfaces; the search for instability on a quenched liquid interface; and binary liquid gels and polymer solutions

  2. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  3. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    Science.gov (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  4. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  5. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  6. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Science.gov (United States)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  7. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  8. Heat transfer fluids for solar DHW systems

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, S.; Bezzel, E.

    2000-07-01

    The aim of this work was to investigate the sudden clogging of the pipes in collectors as a consequence of liquid deterioration after repeated boiling during stagnation. A method to perform simple screening as accelerated tests of a large number liquid of samples subjected to various chemical- and physical environments have been designed. The acceleration factor of experiments relative to real systems is quite substantial primarily due to the extensive stress cycles in tests. Possible degradation mechanisms have been investigated and generally, there are two different paths to degradation of glycol: Thermal degradation and oxidative degradation primarily yielding propylene derivatives and carboxylic acids respectively. Polymerisation is an obvious possibility in a system containing various organic compounds such as acids and alcohols. Consequently, the reaction patterns alter making room for alternative interconnected mechanisms thus generating a broad spectrum of possible degradation products. Reserve alkalinity and pH are somewhat unreliable means of solely estimating the state of a liquid in relation to degradation and precipitation, as curvature of the RA-pH relations are different from liquid to liquid. For the majority of liquids, precipitation is not correlated with pH and RA. Coloration and precipitation in the liquid phase during stagnation separated liquids in two sub-categories. Fluids with inhibitor have sparing to moderate sedimentation and are brownish-black due to deterioration. Glycols without additives were either pale or colourless and did not precipitate. During normal operation, all fluids are clear and transparent and the majority has the same initial colour. The same distinction in liquids was observed on examination on the inside surface of the tubes concerning extent and the quantity of deposit. Liquids with additives tend to have significantly more deposit covering a larger surface than liquids without. Visual evaluation has proved that

  9. Light-absorbent liquid immersion angled exposure for patterning 3D samples with vertical sidewalls

    International Nuclear Information System (INIS)

    Kumagai, Shinya; Kubo, Hironori; Sasaki, Minoru

    2017-01-01

    To make photolithography patterns on 3D samples, the angled (inclined) exposure technique has been used so far. However, technological issues have emerged in making photolithography patterns on the surface of trench structures. The surface of the trench structures can be covered with a photoresist film by spray-coating but the photoresist film deposited on the sidewalls and bottom of the trench is generally thin. The thin photoresist film deposited inside the trench has been easily overdosed. Moreover, irregular patterns have frequently been formed by the light reflected inside the trench. In this study, we have developed liquid immersion photolithography using a light-absorbent material. The light-reflection inside the trench was suppressed. Various patterns were transferred in the photoresist film deposited on the trench structures which had an aspect ratio of 0.74. Compared to immersion photolithography using pure water under p -polarization light control, the light-absorbent liquid immersion photolithography developed here patterned well the surfaces of the trench sidewalls and bottom. (paper)

  10. Fluid management in roll-to-roll nanoimprint lithography

    Science.gov (United States)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  11. Pattern Formation During Phase Separation of Polymer-Ionic Liquid Co-Solutions

    Science.gov (United States)

    Meng, Zhiyong; Osuji, Chinedum

    2010-03-01

    Co-solutions of polystyrene (PS) with a 1-butyl-3-methylimidazolium based ionic liquid (IL) in DMF phase separated into IL-rich and PS-rich domains on solvent evaporation. Over a limited range of polymer molecular weights and substrate temperatures, a variety of striped and cellular or polygonal structures were found on the resulting film surface, as visualized using bright-field and phase-contrast optical microscopy. This effect appears to be due to a Benard-Marangoni instability at the free surface of the liquid film as it undergoes evaporation, setting up convection rolls inside the fluid which become locked in place as the system vitrifies on solvent removal. Differential scanning calorimetry shows that the IL does not significantly plasticize the polymer, suggesting that the viscosity of the polystyrene solution itself controls the formation of this instability.

  12. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    Science.gov (United States)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  13. Thermocapillary migration of liquids on patterned surfaces : design concept for microfluidic

    NARCIS (Netherlands)

    Darhuber, A.A.; Davis, J.M.; Reisner, W.W.; Troian, S.M.

    2001-01-01

    We present a novel method of fluidic transport on the open surface of a chemically patterned substrate using thermocapillary actuation. Our experimental and numerical studies provide the desired correlations between the microstream flow rate and tunable parameters like the liquid sample volume,

  14. Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments

    Directory of Open Access Journals (Sweden)

    Guan Heng Yeoh

    2016-12-01

    Full Text Available The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the

  15. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  16. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  17. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  18. Pattern of semen fluid abnormalities in male partners of infertile couples in southeastern, Nigeria.

    Science.gov (United States)

    Ugboaja, J O; Monago, E N; Obiechina, N J A

    2010-01-01

    The incidence of male infertility is increasing in our environment. There is a need to evaluate the pattern of abnormality with a view to recommending appropriate interventions. We aimed to to analyze the seminal fluid parameters of the male partners of the infertile couples managed in the hospital over a 12 month period and to identify the pattern of abnormalities. A retrospective study of all the semen samples of male partners of infertile couples submitted for analysis to the microbiology laboratory of Nnamdi Azikiwe University Teaching Hospital, Nnewi Nigeria between 1st January 2006 and 31st December 2006 The reports of the semen fluid analysis were retrieved from the records department and supplemented with the laboratory register. Out of the 348 semen sample reports evaluated, 237 (68.0%) had semen fluid abnormalities. 104 (30.0%) had single factor abnormalities while 133 (38.0%) had combined factor anomalies. Asthenozoospermia 58 (16.7%) was the main single abnormality, while Astheno-oligozoospermia 51 (14.7%) and Astheno-oligoteratozoospermia (13.2%) were the major combined factor abnormalities detected. Very few 5 (1.4%) of the patients had azospermia. The study showed a high rate of semen fluid abnormalities among the male partners of infertile women in our environment. The high preponderance of poor motility emphasizes the need to include men in programmes aimed at reducing sexually transmitted infections in Nigeria.

  19. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  20. Capillarity Guided Patterning of Microliquids.

    Science.gov (United States)

    Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li

    2015-06-01

    Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synovial Fluid Analysis

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... is being tested? Synovial fluid is a thick liquid that acts as a lubricant for the body's ...

  2. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode

    International Nuclear Information System (INIS)

    Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-01-01

    Self-organized luminous pattern formation is observed in the liquid surface of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. The factors affecting pattern formation are the gap length, discharge current, helium mass flow rate and polarity. The pattern shape depends on the conductivity and temperature of the liquid electrode. A variety of patterns were observed by changing the conductivity and temperature of the liquid. We clarified that the self-organized pattern formation depends on the amount of electronegative gas, such as oxygen, in the gas in the electrode gap. When an oxygen gas flow was fed to the liquid surface from the outside in an obliquely downward direction, namely, the amount of oxygen gas on the liquid surface was increased locally, self-organized pattern formation was observed in the region with the increased amount of oxygen gas. When the amount of oxygen in the gas in the gap was changed by using a sheath flow system, the appearance of the pattern changed. The presence of oxygen gas strongly affected the self-organized pattern formation of the atmospheric dc discharge using a liquid anode. (paper)

  4. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  6. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    Science.gov (United States)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  7. Liquid droplet radiator performance studies

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  8. Water-saving liquid-gas conditioning system

    Science.gov (United States)

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  9. Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis

    Directory of Open Access Journals (Sweden)

    Jiwoon Choi

    2018-01-01

    Full Text Available Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4–11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.

  10. Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis.

    Science.gov (United States)

    Choi, Jiwoon; Kim, Se Hoon

    2018-01-01

    Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4-11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.

  11. Sensitive, automatic method for the determination of diazepam and its five metabolites in human oral fluid by online solid-phase extraction and liquid chromatography with tandem mass spectrometry

    DEFF Research Database (Denmark)

    Jiang, Fengli; Rao, Yulan; Wang, Rong

    2016-01-01

    A novel and simple online solid-phase extraction liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide...... in human oral fluid. Human oral fluid was obtained using the Salivette(®) collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass...

  12. Direct numerical simulation of solidification microstructures affected by fluid flow

    International Nuclear Information System (INIS)

    Juric, D.

    1997-12-01

    The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow

  13. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    Science.gov (United States)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  14. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    Directory of Open Access Journals (Sweden)

    Yali Lin

    2017-11-01

    Full Text Available Cholesteric liquid crystals (CLCs exhibit selective Bragg reflections of circularly polarized (CP light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe3O4 nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters “L” and “C” was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  15. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors.

    Science.gov (United States)

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-11-08

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe₃O₄ nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters "L" and "C" was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  16. Fluid dynamics of cryogenic two-phase flows

    International Nuclear Information System (INIS)

    Verfondern, K.; Jahn, W.

    2004-01-01

    The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)

  17. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  18. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    OpenAIRE

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...

  19. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  20. Spontaneous orbiting of two spheres levitated in a vibrated liquid.

    Science.gov (United States)

    Pacheco-Martinez, H A; Liao, L; Hill, R J A; Swift, Michael R; Bowley, R M

    2013-04-12

    In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration, there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here, we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration, the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations reproduce the observed behavior qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability.

  1. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  2. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    Science.gov (United States)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  3. Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids

    International Nuclear Information System (INIS)

    Gonzalez, J. A; Guzman, F. S.

    2011-01-01

    In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.

  4. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    NARCIS (Netherlands)

    Ham, M. van der; Koning, T.J. de; Lefeber, D.J.; Fleer, A.; Prinsen, B.H.; Sain-van der Velden, M.G. de

    2010-01-01

    BACKGROUND: Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was

  6. Hydrodynamic response of viscous fluids under seismic excitation

    International Nuclear Information System (INIS)

    Ma, D.C.

    1993-01-01

    Hydrodynamic response of liquid-tank systems, such as reactor vessels, spent-fuel pools and liquid storage tanks have been studied extensively in the last decade (Chang et al. 1988; Ma et al. 1991). However, most of the studies are conducted with the assumption of an inviscid fluid. In recent years, the hydrodynamic response of viscous fluids has received increasing attention in high level waste storage tanks containing viscous waste material. This paper presents a numerical study on the hydrodynamic response of viscous fluids in a large 2-D fluid-tank system under seismic excitation. Hydrodynamic responses (i.e. sloshing wave height, fluid pressures, shear stress, etc.) are calculated for a fluid with various viscosities. Four fluid viscosities are considered. They are 1 cp, 120 cp, 1,000 cp and 12,000 cp (1 cp = 1.45 x 10 -7 lb-sec/in 2 ). Note that the liquid sodium of the Liquid-Metal Reactor (LMR) reactor has a viscosity of 1.38 x 10 -5 lb-sec/in 2 (about 95 cp) at an operational temperature of 900 degree F. Section 2 describes the pertinent features of the mathematical model. In Section 3, the fundamental sloshing phenomena of viscous fluid are examined. Sloshing wave height and shear stress for fluid with different viscosities are compared. The conclusions are given in Section 4

  7. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  8. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  9. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    Directory of Open Access Journals (Sweden)

    Max Lafontan

    2015-01-01

    Full Text Available Summary: Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity, water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols.

  10. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    Science.gov (United States)

    Lafontan, Max; Visscher, Tommy L.S.; Farpour-Lambert, Nathalie; Yumuk, Volkan

    2015-01-01

    Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity), water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols. PMID:25765164

  11. Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    from drill cores DH01, DH02, DH06, and DH07, and outcrop samples. Microthermometric data were obtained by freezing and heating of fluid inclusions on a Linkam THMSG600 mounted on an Olympus microscope at Lorestan University. Results 1 Five main veintypes were identified, belonging to three stages of mineralization:type (I: barren quartz, type (II: quartz + pyrite + chalcopyrite ± bornite ± chalcocite ± covelite, type (III: quartz + magnetite ± chalcopyrite, type (IV: K-feldspar± quartz ± chalcopyrite, type (V: chlorite + biotite. 2 Seven groups of fluid inclusionswere observed: (IA liquid-rich mono-phase, (IB vapor-rich mono-phase, (IIA liquid-rich two-phase (liquid + vapor, (IIB vapor-rich two-phase (vapor + liquid, (IIIA high salinity simple fluids (liquid + vapor + halite, (IIIB high salinity opaque mineral-bearing fluids (liquid + vapor + halite + pyrite + chalcopyrite + hematite, (IIIAB multi-phase fluids (liquid + vapor + halite + sylvite + hematite + magnetite + pyrite + chalcopyrite ± erythrosiderite 3 Multiphase fluid inclusions with predominant homogenization temperatures 420 to 620˚C and predominant salinities 70 to 75 wt.%NaCl, are thought to be the early fluids involved in mineralization. 4 The coexistence of high saline liquid and vapor rich fluid inclusions (IIIAB, IIIB, IIIA and IIA types resulted either from fluid entrapment during the boiling process or the co-presence of two immiscible fluids generated from the magma. 5 Dalliporphyry Cu-Au deposit was formed in a magmatic-meteoric system. Discussion Two conventional thermometric procedures, freezing and heating, were employed for the measurement of temperature of homogenization and approximate salinity. Freezing was conducted mainly for halite-under saturated inclusions (types IIA and IIB, to measure the initial melting temperature (Te and the last melting point (Tmice, whereas heating was carried out on the halite-bearing inclusions (types IIIA, IIIB and IIIAB. Based on the microthermometric

  12. Cerebrospinal fluid leak (image)

    Science.gov (United States)

    ... brain and spinal cord by acting like a liquid cushion. The fluid allows the organs to be buoyant protecting them from blows or other trauma. Inside the skull the cerebrospinal fluid is contained by the dura which covers ...

  13. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    Science.gov (United States)

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Status of thermophysical properties data for pure fluids and mixtures of cryogenic interest

    International Nuclear Information System (INIS)

    Haynes, W.M.; Hiza, M.J.; Kidney, A.J.; Olien, N.A.

    1984-01-01

    This chapter discusses the importance, availability, and deficiencies of the existing data bases for the thermophysical properties of cryogenic fluids, including mixtures, considering both scientific and engineering interests. The following types of phase equilibria are emphasized: liquid-vapor, solid-vapor, liquid-liquid (or liquid-liquid-vapor), and solid-liquid (or solid-liquid-vapor). The available thermophysical properties data for both pure fluids and mixtures are summarized. Specific recommendations are made for future experimental measurements. It is predicted that the major thrust of future studies of cryogenic fluids will involve mixtures. The fluids considered include those involved in cryogenic processing with melting temperatures below ambient

  15. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  16. Removing sulphur oxides from a fluid stream

    Science.gov (United States)

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  17. Dynamics of solid nanoparticles near a liquid-liquid interface

    Science.gov (United States)

    Daher, Ali; Ammar, Amine; Hijazi, Abbas

    2018-05-01

    The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.

  18. Liquid-vapour phase behaviour of a polydisperse Lennard-Jones fluid

    International Nuclear Information System (INIS)

    Wilding, Nigel B; Sollich, Peter

    2005-01-01

    We describe a simulation study of the liquid-vapour phase behaviour of a model polydisperse fluid. Particle interactions are given by a Lennard-Jones potential in which polydispersity features both in the particle sizes and the amplitude of their interactions. We address the computational problem of accurately locating the cloud curve for such a system using Monte Carlo simulations within the grand canonical ensemble. The strongly nonlinear variation of the fractional volumes of the phases across the coexistence region precludes naive extrapolation to determine the cloud point density. Instead we propose an improved estimator for the cloud point location and use scaling arguments to predicts its finite-size behaviour. Excellent agreement is found with the simulation results. Application of the method reveals that the measured cloud curve is highly sensitive to the presence of large particles, even when they are extremely rare. This finding is expected to have implications for the reproducibility of experimentally measured phase diagrams in colloids and polymers

  19. Thermodynamic Fluid Equations-of-State

    Directory of Open Access Journals (Sweden)

    Leslie V. Woodcock

    2018-01-01

    Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.

  20. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  1. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  2. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  3. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  4. Experimental and numerical investigations of ionic liquid-aqueous flow in microchannel

    Science.gov (United States)

    Li, Qi; Tsaoulidis, Dimitrios; Angeli, Panagiota

    2015-11-01

    The hydrodynamic characteristics of plug flow of an ionic liquid-aqueous two-phase system in a microchannel were studied experimentally and numerically. A mixture of 0.2M N-octyl(plenyl)-N,N-diisobutylcarbamoylmethyphosphine oxide (CMOP)- 1.2 M Tri-n-butylphosphate (TBP) in room temperature ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([C4min][NTf2]), and a nitric acid solution of 1M were chosen. These fluids are relevant Eu(III) separation by extraction from nitric acid solutions. The two liquid phases were introduced into microchannels of 0.2 and 0.5mm internal diameter through a T-junction inlet. The flow pattern was visualized during plug formation at the inlet section and further downstream by means by bright field planar micro-Particle Image Velocimetry. Key features of plug flow, such as plug velocity, film thickness, plug length and recirculation intensity were measured under various experimental conditions. To gain further understanding of the 3-D flow field, Computation Fluid Dynamics (CFD) simulations approach were also conducted.

  5. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement

    International Nuclear Information System (INIS)

    Han, J; Dong, F; Xu, Y Y

    2009-01-01

    This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.

  6. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    water with a density of 0.921 kg/m3 remains in a homogeneous state during cooling down to the temperaure of −30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. iii) ice melting. Ice melting temperatures of up to 6.8 °C were measured in absence of the vapour bubble, i......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...

  7. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  8. Device Stores and Discharges Metered Fluid

    Science.gov (United States)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  9. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  10. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    Science.gov (United States)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  11. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  12. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  13. Optofluidic laser scanner based on a rotating liquid prism.

    Science.gov (United States)

    Kopp, Daniel; Lehmann, Lukas; Zappe, Hans

    2016-03-20

    We demonstrate an electrowetting-actuated optofluidic system based on a rotatable liquid prism implemented as a two-dimensional laser scanner. The system is fabricated through a novel technology using a patterned flexible polymeric foil on which a high density of electrodes is structured and which is subsequently inserted into a cylindrical housing. The resulting radial electrode array is used for electrowetting actuation of two fluids filled into the cylinder, which allows a controllable tilt and orientation of the planar liquid interface and thus represents a tunable rotating prism. Finite element simulations and subsequent experimental verification show that this highly planar and precisely positionable liquid/liquid interface may be actuated to a deflection angle of ±6.4°, with a standard deviation of ±0.18°, and rotated 360° about the vertical axis. Power consumption is limited to several microwatts, and switching times of several hundred milliseconds were determined.

  14. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    Science.gov (United States)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  15. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  16. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  17. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  18. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.

    Science.gov (United States)

    Weiss, Volker C

    2010-07-22

    One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.

  19. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  20. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  1. Statistical mechanics of fluids under internal constraints: Rigorous results for the one-dimensional hard rod fluid

    International Nuclear Information System (INIS)

    Corti, D.S.; Debenedetti, P.G.

    1998-01-01

    The rigorous statistical mechanics of metastability requires the imposition of internal constraints that prevent access to regions of phase space corresponding to inhomogeneous states. We derive exactly the Helmholtz energy and equation of state of the one-dimensional hard rod fluid under the influence of an internal constraint that places an upper bound on the distance between nearest-neighbor rods. This type of constraint is relevant to the suppression of boiling in a superheated liquid. We determine the effects of this constraint upon the thermophysical properties and internal structure of the hard rod fluid. By adding an infinitely weak and infinitely long-ranged attractive potential to the hard core, the fluid exhibits a first-order vapor-liquid transition. We determine exactly the equation of state of the one-dimensional superheated liquid and show that it exhibits metastable phase equilibrium. We also derive statistical mechanical relations for the equation of state of a fluid under the action of arbitrary constraints, and show the connection between the statistical mechanics of constrained and unconstrained ensembles. copyright 1998 The American Physical Society

  2. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  3. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis.

    Science.gov (United States)

    Mullett, Wayne M

    2007-03-10

    The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.

  4. Recording fluid currents by holography

    Science.gov (United States)

    Heflinger, L. O.; Wuerker, R. F.

    1980-01-01

    Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.

  5. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  6. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  7. Pattern formation of nanoflowers during the vapor-liquid-solid growth of silicon nanowires

    International Nuclear Information System (INIS)

    Bae, Joonho; Thompson-Flagg, Rebecca; Ekerdt, John G.; Shih, C.-K.

    2008-01-01

    Pattern formation of nanoflowers during the vapor-liquid-solid growth of Si nanowires is reported. Using transmission electron microscopy, scanning electron microscopy, and energy dispersive spectrometer analysis, we show that the flower consists of an Au/SiO x core-shell structure. Moreover, the growth of flower starts at the interface between the gold catalyst and the silicon nanowire, presumably by enhanced oxidation at this interface. The pattern formation can be classified as dense branching morphology (DBM). It is the first observation of DBM in a spherical geometry and at the nanoscale. The analysis of the average branching distance of this pattern shows that the pattern is most likely formed during the growth process, not the cooling process, and that the curvature of the gold droplet plays a crucial role in the frequency of branching

  8. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.

    Science.gov (United States)

    Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-10-01

    Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  10. Acceleration of liquid by boiling of other volatile liquid, (4)

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Mori, Yasuo

    1978-01-01

    In the development of liquid metal MHD power generation using liquid metal as a working fluid, it is one of the important problems to accelerate liquid metal efficiently by means of thermal energy. Though various accelerating methods have been proposed so far, those do not provide high cycle thermal efficiency because of either small electric conductivity, low accelerating efficiency or low gas-liquid separating efficiency. The authors proposed the method to accelerate through volume expansion by boiling a volatile liquid being blown into liquid metal at high temperature, and have investigated it experimentally and theoretically. In the study, efficiency has been discussed in case of the acceleration of fluid subjected to magneto-hydrodynamical force by boiling of droplets of other liquid. Theoretically, the field of flow and two-phase cycle and gas phase cycle were analyzed. The report describes on these results and discussions. It is concluded that efficiency is independent of the injected amount and position of droplets, final efficiency is little affected by external load and thermal conductivity of volatile liquid droplets, the efficiency for the combination of cesium and lead is about 50%, and the method proposed by authors seems to be better than the conventional methods with gas phase cycle proposed so far using inert gas bubbles in lieu of volatile liquid. (Wakatsuki, Y.)

  11. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure.

    Science.gov (United States)

    Cox, Sharon; Kośmider, Leon; McRobbie, Hayden; Goniewicz, Maciej; Kimber, Catherine; Doig, Mira; Dawkins, Lynne

    2016-09-20

    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein). A counterbalanced repeated measures design. Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i) low strength (6mg/mL), fixed settings; ii) low strength user-defined settings; iii) high strength (18mg/mL) fixed settings; iv) high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. i) Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed) and user behaviour (changes to device settings: voltage and air-flow) associated with using high and low strength nicotine e-liquid. ii) Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. i) Subjective effects. ii) comparisons with toxicant exposure from tobacco smoke (using documented evidence) and with recommended safety limits

  12. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure

    Directory of Open Access Journals (Sweden)

    Sharon Cox

    2016-09-01

    Full Text Available Abstract Background Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs or user behaviour (increasing the wattage can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein. Methods/design A counterbalanced repeated measures design. Participants: Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. Intervention: This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i low strength (6mg/mL, fixed settings; ii low strength user-defined settings; iii high strength (18mg/mL fixed settings; iv high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. Primary outcomes: i Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed and user behaviour (changes to device settings: voltage and air-flow associated with using high and low strength nicotine e-liquid. ii Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. Secondary outcomes: i Subjective effects. ii comparisons

  13. Visualization and analysis of flow patterns of human carotid bifurcation by computational fluid dynamics

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2007-01-01

    Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)

  14. Electrorheological fluids and methods

    Science.gov (United States)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  15. Phoresis in fluids.

    Science.gov (United States)

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  16. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  17. Fluid Inclusion Study of Quartz Xenocrysts in Mafic Dykes from Kawant Area, Chhota Udaipur District, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Randive Kirtikumar

    2015-09-01

    Full Text Available Unusual mafic dykes occur in the proximity of the Ambadongar Carbonatite Complex, Lower Narmada Valley, Gujarat, India. The dykes contain dense population of quartz xenocrysts within the basaltic matrix metasomatised by carbonate-rich fluids. Plagioclase feldspars, relict pyroxenes, chlorite, barite, rutile, magnetite, Fe-Ti oxides and glass were identified in the basaltic matrix. Quartz xenocrysts occur in various shapes and sizes and form an intricate growth pattern with carbonates. The xenocrysts are fractured and contain several types of primary and secondary, single phase and two-phase fluid inclusions. The two-phase inclusions are dominated by aqueous liquid, whereas the monophase inclusions are composed of carbonic gas and the aqueous inclusions homogenize to liquid between 226°C and 361°C. Majority of the inclusions are secondary in origin and are therefore unrelated to the crystallization of quartz. Moreover, the inclusions have mixed carbonic-aqueous compositions that inhibit their direct correlation with the crustal or mantle fluids. The composition of dilute CO2-rich fluids observed in the quartz xenocrysts appear similar to those exsolved during the final stages of evolution of the Amba Dongar carbonatites. However, the carbonates are devoid of fluid inclusions and therefore their genetic relation with the quartz xenocrysts cannot be established.

  18. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  19. Dewetting of thin liquid films on chemically patterned substrates : front propatation along narrow lyophobic stripes and stripe arrays

    NARCIS (Netherlands)

    Brasjen, B.J.; Gu, H.; Darhuber, A.A.

    2013-01-01

    Using experiments and numerical simulations, we investigate the dewetting of thin liquid films on chemically patterned substrates. The patterns consist of long and narrow hydrophobic stripes, separated by larger hydrophilic domains. We characterize the morphology and dynamics of the dewetting front

  20. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bakhtiar, Ray; Majumdar, Tapan K

    2007-01-01

    During the last decade, quantification of low molecular weight molecules using liquid chromatography-tandem mass spectrometry in biological fluids has become a common procedure in many preclinical and clinical laboratories. This overview highlights a number of issues involving "small molecule drugs", bioanalytical liquid chromatography-tandem mass spectrometry, which are frequently encountered during assay development. In addition, possible solutions to these issues are proposed with examples in some of the case studies. Topics such as chromatographic peak shape, carry-over, cross-talk, standard curve non-linearity, internal standard selection, matrix effect, and metabolite interference are presented. Since plasma is one of the most widely adopted biological fluid in drug discovery and development, the focus of this discussion will be limited to plasma analysis. This article is not intended to be a comprehensive overview and readers are encouraged to refer to the citations herein.

  1. Coarsening dynamics of binary liquids with active rotation.

    Science.gov (United States)

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  2. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S

    1971-01-01

    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  3. Determination of mazindol in human oral fluid by high performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    de Oliveira, Marcella Herbstrith; Carlos, Graciela; Bergold, Ana Maria; Pechansky, Flavio; Limberger, Renata Pereira; Fröehlich, Pedro Eduardo

    2014-08-01

    Brazil is one of the countries most affected by abuse of stimulant medications by professional drivers, especially fenproporex, amfepramone and mazindol. Even though their sale is banned, they can be found in illegal markets, such as those located on the country's borders. The use of oral fluid to monitor drug levels has many advantages over plasma and urine because it is noninvasive, easier to collect and more difficult to adulterate. The aim of this study was to develop and validate a sensitive and specific method to quantify mazindol in human oral fluid by liquid chromatography-mass spectrometry (LC-MS). The LC system consisted of an LC-MS system operated in selected ion monitoring mode. The mobile phase was composed of water at pH 4.0, acetonitrile and methanol (60:15:25 v/v/v) at a flow rate of 1.0 mL/min and propranolol was used as internal standard. Total running time was 10 min. The lower limit of quantification was 0.2 ng/mL and the method exhibited good linearity within the 0.2-20 ng/mL range (r = 0.9987). A rapid, specific, sensitive, linear, precise and accurate method was developed for determination of mazindol in human oral fluid according to European Medicines Agency guidelines, and is suitable for monitoring mazindol levels in oral fluid of professional drivers. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Derivation of simplified basic equations of gas-liquid two-phase dispersed flow based on two-fluid model

    International Nuclear Information System (INIS)

    Kataoka, Isao; Tomiyama, Akio

    2004-01-01

    The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill

  5. Composition shift in liquid-recirculation refrigerating systems: an experimental investigation for the pure fluid R134a and the mixture R32/134a

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, G.; Marchesi Donati, F.; Polonara, F. [Ancona Univ. (Italy). Dip. di Energetica; Hewitt, N.J. [University of Ulster at Coleraine, Northern Ireland (United Kingdom). NICERT

    1999-09-01

    The ability of zeotropic mixtures with a remarkable temperature glide to operate in liquid-recirculation systems is investigated and the results of an experimental comparison between the performances of the pure fluid R134a and the zeotropic mixture R32/134a (25/75% by mass) are presented. R134a performs slightly better in the liquid-recirculation mode than in the traditional dry-expansion mode; on the other hand, liquid-recirculation configuration has a detrimental effect on the zeotropic mixture's performance. The reason for this detrimental effect is the mixture component separation which occurs at the liquid/vapor separator. The effect of this separation is investigated using gas chromatograph analysis.

  6. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. A Handy Liquid Metal Based Non-Invasive Electrophoretic Particle Microtrap

    Directory of Open Access Journals (Sweden)

    Lu Tian

    2018-05-01

    Full Text Available A handy liquid metal based non-invasive particle microtrap was proposed and demonstrated in this work. This kind of microtrap can be easily designed and fabricated at any location of a microfluidic chip to perform precise particle trapping and releasing without disturbing the microchannel itself. The microsystem demonstrated in this work utilized silicon oil as the continuous phase and fluorescent particles (PE-Cy5, SPHEROTM Fluorescent Particles, BioLegend, San Diego, CA, USA, 10.5 μm as the target particles. To perform the particle trapping, the micro system utilized liquid-metal-filled microchannels as noncontact electrodes to generate different patterns of electric field inside the fluid channel. According to the experimental results, the target particle can be selectively trapped and released by switching the electric field patterns. For a better understanding the control mechanism, a numerical simulation of the electric field was performed to explain the trapping mechanism. In order to verify the model, additional experiments were performed and are discussed.

  8. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  9. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  10. Fluid behavior in microgravity environment

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  11. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  12. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  13. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    Science.gov (United States)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  14. Viewing angle switching of patterned vertical alignment liquid crystal display

    International Nuclear Information System (INIS)

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  15. Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting

    International Nuclear Information System (INIS)

    Zhou, J X; Shen, X; Yin, Y J; Guo, Z; Wang, H

    2015-01-01

    In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC. (paper)

  16. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution

    Science.gov (United States)

    Derby, Brian

    2010-08-01

    Inkjet printing is viewed as a versatile manufacturing tool for applications in materials fabrication in addition to its traditional role in graphics output and marking. The unifying feature in all these applications is the dispensing and precise positioning of very small volumes of fluid (1-100 picoliters) on a substrate before transformation to a solid. The application of inkjet printing to the fabrication of structures for structural or functional materials applications requires an understanding as to how the physical processes that operate during inkjet printing interact with the properties of the fluid precursors used. Here we review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable. The interactions between individual drops and the substrate as well as between adjacent drops are important in defining the resolution and accuracy of printed objects. Pattern resolution is limited by the extent to which a liquid drop spreads on a substrate and how spreading changes with the overlap of adjacent drops to form continuous features. There are clearly defined upper and lower bounds to the width of a printed continuous line, which can be defined in terms of materials and process variables. Finer-resolution features can be achieved through appropriate patterning and structuring of the substrate prior to printing, which is essential if polymeric semiconducting devices are to be fabricated. Low advancing and receding contact angles promote printed line stability but are also more prone to solute segregation or “coffee staining” on drying.

  17. Numerical simulations of transverse liquid jet to a supersonic crossflow using a pure two-fluid model

    Directory of Open Access Journals (Sweden)

    Haixu Liu

    2016-01-01

    Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.

  18. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  19. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    Directory of Open Access Journals (Sweden)

    Joris Meurs

    2016-08-01

    Full Text Available This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC, gas chromatography (GC and supercritical fluid chromatography (SFC. To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a plot will be shown in which the plate height is plotted against the linear flow velocity. Hence, this application will give optimized flow rates for any set conditions with minimal effort.

  20. Patterns of gravity induced aggregate migration during casting of fluid concretes

    Energy Technology Data Exchange (ETDEWEB)

    Spangenberg, J. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Roussel, N., E-mail: Nicolas.roussel@lcpc.fr [Universite Paris Est, Laboratoire Central des Ponts et Chaussees (LCPC) (France); Hattel, J.H. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Sarmiento, E.V.; Zirgulis, G. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Department of Civil Engineering, Technical University of Denmark (DTU) (Denmark)

    2012-12-15

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  1. Patterns of gravity induced aggregate migration during casting of fluid concretes

    International Nuclear Information System (INIS)

    Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  2. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  3. Use of nonstatistical techniques for pattern recognition to detect risk groups among liquidators of the Chernobyl NPP accident aftereffects

    International Nuclear Information System (INIS)

    Blinov, N.N.; Guslistyj, V.P.; Misyurev, A.V.; Novitskaya, N.N.; Snigireva, G.P.

    1993-01-01

    Attempt of using of the nonstatistical techniques for pattern recognition to detect the risk groups among liquidators of the Chernobyl NPP accident aftereffects was described. 14 hematologic, biochemical and biophysical blood serum parameters of the group of liquidators of the Chernobyl NPP accident impact as well as the group of donors free of any radiation dose (controlled group) were taken as the diagnostic parameters. Modification of the nonstatistical techniques for pattern recognition based on the assessment calculations were used. The patients were divided into risk group at the truth ∼ 80%

  4. Heat exchanger with intermediate evaporating and condensing fluid

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes

  5. Liquid Therapy Delivery Models Using Microfluidic Airways

    Science.gov (United States)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  6. Liquid chromatography detection unit, system, and method

    Science.gov (United States)

    Derenzo, Stephen E.; Moses, William W.

    2015-10-27

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  7. Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for Lattice-Fluid Mixtures.

    Science.gov (United States)

    Parvaneh, Khalil; Shariati, Alireza

    2017-09-07

    In this study, a new modification of the perturbed chain-statistical associating fluid theory (PC-SAFT) has been proposed by incorporating the lattice fluid theory of Guggenheim as an additional term to the original PC-SAFT terms. As the proposed model has one more term than the PC-SAFT, a new mixing rule has been developed especially for the new additional term, while for the conventional terms of the PC-SAFT, the one-fluid mixing rule is used. In order to evaluate the proposed model, the vapor-liquid equilibria were estimated for binary CO 2 mixtures with 16 different ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium family with various anions consisting of bis(trifluoromethylsulfonyl) imide, hexafluorophosphate, tetrafluoroborate, and trifluoromethanesulfonate. For a comprehensive comparison, three different modes (different adjustable parameters) of the proposed model were compared with the conventional PC-SAFT. Results indicate that the proposed modification of the PC-SAFT EoS is generally more reliable with respect to the conventional PC-SAFT in all the three proposed modes of vapor-liquid equilibria, giving good agreement with literature data.

  8. Analysis of L-serine-O-phosphate in cerebrospinal spinal fluid by derivatization-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    McNaney, Colleen A; Benitex, Yulia; Luchetti, David; Labasi, Jeffrey M; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2014-05-01

    L-serine-O-phosphate (L-SOP), the precursor of L-serine, is a potent agonist against the group III metabotropic glutamate receptors (mGluRs) and, thus, is of interest as a potential biomarker for monitoring modulation of neurotransmitter release. So far, no reports are available on the analysis of L-SOP in cerebrospinal fluid (CSF). Here a novel method is presented to determine L-SOP levels in CSF employing precolumn derivatization with (5-N-succinimidoxy-5-oxopentyl)triphenylphosphonium bromide (SPTPP) coupled to liquid chromatography/mass spectrometry (derivatization-LC/MS, d-LC/MS). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An inkjet-printed microfluidic device for liquid-liquid extraction.

    Science.gov (United States)

    Watanabe, Masashi

    2011-04-07

    A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions. © The Royal Society of Chemistry 2011

  10. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Science.gov (United States)

    Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin

    2009-11-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.

  11. The physics of pattern formation at liquid interface: Progress report, June 1, 1988--May 31, 1989

    International Nuclear Information System (INIS)

    Maher, J.V.

    1989-06-01

    This paper describes pattern formation at liquid interfaces. Results shed light on questions which underlie the theory of solidification. Also reviewed are random system issues of wetting of curved surfaces and fluctuations in swollen polymeric gel

  12. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    Science.gov (United States)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  13. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  14. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  15. Numerical prediction of critical heat flux in nuclear fuel rod bundles with advanced three-fluid multidimensional porous media based model

    International Nuclear Information System (INIS)

    Zoran Stosic; Vladimir Stevanovic

    2005-01-01

    Full text of publication follows: The modern design of nuclear fuel rod bundles for Boiling Water Reactors (BWRs) is characterised with increased number of rods in the bundle, introduced part-length fuel rods and a water channel positioned along the bundle asymmetrically in regard to the centre of the bundle cross section. Such design causes significant spatial differences of volumetric heat flux, steam void fraction distribution, mass flux rate and other thermal-hydraulic parameters important for efficient cooling of nuclear fuel rods during normal steady-state and transient conditions. The prediction of the Critical Heat Flux (CHF) under these complex thermal-hydraulic conditions is of the prime importance for the safe and economic BWR operation. An efficient numerical method for the CHF prediction is developed based on the porous medium concept and multi-fluid two-phase flow models. Fuel rod bundle is observed as a porous medium with a two-phase flow through it. Coolant flow from the bundle entrance to the exit is characterised with the subsequent change of one-phase and several two-phase flow patterns. One fluid (one-phase) model is used for the prediction of liquid heating up in the bundle entrance region. Two-fluid modelling approach is applied to the bubbly and churn-turbulent vapour and liquid flows. Three-fluid modelling approach is applied to the annular flow pattern: liquid film on the rods wall, steam flow and droplets entrained in the steam stream. Every fluid stream in applied multi-fluid models is described with the mass, momentum and energy balance equations. Closure laws for the prediction of interfacial transfer processes are stated with the special emphasis on the prediction of the steam-water interface drag force, through the interface drag coefficient, and droplets entrainment and deposition rates for three-fluid annular flow model. The model implies non-equilibrium thermal and flow conditions. A new mechanistic approach for the CHF prediction

  16. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  17. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  18. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  19. Fluid inclusion brine compositions from Palo Duro Basin salt sites

    International Nuclear Information System (INIS)

    Moody, J.B.

    1987-01-01

    The fluid inclusion analyses were done on salt samples from Lower San Andres Cycle 4 and 5. The stable isotope composition of the fluid inclusion brines was measured on duplicate samples taken from the same fluid inclusion brine for correlation of geochemical content with the stable isotopic content. The analyzed Palo Duro Basin salt fluid inclusions are predominantly one phase, i.e., the presence of a fluid only. However, many of the larger fluid inclusions do have a small vapor bubble. This liquid/vapor ratio is so high in these vapor-containing fluid inclusions that their behavior in a thermal gradient would be almost identical to that of all liquid inclusions. Closely associated with the fluid inclusions are cryptomelane where some fibers penetrate into halite host crystal. The fluid inclusions have a wide variability in content for those components that were analyzed, even within the same salt type. The fluid inclusion brines are also acidic, ranging from 3 to 6 as measured with pH test papers

  20. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  1. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  2. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  3. Fluid mixing III

    International Nuclear Information System (INIS)

    Harnby, N.

    1988-01-01

    Covering all aspects of mixing, this work presents research and developments in industrial applications, flow patterns and mixture analysis, mixing of solids into liquids, and mixing of gases into liquids

  4. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    Science.gov (United States)

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  5. Two-dimensional colloidal fluids exhibiting pattern formation.

    Science.gov (United States)

    Chacko, Blesson; Chalmers, Christopher; Archer, Andrew J

    2015-12-28

    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.

  6. In line digital holography measurement for liquid-liquid flow: application to the characterization of emulsions produced in pulsed column

    International Nuclear Information System (INIS)

    Lamadie, F.

    2013-01-01

    Several processes used in research and industry are based on liquid-liquid extraction, a method designed for selective separation of products in a mixture. In liquid-liquid extraction, two immiscible liquids are contacted: an aqueous phase and an organic phase, one of which generally contains an extractant molecule capable of transferring the desired elements to the other phase. The transfer occurs at the contact surface between the two phases. After transfer, both phases are separated by settling. In practice, these operations are performed in industrial apparatus. In order to optimize the operation of these devices, it's important to determine the fundamental characteristics of the emulsion. These include parameters related to the fluid flow velocity as well as parameters related to fluid mixing such as the interfacial area, hold-up, and size distribution of the droplets population. Numerous imaging techniques can be used to measure these parameters. One of them, digital holography, is well-known for allowing complete reconstruction of information about a 3D flow in a single shot. This PhD work deals with a direct application of digital in line holography to droplets rising in a continuous liquid phase. The droplet size imposes a regime of intermediate-field diffraction hardly explored to date. Acquired diffraction patterns show that the usual dark disk model is not valid and that good agreement is obtained with a mixed model coupling thin lens with opaque disk. Hologram focusing is nevertheless performed with a dedicated automated method. A literature review has been conducted to identify the sharpest auto-focus function for our application. In a second step, in order to measure high retention rates, an inverse problem approach is applied on all the outliers and missing droplets. This hologram restitution treatment has been applied to experimental results with a comparison to independent measurements. The main results obtained with calibrated droplets are

  7. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  8. Performance Comparison and Selection of Transformer Fluid

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2016-01-01

    Full Text Available Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By comprehensive analysis, synthetic ester based insulating oil can completely replace mineral oil and silicone liquid. With rail transport safety and environmental protection standards improving, synthetic ester based insulating oil will be the best choice for transformer.

  9. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  10. Nonlinear fluid/structure interaction relating a rupture-disc pressure-relief device

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Shin, Y.W.; Youngdahl, C.K.

    1983-01-01

    Rupture disc assemblies are used in piping network systems as a pressure-relief device. The reverse-buckling type is chosen for application in a liquid metal fast breeder reactor. This assembly is used successfully in systems in which the fluid is highly compressible, such as air; the opening up of the disc by the knife setup is complete. However, this is not true for a liquid system; it had been observed experimentally that the disc may open up only partially or not at all. Therefore, to realistically understand and represent a rupture disc assembly in a liquid environment, the fluid-structure interactions between the liquid medium and the disc assembly must be considered. The methods for analyzing the fluid and the disc and the mechanism interconnecting them are presented. The fluid is allowed to cavitate through a column-cavitation model and the disc is allowed to become plastically deformed through the classic Von Mises' yield criteria, when necessary

  11. The relative contributions of thermo-solutal Marangoni convections on flow patterns in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Takagi, Y.; Okano, Y.; Gima, S.; Dost, S.

    2014-01-01

    A numerical simulation study was carried out to investigate the relative contributions of thermal and solutal Marangoni convections on transport structures in a liquid bridge under zero gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the flow field becomes three-dimensional and time-depended when the solutal Marangoni number is larger than the critical value. It was also shown that not only flow patterns but also the azimuthal wave number (m) changes due to the competing contributions of thermal and solutal Marangoni convective flows.

  12. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  13. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Yamamoto, Kazuki; Ishimoto, Yukitaka; Nix, Stephanie

    2017-01-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  14. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)

    2017-06-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  15. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    Science.gov (United States)

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.

  17. Comparison of the Viscous Liquids Spraying by the OIG and the Oil Configurations of an Effervescent Atomizer at Low Inlet Pressures

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2016-07-01

    Full Text Available In this work we studied the influence of the fluid injection configuration (OIG: outside-in-gas, OIL: outside-in-liquid on the internal flows and external sprays parameters. We sprayed the viscous aqueous maltodextrin solutions (μ = 60 mPa·s at a constant inlet pressure of the gas and the gas to the liquid mass flow ratio (GLR within the range 2.5 to 20%. We found that the fluids injection has a crucial influence on the internal flows. The internal flows patterns for the OIG atomizer were the slug flows, the internal flow of the OIL device was annular which led to the significant improvement of the spray quality: Smaller droplets, faster atomization, fewer pulsations.

  18. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li Teng; Lv Yong-Gang [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.; Chinese Academy of Sciences, Beijing (China). Graduate School; Liu Jing; Zhou Yi-Xin [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.

    2006-12-15

    With the improvement of computational speed, thermal management becomes a serious concern in computer system. CPU chips are squeezing into tighter and tighter spaces with no more room for heat to escape. Total power-dissipation levels now reside about 110 W, and peak power densities are reaching 400-500 W/mm{sup 2} and are still steadily climbing. As a result, higher performance and greater reliability are extremely tough to attain. But since the standard conduction and forced-air convection techniques no longer be able to provide adequate cooling for sophisticated electronic systems, new solutions are being looked into liquid cooling, thermoelectric cooling, heat pipes, and vapor chambers. In this paper, we investigated a novel method to significantly lower the chip temperature using liquid metal with low melting point as the cooling fluid. The liquid gallium was particularly adopted to test the feasibility of this cooling approach, due to its low melting point at 29.7 C, high thermal conductivity and heat capacity. A series of experiments with different flow rates and heat dissipation rates were performed. The cooling capacity and reliability of the liquid metal were compared with that of the water-cooling and very attractive results were obtained. Finally, a general criterion was introduced to evaluate the cooling performance difference between the liquid metal cooling and the water-cooling. The results indicate that the temperature of the computer chip can be significantly reduced with the increasing flow rate of liquid gallium, which suggests that an even higher power dissipation density can be achieved with a large flow of liquid gallium and large area of heat dissipation. The concept discussed in this paper is expected to provide a powerful cooling strategy for the notebook PC, desktop PC and large computer. It can also be extended to more wide area involved with thermal management on high heat generation rate. (orig.)

  19. Development of a Synthetic Synovial Fluid for Tribological Testing

    Directory of Open Access Journals (Sweden)

    Emely Lea Bortel

    2015-12-01

    Full Text Available Wear tests of joint prostheses are usually performed using bovine calf serum. The results from different laboratories are hardly ever comparable as, for example, the protein concentration and the protein composition of the serum-based test liquids vary. In addition, the viscosity of these test liquids is similar to that of water and does not match the more viscous synovial fluid. The present work was aimed at developing a synthetic synovial fluid as an alternative to the existing test liquids. Improved consistency and reproducibility of results at a similar price were required. Hyaluronic acid (HA, the lyophilized proteins bovine serum albumin (BSA and immunoglobulin G (IgG, the phospholipid lecithin (PL and salts were applied in a stepwise approach to replace the actually used test liquid based on newborn calf serum. The in vitro results obtained with ultra-high-molecular-weight polyethylene (UHMWPE pins sliding against CoCrMo discs revealed that the developed synthetic synovial fluid fulfils the set requirements: increase of viscosity, reasonable cost, improved consistency and wear particles which resemble the ones found in vivo. The developed synthetic synovial fluid with 3 g/L HA, 19 g/L BSA, 11 g/L IgG, 0.1 g/L PL and Ringer solution is a more realistic alternative to the used serum-based test liquid.

  20. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  1. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  2. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    International Nuclear Information System (INIS)

    Wai, Chien M.; Mincher, Bruce

    2012-01-01

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf 2 N] with TBP(HNO 3 ) 1.8 (H 2 O) 0.6 and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO 2 phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO 2 phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO 2 ) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO 2 has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO 2 extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf 2 N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO 2 extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at

  3. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  4. Using Temperature as a Tracer to Study Fluid Flow Patterns On and Offshore Taiwan

    Science.gov (United States)

    Chi, W. C.

    2017-12-01

    Fluid flows are a dynamic system in the crust that affect crustal deformation and formation of natural resources. It is difficult to study fluid flow velocity instrumentally, but temperature data offers a quantitative tool that can be used as a tracer to study crustal hydrogeology. Here we present numerical techniques we have applied to study the fluid migration velocity along conduits including faults in on and offshore settings. Offshore SW Taiwan, we use a bottom-simulating reflector (BSR) from seismic profiles to study the temperature field at several hundred meters subbottom depth. The BSR is interpreted as the base of a gas hydrate stability zone under the seabed. Gas hydrates are solid-state water with gas molecules enclosed, which can be found where the temperature, pressure, and salinity conditions allow hydrates to be stable. Using phase diagrams and hydro pressure information we can derive the temperature at the BSR. BSRs are widespread in the study area, providing very dense temperature field information which shows upward bending of the BSR near faults. We have quantitatively estimated the 1D and 2D fluid flow patterns required to fit the BSR-based temperature field. This shows that fault zones can act as conduits with high permeability parallel to the fault planes. On the other hand, fault zones can also act as barriers to fluid flow, as demonstrated in our onland temperature data. We have collected temperature profiles at several bore holes onland that are very close together. The preliminary results show that the fault zones separate the ground water systems, causing very different geothermal gradients. Our results show that the physical properties of fault zones can be anisotropic, as demonstrated in previous work. Future work includes estimating the regional water expulsion budget offshore SW Taiwan, in particular for several gas hydrate sites.

  5. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  6. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  7. Evaluation of the nonrandom hydrogen bonding (NRHB) theory and the simplified perturbed-chain-statistical associating fluid theory (sPC-SAFT). 1. Vapor-liquid equilibria

    DEFF Research Database (Denmark)

    Grenner, Andreas; Tsivintzelis, Ioannis; Economou, Ioannis

    2008-01-01

    for the models were taken from literature or estimated in this work. Generalized pure-component parameters were fitted to pure-component vapor-pressure and liquid-density data. For the majority of the mixtures examined, satisfactory results were obtained. For a number of mixtures, different modeling approaches...... were applied to improve the results, such as incorporation of cross-association between nonself-associating fluids or induced association for mixtures of polar nonassociating and self-associating fluids. For both models, the overall deviations from experimental data are similar, and none of the models...

  8. Evaluation of BioFM liquid medium for culture of cerebrospinal fluid in tuberculous meningitis to identify Mycobacterium tuberculosis.

    Science.gov (United States)

    Kashyap, R S; Ramteke, S S; Gaherwar, H M; Deshpande, P S; Purohit, H J; Taori, G M; Daginawala, H

    2010-01-01

    The present study was designed to evaluate the sensitivity and specificity of liquid culture medium (BioFM broth) for the diagnosis of tuberculous meningitis (TBM) in cerebrospinal fluid (CSF). CSF samples from 200 patients (TBM group = 150 and non-TBM group = 50) were tested for culture of Mycobacterium tuberculosis in BioFM liquid culture medium. Out of 150 TBM cases, 120 were found to be culture positive, indicating a sensitivity of 80% in BioFM broth within 2-3 weeks of inoculation. Positive cultures were also observed for CSF from 32 (64%) out of 50 non-TBM patients in BioFM liquid culture medium within 4 days of sample inoculation. Therefore, according to our study, BioFM broth system yielded 80% sensitivity [95% confidence interval (CI): 67-93%] and 36% specificity (95% CI: 57-98%) for TBM diagnosis. Our results indicate that although BioFM broth allows the detection of positive cultures within a shorter time, it has a high potential for contamination or for the coexistence of M. tuberculosis and non-tuberculous meningitis (NTM). This coexistence may go undetected or potentially lead to erroneous reporting of results.

  9. Evaluation of BioFM liquid medium for culture of cerebrospinal fluid in tuberculous meningitis to identify Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Kashyap R

    2010-01-01

    Full Text Available The present study was designed to evaluate the sensitivity and specificity of liquid culture medium (BioFM broth for the diagnosis of tuberculous meningitis (TBM in cerebrospinal fluid (CSF. CSF samples from 200 patients (TBM group = 150 and non-TBM group = 50 were tested for culture of Mycobacterium tuberculosis in BioFM liquid culture medium. Out of 150 TBM cases, 120 were found to be culture positive, indicating a sensitivity of 80% in BioFM broth within 2-3 weeks of inoculation. Positive cultures were also observed for CSF from 32 (64% out of 50 non-TBM patients in BioFM liquid culture medium within 4 days of sample inoculation. Therefore, according to our study, BioFM broth system yielded 80% sensitivity [95% confidence interval (CI: 67-93%] and 36% specificity (95% CI: 57-98% for TBM diagnosis. Our results indicate that although BioFM broth allows the detection of positive cultures within a shorter time, it has a high potential for contamination or for the coexistence of M. tuberculosis and non-tuberculous meningitis (NTM. This coexistence may go undetected or potentially lead to erroneous reporting of results.

  10. Multi-fluid CFD analysis in Process Engineering

    Science.gov (United States)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  11. Promotion of angiogenesis and proliferation cytokines patterns in peritoneal fluid from women with endometriosis.

    Science.gov (United States)

    Rakhila, Halima; Al-Akoum, Mahera; Bergeron, Marie-Eve; Leboeuf, Mathieu; Lemyre, Madeleine; Akoum, Ali; Pouliot, Marc

    2016-08-01

    Studies have long sought specific cytokines that could characterize endometriosis. Either due to variations between study designs regarding the assessment criteria for the cytokine or to low power resulting from small sample size, no factor proved to be sufficiently specific to endometriosis. In other clinical fields, a combination of several markers proved to be more powerful than a single-molecule approach. As well, in the context of endometriosis, simultaneous assessment of several cytokines present in the peritoneal fluid might help in unveiling patho-physiological processes, thus contributing to a better understanding of the condition. Therefore, the objective of this study was to investigate peritoneal fluid cytokines-derived of endometriotic women. For this retrospective case-control study, peritoneal fluid samples were obtained at laparoscopy and assessed by multiplex. Our data showed distinct patterns of peritoneal fluid cytokine concentrations in endometriotic women most notably a marked increase in EGF, FGF-2, IL-1α, MIP-1β, TGFα, PDGF-AA, PDGF-BB, MCP-3, sCD40L, Gro Pan, IL-17α, MDC and Rantes. The overall effect of fertility status revealed a significant difference for only one cytokine, namely MDC. Furthermore, FLT-3L and IP-10 levels were decreased in endometriosis patients, the former in both menstrual cycle phases and the latter in the secretory phase. A significant inverse Pearson correlation (pendometriosis patients at stages III-IV and in the secretory phase. These changes may exacerbate the local peritoneal angiogenic and proliferative reaction observed in women with endometriosis, and contributes to its pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Harvesting contaminants from liquid

    Science.gov (United States)

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  13. Liquid dispersion in trickle-bed reactors with gas-liquid cocurrent downflow

    International Nuclear Information System (INIS)

    Chu, C.F.; Ng, K.M.

    1986-01-01

    The flow pattern can deviate from ideal plug flow in both trickling and pulsing flows. The liquid dispersion in those flow regimes are investigated separately, as the mechanisms causing the deviation of flow pattern from plug flow are different. In trickling flow, the dispersion of the liquid phase occurs in the flow path which is determined with computer-generated packed column. Dispersion in pulsing flow is studied with a combination of the method of characteristics and analysis of liquid dispersion in the liquid slug and gas pulse. The axial dispersion coefficients are then determined based on Monte Carlo simulation. Finally, liquid dispersion in trickle beds containing porous packings is also discussed

  14. Solving problems in fluid mechanics. Vol. 1

    International Nuclear Information System (INIS)

    Douglas, J.F.

    1986-01-01

    Fluid mechanics is that part of applied mechanics concerned with the statics and dynamics of liquids and gases. The presentation is in a pedagogically sound question-and-answer format, which includes many worked examples preceding the exercises. This book which assumes only an elementary knowledge of mathematics and mechanics, offers a clear exposition of topics including hydrostatics, fluid pressure and the stability of floating bodies, fluid motion, flow measurement, pipelines, open channel flow, and fluid friction

  15. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2015-04-01

    Full Text Available We propose an initially transparent light shutter using polymer-networked liquid crystals with crossed patterned electrodes. The proposed light shutter is switchable between the transparent and opaque states, and it exhibits a fast response time and a low operating voltage. In the transparent state, the light shutter has high transmittance; in the opaque state, it can block the background image and provides black color. We expect that the proposed light shutter can be applied to see-through displays and smart windows.

  16. Fundamental trends in fluid-structure interaction

    CERN Document Server

    Galdi, Giovanni P

    2010-01-01

    The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. ""Fundamental Trends in Fluid-Structure Interaction"" is a unique collection of important papers wr

  17. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  18. The Effect of Ad Libitum Consumption of a Milk-Based Liquid Meal Supplement vs. a Traditional Sports Drink on Fluid Balance After Exercise.

    Science.gov (United States)

    Baguley, Brenton; Zilujko, Jessica; Leveritt, Michael D; Desbrow, Ben; Irwin, Christopher

    2016-08-01

    The aim of this study was to compare the effect of ad libitum intake of a milk-based liquid meal supplement against a carbohydrate-electrolyte sports drink following exercise induced fluid loss. Seven male participants (age 22.3 ± 3.4 years, height 179.3 ± 7.9 cm, body mass 74.3 ± 7.3 kg; mean ± SD) completed 4 separate trials and lost 1.89 ± 0.44% body mass through moderate intensity exercise in the laboratory. After exercise, participants consumed ad libitum over 2 h a milk-based liquid meal supplement (Sustagen Sport) on two of the trials (S1, S2) or a carbohydrate-electrolyte sports drink (Powerade) on two of the trials (P1, P2), with an additional 1 hr observational period. Measures of body mass, urine output, gastrointestinal tolerance and palatability were collected throughout the recovery period. Participants consumed significantly more Powerade than Sustagen Sport over the 2 h rehydration period (P1 = 2225 ± 888 ml, P2 = 2602 ± 1119 mL, S1 = 1375 ± 711 mL, S2 = 1447 ± 857 ml). Total urine output on both Sustagen trails was significantly lower than the second Powerade trial (P2 = 1447 ± 656 ml, S1 = 153 ± 62 ml, S2 = 182 ± 118 mL; p balance were observed between any of the drinks at the conclusion of each trial (P1 = -0.50 ±0. 46 kg, P2 = -0.40 ± 0.35 kg, S1 = -0.61 ± 0.74 kg, S2 = -0.45 ± 0.58 kg). Gastrointestinal tolerance and beverage palatability measures indicated Powerade to be preferred as a rehydration beverage. Ad libitum milk-based liquid meal supplement results in similar net fluid balance as a carbohydrate-electrolyte sports drink after exercise induced fluid loss.

  19. CFD simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    Science.gov (United States)

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-04

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r =5.0, it is 29.4 times of original floc sludge.

  20. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  1. Deformation of a 3D granular media caused by fluid invasion

    Science.gov (United States)

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  2. Fluid-driven reciprocating apparatus and valving for controlling same

    Science.gov (United States)

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  3. Coulomb interactions in charged fluids.

    Science.gov (United States)

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  4. Current research and future applications of nano- and ionano-fluids

    International Nuclear Information System (INIS)

    Sohel Murshed, S M; Nieto de Castro, C A; Lourenço, M J V; Lopes, M L M; Santos, F J V

    2012-01-01

    An overview of several important aspects of nanofluids and ionanofluids, their background, as well as key experimental findings on their thermophysical properties is presented in this study. While nanofluids are prepared by dispersing nanoparticles in traditional heat transfer fluids, ionanofluids are engineered by dispersing nanoparticles in ionic liquids only. Some representative results of various thermal features and properties of both fluids are also briefly discussed. Although there are inconsistencies in experimental data from various groups, nanofluids possess significantly higher thermal conductivity, convective heat transfer coefficient and boiling critical heat flux compared to their base fluids and these properties further increase with increase concentration of nanoparticles. On the other hand, based on results from very limited studies ionanofluids are found to show superior thermophysical properties compared to their based ionic liquids. In addition, numerical results on heat transfer areas from a model study indicated that ionanofluids are better heat transfer fluids for heat exchangers or other heat transfer devices than ionic liquids. Future research direction and applications of these novel fluids are also outlined. Review reveals that both nanofluids and ionanofluids show great promises to be used as advanced heat transfer fluids and novel media for many thermal management systems as well as green solvent-based applications.

  5. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  6. Supercritical fluids technology. Pt. 1 General topics

    International Nuclear Information System (INIS)

    Marongiu, B.; De Giorgi, M. R.; Porcedda, S.; Cadoni, E.

    1998-01-01

    Supercritical fluids technology is among the emerging 'clean' technologies, that allows the minimization in the use of chemical and thermic treatments and products irradiation, diminishing the quantity of liquid wastes to be treated. In this first article phase equilibria thermodynamics and fluid mechanics of transport phenomena are reviewed [it

  7. Comparison of potentials for polymeric liquids

    International Nuclear Information System (INIS)

    Jung, Hae Young

    2002-01-01

    Many theories for polymeric liquids are based on the concepts of cell, hole, free volume of lattice etc. In this theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used. In this work, Mie(p,6)potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equation of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values changing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid theory, Flory's Equation of State Theory and Cho-Sanchez Theory using perturbation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p,6) potential for polymeric liquids were compared with each other

  8. Fluid management technology: Liquid slosh dynamics and control

    Science.gov (United States)

    Dodge, Franklin T.; Green, Steven T.; Kana, Daniel D.

    1991-11-01

    Flight experiments were defined for the Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer Satellite (COLD-SAT) test bed satellite and the Shuttle middeck to help establish the influence of the gravitational environment on liquid slosh dynamics and control. Several analytical and experimental studies were also conducted to support the experiments and to help understand the anticipated results. Both FLOW-3D and NASA-VOF3D computer codes were utilized to simulate low Bond number, small amplitude sloshing, for which the motions are dominated by surface forces; it was found that neither code provided a satisfactory simulation. Thus, a new analysis of low Bond number sloshing was formulated, using an integral minimization technique that will allow the assumptions made about surface physics phenomena to be modified easily when better knowledge becomes available from flight experiments. Several examples were computed by the innovative use of a finite-element structural code. An existing spherical-pendulum analogy of nonlinear, rotary sloshing was also modified for easier use and extended to low-gravity conditions. Laboratory experiments were conducted to determine the requirements for liquid-vapor interface sensors as a method of resolving liquid surface motions in flight experiments. The feasibility of measuring the small slosh forces anticipated in flight experiments was also investigated.

  9. X-ray and neutron scattering studies of complex confined fluids

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems

  10. Effect of elastic constants of liquid crystals in their electro-optical properties

    Science.gov (United States)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  11. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  12. Fluid-structure finite-element vibrational analysis

    Science.gov (United States)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  13. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    Science.gov (United States)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  14. Simultaneous determination of nikethamide and lidocaine in human blood and cerebrospinal fluid by high performance liquid chromatography.

    Science.gov (United States)

    Chen, Lili; Liao, Linchuan; Zuo, Zhong; Yan, Youyi; Yang, Lin; Fu, Qiang; Chen, Yu; Hou, Junhong

    2007-04-11

    Nikethamide and lidocaine are often requested to be quantified simultaneously in forensic toxicological analysis. A simple reversed-phase high performance liquid chromatography (RP-HPLC) method has been developed for their simultaneous determination in human blood and cerebrospinal fluid. The method involves simple protein precipitation sample treatment followed by quantification of analytes using HPLC at 263 nm. Analytes were separated on a 5 microm Zorbax Dikema C18 column (150 mm x 4.60 mm, i.d.) with a mobile phase of 22:78 (v/v) mixture of methanol and a diethylamine-acetic acid buffer, pH 4.0. The mean recoveries were between 69.8 and 94.4% for nikethamide and between 78.9 and 97.2% for lidocaine. Limits of detection (LODs) for nikethamide and lidocaine were 0.008 and 0.16 microg/ml in plasma and 0.007 and 0.14 microg/ml in cerebrospinal fluid, respectively. The mean intra-assay and inter-assay coefficients of variation (CVs) for both analytes were less than 9.2 and 10.8%, respectively. The developed method was applied to blood sample analyses in eight forensic cases, where blood concentrations of lidocaine ranged from 0.68 to 34.4 microg/ml and nikethamide ranged from 1.25 to 106.8 microg/ml. In six cases cerebrospinal fluid analysis was requested. The values ranged from 20.3 to 185.6 microg/ml of lidocaine and 8.0 to 72.4 microg/ml of nikethamide. The method is simple and sensitive enough to be used in toxicological analysis for simultaneous determination of nikethamide and lidocaine in blood and cerebrospinal fluid.

  15. Development of liquid handling techniques in microgravity

    Science.gov (United States)

    Antar, Basil N.

    1995-01-01

    A large number of experiments dealing with protein crystal growth and also with growth of crystals from solution require complicated fluid handling procedures including filling of empty containers with liquids, mixing of solutions, and stirring of liquids. Such procedures are accomplished in a straight forward manner when performed under terrestrial conditions in the laboratory. However, in the low gravity environment of space, such as on board the Space Shuttle or an Earth-orbiting space station, these procedures sometimes produced entirely undesirable results. Under terrestrial conditions, liquids usually completely separate from the gas due to the buoyancy effects of Earth's gravity. Consequently, any gas pockets that are entrained into the liquid during a fluid handling procedure will eventually migrate towards the top of the vessel where they can be removed. In a low gravity environment any folded gas bubble will remain within the liquid bulk indefinitely at a location that is not known a priori resulting in a mixture of liquid and vapor.

  16. The theory of quantum liquids

    CERN Document Server

    Nozières, Philippe

    1999-01-01

    Originally published as two separate volumes, The Theory of Quantum Liquids is a classic text that attempts to describe the qualitative and unifying aspects of an extremely broad and diversified field. Volume I deals with 'normal' Fremi liquids, such as 3He and electrons in metals. Volume II consists of a detailed treatment of Bose condensation and liquid 4He, including the development of a Bose liquid theory and a microscopic basis for the two-fluid model, and the description of the elementary excitations of liquid HeII.

  17. Carbonatitic liquids and COH fluids from epidote-dolomite eclogites at 3.7 - 4.6 GPa: new perspectives on carbon transfer at subduction zones

    Science.gov (United States)

    Poli, S.

    2013-12-01

    Current knowledge on the solidus temperature for carbonate-bearing rocks suggests that carbonatitic liquids should not form in a subducted oceanic lithosphere, unless anomalous thermal relaxation occurs. For a mildly warm subduction path, COH-bearing basaltic eclogites are expected to loose all H2O component at epidote breakdown, located at approx. 2.8-3.0 GPa. Above this pressure limit, the solidus is that of a carbonated basaltic eclogite which shows a minimum temperature of 1020 °C at 4.0-4.5 GPa (Dasgupta et al. 2004). However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of An-rich plagioclase. It has been shown that epidote disappearance with pressure depend on the normative anorthite content of the bulk composition considered (Poli et al. 2009); we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. Notably, this applies to epidosite rocks formed in hydrothermal environments at oceanic settings, then recovered in high-pressure and ultra-high pressure terrains. New experimental data from 3.7 to 4.6 GPa, 750°C to 1000 °C are intended to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component (An37 and An45). Experiments are performed in piston cylinder and multianvil machines apparatus, using both single and, buffered, double capsule techniques. Garnet, clinopyroxene and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid saturated conditions, epidote coexists with kyanite, dolomite and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, kyanite is found at 4.2 GPa, 850 °C. At 900 °C, fluid-rich conditions, a silicate fluid/melt of granitoid composition, a carbonatitic melt and Na-carbonate are observed. Close to

  18. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  19. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  20. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-01-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH 2 and CH 3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces

  1. Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies

    Science.gov (United States)

    Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur

    2012-06-01

    The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.

  2. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  3. Quantification of rifampicin in human plasma and cerebrospinal fluid by a highly sensitive and rapid liquid chromatographic–tandem mass spectrometric method

    OpenAIRE

    Srivastava, Abhishek; Waterhouse, David; Ardrey, Alison; Ward, Stephen A.

    2012-01-01

    A highly sensitive and rapid liquid chromatography tandem mass spectrometry (LC–MS/MS) method has been developed to measure the levels of the antitubercular drug rifampicin (RIF) in human plasma and cerebrospinal fluid (CSF). The analyte and internal standard (IS) were isolated from plasma and CSF by a simple organic solvent based precipitation of proteins followed by centrifugation. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monit...

  4. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  5. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  6. Defects and spatiotemporal disorder in a pattern of falling liquid columns

    Science.gov (United States)

    Brunet, Philippe; Limat, Laurent

    2004-10-01

    Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular dish are investigated experimentally. The interaction of two basic dynamical modes (oscillations and drift) combined with the occurrence of defects (birth of new columns, disappearances by coalescences of two columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps. Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal and involve the propagation of blocks of elementary laminar states (such as propagative domains or local oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.

  7. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  9. Large Electro-Optic Kerr-Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    Science.gov (United States)

    Schlick, Michael Christian; Kapernaum, Nadia; Neidhardt, Manuel; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Gießelmann, Frank

    2018-06-06

    The electro-optic Kerr effect in the isotropic phase of two ionic liquid crystals (ILCs) is investigated and compared to the Kerr effect in non-ionic liquid crystals (LCs) with same phase sequences, namely direct isotropic to hexagonal columnar transitions and direct isotropic to smectic-A transitions. Up to electric field amplitudes of some 106 V m-1, the optical birefringence induced in the isotropic phases follows Kerr's law and strongly increases when the temperature approaches the transition temperature into the particular liquid crystalline phase. Close to the transition, maximum Kerr constants in the order of 10-11 m V-2 are found, which are more than ten times higher than the Kerr constant of nitrobenzene, a strongly dipolar fluid with a huge Kerr effect applied in optical shutters and phase modulators. In comparison to their non-ionic LC counterparts the Kerr effect in ILCs is found to be enhanced in magnitude, but slowed-down in speed, showing rise times in the order of ten milliseconds. These remarkable differences are attributed to the presence of counterion polarization well-known from complex ionic fluids such as polyelectrolytes or ionic micellar solutions. ILCs thus combine the Kerr effect features of liquid crystals and complex ionic fluids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Standard Practices for Sampling for Particles in Aerospace Fluids and Components

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These practices cover sampling procedures for use in determining the particle cleanliness of liquids and liquid samples from components. Three practices, A, B, and C, have been developed on the basis of component geometry in order to encompass the wide variety of configurations. These practices establish guidelines to be used in preparing detailed procedures for sampling specific components. Note 1—The term cleanliness used in these practices refers to solid particles in the liquid. It does not generally cover other foreign matter such as gases, liquids, and products of chemical degradation. Cleanliness with respect to particulate contamination does not necessarily give any indication of the other types of contamination. 1.2 All components, regardless of application, may be tested provided (1) the fluid medium selected is completely compatible with the materials, packing and fluid used in the test component, and test apparatus, and (2) the fluid is handled in accordance with the manufacturer's recom...

  11. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  12. Study on chemical reactivity control of liquid sodium. Research program

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki; Sugiyama, Ken-ichiro; Kitagawa, Hiroshi; Oka, Nobuki; Yoshioka, Naoki

    2007-01-01

    Liquid sodium has the excellent properties as coolant of the fast breeder reactor (FBR). On the other hand, it reacts high with water and oxygen. So an innovative technology to suppress the reactivity is desired. The purpose of this study is to control the chemical reactivity of liquid sodium by dispersing the nanometer-size metallic particles (we call them Nano-particles) into liquid sodium. We focus on the atomic interaction between Nano-particles and sodium atoms. And we try to apply it to suppress the chemical reactivity of liquid sodium. Liquid sodium dispersing Nano-particles is named 'Nano-fluid'. Research programs of this study are the Nano-particles production, the evaluation of reactivity suppression of liquid sodium and the feasibility study to FBR plant. In this paper, the research programs and status are described. The important factors for particle production were understood. In order to evaluate the chemical reactivity of Nano-fluid the research programs were planned. The feasibility of the application of Nano-fluid to the coolant of FBR plant was evaluated preliminarily from the viewpoint of design and operation. (author)

  13. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  14. Density and Phase State of a Confined Nonpolar Fluid

    Science.gov (United States)

    Kienle, Daniel F.; Kuhl, Tonya L.

    2016-07-01

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  15. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  16. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  17. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  18. Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign

    Science.gov (United States)

    Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves

    2018-06-01

    A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.

  19. Fluid jet electric discharge source

    Science.gov (United States)

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  20. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    International Nuclear Information System (INIS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-01-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)

  1. Structural changes and effect of denopamine on alveolar fluid ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... alveolar fluid clearance in hypoxic rat lungs. Nai-jing Li1, Wei Li2, ... for absorption of excess alveolar fluid (Sartori et al.,. 2001 ... free access to food and water. ..... Dopamine increases lung liquid clearance during mechanical.

  2. Thermophysical properties of ionic liquids.

    Science.gov (United States)

    Rooney, David; Jacquemin, Johan; Gardas, Ramesh

    2010-01-01

    Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

  3. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  4. The effectiveness of the liquid-based preparation method in cerebrospinal fluid cytology.

    Science.gov (United States)

    Argon, Asuman; Uyaroğlu, Mehmet Ali; Nart, Deniz; Veral, Ali; Kitapçıoğlu, Gül

    2013-01-01

    Since malignant cells were first detected in the cerebrospinal fluid (CSF), numerous methods have been used for CSF examination. The cytocentrifugation and liquid-based cytology (LBC) methods are two of these. We aimed to investigate whether the results from the LBC method were different from the results of the cytological diagnosis of the CSF materials that were prepared using the cytocentrifugation method. A retrospective analysis was conducted using the pathological records of 3,491 (cytocentrifugation on 1,306 and LBC on 2,185) cytological specimens of CSF which were diagnosed over a 4-year period between January 2007 and December 2011. The Fisher exact test was used to compare the results of the LBC and cytocentrifugation methods. While there was a noticeable decrease in nondiagnostic diagnosis and a slight decrease in suspicious diagnosis, there was an increase in malignant and benign diagnosis with the LBC method in comparison to the centrifugation method. Statistically, the decrease in nondiagnostic diagnosis was considered significant (p advantages, especially in pathology departments where materials come from far away and large volumes are examined. Copyright © 2013 S. Karger AG, Basel.

  5. Probing the properties of confined liquids

    NARCIS (Netherlands)

    de Beer, Sissi Jacoba Adrianus

    2011-01-01

    In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is

  6. Viscous effects in liquid encapsulated liquid bridges

    International Nuclear Information System (INIS)

    Johnson, Duane T.

    2002-01-01

    An analytical derivation of the surface deflections and the streamfunctions for the flow inside a liquid encapsulated liquid bridge has been derived using an asymptotic expansion about a small capillary number. The model assumes an initially flat and cylindrical interface under the assumption that the densities of both fluids are equal. To simplify the analysis, the top and bottom walls are assumed to be stress-free and the Reynolds number is assumed to be negligible. Flow is generated either by a moving outer wall (shear-driven flow) or by applying a temperature difference across the top and bottom walls (Marangoni-driven flow). The resulting equations show that for the shear-driven flow, as the viscosity ratio increases, the surface deflections increase monotonically. For the Marangoni-driven flow there exist values of the viscosity ratio where the surface deflections reach a minimum and then switch signs. This investigation shows that it may be possible in more realistic systems to use an outer encapsulating liquid of the proper viscosity ratio to stabilize the liquid-liquid interface during float zone crystal growth

  7. Comparison of MGIT and Myco/F lytic liquid-based blood culture systems for recovery of Mycobacterium tuberculosis from pleural fluid.

    Science.gov (United States)

    Harausz, Elizabeth; Lusiba, John Kafuluma; Nsereko, Mary; Johnson, John L; Toossi, Zahra; Ogwang, Sam; Boom, W Henry; Joloba, Moses L

    2015-04-01

    The specificities and sensitivities of the Bactec mycobacterial growth indicator tube (MGIT) system for the recovery of Mycobacterium tuberculosis from pleural fluid are not statistically different than those of the Myco/F lytic liquid culture system. The time to positivity is shorter in the MGIT system (12.7 versus 20.7 days, respectively; P=0.007). The Myco/F lytic culture system may be an alternative to the MGIT system for diagnosing pleural tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    Science.gov (United States)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  9. Liquid-liquid extraction of strongly protein bound BMS-299897 from human plasma and cerebrospinal fluid, followed by high-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Xue, Y J; Pursley, Janice; Arnold, Mark

    2007-04-11

    BMS-299897 is a gamma-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Liquid-liquid extraction (LLE), chromatographic/tandem mass spectrometry (LC/MS/MS) methods have been developed and validated for the quantitation of BMS-299897 in human plasma and cerebrospinal fluid (CSF). Both methods utilized (13)C6-BMS-299897, the stable label isotope analog, as the internal standard. For the human plasma extraction method, two incubation steps were required after the addition of 5 mM ammonium acetate and the internal standard in acetonitrile to release the analyte bound to proteins prior to LLE with toluene. For the human CSF extraction method, after the addition of 0.5 N HCl and the internal standard, CSF samples were extracted with toluene and no incubation was required. The organic layers obtained from both extraction methods were removed and evaporated to dryness. The residues were reconstituted and injected into the LC/MS/MS system. Chromatographic separation was achieved isocratically on a MetaChem C18 Hypersil BDS column (2.0 mm x 50 mm, 3 microm). The mobile phase contained 10 mM ammonium acetate pH 5 and acetonitrile. Detection was by negative ion electrospray tandem mass spectrometry. The standard curves ranged from 1 to 1000 ng/ml for human plasma and 0.25-100 ng/ml for human CSF. Both standard curves were fitted to a 1/x weighted quadratic regression model. For both methods, the intra-assay precision was within 8.2% CV, the inter-assay precision was within 5.4% CV, and assay accuracy was within +/-7.4% of the nominal values. The validation and sample analysis results demonstrated that both methods had acceptable precision and accuracy across the calibration ranges.

  10. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  11. High flux diode packaging using passive microscale liquid-vapor phase change

    Science.gov (United States)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  12. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  13. Differential patterns of cortical activation as a function of fluid reasoning complexity.

    Science.gov (United States)

    Perfetti, Bernardo; Saggino, Aristide; Ferretti, Antonio; Caulo, Massimo; Romani, Gian Luca; Onofrj, Marco

    2009-02-01

    Fluid intelligence (gf) refers to abstract reasoning and problem solving abilities. It is considered a human higher cognitive factor central to general intelligence (g). The regions of the cortex supporting gf have been revealed by recent bioimaging studies and valuable hypothesis on the neural correlates of individual differences have been proposed. However, little is known about the interaction between individual variability in gf and variation in cortical activity following task complexity increase. To further investigate this, two samples of participants (high-IQ, N = 8; low-IQ, N = 10) with significant differences in gf underwent two reasoning (moderate and complex) tasks and a control task adapted from the Raven progressive matrices. Functional magnetic resonance was used and the recorded signal analyzed between and within the groups. The present study revealed two opposite patterns of neural activity variation which were probably a reflection of the overall differences in cognitive resource modulation: when complexity increased, high-IQ subjects showed a signal enhancement in some frontal and parietal regions, whereas low-IQ subjects revealed a decreased activity in the same areas. Moreover, a direct comparison between the groups' activation patterns revealed a greater neural activity in the low-IQ sample when conducting moderate task, with a strong involvement of medial and lateral frontal regions thus suggesting that the recruitment of executive functioning might be different between the groups. This study provides evidence for neural differences in facing reasoning complexity among subjects with different gf level that are mediated by specific patterns of activation of the underlying fronto-parietal network.

  14. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    Science.gov (United States)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  15. Tunable Focus Liquid Lens with Radial-Patterned Electrode

    Directory of Open Access Journals (Sweden)

    Miao Xu

    2015-08-01

    Full Text Available A dielectric liquid lens is prepared based on our previous work. By optimizing the device structure, the liquid lens presents a converging focus with good resolution and changes its focal length over a broad range with a low driving voltage. For a liquid lens with ~2.3 mm diameter in the relaxed state, it can resolve ~40 lp/mm. The resolution does not degrade during focus change. Its focal length can be varied from ~12 to ~5 mm when the applied voltage is changed from 0 to 28 Vrms. The response time of one cycle is ~2.5 s. Our liquid lens, with a low driving voltage for a large dynamic range, has potential applications in imaging, biometrics, optoelectronic, and lab-on-chip devices.

  16. Liquid chromatography-tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy.

    Science.gov (United States)

    Kovac, Andrej; Somikova, Zuzana; Zilka, Norbert; Novak, Michal

    2014-02-01

    Alzheimer's disease (AD) is still being recognized today as an unmet medical need. Currently, there is no cure and early preclinical diagnostic assay available for AD. Therefore much attention is now being directed at the development of novel methods for quantitative determination of AD biomarkers in the cerebrospinal fluid (CSF). Here, we describe the liquid chromatography-tandem mass spectrometry method for determination of 5-hydroxytryptamine (SER), 5-hydroxyindoleacetic acid (5-HIAA), homovanilic acid (HVA), noradrenaline (NADR), adrenaline (ADR), dopamine (DA), glutamic acid (Glu), γ-aminobutyric acid (GABA), 3,4-dihydroxyphenylacetic acid (DOPAC) and histamine (HIS) in cerebrospinal fluid (CSF) from the rat model for human tauopathy. The benzoyl chloride was used as pre-column derivatization reagents. Neurotransmitters and metabolites were analysed on ultra performance liquid chromatography (UPLC) on C18 column in combination with tandem mass spectrometry. The method is simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in a range of 93-113% for all analytes. The inter-day precision (n=5 days), expressed as %RSD, was in a range 2-10% for all analytes. Using this method we detected significant changes of CSF levels of two important neurotransmitters/metabolites, ADR and 5-HIAA, which correlates with progression of neurodegeneration in our animal model. © 2013 Published by Elsevier B.V.

  17. Quantitation of 5-Methyltetrahydrofolate in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    Science.gov (United States)

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) 5-methyltetrahydrofolate (5-MTHF) as a clinical diagnostic test. 5-MTHF is the main biologically active form of folic acid and is involved in regulation of homocysteine and DNA synthesis. Measurement of 5-MTHF in CSF provides diagnostic information regarding diseases affecting folate metabolism within the central nervous system, in particular inborn errors of folate metabolism. Determination of 5-MTHF in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). 5-MTHF in CSF is determined by a 1:2 dilution with internal standard (5-MTHF-(13)C5) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve (25-400 nM) and has an analytical measurement range of 3-1000 nM.

  18. A review on rising bubble dynamics in viscosity-stratified fluids

    Indian Academy of Sciences (India)

    Kirti Chandra Sahu

    Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.

  19. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  20. Liquid Sloshing Dynamics

    Science.gov (United States)

    Ibrahim, Raouf A.

    2005-06-01

    The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.

  1. A Study on Fluid Dispersion after Liquid Filled Missile Impact

    International Nuclear Information System (INIS)

    Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil

    2015-01-01

    In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results

  2. A Study on Fluid Dispersion after Liquid Filled Missile Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results.

  3. Self-rewetting fluids with suspended carbon nanostructures.

    Science.gov (United States)

    Savino, R; Di Paola, R; Gattia, D Mirabile; Marazzi, R; Antisari, M Vittori

    2011-10-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary or multi-component heat transfer fluids with peculiar surface tension properties and in particular to "self-rewetting fluids," i.e., liquids with a surface tension increasing with temperature and concentration. Thermophysical properties like surface tension, wettability and thermal conductivity, at different temperatures, have been measured not only for binary mixtures, but also for a number of ternary aqueous solutions with relatively low freezing point and for nanoparticles suspensions (so called nanofluids). Some of them interestingly exhibit the same anomalous positive surface tension gradient with temperature as binary self-rewetting solutions. Since in the course of liquid/vapour phase change, self-rewetting fluids behaviour induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, several interesting applications may be envisaged, e.g., the development of advanced wickless heat pipes for utilization in reduced gravity environments. The present work is dedicated to the study of the thermophysical properties of nanofluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesised by an homemade apparatus with an AC arc discharge in open air. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  4. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    Science.gov (United States)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  5. Computer program for computing the properties of seventeen fluids. [cryogenic liquids

    Science.gov (United States)

    Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.

    1992-01-01

    The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.

  6. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    CERN Document Server

    Kamada, K; Ogawa, S

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak sup 2 sup 5 sup 2 Cf n-gamma source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  7. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    International Nuclear Information System (INIS)

    Kamada, Kohji; Enokido, Uhji; Ogawa, Seiji

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak 252 Cf n-γ source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system

  8. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  9. International Conference on Mathematical Fluid Dynamics

    CERN Document Server

    Suzuki, Yukihito

    2016-01-01

    This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

  10. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-12

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  11. Assessment of magnetic fluid stability in non-homogeneous magnetic field of a single-tooth magnetic fluid sealer

    Energy Technology Data Exchange (ETDEWEB)

    Arefyev, I.M.; Demidenko, O.V.; Saikin, M.S.

    2017-06-01

    A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization. - Highlights: • An experimental single-tooth magnetic fluid sealer has been developed and made. • The magnetic fluid based on siloxane liquid was used as the test sample. • Short-term and life tests of the magnetic fluid were conducted. • The magnetic fluid stability was determined by necessary tests on stand.

  12. Fluid effects on the core seismic behavior of a liquid metal reactor

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2004-01-01

    In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts

  13. DNA methylation patterns of imprinting centers for H19, SNRPN, and KCNQ1OT1 in single-cell clones of human amniotic fluid mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Hsiu-Huei Peng

    2012-09-01

    Conclusion: In conclusion, human amniotic fluid mesenchymal stem cells contain a unique epigenetic signature during in vitro cell culture. H19 and KCNQ1OT1 possessed a substantial degree of hypermethylation status, and variable DNA methylation patterns of SNRPN was observed during in vitro cell culture of human amniotic fluid mesenchymal stem cells. Our results urge further understanding of epigenetic status of human amniotic fluid mesenchymal stem cells before it is applied in cell replacement therapy.

  14. Fluidos supercríticos em química analítica. I. Cromatografia com fluido supercrítico: conceitos termodinâmicos Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: thermodynamic definitions

    OpenAIRE

    Emanuel Carrilho; Maria Cecília H. Tavares; Fernando M. Lanças

    2001-01-01

    Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in B...

  15. Secondary Flow Patterns of Liquid Ejector with Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kwisung; Yun, Jinwon; Yu, Sangseok [Chungnam National University, Daejeon (Korea, Republic of); Sohn, Inseok [COAVIS, Sejong (Korea, Republic of); Seo, Yongkyo [Korea Automotive Technology Institute, Cheonan (Korea, Republic of)

    2015-02-15

    An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of 35° was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

  16. Fluid management in the optimization of space construction

    Science.gov (United States)

    Snyder, Howard

    1990-01-01

    Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.

  17. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell

    Science.gov (United States)

    Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  18. Fluid-structure dynamics; Proceedings of the pressure vessels and piping conference, New Orleans, LA, June 23-26, 1985

    International Nuclear Information System (INIS)

    Ma, D.C.; Moody, F.J.

    1985-01-01

    Aspects of seismic analysis and testing of fluid-structure systems are discussed, taking into account an earthquake response analysis method for a liquid-structure-ground coupled system using the finite element method, a seismic analysis of liquid-filled tanks with an eccentric core barrel, a study of the seismic response of fluid-coupled coaxial cylinder exciting by horizontal and vertical loading, the seismic analysis of fluid-structure systems including perforated circular plates on the basis of a use of the finite element method, and the uplifting of earthquake-loaded liquid-filled tanks. Computational methods for coupled fluid-structure analysis are considered along with the fluid structure wave motion, flow induced vibration, and the design for unsteady fluid flow in vessel and piping systems. Attention is given to hydraulic transient analysis as a tool in setting system control, a new model on transient wave propagation in fluid-filled tubes, an investigation of injector instability in rocket engine manifold, and the fluid structure response of axial cracked cylinders

  19. Liquid neon heat intercept for superconducting energy storage magnets

    International Nuclear Information System (INIS)

    Khalil, A.; McIntosh, G.E.

    1982-01-01

    Previous analyses of heat intercept solutions are extended to include both insulation and strut heat leaks. The impact of using storable, boiling cryogens for heat intercept fluids, specifically liquid neon and nitrogen, is also examined. The selection of fluid for the heat intercepts is described. Refrigeration power for 1000 and 5000 MWhr SMES units is shown with optimum refrigeration power for each quantity shown in tables. Nitrogen and Neon cooled intercept location for minimum total refrigeration power for a 5000 MWhr SMES are each shown, as well as the location of nitrogen and neon cooled intercepts for minimum total refrigeration power for 5000 MWhr SMES. Cost comparisons are itemized and neon cost and availability discussed. For a large energy storage magnet system, liquid neon is a more effective heat intercept fluid than liquid nitrogen. Reasons and application of the conclusion are amplified

  20. A computer code to design liquid containers for vehicles

    International Nuclear Information System (INIS)

    Parizi, H.B.; Fard, M.P.; Dolatabadi, A.

    2003-01-01

    We are presenting the development of a modular code for the simulation of the fluid sloshing that occurs in the liquid containers in vehicles. Sloshing occurs when a partially filled container of liquid goes through transient or steady external forces. Under such conditions, the free surface of the liquid may move and the liquid may impact on the walls of the container, exchanging forces. These forces may cause numerous harmful and undesirable consequences in the operation of the vehicle, such as vehicle turn over. The fluid mechanic equations that describe the fluid sloshing in the container and the dynamic equations that describe the movement of the container are solved separately in two different codes. The codes are coupled weekly, such that the output of one code will be used as the input to the other code in the same time step. The outputs of the fluid code are the forces and torques that are applied to the body of the container due to sloshing, whereas the output of the dynamic code are the translational and rotational velocities and accelerations of the container. The proposed software can be used to test the performance of the designed container under various operating condition and allow effective improvements to the container design. The proposed code is different than the presently available codes, in that it will provide a true simulation of the coupled fluid and structure interaction. (author)

  1. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  2. Internal wave patterns in enclosed density-stratified and rotating fluids

    NARCIS (Netherlands)

    Manders, A.M.A.

    2003-01-01

    Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate

  3. Seismic analysis of liquid storage container in nuclear reactors

    International Nuclear Information System (INIS)

    Zhang Zhengming; He Shuyan; Xu Ming

    2007-01-01

    Seismic analysis of liquid storage containers is always difficult in the seismic design of nuclear reactor equipment. The main reason is that the liquid will generate significant seismic loads under earthquake. These dynamic liquid loads usually form the main source of the stresses in the container. For this kind of structure-fluid coupling problem, some simplified theoretical methods were usually used previously. But this cannot satisfy the requirements of engineering design. The Finite Element Method, which is now full developed and very useful for the structural analysis, is still not mature for the structure-fluid coupling problem. This paper introduces a method suitable for engineering mechanical analysis. Combining theoretical analysis of the dynamic liquid loads and finite element analysis of the structure together, this method can give practical solutions in the seismic design of liquid storage containers

  4. Thickness of residual wetting film in liquid-liquid displacement

    Science.gov (United States)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-08-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  5. Design integration of liquid surface divertors

    International Nuclear Information System (INIS)

    Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M.

    2004-01-01

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied

  6. What is Liquid? Foreword

    Czech Academy of Sciences Publication Activity Database

    Henderson, D.; Holovko, M.; Nezbeda, Ivo; Trokhymchuk, A.

    2015-01-01

    Roč. 18, č. 1 (2015), 10101-1-10101-4 ISSN 1607-324X Institutional support: RVO:67985858 Keywords : fluid * liquid * physics modelling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.621, year: 2015

  7. Development and validation of a high performance liquid chromatographic method for the determination of oxcarbazepine and its main metabolites in human plasma and cerebrospinal fluid and its application to pharmacokinetic study.

    Science.gov (United States)

    Kimiskidis, Vasilios; Spanakis, Marios; Niopas, Ioannis; Kazis, Dimitrios; Gabrieli, Chrysi; Kanaze, Feras Imad; Divanoglou, Daniil

    2007-01-17

    An isocratic reversed-phase HPLC-UV procedure for the determination of oxcarbazepine and its main metabolites 10-hydroxy-10,11-dihydrocarbamazepine and 10,11-dihydroxy-trans-10,11-dihydrocarbamazepine in human plasma and cerebrospinal fluid has been developed and validated. After addition of bromazepam as internal standard, the analytes were isolated from plasma and cerebrospinal fluid by liquid-liquid extraction. Separation was achieved on a X-TERRA C18 column using a mobile phase composed of 20 mM KH(2)PO(4), acetonitrile, and n-octylamine (76:24:0.05, v/v/v) at 40 degrees C and detected at 237 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery and lower limit of quantification according to the FDA validation guidelines. Calibration curves were linear with a coefficient of variation (r) greater than 0.998. Accuracy ranged from 92.3% to 106.0% and precision was between 2.3% and 8.2%. The method has been applied to plasma and cerebrospinal fluid samples obtained from patients treated with oxcarbazepine, both in monotherapy and adjunctive therapy.

  8. Concentration device for leak liquids

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Matsuda, Ken; Takabori, Ken-ichi.

    1987-01-01

    Purpose: To improve radioactivity recovery and volume-reducing rates, as well as enable safety and easy handling for leak liquids resulted from reptures in coolant circuits. Constitution: The device of the invention comprises an evaporation vessel filled with leak fluids to a predetermined level, an airtight vessel disposed in the evaporation vessel containing hydrophilic porous material partially immersed in the leak fluids and means for heating the hydrophilic material. In this device, leak liquids are absorbed in the hydrophilic porous material, a great amount of water is evaporated from the outer surface of the hydrophilic porous material exposed above the liquid surface, and salts and radioactive material are remained on the inside and the outer surface of the porous material. The evaporated water content is condensated and recovered in a cooler and the remaining salts, etc. are discarded together with the porous material. The volume-reducing property can be improved by constituting the porous material with burnable material. (Takahashi, M.)

  9. Quantum liquids get thin

    Science.gov (United States)

    Ferrier-Barbut, Igor; Pfau, Tilman

    2018-01-01

    A liquid exists when interactions that attract its constituent particles to each other are counterbalanced by a repulsion acting at higher densities. Other characteristics of liquids are short-range correlations and the existence of surface tension (1). Ultracold atom experiments provide a privileged platform with which to observe exotic states of matter, but the densities are far too low to obtain a conventional liquid because the atoms are too far apart to create repulsive forces arising from the Pauli exclusion principle of the atoms' internal electrons. The observation of quantum liquid droplets in an ultracold mixture of two quantum fluids is now reported on page 301 of this issue by Cabrera et al. (2) and a recent preprint by Semeghini et al. (3). Unlike conventional liquids, these liquids arise from a weak attraction and repulsive many-body correlations in the mixtures.

  10. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  11. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  12. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    Science.gov (United States)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  13. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    Science.gov (United States)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase

  14. Cooling transfer fluids: advantages, drawbacks, refrigerant circuit architecture; Les fluides frigoporteurs: avantages, inconvenients, apercu sur l`architecture des circuits frigoporteurs

    Energy Technology Data Exchange (ETDEWEB)

    Duminil, M. [Association Francaise du Froid (AFF), 75 - Paris (France)

    1997-12-31

    The advantages and inconvenients of indirect cooling systems are summarized: simplification of the cooling distribution from a single refrigerating unit, a potential for a larger range of refrigerants, cooling circuit size diminution, but energy consumption increase, lower evaporation temperature, etc. The various types and characteristics of single- and two-phase refrigerant and heat transfer fluids are described, and more especially two-phase liquid-vapour and liquid-solid fluids. Based on the example of a two-temperature-level refrigerating system in a supermarket, the general architecture of the cold distribution circuit and the architecture of the refrigerant circuit itself, are presented with their different types, involving direct or indirect, and centralized or semi-centralized systems

  15. Turbulent mixing between subchannels in a gas-liquid two-phase flow. For the equilibrium flow without net fluid transfer between subchannels

    International Nuclear Information System (INIS)

    Kawahara, Akimaro; Sadatomi, Michio; Sato, Yoshifusa; Saito, Hidetoshi.

    1995-01-01

    To provide data necessary for modeling turbulent mixing between subchannels in a nuclear fuel rod bundle, three experiments were made in series for equilibrium two-phase flows, in which net mass exchange does not occur between subchannels for each phase. The first one was the measurement of turbulent mixing rates of both gas and liquid phases by a tracer technique, using air and water as the working fluids. Three kinds of vertical test channels consisting of two subchannels were used. The data have shown that the turbulent mixing rate of each phase in a two-phase flow is strongly dependent on flow regime. So, to see the relation between turbulent mixing and two-phase flow configuration in the subchannels, the second experiment, flow visualization, was made. It was observed in slug and churn flows that a lateral inter-subchannel liquid flow of a large scale is caused by the successive axial transit of large gas bubbles in each subchannel, and the turbulent mixing for the liquid phase is dominated by this lateral flow. To investigate a driving force of such large scale lateral flow, the third experiment, the measurement of an instantaneous pressure differential between the subchannels, was made. The result showed that there is a close relationship between the liquid phase mixing rate and the magnitude of the pressure differential fluctuation. (author)

  16. Simple approach to approximate predictions of the vapor–liquid equilibrium curve near the critical point and its application to Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Staśkiewicz, B.; Okrasiński, W.

    2012-01-01

    We propose a simple analytical form of the vapor–liquid equilibrium curve near the critical point for Lennard-Jones fluids. Coexistence densities curves and vapor pressure have been determined using the Van der Waals and Dieterici equation of state. In described method the Bernoulli differential equations, critical exponent theory and some type of Maxwell's criterion have been used. Presented approach has not yet been used to determine analytical form of phase curves as done in this Letter. Lennard-Jones fluids have been considered for analysis. Comparison with experimental data is done. The accuracy of the method is described. -- Highlights: ► We propose a new analytical way to determine the VLE curve. ► Simple, mathematically straightforward form of phase curves is presented. ► Comparison with experimental data is discussed. ► The accuracy of the method has been confirmed.

  17. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  18. Characterization of the Mechanical Properties of Electrorheological Fluids Made of Starch and Silicone Fluid

    Science.gov (United States)

    Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca

    In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).

  19. Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface covered with an insoluble surfactant

    Science.gov (United States)

    Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.

    2017-09-01

    As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.

  20. Floating liquid bridge charge dynamics

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  1. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    Science.gov (United States)

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  2. Idealized flow patterns and transit times in gas/liquid contacting trays with multiple box downcomers

    International Nuclear Information System (INIS)

    D'Arcy, D.

    1977-08-01

    Trays with multiple box downcomers are often used in chemical process plants nowadays. In order to make a theoretical assessment of the mass transfer efficiency of such trays, knowledge is needed of the time spent by the liquid at various parts of the tray. An idealized but reasonable flow pattern has been assumed and the local velocities and transit times along ten equally-spaced stream lines have been computed. Numerical and graphical results are presented. (author)

  3. Young-Laplace equation for liquid crystal interfaces

    Science.gov (United States)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  4. Liquid Hydrogen Sensor Considerations for Space Exploration

    Science.gov (United States)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  5. Structure, thermodynamics, and dynamical properties of supercooled liquids

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-12-01

    The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs

  6. Butterfly patterns in a sheared lamellar-system

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Zipfel, J; Richtering, W [Freiburg Univ. (Germany)

    1997-04-01

    A technologically important extension of `classical` scattering techniques is to investigate soft-matter systems under non-equilibrium conditions. Shear flow is known to have a profound influence on the structure and orientation of complex fluids like thermotropic or lyotropic liquid-crystals, colloidal and polymeric solutions. There is a fundamental interest in understanding the microscopic structure and dynamics of such complex fluids as the macroscopic material properties might change with the application of an external perturbation like shear. The following example illustrates a recent study of the influence of shear on the structure of a lyotropic lamellar phase. Results using a cone-and-plate and the ILL Couette type shear-cell were obtained by rheo-small-angle light scattering (rheo-SALS) and small-angle neutron scattering (SANS) at D11. Because of the broad range of momentum transfer Q available at D11 a characteristic butterfly-pattern with a scattering peak revealing both the structure and the supramolecular structure of the system could be detected at very low Q. (author). 5 refs.

  7. The real gas dynamics of the fluids of high specific heat

    International Nuclear Information System (INIS)

    Meier, G.E.A.

    1987-01-01

    The gas dynamics of real fluids show several new effects beyond the gas dynamics of ideal substances. Many of these effects rely on phase changes in the flow fields and can be explained with the help of more complicated thermal and caloric state equations of the real fluids. Complete adiabatic liquefaction and evaporation are possible for those substances whose specific heat exceeds a limit of about twenty gas constants. These fluids consisting of great molecules have so much internal energy storage capacity in their numerous vibrational degrees of freedom that the heat of evaporation can be supplied or also stored in the case of condensation. So liquefaction shock waves, which transform a gas completely or partly into a liquid, are possible. The shock front becomes thereby the surface of a liquid. Partial liquefaction with droplet condensation occurs in weaker shock waves. On the other hand a superheated liquid with high specific heat can be changed into a gas or mixture state in expansion waves or flows. (orig.)

  8. Development, Verification and Validation of Parallel, Scalable Volume of Fluid CFD Program for Propulsion Applications

    Science.gov (United States)

    West, Jeff; Yang, H. Q.

    2014-01-01

    There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.

  9. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  10. Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, L. [Alstom Power Italy, Milan (Italy)

    2010-08-01

    This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.

  11. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  12. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  13. Fluid intake rates in ants correlate with their feeding habits.

    Science.gov (United States)

    Paul, J; Roces, F

    2003-04-01

    This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the

  14. CHEMOMETRICS IN BIOANALYTICAL SAMPLE PREPARATION - A FRACTIONATED COMBINED MIXTURE AND FACTORIAL DESIGN FOR THE MODELING OF THE RECOVERY OF 5 TRICYCLIC AMINES FROM PLASMA AFTER LIQUID-LIQUID-EXTRACTION PRIOR TO HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    WIELING, J; MENSINK, CK; JONKMAN, JHG; COENEGRACHT, PMJ; DUINEVELD, CAA; DOORNBOS, DA

    1993-01-01

    A general systematic approach is described for the chemometric modelling of liquid-liquid extraction data of drugs from biological fluids. Extraction solvents were selected from Snyder's solvent selectivity triangle: methyl tert.-butyl ether, methylene chloride and chloroform. The composition of a

  15. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  16. MEDICAL DIAGNOSTICS BY MICROSTRUCTURAL ANALYSIS OF BIOLOGICAL LIQUID DRIED PATTERNS AS A PROBLEM OF BIOINFORMATICS

    Directory of Open Access Journals (Sweden)

    Petr Vladimirovich Lebedev-Stepanov, Dr.

    2018-02-01

    Full Text Available Motivation: It is important to develop the high-precision computerized methods for medical rapid diagnostic which is generalizing the unique clinical experience obtained in the past decade as specialized solutions for diagnostic problems of control of specific diseases and, potentially, for a wide health monitoring of virtually healthy population, identify the reserves of human health and take the actions to prevent of these reserves depletion. In this work we present one of the new directions in bioinformatics, i.e. medical diagnostics by automated expert system on basis of morphology analysis of digital image of biological liquid dried pattern. Results: Proposed method is combination of bioinformatics and biochemistry approaches for obtaining diagnostic information from a morphological analysis of standardized dried patterns of biological liquid sessile drop. We have carried out own research in collaboration with medical diagnostic centers and formed the electronic database for recognition the following types of diseases: candidiasis; neoplasms; diabetes mellitus; diseases of the circulatory system; cerebrovascular disease; diseases of the digestive system; diseases of the genitourinary system; infectious diseases; factors relevant to the work; factors associated with environmental pollution; factors related to lifestyle. The laboratory setup for diagnostics of the human body in pathology states is developed. The diagnostic results are considered. Availability: Access to testing the software can be obtained on request to the contact email below.

  17. Initial instability of round liquid jet at subcritical and supercritical environments

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-01-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  18. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.

    Science.gov (United States)

    Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping

    2018-02-20

    Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  20. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  1. Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    NARCIS (Netherlands)

    Yilmaz, H.; Murib, M.S.; Serpenguzel, A.

    2016-01-01

    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4’-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids,

  2. A note on fluid inclusion study of quartz from uraniferous migmatites from Sirsoti area, Sonbhadra district, Uttar Pradesh, India

    International Nuclear Information System (INIS)

    Ramana Murthy, K.V.; Shobhita, K.; Gorikhan, R.A.; Bhattacharya, A.K.

    1993-01-01

    Fluid inclusion study has been carried out on quartz from uraniferous migmatitic rocks of Sirsoti area of Sonbhadra District, Uttar Pradesh. The fluid inclusions in quartz are of two types viz. (i) H 2 O liquid + vapour and (ii) H 2 O liquid + CO 2 liquid + CO 2 gas. Homogenization temperatures of H 2 O liquid + vapour type inclusions indicate that the temperature of formation varied between 150-350degC. Ice melting temperatures indicate that the hydrothermal solutions were CO 2 -bearing with a salinity of 6-8% NaCl. A common range of homogenization temperature for both liquid-rich as well as vapour-rich inclusions provides evidence for the boiling of the ore fluids. (author). 5 refs., 7 figs

  3. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  4. The role of fluid-wall interactions on confined liquid diffusion using Mori theory

    International Nuclear Information System (INIS)

    Devi, Reena; Srivastava, Sunita; Tankeshwar, K.

    2015-01-01

    The dynamics of fluid confined in a nano-channel with smooth walls have been studied through velocity autocorrelation function within the memory function approach by incorporating the atomic level interactions of fluid with the confining wall. Expressions for the second and fourth sum rules of velocity autocorrelation have been derived for nano-channel which involves fluid-fluid and fluid-wall interactions. These expressions, in addition, involve pair correlation function and density profiles. The numerical contributions of fluid-wall interaction to sum rules are found to play a very significant role, specifically at smaller channel width. Results obtained for velocity autocorrelation and self-diffusion coefficient of a fluid confined to different widths of the nanochannel have been compared with the computer simulation results. The comparison shows a good agreement except when the width of the channel is of the order of two atomic diameters, where it becomes difficult to estimate sum rules involving the triplet correlation’s contribution

  5. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  6. Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2017-10-01

    Full Text Available The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone, and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases.

  7. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  9. Three-dimensional blade coating of complex fluid

    Science.gov (United States)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  10. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  11. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    Directory of Open Access Journals (Sweden)

    Vidal A.

    2014-03-01

    Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  12. High Bulk Modulus of Ionic Liquid and Effects on Performance of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Milan Kambic

    2014-01-01

    Full Text Available Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication, and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus, compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems’ dynamic responses.

  13. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  14. Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)

    Science.gov (United States)

    Hidema, R.; Yamada, N.; Furukawa, H.

    2012-04-01

    In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.

  15. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  16. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  17. Analysis of anisotropic shells containing flowing fluid

    International Nuclear Information System (INIS)

    Lakis, A.A.

    1983-01-01

    A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt

  18. Dynamic Analysis procedure for fluid kicks in hydrocarbon wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    A method for analyzing fluid kicks in wells during drilling, in order to assess the risk of a blowout, is presented. An automatic data acquisition and processing system is used to analyze pressure data from transient flow regimes of the drill slurries to determine the nature of the fluid in the borehole (gas, liquid, mixture). The method can be used even if the fluid flowing into the borehole is in an horizontal section of the well.

  19. Churn-annular flow pattern transition in a vertical upward gas-liquid two-phase flow in various conduits

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Ueda, Tadanobu; Asano, Hitoshi

    2008-01-01

    Void fraction was measured by neutron radiography for a vertical upward gas-water two-phase flow in a concentric annular tube with and with out a spacer, 4x4 rod bundle with and without a spacer and a tight rod bundle with and without a wrapping wire for various gas and liquid flow rates. The flow patterns of these two-phase flows were determined by the Mishima-Ishii flow pattern map and void fraction was calculated by the Ishii's drift flux model. The predicted values were compared with the experimental results. The void fraction was well predicted by the Mishima-Ishii flow pattern map and the Ishii's drift flux model except the annular flow region with void fraction lower than 0.8 for conduits with small equivalent diameter. A new churn-annular flow pattern transition condition of the void fraction equal to 0.8 was added. The void fraction for the present experimental condition was successful predicted with the new transition model. (author)

  20. Level set method for computational multi-fluid dynamics: A review on ...

    Indian Academy of Sciences (India)

    to multi fluid/phase as well as to various types of two-phase flow. In the second ...... simulated bubble generation in a quiescent and co-flowing fluid, for various liquid-to-gas mean injection velocity at ... in modelling of droplet impact behaviour.

  1. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  2. Some universal trends of the Mie(n,m) fluid thermodynamics

    International Nuclear Information System (INIS)

    Orea, Pedro; Reyes-Mercado, Yuri; Duda, Yurko

    2008-01-01

    By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances

  3. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  4. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  5. Patterns of Obesity and Lymph Fluid Level during the First Year of Breast Cancer Treatment: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Mei R. Fu

    2015-09-01

    Full Text Available Obesity is one of the risk factors for developing lymphedema following breast cancer treatment. We prospectively enrolled 140 women and followed the participants for 12 months after surgery to investigate patterns of obesity and lymph fluid level in the first year of cancer treatment. Electrical bioimpedance devices were used to measure weight, BMI, and percent of body fat as well as lymph fluid level. General instructions were given to the participants on maintaining pre-surgery weight. Among the 140 participants, 136 completed the study with 2.9% attrition. More than 60% of the participants were obese (30.8% or overweight (32.4%, while only two participants were underweight and about 35% had normal weight. This pattern of obesity and overweight was consistent at 4–8 weeks and 12 months post-surgery. At 12 months post-surgery, the majority of the women (72.1% maintained pre-surgery weight and 15.4% had >5% weight loss; 12.5% of the women increase >5% of their weight. Significantly more patients in the obesity group had lymphedema defined by L-Dex ratio >7.1 than those in the normal/underweight and overweight group at pre-surgery and 4–8 weeks post-surgery. There was a trend of more patients in the obesity group had L-Dex ratio >7.1 at 12 months post-surgery. Obesity and overweight remain among women at the time of cancer diagnosis and the patterns of obesity and overweight continue during the first year of treatment. General instructions on having nutrition-balanced and portion-appropriate diet and physical activities daily or weekly can be effective to maintain pre-surgery weight.

  6. Patterns of Obesity and Lymph Fluid Level during the First Year of Breast Cancer Treatment: A Prospective Study

    Science.gov (United States)

    Fu, Mei R.; Axelrod, Deborah; Guth, Amber A.; Fletcher, Jason; Qiu, Jeanna M.; Scagliola, Joan; Kleinman, Robin; Ryan, Caitlin E.; Chan, Nicholas; Haber, Judith

    2015-01-01

    Obesity is one of the risk factors for developing lymphedema following breast cancer treatment. We prospectively enrolled 140 women and followed the participants for 12 months after surgery to investigate patterns of obesity and lymph fluid level in the first year of cancer treatment. Electrical bioimpedance devices were used to measure weight, BMI, and percent of body fat as well as lymph fluid level. General instructions were given to the participants on maintaining pre-surgery weight. Among the 140 participants, 136 completed the study with 2.9% attrition. More than 60% of the participants were obese (30.8%) or overweight (32.4%), while only two participants were underweight and about 35% had normal weight. This pattern of obesity and overweight was consistent at 4–8 weeks and 12 months post-surgery. At 12 months post-surgery, the majority of the women (72.1%) maintained pre-surgery weight and 15.4% had >5% weight loss; 12.5% of the women increase >5% of their weight. Significantly more patients in the obesity group had lymphedema defined by L-Dex ratio >7.1 than those in the normal/underweight and overweight group at pre-surgery and 4–8 weeks post-surgery. There was a trend of more patients in the obesity group had L-Dex ratio >7.1 at 12 months post-surgery. Obesity and overweight remain among women at the time of cancer diagnosis and the patterns of obesity and overweight continue during the first year of treatment. General instructions on having nutrition-balanced and portion-appropriate diet and physical activities daily or weekly can be effective to maintain pre-surgery weight. PMID:26404383

  7. Technique for detecting liquid metal leaks

    International Nuclear Information System (INIS)

    Bauerle, J.E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector

  8. Collective dynamics in noble-gas and other very simple classical fluids

    Directory of Open Access Journals (Sweden)

    U.Bafile

    2008-03-01

    Full Text Available Rare gases and their liquids are the simplest systems to study for accurate investigations of the collective dynamics of fluid matter. Much work has been done using different spectroscopic techniques, molecular-dynamics simulations, and theoretical developments, in order to gain insight into the microscopic processes involved, in particular, in the propagation of acoustic excitations in gases and liquids. Here we briefly review the interpretation schemes currently applied to the characterization of such excitations, and recall a few results obtained from the analysis of rare-gas fluids and other very simple systems.

  9. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  10. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  11. Droplet Drying Patterns on Solid Substrates: From Hydrophilic to Superhydrophobic Contact to Levitating Drops

    Directory of Open Access Journals (Sweden)

    Sujata Tarafdar

    2018-01-01

    Full Text Available This review is devoted to the simple process of drying a multicomponent droplet of a complex fluid which may contain salt or other inclusions. These processes provide a fascinating subject for study. The explanation of the rich variety of patterns formed is not only an academic challenge but also a problem of practical importance, as applications are growing in medical diagnosis and improvement of coating/printing technology. The fundamental scientific problem is the study of the mechanism of micro- and nanoparticle self-organization in open systems. The specific fundamental problems to be solved, related to this system, are the investigation of the mass transfer processes, the formation and evolution of phase fronts, and the identification of mechanisms of pattern formation. The drops of liquid containing dissolved substances and suspended particles are assumed to be drying on a horizontal solid insoluble smooth substrate. The chemical composition and macroscopic properties of the complex fluid, the concentration and nature of the salt, the surface energy of the substrate, and the interaction between the fluid and substrate which determines the wetting all affect the final morphology of the dried film. The range of our study encompasses the fully wetting case with zero contact angle between the fluid and substrate to the case where the drop is levitated in space, so there is no contact with a substrate and angle of contact can be considered as 180°.

  12. Stability analysis of whirling composite shells partially filled with two liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Sahebnasagh, Mohammad [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nikkhah-Bahrami, Mansour; Firouz-Abadi, Roohollah [Department of Aerospace Engineering, Sharif University, Tehran (Iran, Islamic Republic of)

    2017-05-15

    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main variables on the stability of the shell are studied and the results are investigated.

  13. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  14. Means for preventing radioactive fluid leaking

    International Nuclear Information System (INIS)

    Akatsu, Jun-ichi.

    1975-01-01

    Object: To permit prevention of leakage of radioactive fluid from line and valve leak sections while also recovering the liquid by producing a vacuum state in a leak-off line by means of a water ejector. Structure: A portion of the water from a condenser is forced by a condensed water pump through a water ejector tank to a recovery tank while controlling an orifice and valve, whereby a vacuum state is produced in the leak-off line to withdraw the leakage fluid. (Kamimura, M.)

  15. Structural studies of fluid mercury using synchrotron radiation at SPring-8

    International Nuclear Information System (INIS)

    Hong Xinguo; Tamura, K.

    2003-01-01

    With the volume expansion by heating up toward the critical point, typical liquid metal mercury undergoes metal-nonmetal transition (M-NM) at a density around 9 g/cm 3 . To study the structure changes of fluid Hg during volume expansion, we have carried out X-ray diffraction measurements for expanded fluid mercury in a wide density region from liquid to dense vapour region using synchrotron radiation at SPring-8. We have succeeded in developing a new high-pressure vessel, up to 1700 degree C under 2000 bar and with 7 scattering windows for energy-dispersive X-ray diffraction (EDXD) measurements under high temperature and high pressure. It was found that the reliability of the structure factors, S(k), and the accuracy of the pair distribution functions, g(r), are much better. Reliable relations of the coordination number and the correlation distance with the density of fluid Hg were obtained. Structural model of volume expansion of fluid Hg is proposed based on our new results. Structural changes with decreasing density are discussed in relation to the M-NM transition in fluid Hg

  16. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  17. Spin polarized 3He: a ''new'' quantum fluid

    International Nuclear Information System (INIS)

    Lhuillier, C.; Laloe, F.

    1979-01-01

    The physical properties of a 3 He fluid are studied, in which all nuclear spins are parallel to each other (fully polarized 3 He). At low temperatures, significant differences can exist between this polarized fluid and normal 3 He. The origin of these differences is purely quantum mechanical and arises from the Pauli exclusion principle. At low densities, only the transport properties of the gas are modified. At higher densities. The equilibrium properties (virial coefficients) are also changed by the nuclear polarization. Changes of the liquid-vapour or liquid-solid equilibrium pressures, as well as modifications of the 3 He- 4 He mixture phase diagram are predicted. This article gives a preliminary theoretical study of these new effects. Experimental prospects are briefly discussed [fr

  18. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  19. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  20. Reaction of seawater with fresh mid-ocean ridge gabbro creates ';atypical' REE pattern and high REE fluid fluxes: Experiments at 425 and 475 °C, 400 and 1000 bar

    Science.gov (United States)

    Beermann, O.; Garbe-Schönberg, D.; Holzheid, A. D.

    2013-12-01

    High-temperature MOR hydrothermalism significantly affects ocean chemistry. The Sisters Peak (SP) hydrothermal field at 5°S on the slow-spreading Mid-Atlantic Ridge (MAR) emanates fluids >400°C [1] that have high concentrations of H2, transition metals, and rare earth elements (REE) exhibiting ';atypical' REE pattern characterized by depletions of LREE and HREE relative to MREE and no Eu anomaly [2]. This is in contrast to the ';typical' LREE enrichment and strong positive Eu anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Besides temperature, the seawater-to-rock ratio (w/r ratio) has significant control on the fluid chemistry [e.g., 4, 5]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we reacted unaltered gabbro with natural bottom seawater at 425 °C and 400 bar and at 425 and 475 °C at 1000 bar at variable w/r (mass) ratios ranging from 0.5-10 by using cold seal pressure vessels (CSPV). The run durations varied from 3-72 h. Reacted fluids were analysed for major and trace elements by ICP-OES and ICP-MS. In our experiments, ';atypical' REE fluid pattern similar to those of SP fluids were obtained at high w/r ratio (5 and 10) that might be characteristic for focused fluid-flow along e.g., detachment faults at slow-spreading MOR [6]. In contrast, more ';typical'-like REE pattern with elevated LREE and slightly positive Eu anomalies have been reproduced at low w/r ratio (0.5-1). Results of numerical simulations imply that strong positive Eu anomalies of fluids and altered gabbro from high temperature MOR hydrothermal systems can be created by intense rock leaching processes at high w/r ratio (5-10). This suggests that hydrothermal circulation through the ocean crust creates ';typical' REE fluid pattern with strong positive Eu anomalies if seawater reacts with gabbroic host rock that has been already leached in REE at high fluid fluxes. Simulations of the temporal chemical evolution of

  1. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  2. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    Science.gov (United States)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  3. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  4. Fluid Power, Rate Training Manual.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    Fundamentals of hydraulics and pneumatics are presented in this manual, prepared for regular navy and naval reserve personnel who are seeking advancement to Petty Officer Third Class. The history of applications of compressed fluids is described in connection with physical principles. Selection of types of liquids and gases is discussed with a…

  5. Gastric emptying patterns of a liquid meal in newborn infants, measured by epigastric impedance

    DEFF Research Database (Denmark)

    Lange, Aksel; Funch-Jensen, Peter; Thommesen, Peter

    1997-01-01

    time (T50) was calculated. For mature infants it was found to be 6.9 mins. For a second meal given within an hour after the first meal the half emptying time was 5.5 mins (p times were not significant different from mature infants, but the number examined was small......  Epigastric impedance was used to measure patterns of the gastric emptying of a liquid non-caloric meal (5 ml water/kg) in newborn infants. The emptying patterns consisted of two components, theemptying signal - the DC component - and a phasic 3 cycle per minutes (CPM) signal - the AC component.......A periodic change of the impedance signal, the phasic 3 CPM signal, was observed after a meal in 24 of the infants. The median frequency was 3.03 CPM in 20 mature and 2.93 CPM in 4 preterminfants. In 9 infants a phasic 3 CPM signal was observed during fasting state. The median frequency was 2.9 CPM...

  6. Critical asymmetry in renormalization group theory for fluids.

    Science.gov (United States)

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  7. Abnormal liquid loading in gas wells of the Samandepe Gasfield in Turkmenistan and countermeasures

    Directory of Open Access Journals (Sweden)

    Peijun Zhang

    2015-10-01

    Full Text Available With complicated formation mechanisms, liquid loading in gas wells during gasfield development may significantly affect the productivity of gas wells and the ultimate recovery rate. Dynamic monitoring data of the Samandepe Gasfield in Turkmenistan shows that liquid loading can be found extensively in gas wells. Their formation mechanisms and negative impacts on gasfield development severely restrict the productivity enhancement of this gasfield. With their origins taken into consideration, liquid loads in gas wells were classified into three types: formation water, condensed liquid, and external liquid. By using the hydrostatic pressure gradient method and through PLT monitoring, properties of liquid loads in the Samandepe Gasfield were determined. In addition, formation mechanisms related to liquid loading in gas wells were obtained through analyses of critical fluid-carrying capacities and by using gas-reservoir production data. The following findings were obtained. Liquid loading was commonly found in this gas well with majority of reservoir formations in lower well intervals flooded. However, the formation mechanisms for these liquid loads are different from those of other gasfields. Due to long-term shut-down of gas wells, killing fluids precipitated and pores in lower reservoir formations were plugged. As a result, natural gas had no access to boreholes, killing fluids were impossibly carried out of the borehole. Instead, the killing fluid was detained at the bottomhole to generate liquid load and eliminate the possibility of formation water coning. Moreover, since the gasfield was dominated by block reservoirs with favorable physical properties and connectivity, impacts of liquid load on gasfield development were insignificant. Thus, to enhance the recovery rate of the Samandepe Gasfield significantly, it is necessary to expand the gasfield development scale and strengthen the development of marginal gas reservoirs.

  8. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.

    Science.gov (United States)

    Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E

    2016-03-04

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.

  9. Quantum mechanical description of the two fluid model of liquid /sup 4/He solving the Bloch equation

    International Nuclear Information System (INIS)

    Fung, P.C.W.; Lam, C.C.

    1986-01-01

    The authors apply the U-matrix theory recently developed (Lam and Fung, Phys. Rev. A, vol.27, p.1760, 1983) to study certain physical properties of liquid /sup 4/He across a range of temperatures including the lambda -point. They propose a model for the chemical potential mu which is constant above T/sub lambda / but is a function of T below T/sub lambda /. They have discovered that the super-particles 'emerge' mathematically due to the uncommutability of the Hamiltonians at different temperatures, leading to a quantum mechanical description of the two-fluid model. Using the two-particle potential function deduced from scattering data, they have calculated numerically the approximate values of the number density for a range of temperatures starting from T/sub lambda /, taking the hard-core diameter Delta , 'effective chemical potential' mu ' as parameters

  10. Simultaneous determination of vancomycin and ceftazidime in cerebrospinal fluid in craniotomy patients by high-performance liquid chromatography.

    Science.gov (United States)

    Ye, Guangming; Cai, Xuejian; Wang, Biao; Zhou, Zhongxian; Yu, Xiaohua; Wang, Weibin; Zhang, Jiandong; Wang, Yuhai; Dong, Jierong; Jiang, Yunyun

    2008-11-04

    A simple, accurate and rapid method for simultaneous analysis of vancomycin and ceftazidime in cerebrospinal fluid (CSF), utilizing high-performance liquid chromatography (HPLC), has been developed and thoroughly validated to satisfy strict FDA guidelines for bioanalytical methods. Protein precipitation was used as the sample pretreatment method. In order to increase the accuracy, tinidazole was chosen as the internal standard. Separation was achieved on a Diamonsil C18 column (200 mm x 4.6mm I.D., 5 microm) using a mobile phase composed of acetonitrile and acetate buffer (pH 3.5) (8:92, v/v) at room temperature (25 degrees C), and the detection wavelength was 240 nm. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was applied to determine vancomycin and ceftazidime concentrations in CSF in five craniotomy patients.

  11. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  12. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  13. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  14. Faraday instability on patterned surfaces

    Science.gov (United States)

    Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard

    2013-11-01

    We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.

  15. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  16. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.

  17. The Motion Of A Deformable Body In - Bounded Fluid

    International Nuclear Information System (INIS)

    Galpert, A.R.; Miloh, T.

    1998-01-01

    The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for

  18. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  19. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  20. Immobilized fluid membranes for gas separation

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  1. Application of a magnetic fluid seal to rotary blood pumps

    International Nuclear Information System (INIS)

    Mitamura, Y; Arioka, S; Azegami, M; Sakota, D; Sekine, K

    2008-01-01

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps

  2. Damping of liquid sloshing by foams: from everyday observations to liquid transport

    Science.gov (United States)

    Sauret, Alban; Boulogne, Francois; Cappello, Jean; Stone, Howard

    2014-11-01

    When a liquid-filled container is set in motion, the free surface of the liquid starts to slosh, i.e. oscillate. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rim of the container. However, beer does not slosh as readily, which suggests that the presence of foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of liquid foam placed on top of a liquid bath in a Hele-Shaw cell. We generate a monodisperse 2D liquid foam and track its motion. The influence of the foam on the sloshing dynamics is characterized: 2 to 3 layers of bubbles are sufficient to significantly damp the oscillations. For more than 5 layers of bubbles, the original vertical motion of the foam becomes mainly horizontal. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient. This study motivated by everyday observations has promising applications in numerous industrial applications such as the transport of liquid in cargoes.

  3. Low-cost viscometer based on energy dissipation in viscous liquids

    Science.gov (United States)

    Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.

    2001-04-01

    We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.

  4. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  5. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    Directory of Open Access Journals (Sweden)

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  6. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that

  7. Negative wake behind bubbles in non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole

    1979-01-01

    Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...

  8. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es

    2008-12-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  9. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    International Nuclear Information System (INIS)

    Garcia-Sanchez, P; Ramos, A; Green, Nicolas G; Morgan, H

    2008-01-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  10. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-01-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system

  11. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    Science.gov (United States)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-02-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system.

  12. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  13. Turbine Burners: Turbulent Combustion of Liquid Fuels

    National Research Council Canada - National Science Library

    Sirignano, William A; Liu, Feng; Dunn-Rankin, Derek

    2006-01-01

    The proposed theoretical/computational and experimental study addresses the vital two-way coupling between combustion processes and fluid dynamic phenomena associated with schemes for burning liquid...

  14. Spontaneous Marangoni Mixing of Miscible Liquids at a Liquid-Liquid-Air Contact Line.

    Science.gov (United States)

    Kim, Hyoungsoo; Lee, Jeongsu; Kim, Tae-Hong; Kim, Ho-Young

    2015-08-11

    We investigate the flow patterns created when a liquid drop contacts a reservoir liquid, which has implications on various physicochemical and biochemical reactions including mixing in microfluidic systems. The localized vortical flow spontaneously triggered by the difference of surface tension between the two liquids is studied, which is thus termed the Marangoni vortex. To quantitatively investigate the strength of vortices, we performed particle image velocimetry (PIV) experiments by varying the surface tension difference, the gap of the flow cell, the density and viscosity of the reservoir liquid, and the size of the drop. A scaling law that balances the interfacial energy of the system with the kinetic energy of the vortical flows allows us to understand the functional dependence of the Marangoni vortex strength on various experimental parameters.

  15. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  16. Dynamical density functional theory for dense atomic liquids

    International Nuclear Information System (INIS)

    Archer, A J

    2006-01-01

    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids

  17. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  18. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  19. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  20. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off