Large-scale fluid motion in the earth's outer core estimated from non-dipole magnetic field data
International Nuclear Information System (INIS)
Matsushima, Masaki; Honkura, Yoshimori
1989-01-01
Fluid motions in the Earth's outer core can be estimated from magnetic field data at the Earth's surface based on some assumptions. The basic standpoint here is that the non-dipole magnetic field is generated by the interaction between a strong toroidal magnetic field, created by differential rotation, and the convective motion in the outer core. Large-scale convective motions are studied to express them in terms of the poloidal velocity field expanded into a series of spherical harmonics. The radial distribution of differential rotation is estimated from the balance between the effective couple due to angular momentum transfer and the electromagnetic couple. Then the radial dependence of the toroidal magnetic field is derived from the interaction between the differential rotation thus estimated and the dipole magnetic field within the outer core. Magnetic field data are applied to a secular variation model which takes into account the fluctuations of the standing and drifting parts of the non-zonal magnetic field. The velocity field in the outer core is estimated for two cases. It is revealed that the pattern of convective motions is generally characterized by large-scale motions in the quasi-steady case. In the non-steady case, the magnitude of the velocity field is much larger, indicating a more dynamic feature. (N.K.)
Joseph, Daniel D
1976-01-01
The study of stability aims at understanding the abrupt changes which are observed in fluid motions as the external parameters are varied. It is a demanding study, far from full grown"whose most interesting conclusions are recent. I have written a detailed account of those parts of the recent theory which I regard as established. Acknowledgements I started writing this book in 1967 at the invitation of Clifford Truesdell. It was to be a short work on the energy theory of stability and if I had stuck to that I would have finished the writing many years ago. The theory of stability has developed so rapidly since 1967 that the book I might then have written would now have a much too limited scope. I am grateful to Truesdell, not so much for the invitation to spend endless hours of writing and erasing, but for the generous way he has supported my efforts and encouraged me to higher standards of good work. I have tried to follow Truesdell's advice to write this work in a clear and uncomplicated style. This is not ...
Brownian motion in a flowing fluid revisited
International Nuclear Information System (INIS)
Ramshaw, J.D.
1981-01-01
It is shown how the phenomenon of osmosis may be treated using the phenomenological theory of Brownian motion in a flowing fluid. The theory is also generalized to include viscous stresses in the particle and mixture momentum equations
Estimation of strong ground motion
International Nuclear Information System (INIS)
Watabe, Makoto
1993-01-01
Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event
Estimation of Motion Vector Fields
DEFF Research Database (Denmark)
Larsen, Rasmus
1993-01-01
This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...... fields by means of stochastic relaxation implemented via the Gibbs sampler....
Robust motion estimation using connected operators
Salembier Clairon, Philippe Jean; Sanson, H
1997-01-01
This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...
Smoothing Motion Estimates for Radar Motion Compensation.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.
PET motion correction using PRESTO with ITK motion estimation
Energy Technology Data Exchange (ETDEWEB)
Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)
2014-07-29
The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.
PET motion correction using PRESTO with ITK motion estimation
International Nuclear Information System (INIS)
Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon
2014-01-01
The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.
International Nuclear Information System (INIS)
Bocquet, L.; Hansen, J.P.; Piasecki, J.
1994-01-01
The friction coefficient γ exerted by a hard-sphere fluid on an infinitely massive Brownian sphere is calculated for several size ratios Σ/σ where Σ and σ are the diameters of the Brownian and fluid spheres, respectively. The exact microscopic expression derived in part I of this work from kinetic theory is transformed and shown to be proportional to the time integral of the autocorrelation function of the momentum transferred from the fluid to the Brownian sphere during instantaneous collisions. Three different methods are described to extract the friction coefficient from molecular dynamics simulations carried out on finite systems. The three independent methods lead to estimates of γ which agree within statistical errors (typically 5%). The results are compared to the predictions of Enskog theory and of the hydrodynamic Stokes law. The former breaks down as the size ratio and/or the packing fraction of the fluid increase. Somewhat surprisingly, Stokes' law is found to hold with stick boundary conditions, in the range 1 ≤ Σ/σ ≤ 4.5 explored in the present simulations, with a hydrodynamic diameter d=Σ. The analysis of the molecular dynamics data on the basis of Stokes' law with slip boundary conditions is less conclusive, although the right trend is found as Σ/σ increases
The Motion Of A Deformable Body In - Bounded Fluid
International Nuclear Information System (INIS)
Galpert, A.R.; Miloh, T.
1998-01-01
The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for
Linearized motion estimation for articulated planes.
Datta, Ankur; Sheikh, Yaser; Kanade, Takeo
2011-04-01
In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.
Markerless motion estimation for motion-compensated clinical brain imaging
Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.
2018-05-01
Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.
Conditional shape models for cardiac motion estimation
DEFF Research Database (Denmark)
Metz, Coert; Baka, Nora; Kirisli, Hortense
2010-01-01
We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...
Numerical study of fluid motion in bioreactor with two mixers
Energy Technology Data Exchange (ETDEWEB)
Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
Adaptive vehicle motion estimation and prediction
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
Interactive inverse kinematics for human motion estimation
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome
2009-01-01
We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....
Online wave estimation using vessel motion measurements
DEFF Research Database (Denmark)
H. Brodtkorb, Astrid; Nielsen, Ulrik D.; J. Sørensen, Asgeir
2018-01-01
parameters and motion transfer functions are required as input. Apart from this the method is signal-based, with no assumptions on the wave spectrum shape, and as a result it is computationally efficient. The algorithm is implemented in a dynamic positioning (DP)control system, and tested through simulations......In this paper, a computationally efficient online sea state estimation algorithm isproposed for estimation of the on site sea state. The algorithm finds the wave spectrum estimate from motion measurements in heave, roll and pitch by iteratively solving a set of linear equations. The main vessel...
Flapping motion and force generation in a viscoelastic fluid
Normand, Thibaud; Lauga, Eric
2008-12-01
In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.
Cerebral palsy characterization by estimating ocular motion
González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo
2017-11-01
Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.
Magnetohydrodynamic motion of a two-fluid plasma
Burby, J. W.
2017-08-01
The two-fluid Maxwell system couples frictionless electrons and ion fluids via Maxwell's equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, as well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from the two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-order closure may be obtained in the closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-order bracket gives explicit expressions for a number of the full closure's conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.
Neuromorphic Configurable Architecture for Robust Motion Estimation
Directory of Open Access Journals (Sweden)
Guillermo Botella
2008-01-01
Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.
Estimating network effect in geocenter motion: Theory
Zannat, Umma Jamila; Tregoning, Paul
2017-10-01
Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as 1/√N and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.
Helicity and other conservation laws in perfect fluid motion
Serre, Denis
2018-03-01
In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.
Mobile robot motion estimation using Hough transform
Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu
2018-05-01
This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.
Tracking using motion estimation with physically motivated inter-region constraints
Arif, Omar
2014-09-01
We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.
Content Adaptive True Motion Estimator for H.264 Video Compression
Directory of Open Access Journals (Sweden)
P. Kulla
2007-12-01
Full Text Available Content adaptive true motion estimator for H.264 video coding is a fast block-based matching estimator with implemented multi-stage approach to estimate motion fields between two image frames. It considers the theory of 3D scene objects projection into 2D image plane for selection of motion vector candidates from the higher stages. The stages of the algorithm and its hierarchy are defined upon motion estimation reliability measurement (image blocks including two different directions of spatial gradient, blocks with one dominant spatial gradient and blocks including minimal spatial gradient. Parameters of the image classification into stages are set adaptively upon image structure. Due to search strategy are the estimated motion fields more corresponding to a true motion in an image sequence as in the case of conventional motion estimation algorithms that use fixed sets of motion vector candidates from tight neighborhood.
Self-propelled motion in a viscous compressible fluid
Czech Academy of Sciences Publication Activity Database
Mácha, Václav; Nečasová, Šárka
2016-01-01
Roč. 146, č. 2 (2016), s. 415-433 ISSN 0308-2105 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : self-propelled motion * compressible fluid * deformable structure Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10065194&fileId=S0308210515000487
Effect of fluid motion on colony formation in Microcystis aeruginosa
Directory of Open Access Journals (Sweden)
Lin Li
2013-01-01
Full Text Available Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, culture experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 cm/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.
Interpretation of Fermion system equilibration by energy fluid motion
International Nuclear Information System (INIS)
Jang, S.
1990-01-01
We study the equilibration of fermion system with the help of both linear and non-linear master equations which are originated from the extended time-dependent Hartree-Fock equation of motion. We show how the non-linear master equation for nucleon occupation number transforms into the Navier-Stokes type of one dimensional equation for non-stationary flow of a compressible and viscous fluid. Physical consequences of these equations are investigated by providing illustrative examples
OPTICAL FLOW FOR GLACIER MOTION ESTIMATION
Directory of Open Access Journals (Sweden)
C. Vogel
2012-07-01
Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
International Nuclear Information System (INIS)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Energy Technology Data Exchange (ETDEWEB)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
FPGA-Based Embedded Motion Estimation Sensor
Directory of Open Access Journals (Sweden)
Zhaoyi Wei
2008-01-01
Full Text Available Accurate real-time motion estimation is very critical to many computer vision tasks. However, because of its computational power and processing speed requirements, it is rarely used for real-time applications, especially for micro unmanned vehicles. In our previous work, a FPGA system was built to process optical flow vectors of 64 frames of 640×480 image per second. Compared to software-based algorithms, this system achieved much higher frame rate but marginal accuracy. In this paper, a more accurate optical flow algorithm is proposed. Temporal smoothing is incorporated in the hardware structure which significantly improves the algorithm accuracy. To accommodate temporal smoothing, the hardware structure is composed of two parts: the derivative (DER module produces intermediate results and the optical flow computation (OFC module calculates the final optical flow vectors. Software running on a built-in processor on the FPGA chip is used in the design to direct the data flow and manage hardware components. This new design has been implemented on a compact, low power, high performance hardware platform for micro UV applications. It is able to process 15 frames of 640×480 image per second and with much improved accuracy. Higher frame rate can be achieved with further optimization and additional memory space.
Vehicle ego-motion estimation with geometric algebra
Mark, W. van der; Fontijne, D.; Dorst, L.; Groen, F.C.A.
2003-01-01
A method for estimating ego-motion with vehicle mounted stereo cameras is presented. This approach is based on finding corresponding features in stereo images and tracking them between succeeding stereo frames. Our approach estimates stereo ego-motion with geometric algebra techniques. Starting with
Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters
Mousas, Christos; Anagnostopoulos, Christos-Nikolaos
2017-09-01
This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.
Fast image interpolation for motion estimation using graphics hardware
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
Progress in motion estimation for video format conversion
Haan, de G.
2000-01-01
There are now two generations of ICs for motion-compensated video format conversion (MC-VFC). Real-time DSP software for MC-VFC has previously been demonstrated, with the breakthroughs enabling this progress coming from motion estimation. The paper gives an overview.
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Estimation of the global regularity of a multifractional Brownian motion
DEFF Research Database (Denmark)
Lebovits, Joachim; Podolskij, Mark
This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....
A Motion Estimation Algorithm Using DTCWT and ARPS
Directory of Open Access Journals (Sweden)
Unan Y. Oktiawati
2013-09-01
Full Text Available In this paper, a hybrid motion estimation algorithm utilizing the Dual Tree Complex Wavelet Transform (DTCWT and the Adaptive Rood Pattern Search (ARPS block is presented. The proposed algorithm first transforms each video sequence with DTCWT. The frame n of the video sequence is used as a reference input and the frame n+2 is used to find the motion vector. Next, the ARPS block search algorithm is carried out and followed by an inverse DTCWT. The motion compensation is then carried out on each inversed frame n and motion vector. The results show that PSNR can be improved for mobile device without depriving its quality. The proposed algorithm also takes less memory usage compared to the DCT-based algorithm. The main contribution of this work is a hybrid wavelet-based motion estimation algorithm for mobile devices. Other contribution is the visual quality scoring system as used in section 6.
Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.
Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T
2015-12-01
Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.
Estimating tropical vertical motion profile shapes from satellite observations
Back, L. E.; Handlos, Z.
2013-12-01
The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.
Unbiased estimators for spatial distribution functions of classical fluids
Adib, Artur B.; Jarzynski, Christopher
2005-01-01
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.
Dikbas, Salih; Altunbasak, Yucel
2013-08-01
In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.
Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography
Hahn, Bernadette N.
2017-12-01
A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.
Motion estimation by data assimilation in reduced dynamic models
International Nuclear Information System (INIS)
Drifi, Karim
2013-01-01
Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr
Rapid Moment Magnitude Estimation Using Strong Motion Derived Static Displacements
Muzli, Muzli; Asch, Guenter; Saul, Joachim; Murjaya, Jaya
2015-01-01
The static surface deformation can be recovered from strong motion records. Compared to satellite-based measurements such as GPS or InSAR, the advantage of strong motion records is that they have the potential to provide real-time coseismic static displacements. The use of these valuable data was optimized for the moment magnitude estimation. A centroid grid search method was introduced to calculate the moment magnitude by using1 model. The method to data sets was applied of the 2011...
Constrained motion estimation-based error resilient coding for HEVC
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
First general solutions for unidirectional motions of rate type fluids over an infinite plate
Directory of Open Access Journals (Sweden)
Constantin Fetecau
2015-09-01
Full Text Available Based on a simple but important remark regarding the governing equation for the non-trivial shear stress corresponding to the motion of a fluid over an infinite plate, exact solutions are established for the motion of Oldroyd-B fluids due to the plate that applies an arbitrary time-dependent shear stress to the fluid. These solutions, that allow us to provide the first exact solutions for motions of rate type fluids produced by an infinite plate that applies constant, constantly accelerating or oscillating shears stresses to the fluid, can easily be reduced to the similar solutions for Maxwell, second grade or Newtonian fluids performing the same motion. Furthermore, the obtained solutions are used to develop general solutions for the motion induced by a moving plate and to correct or recover as special cases different known results from the existing literature. Consequently, the motion problem of such fluids over an infinite plate that is moving in its plane or applies a shear stress to the fluid is completely solved.
Adaptive Motion Estimation Processor for Autonomous Video Devices
Directory of Open Access Journals (Sweden)
Dias T
2007-01-01
Full Text Available Motion estimation is the most demanding operation of a video encoder, corresponding to at least 80% of the overall computational cost. As a consequence, with the proliferation of autonomous and portable handheld devices that support digital video coding, data-adaptive motion estimation algorithms have been required to dynamically configure the search pattern not only to avoid unnecessary computations and memory accesses but also to save energy. This paper proposes an application-specific instruction set processor (ASIP to implement data-adaptive motion estimation algorithms that is characterized by a specialized datapath and a minimum and optimized instruction set. Due to its low-power nature, this architecture is highly suitable to develop motion estimators for portable, mobile, and battery-supplied devices. Based on the proposed architecture and the considered adaptive algorithms, several motion estimators were synthesized both for a Virtex-II Pro XC2VP30 FPGA from Xilinx, integrated within an ML310 development platform, and using a StdCell library based on a 0.18 μm CMOS process. Experimental results show that the proposed architecture is able to estimate motion vectors in real time for QCIF and CIF video sequences with a very low-power consumption. Moreover, it is also able to adapt the operation to the available energy level in runtime. By adjusting the search pattern and setting up a more convenient operating frequency, it can change the power consumption in the interval between 1.6 mW and 15 mW.
Hammond, Andrew P; Corwin, Eric I
2017-10-01
A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
Study of the motion of a vertically falling sphere in a viscous fluid
International Nuclear Information System (INIS)
Soares, A A; Caramelo, L; Andrade, M A P M
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the end of the fall, was combined with an iterative numerical method to determine the fluid viscosity coefficient, diameter of the sphere and terminal velocity. The proposed solution was validated with experimental literature data. The study presented may also help understanding the fluid-particle interactions from both theoretical and educational standpoints. (paper)
Perception-oriented methodology for robust motion estimation design
Heinrich, A.; Vleuten, van der R.J.; Haan, de G.
2014-01-01
Optimizing a motion estimator (ME) for picture rate conversion is challenging. This is because there are many types of MEs and, within each type, many parameters, which makes subjective assessment of all the alternatives impractical. To solve this problem, we propose an automatic design methodology
An Adaptive Motion Estimation Scheme for Video Coding
Directory of Open Access Journals (Sweden)
Pengyu Liu
2014-01-01
Full Text Available The unsymmetrical-cross multihexagon-grid search (UMHexagonS is one of the best fast Motion Estimation (ME algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.
Human motion estimation with multiple frequency modulated continuous wave radars
van Dorp, P.; Groen, F.C.A.
2010-01-01
Human motion estimation is an important issue in automotive, security or home automation applications. Radar systems are well suited for this because they are robust, are independent of day or night conditions and have accurate range and speed domain. The human response in a radar range-speed-time
Motion estimation using point cluster method and Kalman filter.
Senesh, M; Wolf, A
2009-05-01
The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal
Estimation of Dense Image Flow Fields in Fluids
DEFF Research Database (Denmark)
Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær
or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...
Estimation of Dense Image Flow Fields in Fluids
DEFF Research Database (Denmark)
Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær
1998-01-01
or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...
The motion of a compressible viscous fluid around rotating body
Czech Academy of Sciences Publication Activity Database
Kračmar, S.; Nečasová, Šárka; Novotný, A.
2014-01-01
Roč. 60, č. 1 (2014), s. 189-208 ISSN 0430-3202 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : compressible fluids * rotating fluids * Navier-Stokes equations Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs11565-014-0212-5
Gaussian particle filter based pose and motion estimation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.
Motion direction estimation based on active RFID with changing environment
Jie, Wu; Minghua, Zhu; Wei, He
2018-05-01
The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.
Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid
DEFF Research Database (Denmark)
Demidov, I.V.; Sorokin, Vladislav
2016-01-01
The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct...... of the bubbles which are affected by the negligible vibrational force is found. Also an approximate expression has been obtained for the average velocity of bubble׳s motion in the fluid; relationship between this velocity and bubble radius and vibration parameters has been revealed. A simple physical explanation...
Automated Motion Estimation for 2D Cine DENSE MRI
Gilliam, Andrew D.; Epstein, Frederick H.
2013-01-01
Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669
On the motion of incompressible inhomogeneous Euler-Korteweg fluids
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Feireisl, Eduard; Málek, J.; Shvydkoy, R.
2010-01-01
Roč. 3, č. 3 (2010), s. 497-515 ISSN 1937-1632 R&D Projects: GA MŠk LC06052; GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Korteweg fluid * inhomogeneous Euler fluid * Korteweg stress * local-in-time well-posedness * smooth solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5226
Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion
Zeytounian, Radyadour K
1991-01-01
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
Estimation of object motion parameters from noisy images.
Broida, T J; Chellappa, R
1986-01-01
An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.
Cellular neural networks for motion estimation and obstacle detection
Directory of Open Access Journals (Sweden)
D. Feiden
2003-01-01
Full Text Available Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN. It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible.
Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation
Directory of Open Access Journals (Sweden)
Hezerul Abdul Karim
2004-09-01
Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.
Estimating Vertical Land Motion in the Chesapeake Bay
Houttuijn Bloemendaal, L.; Hensel, P.
2017-12-01
This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow
TDHF and fluid dynamics of nuclear collective motions
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated
Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry
Energy Technology Data Exchange (ETDEWEB)
Love, Lonnie J [ORNL
2012-12-01
The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.
Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane
Energy Technology Data Exchange (ETDEWEB)
Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)
2015-12-31
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.
Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.
Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves
Directory of Open Access Journals (Sweden)
Cornel Velescu
2014-01-01
Full Text Available We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc., for the laminar and permanent motion regime.
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
Squirming motion of baby skyrmions in nematic fluids.
Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I
2017-09-22
Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.
Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.
Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun
2018-02-27
The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.
Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated
International Nuclear Information System (INIS)
Abd-El Khalek, M.M.
1998-01-01
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically
Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates
Energy Technology Data Exchange (ETDEWEB)
Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)
1997-12-31
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.
Self-propelled motion in a viscous compressible fluid –unbounded domains
Czech Academy of Sciences Publication Activity Database
Mácha, Václav; Nečasová, Šárka
2016-01-01
Roč. 26, č. 4 (2016), s. 627-643 ISSN 0218-2025 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : self-propelled motion * compressible fluid * deformable structure Subject RIV: BA - General Mathematics Impact factor: 2.860, year: 2016 http://www.worldscientific.com/doi/10.1142/S0218202516500123
Benveniste, Helene; Nedergaard, Maikan; Lee, Hedok; Gao, Yi; Tannenbaum, Allen; Ratner, Vadim
2016-01-01
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs [1,2]. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly throu...
Estimation of the workload correlation in a Markov fluid queue
Kaynar, B.; Mandjes, M.R.H.
2013-01-01
This paper considers a Markov fluid queue, focusing on the correlation function of the stationary workload process. A simulation-based computation technique is proposed, which relies on a coupling idea. Then an upper bound on the variance of the resulting estimator is given, which reveals how the
Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-09-09
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Directory of Open Access Journals (Sweden)
Qingquan Li
2014-09-01
Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Gao, Yan; Liu, Yuyou
2017-06-01
Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.
Motion estimation and compensation in dynamic spiral CT reconstruction
International Nuclear Information System (INIS)
Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.
2004-01-01
Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)
Motion estimation for video coding efficient algorithms and architectures
Chakrabarti, Indrajit; Chatterjee, Sumit Kumar
2015-01-01
The need of video compression in the modern age of visual communication cannot be over-emphasized. This monograph will provide useful information to the postgraduate students and researchers who wish to work in the domain of VLSI design for video processing applications. In this book, one can find an in-depth discussion of several motion estimation algorithms and their VLSI implementation as conceived and developed by the authors. It records an account of research done involving fast three step search, successive elimination, one-bit transformation and its effective combination with diamond search and dynamic pixel truncation techniques. Two appendices provide a number of instances of proof of concept through Matlab and Verilog program segments. In this aspect, the book can be considered as first of its kind. The architectures have been developed with an eye to their applicability in everyday low-power handheld appliances including video camcorders and smartphones.
Improved Motion Estimation Using Early Zero-Block Detection
Directory of Open Access Journals (Sweden)
Y. Lin
2008-07-01
Full Text Available We incorporate the early zero-block detection technique into the UMHexagonS algorithm, which has already been adopted in H.264/AVC JM reference software, to speed up the motion estimation process. A nearly sufficient condition is derived for early zero-block detection. Although the conventional early zero-block detection method can achieve significant improvement in computation reduction, the PSNR loss, to whatever extent, is not negligible especially for high quantization parameter (QP or low bit-rate coding. This paper modifies the UMHexagonS algorithm with the early zero-block detection technique to improve its coding performance. The experimental results reveal that the improved UMHexagonS algorithm greatly reduces computation while maintaining very high coding efficiency.
Ground motions estimates for a cascadia earthquake from liquefaction evidence
Dickenson, S.E.; Obermeier, S.F.
1998-01-01
Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.
On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid
Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.
2010-02-01
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.
Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid
International Nuclear Information System (INIS)
Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan
2012-01-01
The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.
Estimating nonrigid motion from inconsistent intensity with robust shape features
International Nuclear Information System (INIS)
Liu, Wenyang; Ruan, Dan
2013-01-01
Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng
2012-05-11
Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng; Qian, Tiezheng
2012-01-01
Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the
Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid
CSIR Research Space (South Africa)
Smit GJF
2010-11-01
Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...
CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design
DEFF Research Database (Denmark)
Conrad, Finn; Andersen, Torben O.; Hansen, Michael Rygaard
2006-01-01
of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from......The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...... to Conceive, Design, Implement and Operate related to en product design by them self in competition with others. The idea is based on the Danish implementation of a CDIO-Concept. A curriculum at Aalborg University, and Technical University of Denmark, offers courses for Motion Control, Fluid Power within...
Automated finder for the critical condition on the linear stability of fluid motions
International Nuclear Information System (INIS)
Fujimura, Kaoru
1990-03-01
An automated finder routine for the critical condition on the linear stability of fluid motions is proposed. The Newton-Raphson method was utilized for an iteration to solve nonlinear eigenvalue problems appeared in the analysis. The routine was applied to linear stability problem of a free convection between vertical parallel plates with different non-uniform temperatures as well as a plane Poiseuille flow. An efficiency of the finder routine is demonstrated for several parameter sets, numerically. (author)
International Nuclear Information System (INIS)
Aprile, I.; Principi, M.; Ottaviano, P.; Scapeccia, M.
2003-01-01
We assessed possible advantages of the use of fluid-attenuated inversion-recovery (FLAIR) sequences with magnetisation-transfer contrast (MTC) over conventional FLAIR images. We carried out cranial MRI at 1 tesla on 50 patients with both sequences. In nine patients with multiple sclerosis (MS) we performed a quantitative comparison of the two sequences, looking at the contrast-to-noise ratio between lesions and normal white matter and counting the number of lesions shown using each method. A qualitative comparison on all patients consisted of the analysis of the appearance of the normal parenchyma, of any lesions, and of artefacts, with particular reference to cerebrospinal fluid (CSF) motion artefacts. The quantitative analysis showed no meaningful difference between the two sequences. The cerebral parenchyma and lesions appeared substantially the same with both techniques. With FLAIR MTC there was a clear, and consistent reduction in CSF motion artefacts. FLAIR MTC sequences can usefully be used in place of the conventional sequence at 1 tesla. (orig.)
Directory of Open Access Journals (Sweden)
Sheng Bi
2016-03-01
Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.
Analysis of cantilever pipes in transverse fluid flow with motion limiting stopper at the free end
International Nuclear Information System (INIS)
Jiyavan, R.
1983-01-01
Flow-induced vibration in heat exchanger tubes can result in impact with the baffle plates and subsequent tube failure through fatigue, fracture and fretting wear. As a step towards the correlation between the random flow excitations and the rate of wear, this paper presents a general theory for predicting the tube motion and the tube baffle impact forces through a case of cantilever pipe with motion limiting stopper at the free end and simultaneously subjected to transverse fluid flow. The mathematical model has been developed using the theory of fluid-structure interactions with model superposition technique. The pipe displacement induced by lift forces is evaluated by numerical integration. When displacement increases to greater than the pipe-stopper clearance, the pipe impacts on stopper. Assuming semielastic impact, the equation of pipe motion during impact is developed using extended Hertz's theory to include the vibration of one of the colliding bodies. The stopper is assumed to be at rest before and after the impact. The constraint imposed on pipe motion, at the free end due to impact of the pipe on stopper, is considered as one of the boundary conditions and is used to evaluate the pipe natural frequencies. The nonlinear equations are solved numerically. The response of the pipe due to wake induced lift forces superposed by the impact response is evaluated. (orig./GL)
Xu, Xinpeng; Qian, Tiezheng
2012-01-01
Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.
Xu, Xinpeng
2012-06-26
Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.
International Nuclear Information System (INIS)
Liu Moubin; Meakin, Paul; Huang Hai
2007-01-01
Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction
Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films
International Nuclear Information System (INIS)
Liebe, R.; Zehlein, H.
1977-01-01
The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analysis of several clustered fuel elements have to account for such flow induced forces. Several idealized models have been proposed to study some aspects of the complex problem. As part of the core mechanics activities at GfK Karlsruhe this paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponing computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response. (Auth.)
Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin
2017-11-01
Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.
Improved frame-based estimation of head motion in PET brain imaging
International Nuclear Information System (INIS)
Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.
2016-01-01
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is
Improved frame-based estimation of head motion in PET brain imaging
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)
2016-05-15
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is
Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.
2010-03-01
Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.
Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids
Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer
2017-11-01
Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.
Brouard , Olivier; Delannay , Fabrice; Ricordel , Vincent; Barba , Dominique
2007-01-01
4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...
Facial motion parameter estimation and error criteria in model-based image coding
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
Hardware architecture design of a fast global motion estimation method
Liang, Chaobing; Sang, Hongshi; Shen, Xubang
2015-12-01
VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.
The rising motion of spheres in structured fluids with yield stress
Mirzaagha, S.; Pasquino, R.; Iuliano, E.; D'Avino, G.; Zonfrilli, F.; Guida, V.; Grizzuti, N.
2017-09-01
The rising of spherical bodies in structured fluids with yield stress is studied. The system is a suspension of hydrogenated castor oil colloidal fibers in a surfactant micellar solution. The fiber network confers to the fluid a viscoelastic behavior, with a well-defined yield stress, which increases with increasing fiber concentration. Various fluids with different fiber contents are prepared and rheologically characterized. A home-made time-lapse photography setup is used to monitor the time evolution position of the spherical particles, and the rising motion of both hollow spheres and air bubbles, in the diameter range 65-550 μm, is measured. The experiments last as long as several weeks, corresponding to significantly low measured velocities. Finite element simulations are performed to support the experimental data, assuming both interfacial slip and no slip conditions. The fluid dynamic phenomenon is studied and discussed in terms of dimensionless numbers, such as yield ratio, Bingham number, and Stokes drag coefficient. The results are novel for the system (suspending medium and hollow spheres) and for the covered Bingham number range, which is extended over three orders of magnitude in comparison with already available literature results. Our values provide quantitative data of the mechanical properties (i.e., yield stress value) at very low shear rates, in a prohibitive range for a traditional rheometer, and agree with the macroscopic rheological response. Moreover, the important role of the power law index n of the Herschel-Bulkley model, used to fit the data, has been highlighted. Our results, based on a Bingham-like fluid, are compared with the experimental data already available with Carbopol, treated as a Herschel Bulkley fluid with n = 0.5. The results could have important implications in the fabric and personal care detergency, a technological area where many fluids have composition and show rheological properties similar to those considered in the
Tracking using motion estimation with physically motivated inter-region constraints
Arif, Omar; Sundaramoorthi, Ganesh; Hong, Byungwoo; Yezzi, Anthony J.
2014-01-01
We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme
Optimization of hierarchical 3DRS motion estimators for picture rate conversion
Heinrich, A.; Bartels, C.L.L.; Vleuten, van der, R.J.; Cordes, C.N.; Haan, de, G.
2010-01-01
There is a continuous pressure to lower the implementation complexity and improve the quality of motion-compensated picture rate conversion methods. Since the concept of hierarchy can be advantageously applied to many motion estimation methods, we have extended and improved the current state-of-the-art motion estimation method in this field, 3-Dimensional Recursive Search (3DRS), with this concept. We have explored the extensive parameter space and present an analysis of the importance and in...
Predictive 3D search algorithm for multi-frame motion estimation
Lim, Hong Yin; Kassim, A.A.; With, de P.H.N.
2008-01-01
Multi-frame motion estimation introduced in recent video standards such as H.264/AVC, helps to improve the rate-distortion performance and hence the video quality. This, however, comes at the expense of having a much higher computational complexity. In multi-frame motion estimation, there exists
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2013-01-01
Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331
Two-dimensional convection and interchange motions in fluids and magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Bian, N.H.; Naulin, V.
2006-01-01
fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states...... behaviour of the fluctuation level which is associated with relaxation oscillations in the kinetic energy of the azimuthally mean flows. This leads to a state of large-scale intermittency manifested by exponential tails in the single-point probability distribution function of the dependent variables...
X-ray doppler velocimetry for diagnosis of fluid motion in ICF implosions
Koch, J. A.; King, J. A.; Huffman, E.; Freeman, R. R.; Dutra, E. C.; Field, J. E.; Kilkenny, J. D.; Hall, G. N.; Harding, E.; Rochau, G. A.; Porter, J. L.; Covington, A. M.; Beg, F. N.
2017-08-01
We are developing a novel diagnostic for measurement of bulk fluid motion in materials, that is particularly applicable to very hot, x-ray emitting plasmas in the High Energy Density Physics (HEDP) regime. The X-ray Doppler Velocimetry (XDV) technique relies on monochromatic imaging in multiple x-ray energy bands near the center of an x-ray emission line in a plasma, and utilizes bent imaging crystals. Higher energy bands are preferentially sensitive to plasma moving towards the viewer, while lower energy bands are preferentially sensitive to plasma moving away from the viewer. Combining multiple images in different energy bands allows for a reconstruction of the fluid velocity field integrated along the line of sight. We review the technique, and we discuss progress towards benchmarking the technique with proof-of-principle HEDP experiments.
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems
Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.
2018-01-01
The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.
On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)
2016-01-15
In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)
Test suite for image-based motion estimation of the brain and tongue
Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.
2017-03-01
Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that
Re-estimation of Motion and Reconstruction for Distributed Video Coding
DEFF Research Database (Denmark)
Luong, Huynh Van; Raket, Lars Lau; Forchhammer, Søren
2014-01-01
Transform domain Wyner-Ziv (TDWZ) video coding is an efficient approach to distributed video coding (DVC), which provides low complexity encoding by exploiting the source statistics at the decoder side. The DVC coding efficiency depends mainly on side information and noise modeling. This paper...... proposes a motion re-estimation technique based on optical flow to improve side information and noise residual frames by taking partially decoded information into account. To improve noise modeling, a noise residual motion re-estimation technique is proposed. Residual motion compensation with motion...
Brownian motion in complex fluids: venerable field and frontier of modern physics
International Nuclear Information System (INIS)
Vizcarra-Rendon, A.; Medina-Noyola, M.; Ruiz-Estrada, H.; Arauz-Lara, J.L.
1989-01-01
This paper reviews the current status of our understanding of tracer-diffusion phenomena in colloidal suspensions. This is the most direct observation of the Brownian motion executed by labelled Brownian particles interacting with the rest of colloidal particles in a suspension. The fundamental description of this phenomenon constitutes today one of the most relevant problems in the process of understanding the dynamic properties of this important class of complex fluids, from the experimental and theoretical perspective of physical research. This paper describes the recent developments in the extension of the classical theory of Brownian motion and its application to the description of the effects of direct and hydrodynamic interactions among colloidal particles. As a result, a coherent pictured has emerged in which the agreement between theory and experiment from nature fields of physics. The moral of the paper is that the use of well established concepts as statistical physics, assisted by modern experimental techniques, are contributing to transform complex fluids into a more amialbe class of materials from the point of view of the physicist. (Author)
Estimation of Ship Motions Using Closed-Form Expressions
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Mansour, A.E.; Olsen, Anders Smærup
2004-01-01
A semi-analytical approach is used to derive frequency response functions for the wave-induced motions for monohull ships. The results are given as closed-form expressions and the required input information for the procedure is restricted to the main dimensions: Length, breadth, draught, block...
International Nuclear Information System (INIS)
Ito, Tomohiro; Fujiwara, Yoshihiro; Shintani, Atsuhiko; Nakagaw, Chihiro; Furuta, Kazuhisa
2012-01-01
The cask-canister system is a coaxial circular cylindrical structure in which several spent fuels are installed. This system is a free-standing structure thus, it is very important to reduce sliding motion for very large seismic excitations. In this study, we propose a mitigation method for sliding motion. Water is installed in an annular region between a cask and a canister. The equations of motion are derived taking fluid-structure interaction into consideration for nonlinear sliding motion analyses. Based on these equations, mitigation effects of sliding motions are studied analytically. Furthermore, a fundamental test model of a cask-canister system is fabricated and shaking table tests are conducted. From the analytical and test results, sliding motion mitigation effects are investigated. In this paper, the sliding motion of the cask-canister system subjected to a horizontal base excitation is studied and the effectiveness of water filled in the annular region between the cask and the canister is evaluated. This water brings inertia force coupling effect which is proportional to acceleration of the cask and the canister. Therefore, due to this fluid coupling, the cask and canister system couples through 3 types of forces, i.e., spring force, damping force and inertia force of the liquid. Equations of motion for the sliding motion are derived based on the fluid-structure coupling effects formulated by Fritz. Based on these equations of motion, nonlinear sliding motion of the cask-canister system is analyzed and the sliding suppression effects are investigated numerically. Furthermore, a fundamental test model of a cask-canister system is fabricated and the shaking table tests are conducted. From these analytical and test results, the sliding motion suppression effects due to fluid-structure coupling effects are investigated. As a result, it is confirmed that the inertia coupling effects due to water filled in the annular region are relatively large, and the
Equation of motion for estimation fidelity of monitored oscillating qubits
CSIR Research Space (South Africa)
Bassa, H
2017-08-01
Full Text Available We study the convergence properties of state estimates of an oscillating qubit being monitored by a sequence of discrete, unsharp measurements. Our method derives a differential equation determining the evolution of the estimation fidelity from a...
Two-fluid equations for a nuclear system with arbitrary motions
Energy Technology Data Exchange (ETDEWEB)
Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.
The motions and wave fields produced by an ellipse moving through a stratified fluid
Hurlen, Erik Curtis
Solid-fluid interactions are ubiquitous in nature, from leaves falling from trees to fish swimming in the ocean. This dissertation examines a certain class of these interactions, namely asymmetric objects moving through stratified fluids. In the first part, the equations of motion are derived and subsequently solved for a displaced neutrally buoyant ellipse of varying aspect ratio. This is accomplished by using a spectral numerical algorithm, although in certain specific cases the equations can also be solved analytically using Laplace transform techniques. Experiments are conducted to which these analytical and numerical results are compared. General quantitative agreement is observed between the two sets of data. The discrepancies which are observed are consistent with both previous research and expectation. In the second part, the focus is shifted from the solid to the fluid, as the primary concern is now the wave field produced by these moving bodies. The spectral method developed in the first part is easily adapted to this second situation, in which the drag forces on the solid are also easily extracted. The results from this section are compared to previous results, and match very well. The results are then expanded to cases which have not been previously studied.
Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences
Directory of Open Access Journals (Sweden)
Guo Bao-long
2004-09-01
Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.
Estimation of organ motion for gated PET imaging in small animal using artificial tumor
Energy Technology Data Exchange (ETDEWEB)
Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)
2011-10-15
The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor
Fetal motion estimation from noninvasive cardiac signal recordings.
Biglari, Hadis; Sameni, Reza
2016-11-01
Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.
Tissue motion in blood velocity estimation and its simulation
DEFF Research Database (Denmark)
Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt
1998-01-01
to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...... tissue motion is included. Tissue motion from breathing, heart beat, and vessel pulsation were determined based on in-vivo RF-data obtained from 10 healthy volunteers. The measurements were taken at the carotid artery at one condition and in the liver at three conditions. Each measurement was repeated 10....... The motion due to the heart, when the volunteer was asked to hold his breath, gave a peak velocity of 4.2±1.7 mm/s. The movement of the carotid artery wall due to changing blood pressure had a peak velocity of 8.9±3.7 mm/s over the cardiac cycle. The variations are due to differences in heart rhythm...
Simultaneous estimation of human and exoskeleton motion: A simplified protocol.
Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L
2017-07-01
Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.
Ship motion-based wave estimation using a spectral residual-calculation
DEFF Research Database (Denmark)
Nielsen, Ulrik D.; H. Brodtkorb, Astrid
2018-01-01
This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...
Optimization of hierarchical 3DRS motion estimators for picture rate conversion
Heinrich, A.; Bartels, C.L.L.; Vleuten, van der R.J.; Cordes, C.N.; Haan, de G.
2010-01-01
There is a continuous pressure to lower the implementation complexity and improve the quality of motion-compensated picture rate conversion methods. Since the concept of hierarchy can be advantageously applied to many motion estimation methods, we have extended and improved the current
Analysis of Seed Sorting Process by Estimation of Seed Motion Trajectories
DEFF Research Database (Denmark)
Buus, Ole Thomsen; Jørgensen, Johannes Ravn; Carstensen, Jens Michael
2011-01-01
cylinder in action, sorting a batch of barley with both whole and broken kernels. The motion trajectories and angle of escape for each seed in each frame were estimated. Motion trajectories and frequency distributions for the angle of escape are shown for different velocities and pocket sizes. A possible...
Effectiveness of external respiratory surrogates for in vivo liver motion estimation
International Nuclear Information System (INIS)
Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw
2012-01-01
Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This
Motion estimation of tagged cardiac magnetic resonance images using variational techniques
Czech Academy of Sciences Publication Activity Database
Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.
2010-01-01
Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf
A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data
Anne E. C. M. Saris; Stein Fekkes; Maartje M. Nillesen; Hendrik H. G. Hansen; Chris L. de Korte
2018-01-01
This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle tracking (ST) algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow...
Energy Technology Data Exchange (ETDEWEB)
Tuttle, R.F.; Loyalka, S.K.
1985-06-01
The collisional dynamics of nonspherical aerosols is modeled by the introduction of a shape factor, US . Mechanistic calculation of US requires knowledge of the flow fields around the aerosols. Since actual aerosols can be complicated in shape and since the computation of flow fields can be quite difficult, insights into the nature of US are gained by using the superposition technique and studying aerosols that have tractable flow fields. The motion of an oblate spheroid in a viscous fluid is considered. The Navier-Stokes equations and associated boundary conditions are represented in oblate spheroidal coordinates. A combination of finite differences and spline-interpolation techniques is used to transform these equations to a form suitable for numerical computations. Converged results for the flow fields are obtained for a 0 to 5 range of Reynolds numbers. In the limit of zero Reynolds number, the results are found to be in agreement with the analytical solutions of Oberbeck.
International Nuclear Information System (INIS)
Fujimura, Kaoru
1995-01-01
This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author)
Energy Technology Data Exchange (ETDEWEB)
Fujimura, Kaoru [ed.; Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1995-01-01
This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author).
Variable disparity-motion estimation based fast three-view video coding
Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo
2009-02-01
In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.
Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal
Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan
2017-11-01
With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.
Control of self-motion in dynamic fluids: fish do it differently from bees.
Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily
2014-05-01
To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach
Hamdan, Mohammad O.; Abu-Nabah, Bassam A.
2018-04-01
In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Directory of Open Access Journals (Sweden)
Chih-Feng Chao
2015-01-01
Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
MuSeSe - A multisensor armchair for unobtrusive vital sign estimation and motion artifact analysis.
Antink, Christoph Hoog; Leonhardt, Steffen; Schulz, Florian; Walter, Marian
2017-07-01
Unobtrusive vital sign estimation with sensors integrated into objects of everyday living can substantially advance the field of remote monitoring. At the same time, motion artifacts cause severe problems and have to be dealt with. Here, the fusion of multimodal sensor data is a promising approach. In this paper, we present an armchair equipped with capacitively coupled electrocardiogram, two types of ballistocardiographic sensors, photoplethysmographic and two high-frequency impedance sensors. In addition, a video-based sensor for motion analysis is integrated. Using a defined motion protocol, the feasibility of the system is demonstrated in a self-experimentation. Moreover, the influence of different movements on different modalities is analyzed. Finally, robust beat-to-beat interval estimation demonstrates the benefits of multimodal sensor fusion for vital sign estimation in the presence of motion artifacts.
Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana
2018-02-01
This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
International Nuclear Information System (INIS)
Wang, Jing; Gu, Xuejun
2013-01-01
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion
DEFF Research Database (Denmark)
Kiørboe, Thomas; Thygesen, Uffe Høgsbro
2001-01-01
Marine snow aggregates are colonized by copepods, and encounter rates inferred from observed abundances of colonizers are high. We examined the potential for hydromechanical and chemical remote detection. The fluid disturbance generated by a sinking aggregate was described by solving the Navier......-Stokes' equation for a sinking sphere at Reynolds numbers typical of marine snow (up to 20). Fluid deformation rate, the component of the flow that can be perceived by copepods, attenuates rapidly, and detection distances estimated from knowledge of the hydromechanical sensitivity in copepods are insufficient...... to account for the observed abundances of colonizers. We next solved the advection-diffusion equation to describe the chemical trail left by a leaking and sinking aggregate. The plume is long and slender and may be detected by a horizontally cruising copepod. From the model of the plume and literature- based...
Preliminary study on helical CT algorithms for patient motion estimation and compensation
International Nuclear Information System (INIS)
Wang, G.; Vannier, M.W.
1995-01-01
Helical computed tomography (helical/spiral CT) has replaced conventional CT in many clinical applications. In current helical CT, a patient is assumed to be rigid and motionless during scanning and planar projection sets are produced from raw data via longitudinal interpolation. However, rigid patient motion is a problem in some cases (such as in the skull base and temporal bone imaging). Motion artifacts thus generated in reconstructed images can prevent accurate diagnosis. Modeling a uniform translational movement, the authors address how patient motion is ascertained and how it may be compensated. First, mismatch between adjacent fan-beam projections of the same orientation is determined via classical correlation, which is approximately proportional to the patient displacement projected onto an axis orthogonal to the central ray of the involved fan-beam. Then, the patient motion vector (the patient displacement per gantry rotation) is estimated from its projections using a least-square-root method. To suppress motion artifacts, adaptive interpolation algorithms are developed that synthesize full-scan and half-scan planar projection data sets, respectively. In the adaptive scheme, the interpolation is performed along inclined paths dependent upon the patient motion vector. The simulation results show that the patient motion vector can be accurately and reliably estimated using their correlation and least-square-root algorithm, patient motion artifacts can be effectively suppressed via adaptive interpolation, and adaptive half-scan interpolation is advantageous compared with its full-scale counterpart in terms of high contrast image resolution
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System
Argus, Donald F.; Heflin, Michael B.
1995-01-01
We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.
Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W
2018-04-01
The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be
Estimating anatomical wrist joint motion with a robotic exoskeleton.
Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K
2017-07-01
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.
About the stability of the rotational motion of a top with a cavity filled up with a viscous fluid
International Nuclear Information System (INIS)
Parada, R.F.; Collar, A.F.
1995-09-01
The linear stability problem of the rotational motion of a top around a fixed point containing an inner cavity filled up with a viscous fluid is considered. The effect of the viscosity in the stability problem is studied. (author). 15 refs
4D modeling and estimation of respiratory motion for radiation therapy
Lorenz, Cristian
2013-01-01
Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...
Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms
Mayor, S. D.
2016-02-01
Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L
2007-02-09
We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.
Leonhardt, Aljoscha; Ammer, Georg; Meier, Matthias; Serbe, Etienne; Bahl, Armin; Borst, Alexander
2016-05-01
The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, motion is computed in parallel streams for brightness increments (ON) and decrements (OFF). When genetically isolated, ON and OFF pathways proved equally capable of accurately matching walking responses to realistic motion. To our surprise, detailed characterization of their functional tuning properties through in vivo calcium imaging and electrophysiology revealed stark differences in temporal tuning between ON and OFF channels. We trained an in silico motion estimation model on natural scenes and discovered that our optimized detector exhibited differences similar to those of the biological system. Thus, functional ON-OFF asymmetries in fly visual circuitry may reflect ON-OFF asymmetries in natural environments.
Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †
Directory of Open Access Journals (Sweden)
Sang-Woo Seo
2018-04-01
Full Text Available Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.
Directory of Open Access Journals (Sweden)
Hongguang Li
2015-09-01
Full Text Available Global motion estimation (GME is a key technology in unmanned aerial vehicle remote sensing (UAVRS. However, when a UAV’s motion and behavior change significantly or the image information is not rich, traditional image-based methods for GME often perform poorly. Introducing bottom metadata can improve precision in a large-scale motion condition and reduce the dependence on unreliable image information. GME is divided into coarse and residual GME through coordinate transformation and based on the study hypotheses. In coarse GME, an auxiliary image is built to convert image matching from a wide baseline condition to a narrow baseline one. In residual GME, a novel information and contrast feature detection algorithm is proposed for big-block matching to maximize the use of reliable image information and ensure that the contents of interest are well estimated. Additionally, an image motion monitor is designed to select the appropriate processing strategy by monitoring the motion scales of translation, rotation, and zoom. A medium-altitude UAV is employed to collect three types of large-scale motion datasets. Peak signal to noise ratio (PSNR and motion scale are computed. This study’s result is encouraging and applicable to other medium- or high-altitude UAVs with a similar system structure.
Abbasalizadeh, Shamsi; Pharabar, Zahra Neghadan; Abbasalizadeh, Fatmeh; Ghojazadeh, Morteza; Goldust, Mohamad
2013-11-15
The term ofpreterm birth is used to define the premature neonates considering pregnancy age. In less than 34 week pregnancies, corticosteroids are prescribed to promote embryos' lung maturity. The presents study aimed at evaluating effects of betamethasone injection on feeling embryo motion by mother and index and biophysical profile in preterm pregnancies. In a descriptive-analytical study, 40 pregnant women with the pregnancy age of 30-34 weeks were evaluated. Embryo motion and index and biophysical profile of the amniotic fluid were checked before prescription of double dosage of muscular betamethasone (12 mg) at a 24 h time interval. The injection was repeated for 24 and 48 h after the first injection. The resulted outcomes were compared with those results related to before betamethasone injection. In this study, there was statistically meaningful relationship between embryo motions before injection of betamethasone and 12 h after its injection (p = 0.03). Also, there was a significant relationship between embryo motions 24 and 48 h after injection of betamethasone (p = 0.001). In other words, the embryo motions decreased 12 h after injection of betamethasone. They were improved 48 h after betamethasone injection. But, index and biophysical profile results of amniotic fluid were left unchanged. Application of betamethasone leads to evident but transient decrease in embryo motions. Although motion element of index and biophysical profile of amniotic fluid which is one of the tests used in evaluating the embryo health is fixed and normal, it can be concluded that injection of betamethasone may not affect embryo health.
Directory of Open Access Journals (Sweden)
Jingbin Liu
2015-06-01
Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.
Ci, Wenyan; Huang, Yingping
2016-10-17
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
International Nuclear Information System (INIS)
Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina
2012-01-01
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.
Rottmann, Joerg; Keall, Paul; Berbeco, Ross
2013-09-01
To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.
Shi, Cong; Luo, Gang
2018-04-01
This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.
Mode extraction on wind turbine blades via phase-based video motion estimation
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
Directory of Open Access Journals (Sweden)
Ibn-Elhaj E
2009-01-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
Directory of Open Access Journals (Sweden)
E. M. Ismaili Aalaoui
2009-02-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung
2017-07-01
In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.
Dynamic tracking of a nano-particle in fluids under Brownian motions
International Nuclear Information System (INIS)
Wu, X C; Zhang, W J; Sammynaiken, R
2008-01-01
Most previous studies on H 2 S were devoted to its toxic effects. However, recently there have been increasing evidences which show that endogenously generated H 2 S in specific mammalian tissues has certain significant positive physiological effects such as a neuromodulator and vasorelaxant in a membrane receptor-independent manner. In order to know the functions of endogenous H 2 S, low concentration and high accuracy measurement of H 2 S is a must. Furthermore, this measurement is desired to be real-time and non-invasive. It is reported that low concentration and nano quantity of H 2 S can be detected in water solutions and sera using carbon nanotubes with the fluorescence by confocal laser scanning microscopy. However, because of the Brownian motion of the small particle (carbon nanotube), a control system must be developed to track the movement of the particle in fluids. In this paper, we present a study to track a carbon nanotube which absorbs H 2 S in water or serum using a Raman microscope or confocal laser scanning microscope. In particular, we developed a novel control system for this task. Simulation has shown that our system works very well.
Motion of two spheres translating and rotating through a viscous fluid with slip surfaces
International Nuclear Information System (INIS)
Saad, E I
2012-01-01
The axisymmetrical motion of two spherical particles translating along and rotating about a common line that joins their centers in viscous fluid with slip flow boundary conditions on their surfaces has been studied numerically. The particles may differ in radius and in translational and angular velocities. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic functions in the two spherical coordinate systems based on the centers of the particles. The boundary conditions at their surfaces are satisfied by the collocation technique. Numerical results for the normalized drag force and couple acting on each sphere are obtained for various values of the slip coefficients, size ratio, separation parameter, and velocity ratio of the particles. The normalized force and couple on each particle reach the single particle limit as the distance between the centers grows large enough and each particle may then be translated and rotated independently of each other. The accuracy of the numerical technique has been tested against the known analytical solution for two spheres with no-slip surfaces. (paper)
Hard Ware Implementation of Diamond Search Algorithm for Motion Estimation and Object Tracking
International Nuclear Information System (INIS)
Hashimaa, S.M.; Mahmoud, I.I.; Elazm, A.A.
2009-01-01
Object tracking is very important task in computer vision. Fast search algorithms emerged as important search technique to achieve real time tracking results. To enhance the performance of these algorithms, we advocate the hardware implementation of such algorithms. Diamond search block matching motion estimation has been proposed recently to reduce the complexity of motion estimation. In this paper we selected the diamond search algorithm (DS) for implementation using FPGA. This is due to its fundamental role in all fast search patterns. The proposed architecture is simulated and synthesized using Xilinix and modelsim soft wares. The results agree with the algorithm implementation in Matlab environment.
International Nuclear Information System (INIS)
Rocchi-Tavares, Miriam
1992-01-01
The objective of this research thesis is to model the sustentation (or aerodynamic levitation) of a drop by a fluid flowing through a porous plate. More precisely, the author developed a general calculation tool to solve the Stokes problem by using the boundary element method. The author reports the calculation of stresses at the surface of a solid body moving in an infinite medium, in order to validate the calculation tool before its extension to more complex problems. Then, the model is developed to describe the deformation of a fluid mass moving in another fluid. The surrounding environment is either infinite or limited by a plane wall which can be impervious or crossed by an ambient fluid. Then, the author addresses the study of the evolution of the surface of a drop moving in an infinite medium, analyses the behaviour of a fluid mass at the vicinity of a plane, infinite and impervious wall. The last part addresses the sustentation of a deformable fluid body above a porous plane wall crossed by another fluid [fr
Shared sensory estimates for human motion perception and pursuit eye movements.
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C
2015-06-03
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.
SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION
Directory of Open Access Journals (Sweden)
Nehal N. Shah
2015-02-01
Full Text Available Motion estimation is a very important but computationally complex task in video coding. Process of determining motion vectors based on the temporal correlation of consecutive frame is used for video compression. In order to reduce the computational complexity of motion estimation and maintain the quality of encoding during motion compensation, different fast search techniques are available. These block based motion estimation algorithms use the sum of absolute difference (SAD between corresponding macroblock in current frame and all the candidate macroblocks in the reference frame to identify best match. Existing implementations can perform SAD between two blocks using sequential or pipeline approach but performing multi operand SAD in single clock cycle with optimized recourses is state of art. In this paper various parallel architectures for computation of the fixed block size SAD is evaluated and fast parallel SAD architecture is proposed with optimized resources. Further SAD processor is described with 9 processing elements which can be configured for any existing fast search block matching algorithm. Proposed SAD processor consumes 7% fewer adders compared to existing implementation for one processing elements. Using nine PE it can process 84 HD frames per second in worse case which is good outcome for real time implementation. In average case architecture process 325 HD frames per second.
Mass estimates from stellar proper motions: the mass of ω Centauri
D'Souza, Richard; Rix, Hans-Walter
2013-03-01
We lay out and apply methods to use proper motions of individual kinematic tracers for estimating the dynamical mass of star clusters. We first describe a simple projected mass estimator and then develop an approach that evaluates directly the likelihood of the discrete kinematic data given the model predictions. Those predictions may come from any dynamical modelling approach, and we implement an analytic King model, a spherical isotropic Jeans equation model and an axisymmetric, anisotropic Jeans equation model. This maximum likelihood modelling (MLM) provides a framework for a model-data comparison, and a resulting mass estimate, which accounts explicitly for the discrete nature of the data for individual stars, the varying error bars for proper motions of differing signal-to-noise ratio, and for data incompleteness. Both of these two methods are evaluated for their practicality and are shown to provide an unbiased and robust estimate of the cluster mass. We apply these approaches to the enigmatic globular cluster ω Centauri, combining the proper motion from van Leeuwen et al. with improved photometric cluster membership probabilities. We show that all mass estimates based on spherical isotropic models yield (4.55 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, where our modelling allows us to show how the statistical precision of this estimate improves as more proper motion data of lower signal-to-noise ratio are included. MLM predictions, based on an anisotropic axisymmetric Jeans model, indicate for ω Cen that the inclusion of anisotropies is not important for the mass estimates, but that accounting for the flattening is: flattened models imply (4.05 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, 10 per cent lower than when restricting the analysis to a spherical model. The best current distance estimates imply an additional uncertainty in the mass estimate of 12 per cent.
SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging
Energy Technology Data Exchange (ETDEWEB)
Yan, H [Capital Medical University, Beijing, Beijing (China); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States); Nath, R; Liu, W [Yale University School of Medicine, New Haven, CT (United States)
2016-06-15
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the
SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging
International Nuclear Information System (INIS)
Yan, H; Chen, Z; Nath, R; Liu, W
2016-01-01
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
International Nuclear Information System (INIS)
Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)
Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman
2018-05-01
Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
A brute-force spectral approach for wave estimation using measured vessel motions
DEFF Research Database (Denmark)
Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.
2018-01-01
, and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery
International Nuclear Information System (INIS)
Rottmann, Joerg; Berbeco, Ross; Keall, Paul
2013-01-01
Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery
Energy Technology Data Exchange (ETDEWEB)
Rottmann, Joerg; Berbeco, Ross [Brigham and Women' s Hospital, Dana Farber-Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia)
2013-09-15
Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.
DEFF Research Database (Denmark)
Berning, J; Rokkedal Nielsen, J; Launbjerg, J
1992-01-01
Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F
2016-09-16
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.
Estimation of Joint types and Joint Limits from Motion capture data
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Erleben, Kenny
2009-01-01
It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method will make the joint modeling more efficient ...
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles
Directory of Open Access Journals (Sweden)
Jamal Atman
2016-09-01
Full Text Available Micro Air Vehicles (MAVs equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS. In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.
Frequency-Domain Joint Motion and Disparity Estimation Using Steerable Filters
Directory of Open Access Journals (Sweden)
Dimitrios Alexiadis
2018-02-01
Full Text Available In this paper, the problem of joint disparity and motion estimation from stereo image sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based approach is proposed. Our rationale behind coupling the two problems is that according to experimental evidence in the literature, the biological visual mechanisms for depth and motion are not independent of each other. Furthermore, our motivation to study the problem in the frequency domain and search for a filter-based solution is based on the fact that, according to early experimental studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based considerations, for both the perception of depth and the perception of motion. The proposed framework constitutes the first attempt to solve the joint estimation problem through a filter-based solution, based on frequency-domain considerations. Thus, the presented ideas provide a new direction of work and could be the basis for further developments. From an algorithmic point of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate the accuracy of the proposed approach.
Joint disparity and motion estimation using optical flow for multiview Distributed Video Coding
DEFF Research Database (Denmark)
Salmistraro, Matteo; Raket, Lars Lau; Brites, Catarina
2014-01-01
Distributed Video Coding (DVC) is a video coding paradigm where the source statistics are exploited at the decoder based on the availability of Side Information (SI). In a monoview video codec, the SI is generated by exploiting the temporal redundancy of the video, through motion estimation and c...
Groeneboom, P.; Jongbloed, G.; Wellner, J.A.
2001-01-01
A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely
A PSF-shape-based beamforming strategy for robust 2D motion estimation in ultrafast data
Saris, Anne E.C.M.; Fekkes, Stein; Nillesen, Maartje; Hansen, Hendrik H.G.; de Korte, Chris L.
2018-01-01
This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system's point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle
On the distribution of estimators of diffusion constants for Brownian motion
International Nuclear Information System (INIS)
Boyer, Denis; Dean, David S
2011-01-01
We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.
Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki
2018-04-10
A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.
Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN
Directory of Open Access Journals (Sweden)
Jeon Seong Kang
2018-04-01
Full Text Available Recently, real-time human age estimation based on facial images has been applied in various areas. Underneath this phenomenon lies an awareness that age estimation plays an important role in applying big data to target marketing for age groups, product demand surveys, consumer trend analysis, etc. However, in a real-world environment, various optical and motion blurring effects can occur. Such effects usually cause a problem in fully capturing facial features such as wrinkles, which are essential to age estimation, thereby degrading accuracy. Most of the previous studies on age estimation were conducted for input images almost free from blurring effect. To overcome this limitation, we propose the use of a deep ResNet-152 convolutional neural network for age estimation, which is robust to various optical and motion blurring effects of visible light camera sensors. We performed experiments with various optical and motion blurred images created from the park aging mind laboratory (PAL and craniofacial longitudinal morphological face database (MORPH databases, which are publicly available. According to the results, the proposed method exhibited better age estimation performance than the previous methods.
Energy Technology Data Exchange (ETDEWEB)
O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)
2016-01-15
Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking
Simultaneous two-view epipolar geometry estimation and motion segmentation by 4D tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung; Medioni, Gérard
2004-09-01
We address the problem of simultaneous two-view epipolar geometry estimation and motion segmentation from nonstatic scenes. Given a set of noisy image pairs containing matches of n objects, we propose an unconventional, efficient, and robust method, 4D tensor voting, for estimating the unknown n epipolar geometries, and segmenting the static and motion matching pairs into n independent motions. By considering the 4D isotropic and orthogonal joint image space, only two tensor voting passes are needed, and a very high noise to signal ratio (up to five) can be tolerated. Epipolar geometries corresponding to multiple, rigid motions are extracted in succession. Only two uncalibrated frames are needed, and no simplifying assumption (such as affine camera model or homographic model between images) other than the pin-hole camera model is made. Our novel approach consists of propagating a local geometric smoothness constraint in the 4D joint image space, followed by global consistency enforcement for extracting the fundamental matrices corresponding to independent motions. We have performed extensive experiments to compare our method with some representative algorithms to show that better performance on nonstatic scenes are achieved. Results on challenging data sets are presented.
Impact of ground motion characterization on conservatism and variability in seismic risk estimates
International Nuclear Information System (INIS)
Sewell, R.T.; Toro, G.R.; McGuire, R.K.
1996-07-01
This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates
Impact of ground motion characterization on conservatism and variability in seismic risk estimates
Energy Technology Data Exchange (ETDEWEB)
Sewell, R.T.; Toro, G.R.; McGuire, R.K.
1996-07-01
This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.
Strong Earthquake Motion Estimates for Three Sites on the U.C. Riverside Campus; TOPICAL
International Nuclear Information System (INIS)
Archuleta, R.; Elgamal, A.; Heuze, F.; Lai, T.; Lavalle, D.; Lawrence, B.; Liu, P.C.; Matesic, L.; Park, S.; Riemar, M.; Steidl, J.; Vucetic, M.; Wagoner, J.; Yang, Z.
2000-01-01
The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1-initial source and site characterization, drilling, geophysical logging
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera
Directory of Open Access Journals (Sweden)
Wenyan Ci
2016-10-01
Full Text Available Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding
Directory of Open Access Journals (Sweden)
Shailesh Kamble
2016-12-01
Full Text Available Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression.
Accurate estimation of motion blur parameters in noisy remote sensing image
Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong
2015-05-01
The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.
Kosek, W.; Popinski, W.; Niedzielski, T.
2011-10-01
It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.
Quaternionic Spatiotemporal Filtering for Dense Motion Field Estimation in Ultrasound Imaging
Directory of Open Access Journals (Sweden)
Marion Adrien
2010-01-01
Full Text Available Abstract Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The method was applied to a large set of experimental and simulated flow sequences with low motion ( 1 mm/s within small vessels ( 1 mm. Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.
Directory of Open Access Journals (Sweden)
V. Jayaraj
2010-08-01
Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.
On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations
Directory of Open Access Journals (Sweden)
Yuliya Mishura
2014-06-01
Full Text Available We study a problem of an unknown drift parameter estimation in a stochastic differen- tial equation driven by fractional Brownian motion. We represent the likelihood ratio as a function of the observable process. The form of this representation is in general rather complicated. However, in the simplest case it can be simplified and we can discretize it to establish the a. s. convergence of the discretized version of maximum likelihood estimator to the true value of parameter. We also investigate a non-standard estimator of the drift parameter showing further its strong consistency.
Casado-Pascual, Jesús
2018-03-01
The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.
Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris
2017-06-01
Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc
Adaptive order search and tangent-weighted trade-off for motion estimation in H.264
Directory of Open Access Journals (Sweden)
Srinivas Bachu
2018-04-01
Full Text Available Motion estimation and compensation play a major role in video compression to reduce the temporal redundancies of the input videos. A variety of block search patterns have been developed for matching the blocks with reduced computational complexity, without affecting the visual quality. In this paper, block motion estimation is achieved through integrating the square as well as the hexagonal search patterns with adaptive order. The proposed algorithm is called, AOSH (Adaptive Order Square Hexagonal Search algorithm, and it finds the best matching block with a reduced number of search points. The searching function is formulated as a trade-off criterion here. Hence, the tangent-weighted function is newly developed to evaluate the matching point. The proposed AOSH search algorithm and the tangent-weighted trade-off criterion are effectively applied to the block estimation process to enhance the visual quality and the compression performance. The proposed method is validated using three videos namely, football, garden and tennis. The quantitative performance of the proposed method and the existing methods is analysed using the Structural SImilarity Index (SSIM and the Peak Signal to Noise Ratio (PSNR. The results prove that the proposed method offers good visual quality than the existing methods. Keywords: Block motion estimation, Square search, Hexagon search, H.264, Video coding
Motion estimation for cardiac functional analysis using two x-ray computed tomography scans.
Fung, George S K; Ciuffo, Luisa; Ashikaga, Hiroshi; Taguchi, Katsuyuki
2017-09-01
This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77
DEFF Research Database (Denmark)
Wang, Weizhi; Wu, Minghao; Palm, Johannes
2018-01-01
for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain......The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete...... dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absorber. The phase control causes the motion response to be highly nonlinear even...
International Nuclear Information System (INIS)
Escrig, H.; Batlles, F.J.; Alonso, J.; Baena, F.M.; Bosch, J.L.; Salbidegoitia, I.B.; Burgaleta, J.I.
2013-01-01
Considering that clouds are the greatest causes to solar radiation blocking, short term cloud forecasting can help power plant operation and therefore improve benefits. Cloud detection, classification and motion vector determination are key to forecasting sun obstruction by clouds. Geostationary satellites provide cloud information covering wide areas, allowing cloud forecast to be performed for several hours in advance. Herein, the methodology developed and tested in this study is based on multispectral tests and binary cross correlations followed by coherence and quality control tests over resulting motion vectors. Monthly synthetic surface albedo image and a method to reject erroneous correlation vectors were developed. Cloud classification in terms of opacity and height of cloud top is also performed. A whole-sky camera has been used for validation, showing over 85% of agreement between the camera and the satellite derived cloud cover, whereas error in motion vectors is below 15%. - Highlights: ► A methodology for detection, classification and movement of clouds is presented. ► METEOSAT satellite images are used to obtain a cloud mask. ► The prediction of cloudiness is estimated with 90% in overcast conditions. ► Results for partially covered sky conditions showed a 75% accuracy. ► Motion vectors are estimated from the clouds with a success probability of 86%
MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls
International Nuclear Information System (INIS)
Hayat, T.; Javed, Maryiam; Asghar, S.
2008-01-01
A mathematical model for magnetohydrodynamic (MHD) flow of a Johnson-Segalman fluid in a channel with compliant walls is analyzed. The flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the amplitude ratio is small. Our computations show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a viscous fluid. The variations of various interesting dimensionless parameters are graphed and discussed
Energy Technology Data Exchange (ETDEWEB)
Zhang, X; Sisniega, A; Zbijewski, W; Stayman, J [Johns Hopkins University, Balitmore, MD (United States); Contijoch, F; McVeigh, E [University of California, San Diego, San Diego, CA (United States)
2016-06-15
Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected as the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.
Inter frame motion estimation and its application to image sequence compression: an introduction
International Nuclear Information System (INIS)
Cremy, C.
1996-01-01
With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs
Angular motion estimation and its application to the stabilization of a ballbot
Yavuz, Fırat; Yavuz, Firat
2016-01-01
Reliable angular motion estimation have received signi cant attention in recent years due to remarkable advances in sensor technologies and related requirements in many control applications including stabilization of robotic platforms. The goal of the stabilization control is to maintain the desired orientation by rejecting external disturbances. In this thesis, a novel master-slave Kalman lter is proposed where an extended Kalman lter (EKF) and a classical Kalman lter (KF) are integrated ...
Directory of Open Access Journals (Sweden)
Thanhtoan Tran
2014-08-01
Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.
[Estimation of volume of pleural fluid and its impact on spirometrical parameters].
Karwat, Krzysztof; Przybyłowski, Tadeusz; Bielicki, Piotr; Hildebrand, Katarzyna; Nowacka-Mazurek, Magdalena; Nasiłowski, Jacek; Rubinsztajn, Renata; Chazan, Ryszarda
2014-03-01
In the course of various diseases, there is an accumulation of fluid in the pleural cavities. Pleural fluid accumulation causes thoracic volume expansion and reduction of volume lungs, leading to formation of restrictive disorders. The aim of the study was to estimate the volume of pleural fluid by ultrasonography and to search for the relationship between pleural fluid volume and spirometrical parameters. The study involved 46 patients (26 men, 20 women) aged 65.7 +/- 14 years with pleural effusions who underwent thoracentesis. Thoracentesis was preceded by ultrasonography of the pleura, spirometry test and plethysmography. The volume of the pleural fluid was calculated with the Goecke' and Schwerk' (GS) or Padykuła (P) equations. The obtained values were compared with the actual evacuated volume. The median volume of the removed pleural fluid was 950 ml. Both underestimated the evacuated volume (the median volume 539 ml for GS and 648 ml for P, respectively). Pleural fluid removal resulted in a statistically significant improvement in VC (increase 0.20 +/- 0.35 ; p Pleural fluid removal causes a significant improvement in lung function parameters. The analyzed equations for fluid volume calculation do not correlate with the actual volume.
A Highly Parallel and Scalable Motion Estimation Algorithm with GPU for HEVC
Directory of Open Access Journals (Sweden)
Yun-gang Xue
2017-01-01
Full Text Available We propose a highly parallel and scalable motion estimation algorithm, named multilevel resolution motion estimation (MLRME for short, by combining the advantages of local full search and downsampling. By subsampling a video frame, a large amount of computation is saved. While using the local full-search method, it can exploit massive parallelism and make full use of the powerful modern many-core accelerators, such as GPU and Intel Xeon Phi. We implanted the proposed MLRME into HM12.0, and the experimental results showed that the encoding quality of the MLRME method is close to that of the fast motion estimation in HEVC, which declines by less than 1.5%. We also implemented the MLRME with CUDA, which obtained 30–60x speed-up compared to the serial algorithm on single CPU. Specifically, the parallel implementation of MLRME on a GTX 460 GPU can meet the real-time coding requirement with about 25 fps for the 2560×1600 video format, while, for 832×480, the performance is more than 100 fps.
A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data
Directory of Open Access Journals (Sweden)
Anne E. C. M. Saris
2018-03-01
Full Text Available This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF. As a consequence, the cross-correlation functions (CCF used in the speckle tracking (ST algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow simulations together with rotating disk experiments using a Verasonics Vantage 256 are used for performance evaluation. Zero-degree plane wave data were acquired using an ATL L5-12 (fc = 9 MHz transducer for a range of pulse repetition frequencies (PRFs, resulting in 0–600 µm inter-frame displacements. The proposed methodology was compared to data beamformed on a conventionally spaced grid, combined with the commonly used 1D parabolic interpolation. The PSF-shape-based beamforming grid combined with 2D cubic interpolation showed the most accurate and stable performance with respect to the full range of inter-frame displacements, both for the assessment of blood flow and vessel wall dynamics. The proposed methodology can be used as a protocolled way to beamform ultrafast data and obtain accurate estimates of tissue motion.
Directory of Open Access Journals (Sweden)
Abdenaceur Boudlal
2010-01-01
Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.
Modular Estimation Strategy of Vehicle Dynamic Parameters for Motion Control Applications
Directory of Open Access Journals (Sweden)
Rawash Mustafa
2018-01-01
Full Text Available The presence of motion control or active safety systems in vehicles have become increasingly important for improving vehicle performance and handling and negotiating dangerous driving situations. The performance of such systems would be improved if combined with knowledge of vehicle dynamic parameters. Since some of these parameters are difficult to measure, due to technical or economic reasons, estimation of those parameters might be the only practical alternative. In this paper, an estimation strategy of important vehicle dynamic parameters, pertaining to motion control applications, is presented. The estimation strategy is of a modular structure such that each module is concerned with estimating a single vehicle parameter. Parameters estimated include: longitudinal, lateral, and vertical tire forces – longitudinal velocity – vehicle mass. The advantage of this strategy is its independence of tire parameters or wear, road surface condition, and vehicle mass variation. Also, because of its modular structure, each module could be later updated or exchanged for a more effective one. Results from simulations on a 14-DOF vehicle model are provided here to validate the strategy and show its robustness and accuracy.
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
Estimating Energy Consumption of Mobile Fluid Power in the United States
Energy Technology Data Exchange (ETDEWEB)
Lynch, Lauren [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zigler, Bradley T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-11-02
This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumed by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.
Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture
Directory of Open Access Journals (Sweden)
Angelos Karatsidis
2016-12-01
Full Text Available Ground reaction forces and moments (GRF&M are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC. From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%, anterior (ρ = 0.965, rRMSE = 9.4% and sagittal (ρ = 0.933, rRMSE = 12.4% GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%, frontal (ρ = 0.710, rRMSE = 29.6%, and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%. Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.
International Nuclear Information System (INIS)
Werner, Rene
2013-01-01
Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the developed methods
A Single Image Deblurring Algorithm for Nonuniform Motion Blur Using Uniform Defocus Map Estimation
Directory of Open Access Journals (Sweden)
Chia-Feng Chang
2017-01-01
Full Text Available One of the most common artifacts in digital photography is motion blur. When capturing an image under dim light by using a handheld camera, the tendency of the photographer’s hand to shake causes the image to blur. In response to this problem, image deblurring has become an active topic in computational photography and image processing in recent years. From the view of signal processing, image deblurring can be reduced to a deconvolution problem if the kernel function of the motion blur is assumed to be shift invariant. However, the kernel function is not always shift invariant in real cases; for example, in-plane rotation of a camera or a moving object can blur different parts of an image according to different kernel functions. An image that is degraded by multiple blur kernels is called a nonuniform blur image. In this paper, we propose a novel single image deblurring algorithm for nonuniform motion blur images that is blurred by moving object. First, a proposed uniform defocus map method is presented for measurement of the amounts and directions of motion blur. These blurred regions are then used to estimate point spread functions simultaneously. Finally, a fast deconvolution algorithm is used to restore the nonuniform blur image. We expect that the proposed method can achieve satisfactory deblurring of a single nonuniform blur image.
Estimating organic, local, and other price premiums in the Hawaii fluid milk market.
Loke, Matthew K; Xu, Xun; Leung, PingSun
2015-04-01
With retail scanner data, we applied hedonic price modeling to explore price premiums for organic, local, and other product attributes of fluid milk in Hawaii. Within the context of revealed preference, this analysis of organic and local attributes, under a single unified framework, is significant, as research in this area is deficient in the existing literature. This paper finds both organic and local attributes delivered price premiums over imported, conventional, whole fluid milk. However, the estimated price premium for organic milk (24.6%) is significantly lower than findings in the existing literature. Likewise, the price premium for the local attribute is estimated at 17.4%, again substantially lower compared with an earlier, stated preference study in Hawaii. Beyond that, we estimated a robust price premium of 19.7% for nutritional benefits claimed. The magnitude of this estimated coefficient reinforces the notion that nutrition information on food is deemed beneficial and valuable. Finally, package size measures the influence of product weight. With each larger package size, the estimate led to a corresponding larger price discount. This result is consistent with the practice of weight discounting that retailers usually offer with fresh packaged food. Additionally, we estimated a fairly high Armington elasticity of substitution, which suggests a relatively high degree of substitution between local and imported fluid milk when their relative price changes. Overall, this study establishes price premiums for organic, local, and nutrition benefits claimed for fluid milk in Hawaii. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding
Dung, Lan-Rong; Lin, Meng-Chun
This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.
Directory of Open Access Journals (Sweden)
Reeba Korah
2008-01-01
Full Text Available This paper presents a low power and high speed architecture for motion estimation with Candidate Block and Pixel Subsampling (CBPS Algorithm. Coarse-to-fine search approach is employed to find the motion vector so that the local minima problem is totally eliminated. Pixel subsampling is performed in the selected candidate blocks which significantly reduces computational cost with low quality degradation. The architecture developed is a fully pipelined parallel design with 9 processing elements. Two different methods are deployed to reduce the power consumption, parallel and pipelined implementation and parallel accessing to memory. For processing 30 CIF frames per second our architecture requires a clock frequency of 4.5 MHz.
Kaklamanos, James; Baise, Laurie G.; Boore, David M.
2011-01-01
The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.
An organic group contribution approach to radiative efficiency estimation of organic working fluid
International Nuclear Information System (INIS)
Zhang, Xinxin; Kobayashi, Noriyuki; He, Maogang; Wang, Jingfu
2016-01-01
Highlights: • We use group contribution method to estimate radiative efficiency. • CFC, HCFC, HFC, HFE, and PFC were estimated using this method. • In most cases, the estimation value has a good precision. • The method is reliable for the estimation of molecule with a symmetric structure. • This estimation method can offer good reference for working fluid development. - Abstract: The ratification of the Montreal Protocol in 1987 and the Kyoto Protocol in 1997 mark an environment protection era of the development of organic working fluid. Ozone depletion potential (ODP) and global warming potential (GWP) are two most important indices for the quantitative comparison of organic working fluid. Nowadays, more and more attention has been paid to GWP. The calculation of GWP is an extremely complicated process which involves interactions between surface and atmosphere such as atmospheric radiative transfer and atmospheric chemical reactions. GWP of a substance is related to its atmospheric abundance and is a variable in itself. However, radiative efficiency is an intermediate parameter for GWP calculation and it is a constant value used to describe inherent property of a substance. In this paper, the group contribution method was adopted to estimate the radiative efficiency of the organic substance which contains more than one carbon atom. In most cases, the estimation value and the standard value are in a good agreement. The biggest estimation error occurs in the estimation of the radiative efficiency of fluorinated ethers due to its plenty of structure groups and its complicated structure compared with hydrocarbon. This estimation method can be used to predict the radiative efficiency of newly developed organic working fluids.
Kernel density estimation-based real-time prediction for respiratory motion
International Nuclear Information System (INIS)
Ruan, Dan
2010-01-01
Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the
Directory of Open Access Journals (Sweden)
Apurva Samdurkar
2018-06-01
Full Text Available Object tracking is one of the main fields within computer vision. Amongst various methods/ approaches for object detection and tracking, the background subtraction approach makes the detection of object easier. To the detected object, apply the proposed block matching algorithm for generating the motion vectors. The existing diamond search (DS and cross diamond search algorithms (CDS are studied and experiments are carried out on various standard video data sets and user defined data sets. Based on the study and analysis of these two existing algorithms a modified diamond search pattern (MDS algorithm is proposed using small diamond shape search pattern in initial step and large diamond shape (LDS in further steps for motion estimation. The initial search pattern consists of five points in small diamond shape pattern and gradually grows into a large diamond shape pattern, based on the point with minimum cost function. The algorithm ends with the small shape pattern at last. The proposed MDS algorithm finds the smaller motion vectors and fewer searching points than the existing DS and CDS algorithms. Further, object detection is carried out by using background subtraction approach and finally, MDS motion estimation algorithm is used for tracking the object in color video sequences. The experiments are carried out by using different video data sets containing a single object. The results are evaluated and compared by using the evaluation parameters like average searching points per frame and average computational time per frame. The experimental results show that the MDS performs better than DS and CDS on average search point and average computation time.
Streeter, Lee
2017-07-01
Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40) m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20) m/s with standard deviation ranging from 3.5 m/s to 10 m/s.
International Nuclear Information System (INIS)
Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.
1996-11-01
Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs
Classical hydrodynamics of an ideal incompressible fluid and vortex motion in helium II
International Nuclear Information System (INIS)
Mamaladze, Y.G.; Kiknadze, L.V.
1982-01-01
Vortex motion in the vicinity of a protuberance at a bounding surface in rotating helium II and in plane slits is considered from the standpoint of the vortex-formation mechanism, the equilibrium spatial vortex distribution, and the possibility of supercritical quasidissipationless vortex flow
Dilatonic Brans-Dicke Anisotropic Collapsing Fluid Sphere And de Broglie Quantum Wave Motion
International Nuclear Information System (INIS)
Ghaffarnejad, Hossein
2016-01-01
Two dimensional (2D) analogue of vacuum sector of the Brans Dicke (BD) gravity [1] is studied to obtain dynamics of anisotropic spherically symmetric perfect fluid. Our obtained static solutions behave as dark matter with state equation but in non-static regimes behave as regular perfect fluid with barotropic index ϒ > 0. Positivity property of total mass of the fluid causes that the BD parameter to be ω >2/3 and/or ω 0 the apparent horizon is covered by event horizon where the cosmic censorship hypothesis is still valid. According to the model [1], we obtain de Broglie pilot wave of our metric solution which describes particles ensemble which become distinguishable via different values of ω . Incident current density of particles ensemble on the horizons is evaluated which describe the ‘Hawking radiation’. The de Brogle-Bohm quantum potential effect is calculated also on the event (apparent) horizon which is independent (dependent) to values of ω . (paper)
Bhatti, M M; Zeeshan, A; Ellahi, R
2016-12-01
In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
Real-time tumor motion estimation using respiratory surrogate via memory-based learning
Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei
2012-08-01
th percentile error of 3.4 mm on unseen test data. The average 3D error was further reduced to 1.4 mm when the model was tuned to its optimal setting for each respiratory trace. In one trace where a few outliers are present in the training data, the proposed method achieved an error reduction of as much as ∼50% compared with the best linear model (1.0 mm versus 2.1 mm). The memory-based learning technique is able to accurately capture the highly complex and nonlinear relations between tumor and surrogate motion in an efficient manner (a few milliseconds per estimate). Furthermore, the algorithm is particularly suitable to handle situations where the training data are contaminated by large errors or outliers. These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates.
Real-time tumor motion estimation using respiratory surrogate via memory-based learning
International Nuclear Information System (INIS)
Li Ruijiang; Xing Lei; Lewis, John H; Berbeco, Ross I
2012-01-01
th percentile error of 3.4 mm on unseen test data. The average 3D error was further reduced to 1.4 mm when the model was tuned to its optimal setting for each respiratory trace. In one trace where a few outliers are present in the training data, the proposed method achieved an error reduction of as much as ∼50% compared with the best linear model (1.0 mm versus 2.1 mm). The memory-based learning technique is able to accurately capture the highly complex and nonlinear relations between tumor and surrogate motion in an efficient manner (a few milliseconds per estimate). Furthermore, the algorithm is particularly suitable to handle situations where the training data are contaminated by large errors or outliers. These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates. (paper)
Korsten, Maarten J.; Houkes, Z.
1990-01-01
A method is given to estimate the geometry and motion of a moving body surface from image sequences. To this aim a parametric model of the surface is used, in order to reformulate the problem to one of parameter estimation. After linearization of the model standard linear estimation methods can be
Energy Technology Data Exchange (ETDEWEB)
Gilani, Syed Irtiza Ali
2008-09-15
Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase
Research of Block-Based Motion Estimation Methods for Video Compression
Directory of Open Access Journals (Sweden)
Tropchenko Andrey
2016-08-01
Full Text Available This work is a review of the block-based algorithms used for motion estimation in video compression. It researches different types of block-based algorithms that range from the simplest named Full Search to the fast adaptive algorithms like Hierarchical Search. The algorithms evaluated in this paper are widely accepted by the video compressing community and have been used in implementing various standards, such as MPEG-4 Visual and H.264. The work also presents a very brief introduction to the entire flow of video compression.
International Nuclear Information System (INIS)
Gilani, Syed Irtiza Ali
2008-09-01
Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T 1 relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase
Group of Hexagonal Search Patterns for Motion Estimation and Object Tracking
International Nuclear Information System (INIS)
Elazm, A.A.; Mahmoud, I.I; Hashima, S.M.
2010-01-01
This paper presents a group of fast block matching algorithms based on the hexagon pattern search .A new predicted one point hexagon (POPHEX) algorithm is proposed and compared with other well known algorithms. The comparison of these algorithms and our proposed one is performed for both motion estimation and object tracking. Test video sequences are used to demonstrate the behavior of studied algorithms. All algorithms are implemented in MATLAB environment .Experimental results showed that the proposed algorithm posses less number of search points however its computational overhead is little increased due to prediction procedure.
Energy Technology Data Exchange (ETDEWEB)
Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St
2004-07-01
Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)
Oberbeck-Bousinesq approximation for the motion of two incompressible fluids
Czech Academy of Sciences Publication Activity Database
Denisova, I.V.; Nečasová, Šárka
2009-01-01
Roč. 159, č. 4 (2009), s. 436-451 ISSN 1072-3374 R&D Projects: GA AV ČR IAA100190804; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : surface tension * Oberbeck -Bousinesq approximation * incompressible fluids Subject RIV: BA - General Mathematics
Robustness of one-dimensional viscous fluid motion under multidimensional perturbations
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Sun, Y.
2015-01-01
Roč. 259, č. 12 (2015), s. 7529-7539 ISSN 0022-0396 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes equations * 1-D compressible fluid flow * relative energy Subject RIV: BA - General Mathematics Impact factor: 1.821, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022039615004325
Mathematical analysis of fluids in motion: from well-posedness to model reduction
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2013-01-01
Roč. 26, č. 2 (2013), s. 299-340 ISSN 1139-1138 Keywords : Navier-Stokes-Fourier system * compressible fluid * singular limits Subject RIV: BA - General Mathematics Impact factor: 0.585, year: 2013 http://link.springer.com/article/10.1007/s13163-013-0126-2
On the linear problem arising from motion of a fluid around a moving rigid body
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2015-01-01
Roč. 140, č. 2 (2015), s. 241-259 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : incompressible fluid * rotating rigid body * strong solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144329
Motion Estimation Using the Single-row Superposition-type Planar Compound-like Eye
Directory of Open Access Journals (Sweden)
Gwo-Long Lin
2007-06-01
Full Text Available How can the compound eye of insects capture the prey so accurately andquickly? This interesting issue is explored from the perspective of computer vision insteadof from the viewpoint of biology. The focus is on performance evaluation of noiseimmunity for motion recovery using the single-row superposition-type planar compound-like eye (SPCE. The SPCE owns a special symmetrical framework with tremendousamount of ommatidia inspired by compound eye of insects. The noise simulates possibleambiguity of image patterns caused by either environmental uncertainty or low resolutionof CCD devices. Results of extensive simulations indicate that this special visualconfiguration provides excellent motion estimation performance regardless of themagnitude of the noise. Even when the noise interference is serious, the SPCE is able todramatically reduce errors of motion recovery of the ego-translation without any type offilters. In other words, symmetrical, regular, and multiple vision sensing devices of thecompound-like eye have statistical averaging advantage to suppress possible noises. Thisdiscovery lays the basic foundation in terms of engineering approaches for the secret of thecompound eye of insects.
A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion
Directory of Open Access Journals (Sweden)
Amarendra Jnana H.
2018-01-01
Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.
Peristaltic motion of a Johnson-Segalman fluid in a planar channel
Directory of Open Access Journals (Sweden)
Hayat T.
2003-01-01
Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.
Biomechanical model-based displacement estimation in micro-sensor motion capture
International Nuclear Information System (INIS)
Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C
2012-01-01
In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)
FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC
Directory of Open Access Journals (Sweden)
Obianuju Ndili
2009-01-01
Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.
HIERARCHICAL ADAPTIVE ROOD PATTERN SEARCH FOR MOTION ESTIMATION AT VIDEO SEQUENCE ANALYSIS
Directory of Open Access Journals (Sweden)
V. T. Nguyen
2016-05-01
Full Text Available Subject of Research.The paper deals with the motion estimation algorithms for the analysis of video sequences in compression standards MPEG-4 Visual and H.264. Anew algorithm has been offered based on the analysis of the advantages and disadvantages of existing algorithms. Method. Thealgorithm is called hierarchical adaptive rood pattern search (Hierarchical ARPS, HARPS. This new algorithm includes the classic adaptive rood pattern search ARPS and hierarchical search MP (Hierarchical search or Mean pyramid. All motion estimation algorithms have been implemented using MATLAB package and tested with several video sequences. Main Results. The criteria for evaluating the algorithms were: speed, peak signal to noise ratio, mean square error and mean absolute deviation. The proposed method showed a much better performance at a comparable error and deviation. The peak signal to noise ratio in different video sequences shows better and worse results than characteristics of known algorithms so it requires further investigation. Practical Relevance. Application of this algorithm in MPEG-4 and H.264 codecs instead of the standard can significantly reduce compression time. This feature enables to recommend it in telecommunication systems for multimedia data storing, transmission and processing.
Sundaramoorthi, Ganesh
2012-09-13
This paper presents a novel medical image registration algorithm that explicitly models the physical constraints imposed by objects or sub-structures of objects that have differing material composition and border each other, which is the case in most medical registration applications. Typical medical image registration algorithms ignore these constraints and therefore are not physically viable, and to incorporate these constraints would require prior segmentation of the image into regions of differing material composition, which is a difficult problem in itself. We present a mathematical model and algorithm for incorporating these physical constraints into registration / motion and deformation estimation that does not require a segmentation of different material regions. Our algorithm is a joint estimation of different material regions and the motion/deformation within these regions. Therefore, the segmentation of different material regions is automatically provided in addition to the image registration satisfying the physical constraints. The algorithm identifies differing material regions (sub-structures or objects) as regions where the deformation has different characteristics. We demonstrate the effectiveness of our method on the analysis of cardiac MRI which includes the detection of the left ventricle boundary and its deformation. The experimental results indicate the potential of the algorithm as an assistant tool for the quantitative analysis of cardiac functions in the diagnosis of heart disease.
Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H
2014-01-01
A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.
Directory of Open Access Journals (Sweden)
G. Vilardo
2005-06-01
Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.
Estimation of the equilibrium formation temperature in the presence of bore fluid invasion
DEFF Research Database (Denmark)
Poulsen, Søren Erbs; Nielsen, S.B.; Balling, N.
2012-01-01
from BHT measurements in the presence of bore fluid invasion. The scheme is based on finite element analysis in conjunction with Markov chain Monte Carlo inversion. The axisymmetric forward model assumes a cylindrical source of finite radius and contrasting thermal parameters, which includes...... by correction schemes based on purely conductive models. The influence of the borehole radius and fluid invasion on the temperature measured at the borehole axis attenuates over time. It is further demonstrated that the invasion radius and the matrix thermal conductivity cannot be estimated simultaneously...
Sivaiah, R.; Hemadri Reddy, R.
2017-11-01
In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
Inline motion and hydrodynamic interaction of 2D particles in a viscoplastic fluid
Chaparian, Emad; Wachs, Anthony; Frigaard, Ian A.
2018-03-01
In Stokes flow of a particle settling within a bath of viscoplastic fluid, a critical resistive force must be overcome in order for the particle to move. This leads to a critical ratio of the buoyancy stress to the yield stress: the critical yield number. This translates geometrically to an envelope around the particle in the limit of zero flow that contains both the particle and encapsulated unyielded fluid. Such unyielded envelopes and critical yield numbers are becoming well understood in our previous studies for single (2D) particles as well as the means of calculating. Here we address the case of having multiple particles, which introduces interesting new phenomena. First, plug regions can appear between the particles and connect them together, depending on the proximity and yield number. This can change the yielding behaviour since the combination forms a larger (and heavier) "particle." Moreover, small particles (that cannot move alone) can be pulled/pushed by larger particles or assembly of particles. Increasing the number of particles leads to interesting chain dynamics, including breaking and reforming.
Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo
2018-05-01
One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of
Directory of Open Access Journals (Sweden)
M. Rahimi-Gorji
2015-06-01
Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.
Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft
Directory of Open Access Journals (Sweden)
Liu Zhang
2017-01-01
Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.
On the motion of a compressible fluid in a rotating cylinder
International Nuclear Information System (INIS)
Brouwers, J.J.H.
1976-06-01
The secondary flow of an incompressible fluid or a perfect gas in a rotating cylinder is taken as a small perturbation on the isothermal state of rigid body rotation. Three types of flow are identified by increasing length-to-radius ratio L. These correspond to Esup(1/2) -1 and E -1 approximately L, where E is the Ekman number based on the radius and taken to be small. In the first range a geostrophic flow in the interior extended by Ekman layers near the end caps and Stewartson layers near the cylinder wall is found. For L approximately Esup(-1/2) and L approximately E -1 both Stewartson layers successively expand to the interior. For L approximately> E -1 radial diffusion of momentum is an important parameter describing the flow in the main section of the cylinder. For the perfect gas, special attention is focussed on strong radial density gradients. The modified Ekman number Esub(m) based on the density at the cylinder wall and on the density scale height is taken to be small. Increasing the ratio of the length to the radial density scale height Lsub(m) again three types of flow are distinguished. These correspond to Esub(m)sup(1/2) -1 and Esub(m)sup(-1) approximately Lsub(m). Compared to the incompressible fluid, two essential differences are found. (i) An inviscid flow characteristic for the first range is only observed in a limited region near the cylinder wall. Diffusive processes are important in the core of the cylinder. (ii) A change of the flow type appears when both Stewartson layers successively expand over the small radial density scale height. Diffusive regions come up from the centre of the cylinder and join. A change of the flow type appears at relatively small values of L. The theory discusses the efficiency of gas ultracentrifuges for isotope separation
Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation
Directory of Open Access Journals (Sweden)
Wan Zakaria W.N.
2016-01-01
Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.
Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications
Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei
2007-04-01
In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.
A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor
Directory of Open Access Journals (Sweden)
Diego González
2012-09-01
Full Text Available This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA and NIOS II microprocessor applying a C to Hardware (C2H acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system.
Bazile , Alban; Hachem , Elie; Larroya-Huguet , Juan-Carlos; Mesri , Youssef
2018-01-01
International audience; In this work, we present a new a posteriori error estimator based on the Variational Multiscale method for anisotropic adaptive fluid mechanics problems. The general idea is to combine the large scale error based on the solved part of the solution with the sub-mesh scale error based on the unresolved part of the solution. We compute the latter with two different methods: one using the stabilizing parameters and the other using bubble functions. We propose two different...
Fluids in micropores. V. Effects of thermal motion in the walls of a slit-micropore
International Nuclear Information System (INIS)
Diestler, D.J.; Schoen, M.
1996-01-01
Previous articles in this series have concerned the prototypal slit-pore with rigid walls, in which a Lennard-Jones (12,6) monatomic film is constrained between two plane-parallel walls comprising like atoms fixed in the face-centered-cubic (fcc) (100) configuration. The behavior of molecularly thin films in the rigid-wall prototype is governed by the template effect, whereby solid films can form epitaxially when the walls are properly aligned in the lateral directions. In this article the influence of thermal motion of the wall atoms on the template effect is investigated. The walls are treated as Einstein solids, the atoms moving independently in harmonic potentials centered on rigidly fixed equilibrium positions in the fcc (100) configuration. The force constant f c is a measure of the stiffness of the walls, the rigid-wall limit being f c =∞. Formal thermodynamic and statistical mechanical analyses of the system are carried out. The results of grand canonical ensemble Monte Carlo simulations indicate that for values of f c characteristic of a soft (e.g., noble-gas) crystal dynamic coupling between wall and film has a substantial influence on such equilibrium properties as normal stress (load) and interfacial tensions. In general, the softer the walls (i.e., the smaller the value of f c ), the weaker the template effect and hence the softer and more disordered the confined film. copyright 1996 American Institute of Physics
Model-based Estimation of Gas Leakage for Fluid Power Accumulators in Wind Turbines
DEFF Research Database (Denmark)
Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen
2017-01-01
for accumulators, namely gas leakage. The method utilizes an Extended Kalman Filter for joint state and parameter estimation with special attention to limiting the use of sensors to those commonly used in wind turbines. The precision of the method is investigated on an experimental setup which allows for operation...... of the accumulator similar to the conditions in a turbine. The results show that gas leakage is indeed detectable during start-up of the turbine and robust behavior is achieved in a multi-fault environment where both gas and external fluid leakage occur simultaneously. The estimation precision is shown...... to be sensitive to initial conditions for the gas temperature and volume....
Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick
2016-12-01
Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.
Czech Academy of Sciences Publication Activity Database
Hlaváček, Miroslav
1999-01-01
Roč. 32, č. 10 (1999), s. 1059-1069 ISSN 0021-9290 Keywords : biphasic articular cartilage * biphasic synovial fluid * boooundary lubrication * human ankle joint * sliding motion Subject RIV: FI - Traumatology, Orthopedics Impact factor: 1.536, year: 1999
DEFF Research Database (Denmark)
Yildiz, Hasan; Andersen, Ole Baltazar; Simav, Mehmet
2013-01-01
The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry...... retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide...... the Aegean Sea) shows no significant vertical land motion. The results are compared and assessed with three independent geophysical vertical land motion estimates like from GPS. The GIA effect in the region is negligible. The VLM estimates from altimetry and tide gauge data are in good agreement both...
SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models
International Nuclear Information System (INIS)
Dhou, S; Hurwitz, M; Lewis, J; Mishra, P
2014-01-01
Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT
Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz
2010-09-01
This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.
Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering
Energy Technology Data Exchange (ETDEWEB)
Goddard, J.S.; Abidi, M.A.
1998-06-01
A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-07-16
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.
Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.
2011-12-01
In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.
Architecture design of motion estimation for ITU-T H.263
Ku, Chung-Wei; Lin, Gong-Sheng; Chen, Liang-Gee; Lee, Yung-Ping
1997-01-01
Digitalized video and audio system has become the trend of the progress in multimedia, because it provides great performance in quality and feasibility of processing. However, as the huge amount of information is needed while the bandwidth is limitted, data compression plays an important role in the system. Say, for a 176 x 144 monochromic sequence with 10 frames/sec frame rate, the bandwidth is about 2Mbps. This wastes much channel resource and limits the applications. MPEG (moving picttre ezpert groip) standardizes the video codec scheme, and it performs high compression ratio while providing good quality. MPEG-i is used for the frame size about 352 x 240 and 30 frames per second, and MPEG-2 provides scalibility and can be applied on scenes with higher definition, say HDTV (high definition television). On the other hand, some applications concerns the very low bit-rate, such as videophone and video-conferencing. Because the channel bandwidth is much limitted in telephone network, a very high compression ratio must be required. ITU-T announced the H.263 video coding standards to meet the above requirements.8 According to the simulation results of TMN-5,22 it outperforms 11.263 with little overhead of complexity. Since wireless communication is the trend in the near future, low power design of the video codec is an important issue for portable visual telephone. Motion estimation is the most computation consuming parts in the whole video codec. About 60% of the computation is spent on this parts for the encoder. Several architectures were proposed for efficient processing of block matching algorithms. In this paper, in order to meet the requirements of 11.263 and the expectation of low power consumption, a modified sandwich architecture in21 is proposed. Based on the parallel processing philosophy, low power is expected and the generation of either one motion vector or four motion vectors with half-pixel accuracy is achieved concurrently. In addition, we will
International Nuclear Information System (INIS)
Streit, J.E.; Hillis, R.R.
2004-01-01
Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)
Takehiro, Shin-ichi; Sasaki, Youhei
2018-03-01
Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.
SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation
Energy Technology Data Exchange (ETDEWEB)
O' Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)
2014-06-01
Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.
Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.
2008-01-01
We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
Energy Technology Data Exchange (ETDEWEB)
Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)
2013-02-15
Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT
International Nuclear Information System (INIS)
Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.
2013-01-01
Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1–1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90° (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC
Kleinherenbrink, M.; Riva, R.E.M.; Frederikse, T.
2018-01-01
Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple)
International Nuclear Information System (INIS)
Suzuki, Haruhiko
2014-01-01
The preliminary results with an outline of array observation for micro-tremor and natural earthquakes around the NIIT site were explained. Phase velocity estimated from a horizontal array of strong motion observation agrees with that from the micro-tremor survey. Estimation results are consistent with other literature, such as PS-logging data and gravity maps. Further improvement of the three-dimensional modeling by using micro-tremor surveys and horizontal array observation is planned for the future. (author)
On the Usage of GPUs for Efficient Motion Estimation in Medical Image Sequences
Directory of Open Access Journals (Sweden)
Jeyarajan Thiyagalingam
2011-01-01
Full Text Available Images are ubiquitous in biomedical applications from basic research to clinical practice. With the rapid increase in resolution, dimensionality of the images and the need for real-time performance in many applications, computational requirements demand proper exploitation of multicore architectures. Towards this, GPU-specific implementations of image analysis algorithms are particularly promising. In this paper, we investigate the mapping of an enhanced motion estimation algorithm to novel GPU-specific architectures, the resulting challenges and benefits therein. Using a database of three-dimensional image sequences, we show that the mapping leads to substantial performance gains, up to a factor of 60, and can provide near-real-time experience. We also show how architectural peculiarities of these devices can be best exploited in the benefit of algorithms, most specifically for addressing the challenges related to their access patterns and different memory configurations. Finally, we evaluate the performance of the algorithm on three different GPU architectures and perform a comprehensive analysis of the results.
Unmanned aerial vehicle-based structure from motion biomass inventory estimates
Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.
2017-04-01
Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.
Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion
Caccamise, Dana J.; Merrifield, Mark A.; Bevis, Michael; Foster, James; Firing, Yvonne L.; Schenewerk, Mark S.; Taylor, Frederick W.; Thomas, Donald A.
2005-02-01
Since 1946, sea level at Hilo on the Big Island of Hawaii has risen an average of 1.8 +/- 0.4 mm/yr faster than at Honolulu on the island of Oahu. This difference has been attributed to subsidence of the Big Island. However, GPS measurements indicate that Hilo is sinking relative to Honolulu at a rate of -0.4 +/- 0.5 mm/yr, which is too small to account for the difference in sea level trends. In the past 30 years, there has been a statistically significant reduction in the relative sea level trend. While it is possible that the rates of land motion have changed over this time period, the available hydrographic data suggest that interdecadal variations in upper ocean temperature account for much of the differential sea level signal between the two stations, including the recent trend change. These results highlight the challenges involved in estimating secular sea level trends in the presence of significant low frequency variability.
High-Performance Motion Estimation for Image Sensors with Video Compression
Directory of Open Access Journals (Sweden)
Weizhi Xu
2015-08-01
Full Text Available It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME. Pixels of reconstructed frames are kept on-chip until they are used by the next current frame to avoid off-chip memory access. On-chip buffers with smart schedules of data access are designed to perform the new data reuse scheme. Three levels of the proposed inter-frame data reuse scheme are presented and analyzed. They give different choices with tradeoff between off-chip bandwidth requirement and on-chip memory size. All three levels have better data reuse efficiency than their intra-frame counterparts, so off-chip memory traffic is reduced effectively. Comparing the new inter-frame data reuse scheme with the traditional intra-frame data reuse scheme, the memory traffic can be reduced by 50% for VC-ME.
International Nuclear Information System (INIS)
Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka
2007-01-01
In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)
Power estimation of martial arts movement using 3D motion capture camera
Azraai, Nur Zaidi; Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir
2017-06-01
precision and improve the accuracy of the marker. Performer movement was recorded and analyzed using software Cortex motion analysis where velocity and acceleration of a performer movement can be measured. With classical mechanics approach we have estimated the power and force of impact and shows that an experienced performer produces more power and force of impact is higher than the inexperienced performer.
Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir; Azraai, Nur Zaidi
2017-07-01
In Malay world, there is a spirit traditional ritual where they use it as healing practices or for normal life. Malay martial arts (silat) also is not exceptional where some branch of silat have spirit traditional ritual where they said can help them in combat. In this paper, we will not use any ritual, instead we will use some medicinal and environment change when they are performing. There will be 2 performers (fighter) selected, one of them have an experience in martial arts training and another performer does not have experience. Motion Capture (MOCAP) camera will help observe and analyze this move. 8 cameras have been placed in the MOCAP room 2 on each side of the wall facing toward the center of the room from every angle. This will help prevent the loss detection of a marker that been stamped on the limb of a performer. Passive marker has been used where it will reflect the infrared to the camera sensor. Infrared is generated by the source around the camera lens. A 60 kg punching bag was hung on the iron bar function as the target for the performer when throws a punch. Markers also have been stamped on the punching bag so we can detect the movement how far can it swing when hit by the performer. 2 performers will perform 2 moves each with the same position and posture. For every 2 moves, we have made the environment change without the performer notice about it. The first 2 punch with normal environment, second part we have played a positive music to change the performer's mood and third part we have put a medicine (cream/oil) on the skin of the performer. This medicine will make the skin feel a little bit hot. This process repeated to another performer with no experience. The position of this marker analyzed by the Cortex Motion Analysis software where from this data, we can estimate the kinetics and kinematics of the performer. It shows that the increase of kinetics for every part because of the change in the environment, and different result for the 2
International Nuclear Information System (INIS)
Bavio, José; Marrón, Beatriz
2014-01-01
Quality of service (QoS) for internet traffic management requires good traffic models and good estimation of sharing network resource. A link of a network processes all traffic and it is designed with certain capacity C and buffer size B. A Generalized Markov Fluid model (GMFM), introduced by Marrón (2011), is assumed for the sources because describes in a versatile way the traffic, allows estimation based on traffic traces, and also consistent effective bandwidth estimation can be done. QoS, interpreted as buffer overflow probability, can be estimated for GMFM through the effective bandwidth estimation and solving the optimization problem presented in Courcoubetis (2002), the so call inf-sup formulas. In this work we implement a code to solve the inf-sup problem and other optimization related with it, that allow us to do traffic engineering in links of data networks to calculate both, minimum capacity required when QoS and buffer size are given or minimum buffer size required when QoS and capacity are given
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow
Smoothness constraints in recursive search motion estimation for picture rate conversion.
Bartels, C.L.L.; Haan, de G.
2010-01-01
Many motion compensation algorithms are based on block matching. The quality of the block correlation depends on the validity of the brightness constancy assumption and the assumption of fixed translational motion within a block. These assumptions are invalid in areas with texture changes, noise,
Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates
Energy Technology Data Exchange (ETDEWEB)
Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime.
International Nuclear Information System (INIS)
Proença, Martin; Braun, Fabian; Rapin, Michael; Solà, Josep; Lemay, Mathieu; Adler, Andy; Grychtol, Bartłomiej; Bohm, Stephan H; Thiran, Jean-Philippe
2015-01-01
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets. (paper)
International Nuclear Information System (INIS)
Hietala, Niklas; Hänninen, Risto
2014-01-01
We comment on the paper by Van Gorder [“Motion of a helical vortex filament in superfluid 4 He under the extrinsic form of the local induction approximation,” Phys. Fluids 25, 085101 (2013)]. We point out that the flow of the normal fluid component parallel to the vortex will often lead into the Donnelly–Glaberson instability, which will cause the amplification of the Kelvin wave. We explain why the comparison to local nonlinear equation is unreasonable, and remark that neglecting the motion in the x-direction is not reasonable for a Kelvin wave with an arbitrary wavelength and amplitude. The correct equations in the general case are also derived
Xie, Pingping; Joyce, Robert; Wu, Shaorong
2015-04-01
As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2016-01-01
Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589
Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James
2012-01-01
Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle moveme...
International Nuclear Information System (INIS)
Sato, Hiroaki
2009-01-01
This report addresses a methodology of deep subsurface structure modeling in Niigata plain, Japan to estimate site amplification factor in the broadband frequency range for broadband strong motion prediction. In order to investigate deep S-wave velocity structures, we conduct microtremor array measurements at nine sites in Niigata plain, which are important to estimate both long- and short-period ground motion. The estimated depths of the top of the basement layer agree well with those of the Green tuff formation as well as the Bouguer anomaly distribution. Dispersion characteristics derived from the observed long-period ground motion records are well explained by the theoretical dispersion curves of Love wave group velocities calculated from the estimated subsurface structures. These results demonstrate the deep subsurface structures from microtremor array measurements make it possible to estimate long-period ground motions in Niigata plain. Moreover an applicability of microtremor array exploration for inclined basement structure like a folding structure is shown from the two dimensional finite difference numerical simulations. The short-period site amplification factors in Niigata plain are empirically estimated by the spectral inversion analysis from S-wave parts of strong motion data. The resultant characteristics of site amplification are relative large in the frequency range of about 1.5-5 Hz, and decay significantly with the frequency increasing over about 5 Hz. However, these features can't be explained by the calculations from the deep subsurface structures. The estimation of site amplification factors in the frequency range of about 1.5-5 Hz are improved by introducing a shallow detailed structure down to GL-20m depth at a site. We also propose to consider random fluctuation in a modeling of deep S-wave velocity structure for broadband site amplification factor estimation. The Site amplification in the frequency range higher than about 5 Hz are filtered
Directory of Open Access Journals (Sweden)
Gustavo Sanchez
2012-01-01
Full Text Available This paper presents a new fast motion estimation (ME algorithm targeting high resolution digital videos and its efficient hardware architecture design. The new Dynamic Multipoint Diamond Search (DMPDS algorithm is a fast algorithm which increases the ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS algorithm. When compared to the optimum results generated by the Full Search (FS algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD videos in real time (30 frames per second. The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5 FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of cycles necessary to process each block.
The limits of earthquake early warning: Timeliness of ground motion estimates
Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.
2018-01-01
The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.
Sex Differences in Fluid Reasoning: Manifest and Latent Estimates from the Cognitive Abilities Test
Directory of Open Access Journals (Sweden)
Joni M. Lakin
2014-06-01
Full Text Available The size and nature of sex differences in cognitive ability continues to be a source of controversy. Conflicting findings result from the selection of measures, samples, and methods used to estimate sex differences. Existing sex differences work on the Cognitive Abilities Test (CogAT has analyzed manifest variables, leaving open questions about sex differences in latent narrow cognitive abilities and the underlying broad ability of fluid reasoning (Gf. This study attempted to address these questions. A confirmatory bifactor model was used to estimate Gf and three residual narrow ability factors (verbal, quantitative, and figural. We found that latent mean differences were larger than manifest estimates for all three narrow abilities. However, mean differences in Gf were trivial, consistent with previous research. In estimating group variances, the Gf factor showed substantially greater male variability (around 20% greater. The narrow abilities varied: verbal reasoning showed small variability differences while quantitative and figural showed substantial differences in variance (up to 60% greater. These results add precision and nuance to the study of the variability and masking hypothesis.
Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang
2014-09-01
Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Faeh, D.; Suhadolc, P.; Mueller, S.; Panza, G.F.
1994-04-01
To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab
Directory of Open Access Journals (Sweden)
Basile Pinsard
2018-04-01
Full Text Available Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.
The limits of earthquake early warning: Timeliness of ground motion estimates
Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.
2018-01-01
The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions aroun...
Estimating non-circular motions in barred galaxies using numerical N-body simulations
Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.
2015-12-01
The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
Cheng, Xuemin; Hao, Qun; Xie, Mengdi
2016-04-07
Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.
Zafar, A. A.; Riaz, M. B.; Shah, N. A.; Imran, M. A.
2018-03-01
The objective of this article is to study some unsteady Couette flows of an Oldroyd-B fluid with non-integer derivatives. The fluid fills an annular region of two infinite co-axial circular cylinders. Flows are due to the motion of the outer cylinder, that rotates about its axis with an arbitrary time-dependent velocity while the inner cylinder is held fixed. Closed form solutions of dimensionless velocity field and tangential tension are obtained by means of the finite Hankel transform and the theory of Laplace transform for fractional calculus. Several results in the literature including the rotational flows through an infinite cylinder can be obtained as limiting cases of our general solutions. Finally, the control of the fractional framework on the dynamics of fluid is analyzed by numerical simulations and graphical illustrations.
International Nuclear Information System (INIS)
Fraser, D.G.; Refson, K.
1992-01-01
The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information
An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids
Directory of Open Access Journals (Sweden)
Emanuele Locatelli
2018-04-01
Full Text Available We present a numerical study in which large-scale bulk simulations of self-assembled DNA constructs have been carried out with a realistic coarse-grained model. The investigation aims at obtaining a precise, albeit numerically demanding, estimate of the free energy for such systems. We then, in turn, use these accurate results to validate a recently proposed theoretical approach that builds on a liquid-state theory, the Wertheim theory, to compute the phase diagram of all-DNA fluids. This hybrid theoretical/numerical approach, based on the lowest-order virial expansion and on a nearest-neighbor DNA model, can provide, in an undemanding way, a parameter-free thermodynamic description of DNA associating fluids that is in semi-quantitative agreement with experiments. We show that the predictions of the scheme are as accurate as those obtained with more sophisticated methods. We also demonstrate the flexibility of the approach by incorporating non-trivial additional contributions that go beyond the nearest-neighbor model to compute the DNA hybridization free energy.
Lei, Ted Chih-Wei; Tseng, Fan-Shuo
2017-07-01
This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.
DEFF Research Database (Denmark)
Wu, Mo; Forchhammer, Søren; Aghito, Shankar Manuel
2007-01-01
A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the pa...... statistics and a control scheme. The algorithm also works well for scene change condition. Test results for coding interlaced video (720x576 PAL) are reported.......A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the past...
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2007-01-01
In on-board decision support systems efficient procedures are needed for real-time estimation of the maximum ship responses to be expected within the next few hours, given on-line information on the sea state and user defined ranges of possible headings and speeds. For linear responses standard...... frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using...... the first-order reliability method (FORM), well-known from structural reliability problems. To illustrate the proposed procedure, the roll motion is modelled by a simplified non-linear procedure taking into account non-linear hydrodynamic damping, time-varying restoring and wave excitation moments...
Energy Technology Data Exchange (ETDEWEB)
Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)
2009-12-15
To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)
Directory of Open Access Journals (Sweden)
Alba Sandyra Bezerra Lopes
2012-01-01
Full Text Available The motion estimation is the most complex module in a video encoder requiring a high processing throughput and high memory bandwidth, mainly when the focus is high-definition videos. The throughput problem can be solved increasing the parallelism in the internal operations. The external memory bandwidth may be reduced using a memory hierarchy. This work presents a memory hierarchy model for a full-search motion estimation core. The proposed memory hierarchy model is based on a data reuse scheme considering the full search algorithm features. The proposed memory hierarchy expressively reduces the external memory bandwidth required for the motion estimation process, and it provides a very high data throughput for the ME core. This throughput is necessary to achieve real time when processing high-definition videos. When considering the worst bandwidth scenario, this memory hierarchy is able to reduce the external memory bandwidth in 578 times. A case study for the proposed hierarchy, using 32×32 search window and 8×8 block size, was implemented and prototyped on a Virtex 4 FPGA. The results show that it is possible to reach 38 frames per second when processing full HD frames (1920×1080 pixels using nearly 299 Mbytes per second of external memory bandwidth.
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan
2017-12-21
Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.
International Nuclear Information System (INIS)
Bonfiglio, Andrea; Repetto, Rodolfo; Stocchino, Alessandro; Siggers, Jennifer H
2013-01-01
Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina. (paper)
Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim
2012-01-01
Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.
Novakovic, M.; Atkinson, G. M.
2015-12-01
We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.
Energy Technology Data Exchange (ETDEWEB)
Foroudi, Farshad, E-mail: farshad.foroudi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Bressel, Mathias [Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Gill, Suki [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)
2013-05-01
Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatment and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between
Pan, Tsorng-Whay; Glowinski, Roland
2016-11-01
In this talk we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the formation of the chain of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact is periodically, which is similar to one of the motions of two disks settling in a narrow channel filled with a Newtonian fluid discussed by Aidun & Ding and (b) two disks draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on, which is consistent with the results for the elliptic particles settling in Oldroyd-B fluids. NSF.
First evaluation of the feasibility of MLC tracking using ultrasound motion estimation
Energy Technology Data Exchange (ETDEWEB)
Fast, Martin F., E-mail: martin.fast@icr.ac.uk; O’Shea, Tuathan P., E-mail: tuathan.oshea@nhs.net; Nill, Simeon; Oelfke, Uwe; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)
2016-08-15
Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.
First evaluation of the feasibility of MLC tracking using ultrasound motion estimation
International Nuclear Information System (INIS)
Fast, Martin F.; O’Shea, Tuathan P.; Nill, Simeon; Oelfke, Uwe; Harris, Emma J.
2016-01-01
Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.
Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics
Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian
2016-04-01
Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides
Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.
2012-12-01
We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for
A Study on Parametric Wave Estimation Based on Measured Ship Motions
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Iseki, Toshio
2011-01-01
The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics of the param......The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics...... of the parametric model are discussed by considering the results of a similar estimation concept based on Bayesian modelling. The purpose of the latter comparison is not to favour the one estimation approach to the other but rather to highlight some of the advantages and disadvantages of the two approaches....
ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.
2017-12-01
To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.
Directory of Open Access Journals (Sweden)
Chunjie Chen
2017-01-01
Full Text Available The wearable full-body exoskeleton robot developed in this study is one application of mobile cyberphysical system (CPS, which is a complex mobile system integrating mechanics, electronics, computer science, and artificial intelligence. Steel wire was used as the flexible transmission medium and a group of special wire-locking structures was designed. Additionally, we designed passive joints for partial joints of the exoskeleton. Finally, we proposed a novel gait phase recognition method for full-body exoskeletons using only joint angular sensors, plantar pressure sensors, and inclination sensors. The method consists of four procedures. Firstly, we classified the three types of main motion patterns: normal walking on the ground, stair-climbing and stair-descending, and sit-to-stand movement. Secondly, we segregated the experimental data into one gait cycle. Thirdly, we divided one gait cycle into eight gait phases. Finally, we built a gait phase recognition model based on k-Nearest Neighbor perception and trained it with the phase-labeled gait data. The experimental result shows that the model has a 98.52% average correct rate of classification of the main motion patterns on the testing set and a 95.32% average correct rate of phase recognition on the testing set. So the exoskeleton robot can achieve human motion intention in real time and coordinate its movement with the wearer.
Directory of Open Access Journals (Sweden)
Chinthaka GOONERATNE
2008-04-01
Full Text Available Hyperthermia treatment has been gaining momentum in the past few years as a possible method to manage cancer. Cancer cells are different to normal cells in many ways including how they react to heat. Due to this difference it is possible for hyperthermia treatment to destroy cancer cells without harming the healthy normal cells surrounding the tumor. Magnetic particles injected into the body generate heat by hysteresis loss and temperature is increased when a time varying external magnetic field is applied. Successful treatment depends on how efficiently the heat is controlled. Thus, it is very important to estimate the magnetic fluid density in the body. Experimental apparatus designed for testing, numerical analysis, and results obtained by experimentation using a simple yet novel and minimally invasive needle type spin-valve giant magnetoresistance (SV-GMR sensor, to estimate low concentration magnetic fluid weight density and detection of magnetic fluid in a reference medium is reported.
Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity
Energy Technology Data Exchange (ETDEWEB)
Li, Guang, E-mail: lig2@mskcc.org; Caraveo, Marshall [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Rimner, Andreas; Wu, Abraham J.; Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Yorke, Ellen [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)
2014-11-01
Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT) images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW) used for phase binning in 4DCT reconstruction. Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The breathing periodicity index (BPI) was defined as the sum of the largest five Fourier coefficients, ranging from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions of adjacent couch positions around the diaphragm were classified in three categories: incomplete, overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at the junctions was measured in distance and averaged along six directions in three orthogonal views. Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and phase-averaged APJ{sup ¯}, defined as motion-artifact severity (MAS), was obtained for each patient. To make MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MAS{sup D} is normalized to the maximum diaphragmatic displacement and MAS{sup V} is normalized to the mean diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six patients’ free-breathing 4DCT images and corresponding 1DRW data were studied. Results: Higher APJ values were found around midventilation and full inhalation while the lowest APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value
Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity
International Nuclear Information System (INIS)
Li, Guang; Caraveo, Marshall; Wei, Jie; Rimner, Andreas; Wu, Abraham J.; Goodman, Karyn A.; Yorke, Ellen
2014-01-01
Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT) images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW) used for phase binning in 4DCT reconstruction. Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The breathing periodicity index (BPI) was defined as the sum of the largest five Fourier coefficients, ranging from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions of adjacent couch positions around the diaphragm were classified in three categories: incomplete, overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at the junctions was measured in distance and averaged along six directions in three orthogonal views. Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and phase-averaged APJ ¯ , defined as motion-artifact severity (MAS), was obtained for each patient. To make MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MAS D is normalized to the maximum diaphragmatic displacement and MAS V is normalized to the mean diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six patients’ free-breathing 4DCT images and corresponding 1DRW data were studied. Results: Higher APJ values were found around midventilation and full inhalation while the lowest APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value ranging from 0
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan
2008-09-01
We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.
Directory of Open Access Journals (Sweden)
Rulin Huang
2017-04-01
Full Text Available Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estimation- and motion-model-based (IEMMB method to address these disadvantages. First, a state vector is constructed by combining the road structure and the moving state of detected vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from collected data, and the patterns are used to estimate the driving intent of the detected vehicles. Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model, are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5% on winding roads, which is much higher than that achieved by the method that ignores the road structure. The average collision detection distance is increased by more than 8 m. In addition, the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an improvement in the driving comfort.
Energy Technology Data Exchange (ETDEWEB)
Kim, J [The University of Sydney, Sydney, New South Wales (Australia); Nguyen, D; O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia); Huang, C [Sydney Medical School, Camperdown (Australia); Caillet, V [The University of Sydney, Sydney, NSW (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark); Booth, J [Royal North Shore Hospital, Sydney (Australia)
2016-06-15
Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) using a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.
Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun
2018-05-01
For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
International Nuclear Information System (INIS)
Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W
2014-01-01
Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different
Energy Technology Data Exchange (ETDEWEB)
Huang, Q; Zhang, Y [Duke University, Durham, NC (United States); Liu, Y [Duke University (United States); Hu, L; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States)
2014-06-15
Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different
Directory of Open Access Journals (Sweden)
E. Lannutti
2016-06-01
Full Text Available In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.
Energy Technology Data Exchange (ETDEWEB)
Werner, Rene
2013-07-01
Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the
Directory of Open Access Journals (Sweden)
Seyed Rohollah Hosseini Vaez
2017-08-01
Full Text Available In this study the ability of equivalent pulse extracted by a mathematical model from pulse-like ground motion is investigated in order to estimate the response of RC moment-resisting frames. By examining the mathematical model, it is obvious that the model-based elastic response spectra are compatible with the actual pulse-like record. Also, the model simulates the long-period portion of actual pulse-like records by a high level of precision. The results indicate that the model adequately simulates the components of time histories. In order to investigate the ability of equivalent pulse of pulse-like ground motion in estimating the response of RC moment-resisting frames, five frame models including 3, 6, 9, 12 and 15 stories analyzed under actual record and simulated one. The results of the base shear demand, the maximum value of the inter-story drift and the distribution of inter-story drift along the height of the structures in three levels of design ductility is investigated. According to the results of this study, the equivalent pulses can predict accurately the response of regular RC moment-resisting frames when the fundamental period of the structure is equal to or greater than the equivalent pulse of the record. For the ground motion with high-frequency content the difference is high; but with increasing the number of stories and approaching pulse period to the fundamental period of the structure and increasing the level of design ductility of structure, more accurately predict the structural response.
Estimation of Subdaily Polar Motion with the Global Positioning System During the Spoch '92 Campaign
Ibanez-Meier, R.; Freedman, A. P.; Herring, T. A.; Gross, R. S.; Lichten, S. M.; Lindqwister, U. J.
1994-01-01
Data collected over six days from a worldwide Global Positioning System (GPS) tracking network during the Epoch '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes.
Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy
Elosegui, P.
2005-01-01
The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).
Estimating the Counterparty Risk Exposure by Using the Brownian Motion Local Time
Directory of Open Access Journals (Sweden)
Bonollo Michele
2017-06-01
Full Text Available In recent years, the counterparty credit risk measure, namely the default risk in over-the-counter (OTC derivatives contracts, has received great attention by banking regulators, specifically within the frameworks of Basel II and Basel III. More explicitly, to obtain the related risk figures, one is first obliged to compute intermediate output functionals related to the mark-to-market position at a given time no exceeding a positive and finite time horizon. The latter implies an enormous amount of computational effort is needed, with related highly time consuming procedures to be carried out, turning out into significant costs. To overcome the latter issue, we propose a smart exploitation of the properties of the (local time spent by the Brownian motion close to a given value.
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Tufto, Jarle; Lande, Russell; Ringsby, Thor-Harald; Engen, Steinar; Saether, Bernt-Erik; Walla, Thomas R; DeVries, Philip J
2012-07-01
1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Comparison of Point and Line Features and Their Combination for Rigid Body Motion Estimation
DEFF Research Database (Denmark)
Pilz, Florian; Pugeault, Nicolas; Krüger, Norbert
2009-01-01
evaluate and compare the results using line and point features as 3D-2D constraints and we discuss the qualitative advantages and disadvantages of both feature types for RBM estimation. We also demonstrate an improvement in robustness through the combination of these features on large data sets...
Estimation of ground reaction forces and moments during gait using only inertial motion capture
Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Petrus H.
Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
Cardiac and Respiratory Parameter Estimation Using Head-mounted Motion-sensitive Sensors
Directory of Open Access Journals (Sweden)
J. Hernandez
2015-05-01
Full Text Available This work explores the feasibility of using motion-sensitive sensors embedded in Google Glass, a head-mounted wearable device, to robustly measure physiological signals of the wearer. In particular, we develop new methods to use Glass’s accelerometer, gyroscope, and camera to extract pulse and respiratory waves of 12 participants during a controlled experiment. We show it is possible to achieve a mean absolute error of 0.82 beats per minute (STD: 1.98 for heart rate and 0.6 breaths per minute (STD: 1.19 for respiration rate when considering different observation windows and combinations of sensors. Moreover, we show that a head-mounted gyroscope sensor shows improved performance versus more commonly explored sensors such as accelerometers and demonstrate that a head-mounted camera is a novel and promising method to capture the physiological responses of the wearer. These findings included testing across sitting, supine, and standing postures before and after physical exercise.
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Takahashi, T.; Tucsnak, M.
2011-01-01
Roč. 116, č. 3 (2011), s. 329-352 ISSN 0167-8019 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes equations * fluid-structure integration * weak solutions * free boundary Subject RIV: BA - General Mathematics Impact factor: 0.899, year: 2011 http://rd.springer.com/article/10.1007/s10440-011-9646-2#
Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.
2018-01-01
Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of -0.03 ± 0.32 mm, -0.01 ± 0.13 mm and 0.03 ± 0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07 ± 1.18°, 0.07 ± 1.00° and 0.06 ± 1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81
Andersson, Kennet
2011-01-01
Patients with idiopathic normal pressure hydrocephalus (INPH) have a disturbance in the cerebrospinal fluid (CSF) system. The treatment is neurosurgical – a shunt is placed in the CSF system. The infusion test is used to assess CSF system dynamics and to aid in the selection of patients that will benefit from shunt surgery. The infusion test can be divided into three parts: a mathematical model, an infusion protocol and a parameter estimation method. A non-linear differential equation is used...
DEFF Research Database (Denmark)
Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan
Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety......, there is no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured....
Estimation of strong ground motion and micro-zonation for the city of Rome
International Nuclear Information System (INIS)
Faeh, D.; Iodice, C.; Suhadolc, P.; Panza, G.F.
1994-03-01
A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by possible earthquakes occurring in the main seismogenetic areas surrounding the city: the Central Apennines and the Alban Hills. The results of the numerical simulations are used for a first order seismic micro-zonation in the city of Rome, which can be used for the retrofitting of buildings of special social and cultural value. Rome can be divided into six main zones: (1) the edge and (2) the central part of the alluvial basin of the river Tiber; (3) the edges and (4) the central part of the Paleotiber basin; the areas outside the large basins of the Tiber and Paleotiber, where we distinguish between (5) areas without, and (6) areas with a layer of volcanic rocks close to the surface. The strongest amplification effects have to be expected at the edges of the Tiber basin, with maximum spectral amplification of the order of 5 to 6, and strong amplifications occur inside the entire alluvial basin of the Tiber. The presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'', when the rigid material covers a sedimentary complex. The reason is that the underlying sedimentary complex causes amplifications at the surface due to resonance effects. This phenomenon can be observed in the Paleotiber basin, where spectral amplifications in the frequency range 0.3-1.0 Hz reach values of the order of 3 to 4. (author). 17 refs, 5 figs, 2 tabs
International Nuclear Information System (INIS)
Buendia, R; Seoane, F; Lindecrantz, K; Bosaeus, I; Gil-Pita, R; Johannsson, G; Ellegård, L; Ward, L C
2015-01-01
Determination of body fluids is a useful common practice in determination of disease mechanisms and treatments. Bioimpedance spectroscopy (BIS) methods are non-invasive, inexpensive and rapid alternatives to reference methods such as tracer dilution. However, they are indirect and their robustness and validity are unclear. In this article, state of the art methods are reviewed, their drawbacks identified and new methods are proposed. All methods were tested on a clinical database of patients receiving growth hormone replacement therapy. Results indicated that most BIS methods are similarly accurate (e.g. < 0.5 ± 3.0% mean percentage difference for total body water) for estimation of body fluids. A new model for calculation is proposed that performs equally well for all fluid compartments (total body water, extra- and intracellular water). It is suggested that the main source of error in extracellular water estimation is due to anisotropy, in total body water estimation to the uncertainty associated with intracellular resistivity and in determination of intracellular water a combination of both. (paper)
International Nuclear Information System (INIS)
Mukherjee, Joyeeta Mitra; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A; Hutton, Brian F
2013-01-01
Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference, mutual information, normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation and entropy of the difference. Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the
International Nuclear Information System (INIS)
Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen
2016-01-01
During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of "1"3"1I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled "1"3"1I. This study aims to estimate the inhalation dose for individuals manipulating the "1"3"1I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged "1"3"1I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6 mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. - Highlights: • We constructed the time-microenvironment patterns with 1-min resolution by using a smartphone application. • Exposure to "1"3"1I at the dry distillation areas may lead to an acute inhalation dose significantly. • Using smartphone as a motion detector in indoor exposure monitoring is a reliable method.
Directory of Open Access Journals (Sweden)
Kun-Sung Liu
2017-01-01
Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.
Energy Technology Data Exchange (ETDEWEB)
O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)
2015-06-15
Purpose: In similarity-measure based motion estimation incremental tracking (or template update) is challenging due to quantization, bias and accumulation of tracking errors. A method is presented which aims to improve the accuracy of incrementally tracked liver feature motion in long ultrasound sequences. Methods: Liver ultrasound data from five healthy volunteers under free breathing were used (15 to 17 Hz imaging rate, 2.9 to 5.5 minutes in length). A normalised cross-correlation template matching algorithm was implemented to estimate tissue motion. Blood vessel motion was manually annotated for comparison with three tracking code implementations: (i) naive incremental tracking (IT), (ii) IT plus a similarity threshold (ST) template-update method and (iii) ST coupled with a prediction-based state observer, known as the alpha-beta filter (ABST). Results: The ABST method produced substantial improvements in vessel tracking accuracy for two-dimensional vessel motion ranging from 7.9 mm to 40.4 mm (with mean respiratory period: 4.0 ± 1.1 s). The mean and 95% tracking errors were 1.6 mm and 1.4 mm, respectively (compared to 6.2 mm and 9.1 mm, respectively for naive incremental tracking). Conclusions: High confidence in the output motion estimation data is required for ultrasound-based motion estimation for radiation therapy beam tracking and gating. The method presented has potential for monitoring liver vessel translational motion in high frame rate B-mode data with the required accuracy. This work is support by Cancer Research UK Programme Grant C33589/A19727.
Two-fluid modeling of thermal-hydraulic phenomena for best-estimate LWR safety analysis
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.
1989-01-01
Two-fluid formulation of the conservation equations has allowed modelling of the two-phase flow and heat transfer phenomena and situations involving strong departures in thermal and velocity equilibrium between the phases. The paper reviews the state of the art in modelling critical flows, and certain phase separation phenomena, as well as post-dryout heat transfer situations. Although the two-fluid models and the codes have the potential for correctly modelling such situations, this potential has not always been fully used in practice. (orig.)
Directory of Open Access Journals (Sweden)
Shailesh Kamble
2017-08-01
Full Text Available The major challenge with fractal image/video coding technique is that, it requires more encoding time. Therefore, how to reduce the encoding time is the research component remains in the fractal coding. Block matching motion estimation algorithms are used, to reduce the computations performed in the process of encoding. The objective of the proposed work is to develop an approach for video coding using modified three step search (MTSS block matching algorithm and weighted finite automata (WFA coding with a specific focus on reducing the encoding time. The MTSS block matching algorithm are used for computing motion vectors between the two frames i.e. displacement of pixels and WFA is used for the coding as it behaves like the Fractal Coding (FC. WFA represents an image (frame or motion compensated prediction error based on the idea of fractal that the image has self-similarity in itself. The self-similarity is sought from the symmetry of an image, so the encoding algorithm divides an image into multi-levels of quad-tree segmentations and creates an automaton from the sub-images. The proposed MTSS block matching algorithm is based on the combination of rectangular and hexagonal search pattern and compared with the existing New Three-Step Search (NTSS, Three-Step Search (TSS, and Efficient Three-Step Search (ETSS block matching estimation algorithm. The performance of the proposed MTSS block matching algorithm is evaluated on the basis of performance evaluation parameters i.e. mean absolute difference (MAD and average search points required per frame. Mean of absolute difference (MAD distortion function is used as the block distortion measure (BDM. Finally, developed approaches namely, MTSS and WFA, MTSS and FC, and Plane FC (applied on every frame are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, akiyo, bus, mobile, suzie, traffic, football, soccer, ice etc. Developed
Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas
2018-03-01
Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple) neighboring GNSS stations can be used to estimate VLM at the TG. This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS by taking into account all GNSS trends with an uncertainty smaller than 1 mm yr-1 within 50 km. The range between the methods is comparable with the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry-tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series reduces the SD of ALT-TG time series by up to 10 %. As a result, there are spatially coherent changes in the trends, but the reduction in the root mean square (RMS) of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm yr-1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of differences between ALT-TG and GNSS trends vary between 0.1 and 0.2 mm yr-1. We reduce the mean of the differences by taking into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds, we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we recommend using the GNSS trend estimates because residual
Non-invasive Player Experience Estimation from Body Motion and Game Context
DEFF Research Database (Denmark)
Burelli, Paolo; Triantafyllidis, George; Patras, Ioannis
2014-01-01
In this paper, we investigate on the relationship between player experience and body movements in a non-physical 3D computer game. During an experiment, the participants played a series of short game sessions and rated their experience while their body movements were tracked using a depth camera....... The data collected was analysed and a neural network was trained to find the mapping between player body movements, player in- game behaviour and player experience. The results reveal that some aspects of player experience, such as anxiety or challenge, can be detected with high accuracy (up to 81......%). Moreover, taking into account the playing context, the accuracy can be raised up to 86%. Following such a multi-modal approach, it is possible to estimate the player experience in a non-invasive fashion during the game and, based on this information, the game content could be adapted accordingly....
International Nuclear Information System (INIS)
Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun
2014-01-01
Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area
International Nuclear Information System (INIS)
Itagaki, Hideyuki; Horie, Kazuyuki; Mita, Itaru; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho
1989-01-01
The dynamic process of intramolecular excimer formation in diasteroisomeric oligomers model compounds of polystyrene, was investigated by using a picosecond pulse radiolysis technique. Monomer fluorescence of all-racemic isomers decays single-exponentially, while that of other isomers decays dual-exponentially. Multicomponent fluorescence decay curves are supposed to be mainly induced by conformational changes. The results suggest that the excimer in oligostyrenes (or polystyrene) is formed mainly in meso diad. It is definitely proved that there exists singlet energy migration in styrene trimer and tetramer systems. The conformational change in PS3 and PS4 is concluded to occur by way of cooperative motions in backbone chains bond such as a crankshaft transition, not by way of independent rotation around each carbon-carbon bond of the backbone chain. (author)
Video measurements of fluid velocities and water levels in breaking waves
CSIR Research Space (South Africa)
Govender, K
2002-01-01
Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...
International Nuclear Information System (INIS)
Xu, J.J.; Woo, J.T.
1987-01-01
The steady-state flow of a conducting fluid between two coaxial rotating disks in the presence of an axial magnetic field is considered for the following conditions: (1) the gap d between two disks is very small compared with the radial extension of the disks R; (2) the angular velocity of the disks is not too high, so that the thickness of the Eckman layer δ is still larger than the gap d, (d/δ) 1 /sup // 4 2 /d 2 . Under these conditions asymptotic solutions to the problem are obtained in terms of the small parameter Epsilon = d/R. The results show that to the lowest-order approximation, the electric properties of the disks are not important to the flow field, while the magnitude of the magnetic field plays an important role in the equilibrium flow profile
Park, Moongyu; Cushman, John Howard; O'Malley, Dan
2014-09-30
The collective molecular reorientations within a nematic liquid crystal fluid bathing a spherical colloid cause the colloid to diffuse anomalously on a short time scale (i.e., as a non-Brownian particle). The deformations and fluctuations of long-range orientational order in the liquid crystal profoundly influence the transient diffusive regimes. Here we show that an anisotropic fractional Brownian process run with a nonlinear multiscaling clock effectively mimics this collective and transient phenomenon. This novel process has memory, Gaussian increments, and a multiscale mean square displacement that can be chosen independently from the fractal dimension of a particle trajectory. The process is capable of modeling multiscale sub-, super-, or classical diffusion. The finite-size Lyapunov exponents for this multiscaling process are defined for future analysis of related mixing processes.
Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen
2016-09-01
During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of (131)I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled (131)I. This study aims to estimate the inhalation dose for individuals manipulating the (131)I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged (131)I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.
Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen
2016-01-01
Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p < 0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical
Hainzl, S.; Fischer, T.; Dahm, T.
2012-10-01
Two recent major swarms in Western Bohemia occurred in the years 2000 and 2008 within almost the same portion of a fault close to Novy Kostel. Previous analysis of the year 2000 earthquake swarm revealed that fluid intrusion seemed to initiate the activity whereas stress redistribution by the individual swarm earthquakes played a major role in the further swarm evolution. Here we analyse the new swarm, which occurred in the year 2008, with regard to its correlation to the previous swarm as well its spatiotemporal migration patterns. We find that (i) the main part of the year 2008 activity ruptured fault patches adjacent to the main activity of the swarm 2000, but that also (ii) a significant overlap exists where earthquakes occurred in patches in which stress had been already released by precursory events; (iii) the activity shows a clear migration which can be described by a 1-D (in up-dip direction) diffusion process; (iv) the migration pattern can be equally well explained by a hydrofracture growth, which additionally explains the faster migration in up-dip compared to the down-dip direction as well as the maximum up-dip extension of the activity. We use these observations to estimate the underlying fluid pressure change in two different ways: First, we calculate the stress changes induced by precursory events at the location of each swarm earthquake assuming that observed stress deficits had to be compensated by pore pressure increases; and secondly, we estimate the fluid overpressure by fitting a hydrofracture model to the asymmetric seismicity patterns. Both independent methods indicate that the fluid pressure increase was initially up to 30 MPa.
Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions
Directory of Open Access Journals (Sweden)
Guillem Masoliver i Marcos
2017-01-01
Full Text Available The construction process of a viscometer, developed in collaboration with a final project student, is here presented. It is intended to be used by first year's students to know the viscosity as a fluid property, for both Newtonian and non-Newtonian flows. Viscosity determination is crucial for the fluids behaviour knowledge related to their reologic and physical properties. These have great implications in engineering aspects such as friction or lubrication. With the present experimental model device three different fluids are analyzed (water, kétchup and a mixture with cornstarch and water. Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.
Scislewski, A.; Zuddas, P.
2010-12-01
Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react
Huang, Xiaokun; Zhang, You; Wang, Jing
2018-02-01
Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.
Estimating the Density of Fluid in a Pipeline System with an Electropump
DEFF Research Database (Denmark)
Sadeghi, H.; Poshtan, J.; Poulsen, Niels Kjølstad
2018-01-01
to detect the product in the pipeline is to sample the fluid in a laboratory and perform an offline measurement of its physical characteristics. The measurement requires sophisticated laboratory equipment and can be time-consuming and susceptible to human error. In this paper, for performing the online......To transfer petroleum products, a common pipeline is often used to continuously transfer various products in batches. Separating the different products requires detecting the interface between the batches at the storage facilities or pump stations along the pipelines. The conventional technique...
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Yatsushiro, Satoshi; Kuroda, Kagayaki
2017-10-18
Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also measures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantitatively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic normal pressure hydrocephalus (iNPH) or Alzheimer's disease (AD) presenting with ventricular enlargement. Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct were quantified and compared between the three groups using Kolmogorov-Smirnov and Mann-Whitney U tests. There was no statistically significant difference in velocity among the three groups. The pressure gradient was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similarities in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individuals, and that iNPH patients and AD patients display similar CSF motion profiles.
Directory of Open Access Journals (Sweden)
Simon Cool
2015-11-01
Full Text Available Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m2 with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications.
Directory of Open Access Journals (Sweden)
Karandish
2016-09-01
Full Text Available Background Different methods are used for adequate fluid intake assessment, while there is no standard method for adequate fluid intake assessment. Objectives The current pilot study aimed to evaluate the amount, type and frequency of fluids consumption to determine the correlation between three- and seven-day records. Methods This pilot cross-sectional study was done on 30 adult subjects in Ahvaz, Iran during year 2014. Demographic data were collected via a questionnaire and fluids consumption was assessed with a seven days records questionnaire. For data analyses the SPSS 16 software was used. Results Results of this cross-sectional study showed that the average total daily fluids consumption was 1.6 liter. Total fluids consumption for each subject on average in three and seven days was 4.5 and 11 liter, respectively. Water was the major fluid, which the participants consumed and tea was the second item. Total amount and frequency of fluids intake were not significantly different between three and seven-day records (P = 0.287, (P = 0.546. Conclusions This study showed that there was no significant difference between the record of seven and three days of fluids consumption in the participants and it is suggested that three-day records is useful in order to determine fluids intake.
Luce, C. H.; Tonina, D.; Applebee, R.; DeWeese, T.
2017-12-01
Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes, thermal conductivity, or bed surface elevation from temperature time series in streambeds are that the solution assumes that 1) the surface boundary condition is a sine wave or nearly so, and 2) there is no gradient in mean temperature with depth. Concerns on these subjects are phrased in various ways, including non-stationarity in frequency, amplitude, or phase. Although the mathematical posing of the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we re-derive the inverse solution of the 1-D advection-diffusion equation starting with an arbitrary surface boundary condition for temperature. In doing so, we demonstrate the frequency-independence of the solution, meaning any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes, gradients in the mean temperature with depth, or `non-stationary' amplitude and frequency (or phase) do not actually represent violations of assumptions, and they should not cause errors in estimates when using one of the suite of existing solution methods derived based on a single frequency. Misattribution of errors to these issues constrains progress on solving real sources of error. Numerical and physical experiments are used to verify this conclusion and consider the utility of information at `non-standard' frequencies and multiple frequencies to augment the information derived from time series of temperature.
Computational Fluid Dynamics (CFD-Based Droplet Size Estimates in Emulsification Equipment
Directory of Open Access Journals (Sweden)
Jo Janssen
2016-12-01
Full Text Available While academic literature shows steady progress in combining multi-phase computational fluid dynamics (CFD and population balance modelling (PBM of emulsification processes, the computational burden of this approach is still too large for routine use in industry. The challenge, thus, is to link a sufficiently detailed flow analysis to the droplet behavior in a way that is both physically relevant and computationally manageable. In this research article we propose the use of single-phase CFD to map out the local maximum stable droplet diameter within a given device, based on well-known academic droplet break-up studies in quasi-steady 2D linear flows. The results of the latter are represented by analytical correlations for the critical capillary number, which are valid across a wide viscosity ratio range. Additionally, we suggest a parameter to assess how good the assumption of quasi-steady 2D flow is locally. The approach is demonstrated for a common lab-scale rotor-stator device (Ultra-Turrax, IKA-Werke GmbH, Staufen, Germany. It is found to provide useful insights with minimal additional user coding and little increase in computational effort compared to the single-phase CFD simulations of the flow field, as such. Some suggestions for further development are briefly discussed.
Palace, M. W.; DelGreco, J.; Herrick, C.; Sullivan, F.; Varner, R. K.
2017-12-01
The collapse of permafrost, due to thawing, changes landscape topography, hydrology and vegetation. Changes in plant species composition influence methane production pathways and methane emission rates. The complex spatial heterogeneity of vegetation composition across peatlands proves important in quantifying methane emissions. Effort to characterize vegetation across these permafrost peatlands has been conducted with varied success, with difficulty seen in estimating some cover types that are at opposite ends of the permafrost collapse transition, ie palsa/tall shrub and tall graminoid. This is because some of the species are the same (horsetail) and some of the species have similar structure (horsetail/Carex spp.). High resolution digital elevation maps, developed with airborne LIght Detection And Ranging (lidar) have provided insight into some wetland attributes, but lidar collection is costly and requires extensive data processing effort. Lidar information also lacks the spectral information that optical sensors provide. We used an inexpensive Unmanned Aerial Vehicle (UAV) with an optical sensor to image a mire in northern Sweden (Stordalen Mire) in 2015. We collected 700 overlapping images that were stitched together using Structure from Motion (SfM). SfM analysis also provided, due to parallax, the ability to develop a height map of vegetation. This height map was used, along with textural analysis, to develop an artificial neural network to predict five vegetation cover types. Using 200 training points, we found improvements in our prediction of these cover types. We suggest that using the digital height model from SfM provides useful information in remotely sensing vegetation across a permafrost collapsing region that exhibit resulting changes in vegetation composition. The ability to rapidly and inexpensively deploy such a UAV system provides the opportunity to examine multiple sites with limited personnel effort in remote areas.
Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito
2017-07-01
The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses
International Nuclear Information System (INIS)
Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro
2009-01-01
Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)
Wall Shear Stress Estimation of Thoracic Aortic Aneurysm Using Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
J. Febina
2018-01-01
Full Text Available An attempt has been made to evaluate the effects of wall shear stress (WSS on thoracic aortic aneurysm (TAA using Computational Fluid Dynamics (CFD. Aneurysm is an excessive localized swelling of the arterial wall due to many physiological factors and it may rupture causing shock or sudden death. The existing imaging modalities such as MRI and CT assist in the visualization of anomalies in internal organs. However, the expected dynamic behaviour of arterial bulge under stressed condition can only be effectively evaluated through mathematical modelling. In this work, a 3D aneurysm model is reconstructed from the CT scan slices and eventually the model is imported to Star CCM+ (Siemens, USA for intensive CFD analysis. The domain is discretized using polyhedral mesh with prism layers to capture the weakening boundary more accurately. When there is flow reversal in TAA as seen in the velocity vector plot, there is a chance of cell damage causing clots. This is because of the shear created in the system due to the flow pattern. It is observed from the proposed mathematical modelling that the deteriorating WSS is an indicator for possible rupture and its value oscillates over a cardiac cycle as well as over different stress conditions. In this model, the vortex formation pattern and flow reversals are also captured. The non-Newtonian model, including a pulsatile flow instead of a steady average flow, does not overpredict the WSS (15.29 Pa compared to 16 Pa for the Newtonian model. Although in a cycle the flow behaviour is laminar-turbulent-laminar (LTL, utilizing the non-Newtonian model along with LTL model also overpredicted the WSS with a value of 20.1 Pa. The numerical study presented here provides good insight of TAA using a systematic approach to numerical modelling and analysis.
International Nuclear Information System (INIS)
Berryman, J.G.; Blair, S.C.
1986-01-01
Scanning electron microscope images of cross sections of several porous specimens have been digitized and analyzed using image processing techniques. The porosity and specific surface area may be estimated directly from measured two-point spatial correlation functions. The measured values of porosity and image specific surface were combined with known values of electrical formation factors to estimate fluid permeability using one version of the Kozeny-Carman empirical relation. For glass bead samples with measured permeability values in the range of a few darcies, our estimates agree well ( +- 10--20%) with the measurements. For samples of Ironton-Galesville sandstone with a permeability in the range of hundreds of millidarcies, our best results agree with the laboratory measurements again within about 20%. For Berea sandstone with still lower permeability (tens of millidarcies), our predictions from the images agree within 10--30%. Best results for the sandstones were obtained by using the porosities obtained at magnifications of about 100 x (since less resolution and better statistics are required) and the image specific surface obtained at magnifications of about 500 x (since greater resolution is required)
Basile Pinsard; Basile Pinsard; Basile Pinsard; Arnaud Boutin; Arnaud Boutin; Julien Doyon; Julien Doyon; Habib Benali; Habib Benali; Habib Benali
2018-01-01
Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit ...
Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati
2018-05-01
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.
Sun, Yu; Riva, Riccardo; Ditmar, Pavel
2016-11-01
The focus of the study is optimizing the technique for estimating geocenter motion and variations in J2 by combining data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with output from an Ocean Bottom Pressure model and a Glacial Isostatic Adjustment (GIA) model. First, we conduct an end-to-end numerical simulation study. We generate input time-variable gravity field observations by perturbing a synthetic Earth model with realistically simulated errors. We show that it is important to avoid large errors at short wavelengths and signal leakage from land to ocean, as well as to account for self-attraction and loading effects. Second, the optimal implementation strategy is applied to real GRACE data. We show that the estimates of annual amplitude in geocenter motion are in line with estimates from other techniques, such as satellite laser ranging (SLR) and global GPS inversion. At the same time, annual amplitudes of C10 and C11 are increased by about 50% and 20%, respectively, compared to estimates based on Swenson et al. (2008). Estimates of J2 variations are by about 15% larger than SLR results in terms of annual amplitude. Linear trend estimates are dependent on the adopted GIA model but still comparable to some SLR results.
Agarwal, Ashok Kumar; Bansal, Sonia; Nand, Vidya
2014-02-01
Tuberculosis kills 3.70 lakh patients in India every year,out of which 7-12 % are meningeal involvement. Delay in its diagnosis and initiation of treatment results in poor prognosis and squeal in up to 25% of cases. The aim of the present study is to look for a simple, rapid, cost effective, and fairly specific test in differentiating tubercular aetiology from other causes of meningitis. In the present study we measured the adenosine deaminase activity (ADA) in Cerebrospinal Fluid (CSF) of Tubercular Meningitis (TBM) and non-TBM patients. Fifty six patients attending hospital with symptoms and signs of meningitis were selected and divided into three groups: tubercular, pyogenic, and aseptic meningitis, depending upon the accepted criteria. CSF was drawn and ADA estimated. Out of 32 tubercular patients, 28 had CSF-ADA at or above the cut-off value while four had below. Out of 24 non-tuberculous patients (pyogenic and aseptic meningitis), two aseptic meningitis (AM) patient had ADA levels at or above the cut-off value while 22 had below this value. RESULTS of our study indicate that ADA level estimation in CSF is not only of considerable value in the diagnosis of TBM, CSF, and ADA level 10 U/L as a cut-off value with sensitivity 87.5% and specificity 83.33% and positive predictive value of the test was 87.5%.and 83.3% negative predictive value. It can be concluded that ADA estimation in CSF is not only simple, inexpensive and rapid but also fairly specific method for making a diagnosis of tuberculous aetiology in TBM, especially when there is a dilemma of differentiating the tuberculous aetiology from non-tuberculous ones. For this reason ADA estimation in TBM may find a place as a routine investigation.
Bergmann-Wolf, Inga; Dobslaw, Henryk
2016-04-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists. In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed. Swenson, S., D. Chambers and J. Wahr (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410 Bergmann-Wolf, I., L. Zhang and H. Dobslaw (2014), Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from GRACE, J. Geod. Sci., 4, 37-48
Directory of Open Access Journals (Sweden)
Tan W
2013-09-01
differ significantly between men and women. Conclusion: Most average displacements of the cardiac substructures and coronary arteries were 3–8 mm in three dimensions. These findings will be useful to accurately estimate the radiation dose to cardiac substructures during thoracic radiation and to evaluate the risk of radiation-related heart disease. Keywords: coronary artery, organ motion/displacement, radiotherapy, heart disease
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome
International Nuclear Information System (INIS)
Faeh, D.; Iodice, C.; Suhadole, P.; Panza, G.F.
1994-04-01
A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (M=6.9). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and certain quantities related to the computed ground motion. These quantities are those commonly used for engineering purposes, e.g. the peak ground acceleration, the maximum response of a simple oscillator, and the so-called ''total energy of ground motion'' which is related to the Arias Intensity. Integral quantities of the computed time-series, such as the total energy of ground motion, are in good agreement with the observed distribution of damage and turn out to give a good representation of the ground motion. From the computation of spectral ratios, it has been recognised that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'' when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by very large differences in the seismic response, even if the lateral variations of local soil conditions are relatively smooth. (author). Refs, 12 figs, 1 tab
Energy Technology Data Exchange (ETDEWEB)
Kijima, K; Yukawa, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Maekawa, K [Hokkaido University, Sapporo (Japan). Faculty of Fisheries
1996-04-10
Estimation of the maneuvering performance of ships is very important from the viewpoint of safe navigation. Using three types of VLCCs (SR221A, B, C) with locally different stern frame lines as computational models, the estimation method of hull hydrodynamic force in turning motion was studied theoretically taking frame line shapes into account. The unstable behavior of courses was also studied using linear differential coefficients obtained from the estimation result on hull hydrodynamic force in oblique navigation and turning motion. As a result, the estimation result on hull hydrodynamic force was slightly different quantitatively from model test results in a range of large drift angle or turning angular velocity, while that was relatively well agreed with test results in a range of small such angle and velocity. As the study result on the unstable behavior of courses by using linear differential coefficients obtained from the estimation result on hull hydrodynamic force, determination of a course stability was possible by considering local difference in hull shape. 4 refs., 8 figs., 1 tab.
Sandeep, N.; Animasaun, I. L.
2017-06-01
Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
Directory of Open Access Journals (Sweden)
Sandeep N.
2017-06-01
Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.
Energy Technology Data Exchange (ETDEWEB)
Scholl, David, E-mail: David.Scholl@utoronto.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Kim, Han W., E-mail: hanwkim@gmail.com [Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, Duke University, NC (United States); Shah, Dipan, E-mail: djshah@tmhs.org [The Methodist DeBakey Heart Center, Houston, TX (United States); Fine, Nowell M., E-mail: nowellfine@gmail.com [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Tandon, Shruti, E-mail: standon4@uwo.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Thompson, Terry, E-mail: thompson@lawsonimaging.ca [Lawson Health Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Drangova, Maria, E-mail: mdrangov@imaging.robarts.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); White, James A., E-mail: jwhite@imaging.robarts.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada)
2012-08-15
Background: Visual determination of left ventricular ejection fraction (LVEF) by segmental scoring may be a practical alternative to volumetric analysis of cine magnetic resonance imaging (MRI). The accuracy and reproducibility of this approach for has not been described. The purpose of this study was to validate a novel segmental visual scoring method for LVEF estimation using cine MRI. Methods: 362 patients with known or suspected cardiomyopathy were studied. A modified wall motion score (mWMS) was used to blindly score the wall motion of all cardiac segments from cine MRI imaging. The same datasets were subjected to blinded volumetric analysis using endocardial contour tracing. The population was then separated into a model cohort (N = 181) and validation cohort (N = 181), with the former used to derive a regression equation of mWMS versus true volumetric LVEF. The validation cohort was then used to test the accuracy of this regression model to estimate the true LVEF from a visually determined mWMS. Reproducibility testing of mWMS scoring was performed upon a randomly selected sample of 20 cases. Results: The regression equation relating mWMS to true LVEF in the model cohort was: LVEF = 54.23 - 0.5761 Multiplication-Sign mWMS. In the validation cohort this equation produced a strong correlation between mWMS-derived LVEF and true volumetric LVEF (r = 0.89). Bland and Altman analysis showed no systematic bias in the LVEF estimated using the mWMS (-0.3231%, 95% limits of agreement -12.22% to 11.58%). Inter-observer and intra-observer reproducibility was excellent (r = 0.93 and 0.97, respectively). Conclusion: The mWMS is a practical tool for reporting regional wall motion and provides reproducible estimates of LVEF from cine MRI.
International Nuclear Information System (INIS)
Lewis, C; Jiang, R; Chow, J
2015-01-01
Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describing the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system
International Nuclear Information System (INIS)
Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J
2015-01-01
The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)
Sun, Y.; Ditmar, P.; Riva, R.
2015-12-01
The Gravity Recovery and Climate Experiment (GRACE) satellite mission, since the launch in 2002, has enabled the monitoring of mass transport in the Earth's system on a monthly basis. In spite of continuous improvements in data processing techniques, an estimation of very low-degree spherical harmonic coefficients remains problematic. GRACE is insensitive to variations in the degree-1 coefficients (ΔC11, ΔS11 and ΔC10), which reflect the motion of the geocenter. The variations of C20 coefficients, which characterize changes in the Earth's dynamic oblateness (Δ J2) are corrupted by ocean tide aliases and usually replaced with estimates from other techniques.In this study, the methodology proposed by Swenson et al. (2008) to estimate geocenter motion is updated and extended to co-estimate changes in the Earth's dynamic oblateness. The algorithm uses monthly GRACE gravity solutions (in the form of spherical harmonic coefficients), an ocean bottom pressure model (over the oceans), and a glacial isostatic adjustment (GIA) model (globally). GRACE solutions over coastal areas may suffer from signal leakage due to their limited spectral content and to filtering. We effectively avoid the influence of this effect by introducing a carefully chosen buffer zone. We also take into account self-attraction and loading effects when dealing with water redistribution in the oceans. The estimated annual amplitude of ΔC10 , i.e. the Z component of the geocenter motion, is significantly amplified compared to the original estimations of Swenson et al. (2008) and it is in line with estimates from other techniques, such as the global GPS inversion. The resulting ΔC20 time-series agree remarkably well with a solution based on satellite laser ranging data, which is currently believed to be one of the most accurate sources of information on changes in the Earth's dynamic oblateness. Trends in both geocenter position and the Earth's oblateness are estimated as well. The results show a
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
International Nuclear Information System (INIS)
Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz; Ehrhardt, Jan
2014-01-01
Accurate and robust estimation of motion fields in respiration-correlated CT (4D CT) images, usually performed by non-linear registration of the temporal CT frames, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported diagnostics and treatment planning. In this work, we present a comprehensive comparison and evaluation study of non-linear registration variants applied to the task of lung motion estimation in thoracic 4D CT data. In contrast to existing multi-institutional comparison studies (e.g. MIDRAS and EMPIRE10), we focus on the specific but common class of variational intensity-based non-parametric registration and analyze the impact of the different main building blocks of the underlying optimization problem: the distance measure to be minimized, the regularization approach and the transformation space considered during optimization. In total, 90 different combinations of building block instances are compared. Evaluated on proprietary and publicly accessible 4D CT images, landmark-based registration errors (TRE) between 1.14 and 1.20 mm for the most accurate registration variants demonstrate competitive performance of the applied general registration framework compared to other state-of-the-art approaches for lung CT registration. Although some specific trends can be observed, effects of interchanging individual instances of the building blocks on the TRE are in general rather small (no single outstanding registration variant existing); the same level of accuracy is, however, associated with significantly different degrees of motion field smoothness and computational demands. Consequently, the building block combination of choice will depend on application-specific requirements on motion field characteristics. (paper)
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
Single-phase CFD applicability for estimating fluid hot-spot locations in a 5 x 5 fuel rod bundle
International Nuclear Information System (INIS)
Ikeda, Kazuo; Makino, Yasushi; Hoshi, Masaya
2006-01-01
High-thermal performance PWR spacer grids require both of low pressure loss and high critical heat flux (CHF) properties. Therefore, a numerical study using computational fluid dynamics (CFD) was carried out to estimate pressure loss in strap and mixing vane structures. Moreover, a CFD simulation under single-phase flow condition was conducted for one specific condition in a water departure from nucleate boiling (DNB) test to examine the applicability of the CFD model for predicting the CHF rod position. Energy flux around the rod surface in a water DNB test is the sum of the intrinsic energy flux from a rod and the extrinsic energy flux from other rods, and increments of the enthalpy and decrements of flow velocity near the rod surface are assumed to affect CHF performance. CFD makes it possible to model the complicated flow field consisting of a spacer grid and a rod bundle and evaluate the local velocity and enthalpy distribution around the rod surface, which are assumed to determine the initial conditions for the two-phase structure. The results of this study indicate that single-phase CFD can play a significant role in designing PWR spacer grids for improved CHF performance
Sasada, M.; Roedder, E.; Belkin, H.E.
1986-01-01
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.
Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun
2017-05-01
Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem
Chandra, Rampalli Viswa; Sailaja, Sistla; Reddy, Aileni Amarender
2017-09-01
The aim of this study was to estimate tissue and gingival crevicular fluid (GCF) levels of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in premenopausal, perimenopausal and postmenopausal women with chronic periodontitis. Oxidative stress has been implicated in the etiopathogenesis of periodontitis and menopause induces oxidative stress. According to Stages of Reproductive Aging Workshop (STRAW) criteria, women diagnosed with periodontitis were subdivided into three groups of 31 participants each 1. Premenopausal 2. Perimenopausal and 3. Postmenopausal. GCF and gingival tissue samples were collected from sites with maximum probing depth. Tissue DNA was extracted from the gingival sample and 8-OHdG in the extracted DNA, and GCF samples were measured using ELISA. There was a highly significant difference in the overall GCF 8-OHdG levels among the three groups with the pairwise difference being highly significant between the premenopausal-postmenopausal groups and perimenopausal-postmenopausal groups. However, no overall significant differences in tissue 8-OHdG levels were found among the three groups. Pairwise, highly significant differences were found between the premenopausal-postmenopausal groups and perimenopausal-postmenopausal groups for tissue 8-OHdG levels. No significant correlations were found between various measure of periodontal disease and GCF/tissue 8-OHdG levels among all the groups. Premenopausal-postmenopausal and perimenopausal-postmenopausal transition resulted in significant increase in tissue and GCF 8-OHdG levels. However, no association was found between stages of reproductive ageing and tissue levels of 8-OHdG. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Lu, Bo; Park, Justin C.; Fan, Qiyong; Kahler, Darren; Liu, Chihray; Chen, Yunmei
2015-01-01
Purpose: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient’s body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparse optimization approach (SOA) model. Methods: The principle-component-analysis (PCA) method was employed as the framework to build the authors’ statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the “best represented” columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. Results: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the
DEFF Research Database (Denmark)
Strandby, Rune Broni; Ambrus, Rikard; Secher, Niels H
2017-01-01
BACKGROUND: It remains debated how much fluid should be administered during surgery. The atrial natriuretic peptide precursor proANP is released by atrial distension and deviations in plasma proANP are reported associated with perioperative fluid balance. We hypothesized that plasma proANP would...... decrease when the central blood volume is compromised during the abdominal part of robot-assisted hybrid (RE) esophagectomy and that a positive fluid balance would be required to maintain plasma proANP. METHODS: Patients undergoing RE (n = 25) or open (OE; n = 25) esophagectomy for gastroesophageal cancer...
Directory of Open Access Journals (Sweden)
V. Di Fiore
2002-06-01
Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response
Fluid dynamics theoretical and computational approaches
Warsi, ZUA
2005-01-01
Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin
Murphy, Paul G.
River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Bark, David L; Dasi, Lakshmi P
2016-05-01
We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.
Kimura, H.; Ito, T.; Tadokoro, K.
2017-12-01
Introduction In southwest Japan, Philippine sea plate is subducting under the overriding plate such as Amurian plate, and mega interplate earthquakes has occurred at about 100 years interval. There is no occurrence of mega interplate earthquakes in southwest Japan, although it has passed about 70 years since the last mega interplate earthquakes: 1944 and 1946 along Nankai trough, meaning that the strain has been accumulated at plate interface. Therefore, it is essential to reveal the interplate coupling more precisely for predicting or understanding the mechanism of next occurring mega interplate earthquake. Recently, seafloor geodetic observation revealed the detailed interplate coupling distribution in expected source region of Nankai trough earthquake (e.g., Yokota et al. [2016]). In this study, we estimated interplate coupling in southwest Japan, considering block motion model and using seafloor geodetic observation data as well as onland GNSS observation data, based on Markov Chain Monte Carlo (MCMC) method. Method Observed crustal deformation is assumed that sum of rigid block motion and elastic deformation due to coupling at block boundaries. We modeled this relationship as a non-linear inverse problem that the unknown parameters are Euler pole of each block and coupling at each subfault, and solved them simultaneously based on MCMC method. Input data we used in this study are 863 onland GNSS observation data and 24 seafloor GPS/A observation data. We made some block division models based on the map of active fault tracing and selected the best model based on Akaike's Information Criterion (AIC): that is consist of 12 blocks. Result We find that the interplate coupling along Nankai trough has heterogeneous spatial distribution, strong at the depth of 0 to 20km at off Tokai region, and 0 to 30km at off Shikoku region. Moreover, we find that observed crustal deformation at off Tokai region is well explained by elastic deformation due to subducting Izu Micro
International Nuclear Information System (INIS)
Worm, Esben S.; Høyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.
2012-01-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 ± 0.50 pixels (mean ± SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing (≤21 mm) that induced an absolute three-dimensional setup error of 1.6 ± 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of
DEFF Research Database (Denmark)
Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen
2018-01-01
Recent field data indicates that pitch systems account for a substantial part of a wind turbines down time. Reducing downtime means increasing the total amount of energy produced during its lifetime. Both electrical and fluid power pitch systems are employed with a roughly 50/50 distribution. Fluid...... power pitch systems generally show higher reliability and have been favored on larger offshore wind turbines. Still general issues such as leakage, contamination and electrical faults make current systems work sub-optimal. Current field data for wind turbines present overall pitch system reliability...... and the reliability of component groups (valves, accumulators, pumps etc.). However, the failure modes of the components and more importantly the root causes are not evident. The root causes and failure mode probabilities are central for changing current pitch system designs and operational concepts to increase...
DeMets, Charles
Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.
Energy Technology Data Exchange (ETDEWEB)
Yukawa, K; Kijima, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-10-01
With types of general cargo vessel and VLCC vessel as the object of discussion, a method was discussed to estimate fluid force acting theoretically on a hull during maneuvering movement, taking frame line shape into consideration. A vortex model was improved by giving consideration of time-based decay on intensity of discrete vortex lines based on the Rankine vortex. Modeling of flow fields around a hull was attempted to deal with movements in which width and draft are small as compared with the ship length, and turning angle speed and deviation angle are small. It was assumed that the ship speed is slow and effects of waves can be disregarded. Specular images of the hull were taken with regard to free surface, and handled as a double body model. Speed potential to express flow fields around a hull is required to satisfy the following five boundary conditions of Laplace, substance surface, free vortex layers, infinity and exfoliation. The potential may be handled as a two-dimensional problem in a field near the hull by using assumption of a slender and long body and conformal mapping. It was found possible to estimate hull fluid force with relatively good accuracy. Fine linear coefficients derived from the estimation were used to have performed highly accurate determination on course stabilization. 5 refs., 6 figs., 2 tabs.
Zanjani-Pour, Sahand; Meakin, Judith R; Breen, Alex; Breen, Alan
2018-03-21
Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be -0.7 ± 0.6 MPa (L3L4) and -0.6 ± 0.5 MPa (L4L5). S3 increased to -2.0 ± 1.3 MPa (L3L4) and -1.2 ± 0.6 MPa (L4L5) in full flexion and to -1.1 ± 0.8 MPa (L3L4) and -0.7 ± 0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu
2008-01-01
We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming
DEFF Research Database (Denmark)
Kiørboe, Thomas; Ploug, H.; Thygesen, Uffe Høgsbro
2001-01-01
in the ambient water. We described the fluid flow and solute distribution around a sinking aggregate by solving the Navier- Stokes' equations and the advection-diffusion equations numerically. The model is valid for Reynolds numbers characteristic of marine snow, up to Re = 20. The model demonstrates...... in its wake, where solute concentration is either elevated (leaking substances) or depressed (consumed substances) relative to ambient concentration. Such plumes may impact the nutrition of osmotrophs. For example, based on published solubilization rates of aggregates we describe the amino acid plume...
Hayashimoto, N.; Hoshiba, M.
2013-12-01
1. Introduction Ocean bottom seismograph (OBS) is useful for making Earthquake Early Warning (EEW) earlier. However, careful handling of these data is required because the installation environment of OBSs may be different from that of land stations. Site amplification factor is an important factor to estimate the magnitudes, and to predict ground motions (e.g. seismic intensity) in EEW. In this presentation, we discuss the site amplification factor of OBS in the Tonankai area of Japan from these two points of view. 2. Examination of magnitude correction of OBS In the EEW of JMA, the magnitude is estimated from the maximum amplitude of the displacement in real time. To provide the fast magnitude estimation, the magnitude-estimation algorithm switches from the P to S formula (Meew(P) to Meew(S)) depending on the expected S-phase arrival (Kamigaichi,2004). To estimate the magnitude correction for OBS, we determine Meew(P) and Meew(S) at OBSs and compare them with JMA magnitude (Mjma). We find Meew(S) at OBS is generally larger than Mjma by approximately 0.6. The slight differences of spatial distribution of Meew(S) amplification are also found among other OBSs. From the numerical simulations, Nakamura et al. (MGR,submitted) pointed out that the oceanic layer and the low-velocity sediment layers causes the large amplifications in low frequency range (0.1-0.2Hz) at OBSs. We conclude that the site effect of OBS characterized by such a low velocity sediment layers causes those amplification of Magnitude. 3. The frequency-dependent site factor of OBS estimated from Fourier spectrum ratio and their application for prediction of seismic intensity of land station We compare Fourier spectra of S-wave portion on OBSs with those on adjacent land stations. Station pair whose distance is smaller than 50 km is analyzed, and we obtain that spectral ratio of land station (MIEH05 of the KiK-net/NIED) to OBS (KMA01 of the DONET/JAMSTEC) is 5-20 for frequencies 10-20Hz for both
International Nuclear Information System (INIS)
Tylee, J.L.
1980-01-01
A low-order, nonlinear model of the Loss-of-Fluid Test (LOFT) reactor plant, for use in Kalman filter estimators, is developed, described, and evaluated. This model consists of 31 differential equations and represents all major subsystems of both the primary and secondary sides of the LOFT plant. Comparisons between model calculations and available LOFT power range testing transients demonstrate the accuracy of the low-order model. The nonlinear model is numerically linearized for future implementation in Kalman filter and optimal control algorithms. The linearized model is shown to be an adequate representation of the nonlinear plant dynamics
Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.
2017-09-01
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.
International Nuclear Information System (INIS)
Kuz'mina, E.G.; Degtyareva, A.A.; Doroshenko, L.N.; Rogova, N.M.; Zorina, L.N.
1990-01-01
The efficacy of therapy of upper limb secondary edemas after 4 programs was compared among 83 patients. The methods were as follows: traditional method (TM) including routine conservative therapy, acupuncture (AP), He-Ne laser OKG-13 and semiconductor laser against a background of traditional therapy. A study was made of the time course of the extent of edema, total protein, IG, G, A and M and circulating immune complexes (CIC) during therapy of such patients. Blood serum and interstitial fluid indices were compared. It was shown that the application of both lasers led to increasing efficacy of TM and AP
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
International Nuclear Information System (INIS)
Said, S.A.; Caira, M.; Gramiccia, L.; Naviglio, A.
1992-01-01
One of the main features of the MARS, an inherently safe nuclear reactor of the new generation, is the innovative decay heat removal system. This has a high inherent reliability thanks to the complete absence of active components. The core decay heat is removed by the vaporization of the water in an emergency reservoir; then the steam collected in the dome over the pool condenses in the air condenser and returns back to the reservoir creating a heat sink of nearly infinite capacity. The transient fluid dynamic numerical simulation of the steam-air mixture flow in the dome is presented. This allows an assessment to be made of the time required for the uncondensable gases to be evacuated. After that time the condenser works at its rated capacity. (4 figures) (Author)
Free Falling in Stratified Fluids
Lam, Try; Vincent, Lionel; Kanso, Eva
2017-11-01
Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.
Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara
2017-08-01
The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.
Energy Technology Data Exchange (ETDEWEB)
Kang, Seok Hoon; Park, Sang Hu; Son, Chang Min; Ha, Man Young; Min, June Kee; Jeong, Ho Sung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jongrae [Korea Maritime Univ., Busan (Korea, Republic of); Kim, Hyun Jun [Donghwa Entec Co., Ltd., Busan (Korea, Republic of)
2013-01-15
Recent years have witnessed a strong need for eco friendly and energy efficient systems owing to global environmental problems. A heat exchanger is a well known mechanical rig that has long been used in many energy systems. The use of a heat exchanger in an airplane engine has been attempted. In this case, the heat exchanger should be redesigned to be compact, lightweight, and highly reliable, and the issue of mechanical integrity gains importance. Therefore, in this study, we proposed a method for evaluating the mechanical integrity of a tube type heat exchanger. A U shaped single tube was used as an example, and its behavior and stress distribution were studied using fluid structure interaction (FSI) analysis.
Recording fluid currents by holography
Heflinger, L. O.; Wuerker, R. F.
1980-01-01
Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.
Directory of Open Access Journals (Sweden)
R.E. Abo-Elkhair
2017-04-01
Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.
Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-01
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...
Indian Academy of Sciences (India)
a shark is more efficient than a propeller; the notoriously complicated and nonlinear Navier–. Stokes equations governing fluid motion provide fertile ground for research to both applied and pure mathematicians. There is the phenomenon of turbulence in fluid flows. A statement in 1932, attributed to Horace Lamb, author of ...
Fluid inclusion geothermometry
Cunningham, C.G.
1977-01-01
Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.
Energy Technology Data Exchange (ETDEWEB)
Cremy, C
1996-12-01
With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of inter frame estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author)
Energy Technology Data Exchange (ETDEWEB)
Cremy, C
1996-07-01
With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs.
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
Tomographic Imaging of the Lesser Antilles Subducted Slab and its Significance for Estimating the Age and Amount of Eastward Motion of the Overriding Caribbean Plate
Mann, P.; Chen, Y. W.; Wu, J.; Suppe, J.
2017-12-01
The idea of a Pacific-derived and eastward-transported Caribbean and Scotia plates was first proposed by J. Tuzo Wilson in 1966. Wilson proposed that the motion of these two, small plates was analogous to "ice rafting" observed on frozen lakes and oceans when a narrow ( 50 m) strip of ice is forced over a lower plate of ice. In the Caribbean the upper plate corresponds to the 750 km-long, north-south length of the Lesser Antilles volcanic arc ranging in thickness from 20-30 km while its subducting plate is Atlantic Cretaceous oceanic crust of 8-10 km thickness and subducting at an angle of 45º to a depth of 300 km into the mantle. We estimated the length of the Lesser Antilles slab from MIT P-wave global tomography (MITP08; Li et al., 2008) and compared to published transects from Utrecht UUP-07 global tomography (van Bentham et al., 2013). The measured slab lengths vary from 1550 km (Utrecht) to 1250 km (MIT). We then unfolded both slabs to the Earth's surface, and used GPlates to restore the leading edge of the Caribbean plate at the time of the Lesser Antilles slab's initial subduction. The Middle Eocene (49 Ma) reconstruction realigns the proto-Lesser Antilles arc and leading edge of the Caribbean plate in a continuous arc with older arc rocks in Cuba. During this Middle Eocene period of abrupt tectonic transition, the Cuban arc segment was terminated on its northeastward path by collision with the Bahama carbonate platform with subsequent reorientation onto its present, east-west path into the central Atlantic Ocean from 49-0 Ma. This collision/plate reorientation event is independently recorded by: 1) a poorly defined Greater Antilles slab seen on tomography that is aligned with the Cuban arc; 2) identical initiation ages of 49 Ma for the Cayman trough pull-apart and the Lesser Antilles slab; and 3) similarity in lengths for the length of the subducted, Lesser Antilles slab ( 1250-1550 km) and the length of the Cayman trough pull-apart basin ( 1100 km). East
Directory of Open Access Journals (Sweden)
Yoshiki Yoshida
2001-01-01
destabilizing in the region of negative precessing speed ratio (-0.3<Ω/ω<0, at the design flow rate; (2 At reduced flow rate, the destabilizing fluid force moments occurred at small positive precessing speed ratio (0.2<Ω/ω<0.4; (3 From the comparison of direct measured fluid force moments with those estimated from the unsteady pressure measured on the front and back casing walls, it was found that the destabilizing moments in the backward precession are mainly caused by the fluid forces on the front surface of the present impeller, where there is large clearance between the back shroud and casing.
Designing a compact MRI motion phantom
Directory of Open Access Journals (Sweden)
Schmiedel Max
2016-09-01
Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.
Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.
Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo
2014-12-01
The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Motion Analysis Based on Invertible Rapid Transform
Directory of Open Access Journals (Sweden)
J. Turan
1999-06-01
Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.
Hata, Yoshiya; Yabe, Masaaki; Kasai, Akira; Matsuzaki, Hiroshi; Takahashi, Yoshikazu; Akiyama, Mitsuyoshi
2016-12-01
An earthquake of JMA magnitude 6.5 (first event) hit Kumamoto Prefecture, Japan, at 21:26 JST, April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (second event) hit Kumamoto and Oita Prefectures at 01:46 JST, April 16, 2016. An out-of-service Kyushu Shinkansen train carrying no passengers traveling on elevated bridges was derailed by the first event. This was the third derailment caused by an earthquake in the history of the Japanese Shinkansen, after one caused by the 2004 Mid-Niigata Prefecture Earthquake and another triggered by the 2011 Tohoku Earthquake. To analyze the mechanism of this third derailment, it is crucial to evaluate the strong ground motion at the derailment site with high accuracy. For this study, temporary earthquake observations were first carried out at a location near the bridge site; these observations were conducted because although the JMA Kumamoto Station site and the derailment site are closely located, the ground response characteristics at these sites differ. Next, empirical site amplification and phase effects were evaluated based on the obtained observation records. Finally, seismic waveforms during the first event at the bridge site of interest were estimated based on the site-effect substitution method. The resulting estimated acceleration and velocity waveforms for the derailment site include much larger amplitudes than the waveforms recorded at the JMA Kumamoto and MLIT Kumamoto station sites. The reliability of these estimates is confirmed by the finding that the same methods reproduce strong ground motions at the MLIT Kumamoto Station site accurately. These estimated ground motions will be useful for reasonable safety assessment of anti-derailment devices on elevated railway bridges.[Figure not available: see fulltext.
Transient flows of a Burgers' fluid
International Nuclear Information System (INIS)
Khan, M.
2005-12-01
An analysis is performed to develop the analytical solutions for some unsteady magnetohydrodynamic (MHD) flows of a Burgers' fluid between two plates. A uniform magnetic field is applied transversely to the fluid motion. The exact solutions are given for three problems. Results for the velocity fields are discussed and compared with the flows of Oldroyd-B, Maxwell, second grade and Newtonian fluids. (author)
Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko
2018-04-01
Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.
A synchronous surround increases the motion strength gain of motion.
Linares, Daniel; Nishida, Shin'ya
2013-11-12
Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.
Homothetic motions in general relativity
International Nuclear Information System (INIS)
McIntosh, C.B.G.
1976-01-01
Properties of homothetic or self-similar motions in general relativity are examined with particular reference to vacuum and perfect-fluid space-times. The role of the homothetic bivector with components Hsub((a;b)) formed from the homothetic vector H is discussed in some detail. It is proved that a vacuum space-time only admits a nontrivial homothetic motion if the homothetic vector field is non-null and is not hypersurface orthogonal. As a subcase of a more general result it is shown that a perfect-fluid space-time cannot admit a non-trivial homothetic vector which is orthogonal to the fluid velocity 4-vector. (author)
CISM Course on Rotating Fluids
1992-01-01
The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.
Rahpeyma, Sahar
2016-08-11
The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd
Simulated earthquake ground motions
International Nuclear Information System (INIS)
Vanmarcke, E.H.; Gasparini, D.A.
1977-01-01
The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra
Predicting articulated human motion from spatial processes
DEFF Research Database (Denmark)
Hauberg, Søren; Pedersen, Kim Steenstrup
2011-01-01
recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial...
Solving problems in fluid mechanics. Vol. 1
International Nuclear Information System (INIS)
Douglas, J.F.
1986-01-01
Fluid mechanics is that part of applied mechanics concerned with the statics and dynamics of liquids and gases. The presentation is in a pedagogically sound question-and-answer format, which includes many worked examples preceding the exercises. This book which assumes only an elementary knowledge of mathematics and mechanics, offers a clear exposition of topics including hydrostatics, fluid pressure and the stability of floating bodies, fluid motion, flow measurement, pipelines, open channel flow, and fluid friction
Motion correction in thoracic positron emission tomography
Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P
2015-01-01
Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...
Energy Technology Data Exchange (ETDEWEB)
Seki, Y [Geological Survey of Japan, Tsukuba (Japan)
1991-07-29
A method for estimating chemical composition of original fluid before boiling from the composition of whole fluid flowing into a well is described for the case where an aquifer boiling has begun in a reservoir bed associated with discharge of geothermal fluid from the well (the enthalpy of fluid flowing into the well is larger than an enthalpy possessed by a hot fluid-phase saturated by steam at measured temperatures at flowing point). In this case, it is especially pointed out that the gas-liquid ratio at the well flow-in point becomes larger than the one at boiling. The boiling in the reservoir bed is modelled into two types. One is for larger coefficient of permeation in the reservoir bed where the discharge flow at the well is large, the temperature drop around the well is small, and the boiling is in single stage. The other is for smaller coefficient of permeation in the reservoir bed where the discharge flow and temperature drop are contrastive to the former case, and the boiling is in multi-stage. Calculation processes based on this boiling model are explained with calculation examples. 8 refs.,7 figs.
Prandtl, Ludwig
1953-01-01
Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.
Saintilla