Sample records for fluid mechanics-multizone chemical

  1. Flavour chemicals in electronic cigarette fluids


    Tierney, Peyton A; Karpinski, Clarissa D; Brown, Jessica E; Luo, Wentai; Pankow, James F


    Background Most e-cigarette liquids contain flavour chemicals. Flavour chemicals certified as safe for ingestion by the Flavor Extracts Manufacturers Association may not be safe for use in e-cigarettes. This study identified and measured flavour chemicals in 30 e-cigarette fluids. Methods Two brands of single-use e-cigarettes were selected and their fluids in multiple flavour types analysed by gas chromatography/mass spectrometry. For the same flavour types, and for selected confectionary fla...

  2. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes


    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  3. Chemically driven fluid transport in long microchannels (United States)

    Shen, Mingren; Ye, Fangfu; Liu, Rui; Chen, Ke; Yang, Mingcheng; Ripoll, Marisol


    Chemical gradients maintained along surfaces can drive fluid flows by diffusio-osmosis, which become significant at micro- and nano-scales. Here, by means of mesoscopic simulations, we show that a concentration drop across microchannels with periodically inhomogeneous boundary walls can laterally transport fluids over arbitrarily long distances along the microchannel. The driving field is the secondary local chemical gradient parallel to the channel induced by the periodic inhomogeneity of the channel wall. The flow velocity depends on the concentration drop across the channel and the structure and composition of the channel walls, but it is independent of the overall channel length. Our work thus presents new insight into the fluid transport in long microchannels commonly found in nature and is useful for designing novel micro- or nano-fluidic pumps.

  4. Continuum thermodynamics of chemically reacting fluid mixtures

    CERN Document Server

    Bothe, Dieter


    We consider viscous and heat conducting mixtures of molecularly miscible chemical species forming a fluid in which the constituents can undergo chemical reactions. Assuming a common temperature for all components, a first main aim is the derivation of a closed system of partial mass and partial momentum balances plus a common balance of internal energy. This is achieved by careful exploitation of the entropy principle which, in particular, requires appropriate definitions of absolute temperature and chemical potentials based on an adequate definition of thermal energy that excludes diffusive contributions. The latter is crucial in order to obtain a closure framework for the interaction forces between the different species. The interaction forces split into a thermo-mechanical and a chemical part, where the former turns out to be symmetric if binary interactions are assumed. In the non-reactive case, this leads to a system of Navier-Stokes type sub-systems, coupled by interspecies friction forces. For chemical...

  5. Chemical-potential route for multicomponent fluids (United States)

    Santos, Andrés; Rohrmann, René D.


    The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixtures with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus-Yevick theory and the associated equation of state is obtained. This Percus-Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublík-Mansoori-Carnahan-Starling-Leland equation of state.

  6. Chemical Potential of a Lennard Jones Fluid (United States)

    Celebonovic, V.


    The aim of this paper is to present results of analytical calculation of chemical potential of a Lennard Jones (LJ) fluid performed in two ways: by using the thermodynamical formalism and the formalism of statistical mechanics. The integration range is divided into two regions. In the small distance region, which is r≤σ in the usual notation, the integration range had to be cut off in order to avoid the occurence of divergences. In the large distance region, the calculation is technically simpler. The calculation reported here will be useful in all kinds of studies concerning phase equilibrium in a LJ fluid. Interesting kinds of such systems are the giant planets and the icy satellites in various planetary systems, but also the (so far) hypothetical quark stars.

  7. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F


    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  8. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  9. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)


    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  10. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations. (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K


    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  11. Experiments on chemically enhanced immiscible fluid displacements (United States)

    Soori, Tejaswi; Ward, Thomas


    This talk focuses on experiments conducted by displacing a vegetable oil within a capillary tube (diameter forms a stable micro-emulsion. We estimate the shear viscosity of the emulsion as a function of alkali and aqueous/oil concentrations. Separately we attempt to measure the average bulk diffusion coefficient of the emulsion in both phases which is necessary to estimate the Péclet number (Pé) and subsequent mass transport phenomena. American Chemical Society Petroleum Research Fund.

  12. Chemical Dewatering Technique of waste Polymer Drilling Fluid

    Institute of Scientific and Technical Information of China (English)

    Li Gang; Zhu Muo


    @@ On the basis of the compositional analysis of waste polymer drilling fluid, we adopt chemical dewatering technique and thoroughly break down the colloid system of the drilling fluid. Having changed the surface properties of the clay particles and made the waste mud flocculate, the floc lost mud making ability and the phemeonenon of the floc returning mud is completely dispelled when it is buried. The recovered water can be reused in the mud system.

  13. Fluids in porous media. IV. Quench effect on chemical potential (United States)

    Qiao, C. Z.; Zhao, S. L.; Liu, H. L.; Dong, W.


    It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.

  14. Agent-Based Chemical Plume Tracing Using Fluid Dynamics (United States)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William


    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  15. Chemical Contamination Sensor for Phosphate Ester Hydraulic Fluids

    Directory of Open Access Journals (Sweden)

    Sumit Paul


    Full Text Available The paper deals with chemical contamination monitoring in phosphate-ester-based hydraulic fluids using nondispersive infrared (NDIR optical absorption. Our results show that NDIR monitoring allows detecting the take-up of water into such fluids and their hydrolytic disintegration as these become additionally stressed by Joule heating. Observations on the O–H stretching vibration band (3200–3800 cm−1 are used for determining the free water content (0–1.5% and the Total Acid Number (0–1 mgKOH/g. Both quantities can be assessed by monitoring the strength and the asymmetry of the O–H vibration band with regard to the free water absorption band centred around 3500 cm−1. As such optical parameters can be assessed without taking fluid samples from a pressurised hydraulic system, fluid degradation trends can be established based on regular measurements, before irreversible damage to the fluid has occurred. Therefore maintenance actions can be planned accordingly, which is very important for the airline, as unscheduled maintenance disturbs the flights organisation and often generates money loss.

  16. Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres (United States)

    Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.


    In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.

  17. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu


    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  18. Modeling Chemical Mechanical Polishing with Couple Stress Fluids

    Institute of Scientific and Technical Information of China (English)

    张朝辉; 雒建斌; 温诗铸


    Chemical mechanical polishing (CMP) is a manufacturing process used to achieve high levels of global and local planarity.Currently, the slurries used in CMP usually contain nanoscale particles to accelerate the removal ratio and to optimize the planarity, whose rheological properties can no longer be accurately modeled with Newtonian fluids.The Reynolds equation, including the couple stress effects, was derived in this paper.The equation describes the mechanism to solve the CMP lubrication equation with the couple stress effects.The effects on load and moments resulting from the various parameters, such as pivot height, roll angle, and pitch angle, were subsequently simulated.The results show that the couple stress can provide higher load and angular moments.This study sheds some lights into the mechanism of the CMP process.

  19. Chemical and radiolytical characterization of perfluorocarbon fluids used as coolants for LHC experiments : radiolysis effects in perfluorohexane fluids.

    CERN Document Server

    Ilie, Soran; Teissandier, B; CERN. Geneva. TS Department


    Perfluorohexane fluids, used as coolants within High Energy Physics Detectors in the Large Hadrons Collider (LHC) at CERN, were irradiated using gammas 60Co and characterized using different analytical techniques. The aim of this work was the assessment of radiation induced effects as a function of the chemical nature of these fluids and their impurity content. Were evidenced the radioinduced polymers and acidity, as well as different chemical by-products. Purification tests and measurements were carried out on different irradiated fluid samples to assess the efficiency of such purification treatments in view of their re-use in the HEP detector cooling systems.

  20. The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

    Directory of Open Access Journals (Sweden)

    Borůvková K.


    Full Text Available In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS.

  1. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping


    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  2. Mechanical and chemical behavior of intergranular fluids in nonhydrostatically stressed rocks at low temperature

    Institute of Scientific and Technical Information of China (English)

    刘亮明; 彭省临


    Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double-layer repulsive force or osmotic pressure due to double-layer, the fluid films can transmit nonhydrostatic stress. The solid minerals-intergranular fluids interaction and mass transfer by intergranular fluids is stress-related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.

  3. On Modeling the Response of Synovial Fluid: Unsteady Flow of a Shear-Thinning, Chemically-Reacting Fluid Mixture

    CERN Document Server

    Bridges, Craig; Rajagopal, K R


    We study the flow of a shear-thinning, chemically-reacting fluid that could be used to model the flow of the synovial fluid. The actual geometry where the flow of the synovial fluid takes place is very complicated, and therefore the governing equations are not amenable to simple mathematical analysis. In order to understand the response of the model, we choose to study the flow in a simple geometry. While the flow domain is not a geometry relevant to the flow of the synovial fluid in the human body it yet provides a flow which can be used to assess the efficacy of different models that have been proposed to describe synovial fluids. We study the flow in the annular region between two cylinders, one of which is undergoing unsteady oscillations about their common axis, in order to understand the quintessential behavioral characteristics of the synovial fluid. We use the three models suggested by Hron et al. [ J. Hron, J. M\\'{a}lek, P. Pust\\v{e}jovsk\\'{a}, K. R. Rajagopal, On concentration dependent shear-thinni...

  4. Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model

    Directory of Open Access Journals (Sweden)

    Mahfuzh Huda


    Full Text Available The profile of chemical potential of benzene fluid has been investigated using Anisotropic United Atom (AUA model. A Monte Carlo simulation in canonical ensemble was done to obtain the isotherm of benzene fluid, from which the excess part of chemical potential was calculated. A surge of potential energy is observed during the simulation at high temperature which is related to the gas-liquid phase transition. The isotherm profile indicates the tendency of benzene to condensate due to the strong attractive interaction. The results show that the chemical potential of benzene rapidly deviates from its ideal gas counterpart even at low density.

  5. Chemical equilibrium in high pressure molecular fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.


    The N{sub atoms}PT Monte Carlo simulation method has been reformulated to incorporate multiple species and chemical reactions with changes in total number of molecules. While maintaining a constant number of each type of atom, the number of molecules is changed by turning on and off the interactions of any particular position with other molecules. Chemical reactions are allowed as a correlated move of atoms to differnt molecular locations. Equilibrium chemical composition is determined as an average over the simulation along with equation of state quantities. A large set of simulations has been made with the system N{sub 2} + O{sub 2} {rightleftharpoons} NO covering a wide range in P and T. Both Hugoniot states and the CJ point have been determined and are shown to be sensitive to the potentials between unlike species.

  6. Development of microfluidic devices for chemical analysis and fluid handling


    Egidi, Giovanni; de Rooij, Nicolas F


    Miniaturization of chemical analysis and synthesis systems improve throughput, performance and accessibility, and lead to significantly reduced costs. In this work are described several components that find place in the process of miniaturization. This work is developed in the frame of the project CREAM (Cartridges with molecularly imprinted Recognition Elements for Antibiotic residues Monitoring in Milk). Antibiotics are widely used to treat cows' diseases, and traces can be found in milk so...

  7. Physical-chemical fundamentals and the application of fluid chromatography (SFC)

    Energy Technology Data Exchange (ETDEWEB)

    Wasen, U. van; Swaid, I.; Schneider, G.M.


    In super fluid chromatography chromatography (SFC), highly condensed gases in the critical temperature region are used as mobile phases. This method has considerable advantages in the analytical or preparative separation of particularly difficultly volatile or thermally unstable substances compared to gas chromatography. It competes with HPLC and gel chromatography in certain special applications and preparative separations, e.g. in petroleum industry and the separation of oligomers. It is also of great interest for basic investigations of fluid extraction and determination of physical-chemical parameters of fluid systems. The most important physical-chemical, methodical and apparative fundamentals of SFC are discussed in summary form; characteristic physical-chemical examples of application are the determination of capacity ratios, distribution quotients, partial mole volumes, mixed virial coefficients and diffusion coefficients.

  8. Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface

    Institute of Scientific and Technical Information of China (English)

    MUKHOPADHYAY Swati; VAJRAVELU Kuppalapalle


    In this paper we investigate the two-dimensional flow of a non-Newtonian fluid over an unsteady stretching permeable surface.The Casson fluid model is used to characterize the non-Newtonian fluid behavior.First-order constructive/destructive chemical reaction is considered.With the help of a shooting method,numerical solutions for a class of nonlinear coupled differential equations subject to appropriate boundary conditions are obtained.For the steady flow,the exact solution is obtained.The flow features and the mass transfer characteristics for different values of the governing parameters are analyzed and discussed in detail.

  9. Numerical aspects of modelling of coupled chemical reactions and fluid flow in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, Astrid


    Simulation of coupled chemical reactions and fluid flow in porous sedimentary basins, through long time periods, is a numerical challenge. In most models available today the equations representing such a physical problem are solved as PDEs (Partial Differential Equation) where efficient time-stepping with controlled error is very difficult. The DAE (Differential Algebraic Equation) system approach is used where robust adaptive time-stepping algorithms are available in solvers. In this report mathematical and numerical models are derived for coupled chemical reactions and fluid flow. The models have several interesting properties which are discussed. The performance of code is tested. 20 refs., 6 figs., 2 tabs.

  10. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lorie M. Dilley


    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the

  11. Growing a Chemical Garden at the Air-Fluid Interface. (United States)

    Hussein, Salome; Maselko, Jerzy; Pantaleone, James T


    Here we grow chemical gardens using a novel, quasi two-dimensional, experimental configuration. Buoyant calcium chloride solution is pumped onto the surface of sodium silicate solution. The solutions react to form a precipitation structure on the surface. Initially, an open channel forms that grows in a spiral. This transitions to radially spreading and branching fingers, which typically oscillate in transparency as they grow. The depth of the radial spreading, and the fractal dimension of the finger growth, are surprisingly robust, being insensitive to the pumping rate. The curvature of the channel membrane and the depth of the radially spreading solution can be explained in terms of the solution densities and the interfacial tension across the semipermeable membrane. These unusually beautiful structures provide new insights into the dynamics of precipitation structures and may lead to new technologies where structures are grown instead of assembled.

  12. Micro-poromechanics model of fluid-saturated chemically active fibrous media. (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette


    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  13. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids (United States)

    Dumazer, G.; Antoine, C.; Lemarchand, A.; Nowakowski, B.


    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics.

  14. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants (United States)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  15. Spectral analysis of the light scattered from a chemically relaxing fluid: A ternary mixture

    NARCIS (Netherlands)

    Carle, D.L.; Laidlaw, W.G.; Lekkerkerker, H.N.W.


    The spectral distribution of light scattered by a ternary fluid mixture containing two chemically reactive species and one nonreactive species is considered and a normal mode analysis is carried out for a range of k-values for which the pressure fluctuations are decoupled from those in entropy and c

  16. Chemical potential of a hard sphere fluid adsorbed in model disordered polydisperse matrices. (United States)

    de Leon, Aned; Pizio, O; Sokołowski, S


    We consider a model for adsorption of a simple fluid in disordered polydisperse adsorbents. The fluid consists of hard sphere particles. On the other hand, the adsorbents of this study are modeled as a collection of hard spheres with their diameter obeying a certain distribution function. Our focus is in the evaluation of the chemical potential of the fluid immersed in such a polydisperse material. It permits us to obtain porosity and pore size distribution for the adsorbent, as well as a set of adsorption isotherms. The latter have been calculated theoretically and by grand canonical Monte Carlo simulations. We observe that the width of assumed polydispersity distribution affects all the properties of the system. Nevertheless, the effect of matrix packing is dominant in determining adsorption for this class of models. We are convinced that the matrix structures generated via more sophisticated algorithms would exhibit stronger effects of polydispersity on the entire set of properties of adsorbed simple fluids.

  17. Fluid Shearing for Accelerated Chemical Reactions - Fluid Mechanics in the VFD (United States)

    Leivadarou, Evgenia; Dalziel, Stuart; G. K. Batchelor Laboratory, Department of Applied Mathematics; Theoretical Physics Team


    The Vortex Fluidic Device (VFD) is a rapidly rotating tube that can operate under continuous flow with a jet feeding liquid reactants to the tube's hemispherical base. It is a new 'green' approach to the organic synthesis with many industrial applications in cosmetics, protein folding and pharmaceutical production. The rate of reaction in the VFD is enhanced when the collision rate is increased. The aim of the project is to explain the fluid mechanics and optimize the performance of the device. One contribution to the increased yield is believed to be the high levels of shear stress. We attempt to enhance the shear stress by achieving high velocity gradients in the boundary layers. Another factor is the uncontrolled vibrations due to imperfections in the bearings and therefore it is important to assess their influence in the initial spreading. The surface area of the film should be maximized with respect to the rotation rate, geometry and orientation of the tube, flow rate, wettability and contact line dynamics. Experiments are presented for a flat disk and a curved bowl, establishing the optimum height of release, rotation rate and tube orientation. Vibrations were imposed to investigate the changes in the film formation. We discuss the implications of our results in the VFD.

  18. Evaluation of Bacteriological and Chemical Quality of Dialysis Water and Fluid in Isfahan, Central Iran (United States)



    Background: Chemical and microbial quality of water used in hemodialysis play key roles in a number of dialysis-related complications. In order to avoid the complications and to guarantee safety and health of patients therefore, vigorous control of water quality is essential. The objective of present study was to investigate the chemical and bacteriological characteristics of water used in dialysis centers of five hospitals in Isfahan, central Iran. Methods: A total of 30 water samples from the input of dialysis purification system and dialysis water were analyzed for chemical parameters. Heterotrophic plate count and endotoxin concentration of drinking water, dialysis water and dialysis fluid of 40 machines were also monitored over a 5-month period in 2011–2012. Results: Concentration of the determined chemicals (copper, zinc, sulfate, fluoride, chloramines and free chlorine) did not exceed the recommended concentration by the Association for the Advancement of Medical Instrumentation (AAMI) exclude lead, nitrate, aluminum and calcium. Furthermore, the magnesium; cadmium and chromium concentration exceeded the maximum level in some centers. No contamination with heterotrophic bacteria was observed in all samples, while the AMMI standard for endotoxin level in dialysis fluid (water and fluid failed to meet the all chemical and bacteriological requirements for hemodialysis. To minimize the risk of contaminants for hemodialysis patients therefore, a water quality management program including monitoring, maintenance and development of water treatment system in hemodialysis centers is extremely important. In addition, an appropriate disinfection program is needed to guarantee better control of bacterial growth and biofilm formation. PMID:27398338

  19. Evaluation of Bacteriological and Chemical Quality of Dialysis Water and Fluid in Isfahan, Central Iran

    Directory of Open Access Journals (Sweden)



    Full Text Available Background: Chemical and microbial quality of water used in hemodialysis play key roles in a number of dialysis-related complications. In order to avoid the complications and to guarantee safety and health of patients therefore, vigorous control of water quality is essential. The objective of present study was to investigate the chemical and bacteriological characteristics of water used in dialysis centers of five hospitals in Isfahan, central Iran.Methods: A total of 30 water samples from the input of dialysis purification system and dialysis water were analyzed for chemical parameters. Heterotrophic plate count and endotoxin concentration of drinking water, dialysis water and dialysis fluid of 40 machines were also monitored over a 5-month period in 2011-2012.Results: Concentration of the determined chemicals (copper, zinc, sulfate, fluoride, chloramines and free chlorine did not exceed the recommended concentration by the Association for the Advancement of Medical Instrumentation (AAMI exclude lead, nitrate, aluminum and calcium. Furthermore, the magnesium; cadmium and chromium concentration exceeded the maximum level in some centers. No contamination with heterotrophic bacteria was observed in all samples, while the AMMI standard for endotoxin level in dialysis fluid (<2 EU/ml was achieved in 95% of samples.Conclusion: Dialysis water and fluid failed to meet the all chemical and bacteriological requirements for hemodialysis. To minimize the risk of contaminants for hemodialysis patients therefore, a water quality management program including monitoring, maintenance and development of water treatment system in hemodialysis centers is extremely important. In addition, an appropriate disinfection program is needed to guarantee better control of bacterial growth and biofilm formation. Keywords: Dialysis water, Dialysis fluid, Chemical quality, Endotoxin, Heterotrophic bacteria 

  20. Chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O (United States)

    Mibe, K.; Kawamoto, T.; Ono, S.


    Knowing the chemical compositions of fluid and melt is fundamental in understanding the magma genesis and chemical differentiation in the Earth's interior. We investigated the stability fields of aqueous fluid, silicate melt, and supercritical fluid magma using in-situ x-ray radiography and the second critical endpoint in the system peridotite-H2O was determined to be around 3.8 GPa (Mibe et al., 2007, JGR). Using the quenched recovered samples obtained by Mibe et al. (2007), we determined the chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O by EPMA analyses. A 10- to 30-μm diameter electron beam was used to obtain the composition of quenched materials from aqueous fluid, silicate melt, and supercritical fluid. The compositions of coexisting aqueous fluid and silicate melt were determined at 3.3 GPa and 3.6 GPa and 1180°C. In both samples, olivine coexists with aqueous fluid and silicate melt. In the run at 3.3 GPa, the composition of aqueous fluid was high-Mg dacitic, whereas the composition of silicate melt was hydrous peridotite. In the run at 3.6 GPa, the composition of aqueous fluid was high-Mg andesitic, whereas the composition of silicate melt was hydrous komatiitic. Although aqueous fluids in both runs are high-Mg, both MgO and FeO preferentially enters into silicate melt compared to aqueous fluid.

  1. Analysis of the chemical components of hydatid fluid from Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Li Juyi


    Full Text Available Introduction The aim of this study was to explore the environment of Echinococcus granulosus (E. granulosus protoscolices and their relationship with their host. Methods Proteins from the hydatid-cyst fluid (HCF from E. granulosus were identified by proteomics. An inductively coupled plasma atomic emission spectrometer (ICP-AES was used to determine the elements, an automatic biochemical analyzer was used to detect the types and levels of biochemical indices, and an automatic amino acid analyzer was used to detect the types and levels of amino acids in the E. granulosus HCF. Results I Approximately 30 protein spots and 21 peptide mass fingerprints (PMF were acquired in the two-dimensional gel electrophoresis (2-DE pattern of hydatid fluid; II We detected 10 chemical elements in the cyst fluid, including sodium, potassium, calcium, magnesium, copper, and zinc; III We measured 19 biochemical metabolites in the cyst fluid, and the amount of most of these metabolites was lower than that in normal human serum; IV We detected 17 free amino acids and measured some of these, including alanine, glycine, and valine. Conclusions We identified and measured many chemical components of the cyst fluid, providing a theoretical basis for developing new drugs to prevent and treat hydatid disease by inhibiting or blocking nutrition, metabolism, and other functions of the pathogen.

  2. Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction

    Directory of Open Access Journals (Sweden)

    S. A. Shehzad


    Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.

  3. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    Directory of Open Access Journals (Sweden)

    Mineo Hiramatsu


    Full Text Available We have developed a method of forming platinum (Pt nanoparticles using a metal organic chemical fluid deposition (MOCFD process employing a supercritical fluid (SCF, and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs, two-dimensional carbon nanostructures, and carbon nanotubes (CNTs. By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  4. Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid (United States)

    Hayat, T.; Zahir, Hina; Tanveer, Anum; Alsaedi, A.


    The objective of present analysis is to address the mixed convective peristaltic flow of Prandtl fluid in a planar channel with compliant walls. Effects of applied magnetic field and Hall current are retained. Heat transfer in fluid flow is characterized through convective boundary conditions. Impact of first order chemical reaction together with Soret effect is examined. Problems formulation in view of long wavelength and low Reynolds number consideration is developed. The graphs are obtained numerically for the velocity, temperature, concentration and heat transfer coefficient. Results for Hall parameter and Hartman number on velocity have opposite characteristics.

  5. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks. (United States)

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M


    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  6. Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder

    Institute of Scientific and Technical Information of China (English)

    H. P. RANI; G. J. REDDY; C. N. KIM


    The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.

  7. Self-propelled motion of a fluid droplet under chemical reaction

    CERN Document Server

    Yabunaka, Shunsuke; Yoshinaga, Natsuhiko


    We study self-propelled dynamics of a droplet due to a Marangoni effect and chemical reactions in a binary fluid with a dilute third component of chemical product which affects the interfacial energy of a droplet. The equation for the migration velocity of the center of mass of a droplet is derived in the limit of an infinitesimally thin inter- face. We found that there is a bifurcation from a motionless state to a propagating state of droplet by changing the strength of the Marangoni effect.

  8. Fluid flow along North American Cordillera detachments determined from stable isotope and high resolution chemical analyses (United States)

    Quilichini, A.; Teyssier, C.; Mulch, A.; Nachlas, W.


    Fluid flow is likely a major parameter controlling the dynamics of extensional detachment zones. Buoyancy-driven fluid flow is generated by high heat flow beneath the detachment zone, where heat is advected by crustal thinning and magma intrusions. This hydrothermal convective flow is focused in the detachment zone for the duration of activity of the detachment at relatively high temperature (300-500°C), resulting in very significant fluid-rock interaction and isotopic exchange. Quantifying sources and fluid flux in detachments is a challenge because permeability of ductilely deforming rocks is poorly understood. In order to solve these problems, we studied two different Eocene extensional systems in the North American Cordillera: the quartzitic detachment which borders the Kettle dome metamorphic core complex (WA), and the quartzo-feldspathic Bitterroot shear zone along the Idaho batholith (MT). The Kettle Dome detachment provides a continuous section of ~200 m thick quartzite mylonite where high-resolution sampling (~5 m) indicates that Deuterium isotopic ratios that are obtained from synkinematic muscovite grains are consistent with a meteoric fluid source (-130 per mil). In the Bitterroot shear zone, Coyner (2003) reported similar Deuterium isotopic ratios (down to -140 per mil) in muscovite from mylonites and ultramylonites. Microprobe analyses were obtained for white mica porphyroclasts by performing transects perpendicular to the basal (001) cleavage in order to determine intragrain chemical zoning. Preliminary results for the Kettle dome indicate increasing phengite composition with depth, suggesting enhanced activity of the Tschermak exchange. The variations of the phengitic signature in muscovite indicates that temperature diminuish downsection, which is contradictory with the results obtained by the Qz-Ms oxygen isotope thermometer along the Kettle section. Our recent work provides geologic data for numerical models that address the permeability of

  9. Quasi-chemical Theory for the Statistical Thermodynamics of the Hard Sphere Fluid

    CERN Document Server

    Pratt, L R; Gómez, M A; Gentile, M E; Pratt, Lawrence R.; Violette, Randall A. La; Gomez, Maria A.; Gentile, Mary E.


    We develop a quasi-chemical theory for the study of packing thermodynamics in dense liquids. The situation of hard-core interactions is addressed by considering the binding of solvent molecules to a precisely defined `cavity' in order to assess the probability that the `cavity' is entirely evacuated. The primitive quasi-chemical approximation corresponds to a extension of the Poisson distribution used as a default model in an information theory approach. This primitive quasi-chemical theory is in good qualitative agreement with the observations for the hard sphere fluid of occupancy distributions that are central to quasi-chemical theories but begins to be quantitatively erroneous for the equation of state in the dense liquid regime of $\\rho d^3>$0.6. How the quasi-chemical approach can be iterated to treat correlation effects is addressed. Consideration of neglected correlation effects leads to a simple model for the form of those contributions neglected by the primitive quasi-chemical approximation. These c...

  10. Dermal permeation of biocides and aromatic chemicals in three generic formulations of metalworking fluids. (United States)

    Vijay, Vikrant; White, Eugene M; Kaminski, Michael D; Riviere, Jim E; Baynes, Ronald E


    Metalworking fluids (MWF) are complex mixtures consisting of a variety of components and additives. A lack of scientific data exists regarding the dermal permeation of its components, particularly biocides. The aim of this study was to evaluate the dermal permeation of biocides and other aromatic chemicals in water and in three generic soluble oil, semi-synthetic, and synthetic MWF types in order to evaluate any differences in their permeation profiles. An in vitro flow-through diffusion cell study was performed to determine dermal permeation. An infinite dose of different groups of chemicals (6 biocides and 29 aromatic chemicals) was applied to porcine skin, with perfusate samples being collected over an 8-h period. Perfusate samples were analyzed by gas chromatography/mass spectrometry (GC-MS) and ultra-performance liquid chromatography/mass spectroscopy (UPLC-MS), and permeability was calculated from the analysis of the permeated chemical concentration-time profile. In general, the permeation of chemicals was highest in aqueous solution, followed by synthetic, semi-synthetic, and soluble oil MWF. The absorption profiles of most of the chemicals including six biocides were statistically different among the synthetic and soluble oil MWF formulations, with reduced permeation occurring in oily formulations. Permeation of almost all chemicals was statistically different between aqueous and three MWF formulation types. Data from this study show that permeation of chemicals is higher in a generic synthetic MWF when compared to a soluble oil MWF. This indicates that a soluble oil MWF may be safer than a synthetic MWF in regard to dermal permeation of chemicals to allow for an increased potential of systemic toxicity. Therefore, one may conclude that a synthetic type of formulation has more potential to produce contact dermatitis and induce systemic toxicological effects. The dilution of these MWF formulations with water may increase dermal permeability of biocides

  11. Chemical Warfare Agent Simulants in Gamble’s Fluid: Is the Fluid Toxic? Can It Be Made Safer by Inclusion of Solid Nanocrystalline Metal Oxides?

    Directory of Open Access Journals (Sweden)

    Dennis Karote


    Full Text Available The reactions of chemical warfare agent simulants, 2-chloroethyl ethyl sulfide (2-CEES and di-i-propyl fluoro phosphate (DFP, in fluids have been investigated. Data analyses confirm the major degradation pathway to be hydrolysis of 2-CEES to 2-hydroxyethyl ethyl sulfide, along with minor self-condensation products. Among the three fluids examined, 2-CEES degradation was the fastest in Gamble’s fluid during a 96 h period. Upon addition of Exceptional Hazard Attenuation Materials (EHAMs to 2-CEES containing Gamble’s fluid, degradation was generally improved during the first 24 h period. The 96 h outcome was similar for fluid samples with or without EHAM 2 and EHAM 4. EHAM 1-added fluid contained only one degradation product, 2-nitroethyl ethyl sulfide. DFP degradation was the slowest in Gamble’s fluid, but was enhanced by the addition of EHAMs. FTIR and solid state 31P NMR confirm the destructive adsorption of 2-CEES and DFP by the EHAMs. The results collectively demonstrate that 2-CEES and DFP decompose to various extents in Gamble’s fluid over a 96 h period but the fluid still contains a considerable amount of intact simulant. EHAM 1 appears to be promising for 2-CEES and DFP mitigation while EHAM 2 and EHAM 4 work well for early on concentration reduction of 2-CEES and DFP.

  12. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  13. Review and evaluation of literature on testing of chemical additives for scale control in geothermal fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C.H.; Kenkeremath, D.C.


    A selected group of reported tests of chemical additives in actual geothermal fluids are reviewed and evaluated to summarize the status of chemical scale-control testing and identify information and testing needs. The task distinguishes between scale control in the cooling system of a flash plant and elsewhere in the utilization system due to the essentially different operating environments involved. Additives for non-cooling geothermal fluids are discussed by scale type: silica, carbonate, and sulfide.

  14. Chemical analysis of succinylacetone and 4-hydroxyphenyllactate in amniotic fluid using selective ion monitoring. (United States)

    Jakobs, C; Sweetman, L; Nyhan, W L


    A method for the measurement of the concentration of succinylacetone and 4-hydroxyphenyllactic acid in amniotic fluid was developed for the prenatal diagnosis of hereditary tyrosinemia. Succinylacetone was converted to 5-methyl-3-isoxazolepropionic acid and isolated with 4-hydroxyphenyllactic acid by liquid partition chromatography and the trimethylsilyl derivatives quantified by ammonia chemical ionization selected ion monitoring gas chromatography-mass spectrometry with 2-hydroxy-n-caproic acid as the internal standard. The concentration of 4-hydroxyphenyllactic acid in normal amniotic fluid was 1.97 +/- 0.75 (S.D.) mumol/l while succinylacetone was undetectable. A pregnancy at risk for tyrosinemia type II was monitored. The concentration of 4-hydroxyphenyllactic acid was within the normal range and a healthy child was born.

  15. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Martin, F.D.


    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  16. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.


    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  17. Chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary

    Directory of Open Access Journals (Sweden)

    R. Sivaraj


    Full Text Available In this paper, we have studied the combined effects of free convective heat and mass transfer on an unsteady MHD dusty viscoelastic (Walters liquid model-B fluid flow between a vertical long wavy wall and a parallel flat wall saturated with porous medium subject to the convective boundary condition. The coupled partial differential equations are solved analytically using perturbation technique. The velocity, temperature and concentration fields have been studied for various combinations of physical parameters such as magnetic field, heat absorption, thermal radiation, radiation absorption, Biot number and chemical reaction parameters. The skin friction, Nusselt number and Sherwood number are also presented and displayed graphically. Further, it is observed that the velocity profiles of dusty fluid are higher than the dust particles.

  18. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    Directory of Open Access Journals (Sweden)

    Faiz G Awad

    Full Text Available In this study, the Spectral Relaxation Method (SRM is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM are then presented graphically and discussed to highlight the physical implications of the simulations.

  19. Fluid replacement advice during work in fully encapsulated impermeable chemical protective suits. (United States)

    Rubenstein, Candace D; DenHartog, Emiel A; Deaton, A Shawn; Bogerd, Cornelis P; DeKant, Saskia


    A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable chemical protective suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. One particular area of interest was the fluid loss of responders during work in these suits as dehydration may be an additional health concern to the heat strain. 17 City of Raleigh firemen and 24 students were tested at two different labs. Subjects between the ages of 25 and 51 were used for human subject trials in a protocol approved by the local ethical committee. Six different Level A HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W/m(2) radiant load) and at three walking speeds: 2.5 km/hr, 4 km/hr, and 5.5 km/hr. 4 km/hr was tested in all three climates and the other two walking speeds were tested in the moderate climate. Weight loss data was collected to determine fluid loss during these experiments. Working time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. The overall results from all experiments showed that fluid loss ranged from 0.2-2.2 L during these exposures, with the average fluid loss being 0.8 L, with 56% of the data between 0.5 L and 1 L of fluid loss. Further analysis showed that a suggestion of drinking 0.7 Liter per hour would safely hydrate over 50% of responders after one work-rest cycle. Applying this fluid volume over three work-rest cycles only put 11% of responders at risk of hypohydration vs. the 57% at risk with no fluid intake.


    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy


    Full Text Available The precise analysis of the rotation effects on the unsteady flow of an incompressible fluid past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion has been undertaken, in the presence of a homogeneous first order chemical reaction. The dimensionless governing equations are solved using the Laplace-transform technique. The plate temperature as well as the concentration near the plate increase linearly with time. The velocity profiles, temperature and concentration are studied for different physical parameters, like the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing rotation parameter Ω.

  1. Molecular dynamics study of phase separation in fluids with chemical reactions. (United States)

    Krishnan, Raishma; Puri, Sanjay


    We present results from the first d=3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A⇌B). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓ(eq)) in the steady state suggests a power-law dependence on the reaction rate ε:ℓ(eq)∼ε(-θ) with θ≃1.0.

  2. On the Comparability of Chemical Structure and Roughness of Nanochannels in Altering Fluid Slippage

    CERN Document Server

    Misra, Chinmay Anand


    Interfacial hydrodynamic slippage of water depends on both on surface chemistry and roughness. This study tries to connect the effect of chemical property and the physical structure of the surface on the interfacial slippage of water. By performing molecular dynamics simulations (MDS) of Couette flow of water molecules over a reduced Lennard-Jones (LJ) surface, the velocity profile is obtained and extrapolated to get the slip lengths. The slip lengths are measured for various surface-fluid interactions. These interactions are varied by changing the wettability of the surface (characterized by the static contact angle) and its roughness. The slip length variation with the static contact angle as $(1+cos\\theta)^{-2}$ is observed. However, it is also observed that the presence of surface roughness always reduces the slip length and it is proposed that the slip length varies with non-dimensionalized average surface roughness as $(1+\\alpha^*)^{-2}$ . Thus a relation between the chemical wettability and the physica...

  3. The composition-explicit distillation curve technique: Relating chemical analysis and physical properties of complex fluids. (United States)

    Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L


    The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids.

  4. The Complex Physical-Chemical Interaction of Fracking Fluids with Gas Shale (United States)

    Cathles, L. M.; Engelder, T.; Bryndzia, T.


    The chemical aspects of hydrofracturing might seem straight forward: Inject a fluid with sand and some chemicals, recover the injected water now contaminated with chemicals from the shale, and produce gas. But there are some complications that turn out to be very interesting. First of all, it is possible to recover only about 20% of the injected water. Secondly, the fresh injected water (1-5 kppm) has been turned into a very saline bine (~200 kppm). It's easy to say the water has just been imbibed into the gas-filled dry shale, like water into a dry sponge, except the organic parts of the shale which host nearly all the porosity are hydrophobic. The shale is strongly oil wet; nevertheless it imbibes water. It's easy to say the water just mixed with water in the shale and became salty, but there is almost no water in the shale, and no salt either. How the water becomes salty begs easy explanation. The talk will quantitatively discuss these issues in light of experiments we have carried out, concluding that powerful capillary and osmotic forces draw fracking water into the shale while making the return waters salty. How this is achieved will certainly tell us something about the fracture network and its connections. The practical implication is that hydrofracture fluids will be locked into the same "permeability jail" that sequestered overpressured gas for over 200 million years. If one wants to dispose of fracking waters, one could probably not choose a safer way to do so that to inject them into a gas shale.

  5. Modeling of the elementary chemical act at the solid-fluid interface; Modelisation de l'acte chimique elementaire a l'interface solide-fluide

    Energy Technology Data Exchange (ETDEWEB)

    Toulhoat, H. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)


    The solid-fluid interface is the place where several phenomena of great technological interest take place. This paper deals with the atomistic simulation of solid-fluid interfaces using the VASP (Vienna Ab Initio Simulation Package) code. VASP uses the electron density functional theory and takes into account the generalized gradient correction. Some examples of application of this method to the modeling of some chemical processes used in petroleum refining are presented: heterogenous catalysis, crystal growth for catalyst support preparation (thiophene hydro-desulfurization on molybdenum sulfide, sulfur poisoning of noble metals, interface tensions in the water/boehmite system). (J.S.)

  6. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects. (United States)

    Vörtler, Horst L; Schäfer, Katja; Smith, William R


    We study the simulation cell size dependence of chemical potential isotherms in subcritical square-well fluids by means of series of canonical ensemble Monte Carlo simulations with increasing numbers of particles, for both three-dimensional bulk systems and two-dimensional planar layers, using Widom-like particle insertion methods. By estimating the corresponding vapor/liquid coexistence densities using a Maxwell-like equal area rule for the subcritical chemical potential isotherms, we are able to study the influence of system size not only on chemical potentials but also on the coexistence properties. The chemical potential versus density isotherms show van der Waals-like loops in the subcritical vapor/liquid coexistence range that exhibit distinct finite size effects for both two- and three-dimensional fluids. Generally, in agreement with recent findings for related studies of Lennard-Jones fluids, the loops shrink with increasing number of particles. In contrast to the subcritical isotherms themselves, the equilibrium vapor/liquid densities show only a weak system size dependence and agree quantitatively with the best-known literature values for three-dimensional fluids. This allows our approach to be used to accurately predict the phase coexistence properties. Our resulting phase equilibrium results for two-dimensional square-well fluids are new. Knowledge concerning finite size effects of square-well systems is important not only for the simulation of thermodynamic properties of simple fluids, but also for the simulation of models of more complex fluids (such as aqueous or polymer fluids) involving square-well interactions.

  7. Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction (United States)

    Hayat, Tasawar; Qayyum, Sajid; Ahmad, Bashir; Waqas, Muhammad


    The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

  8. Flow of an Erying-Powell fluid over a stretching sheet in presence of chemical reaction

    Directory of Open Access Journals (Sweden)

    Khan Ilyas


    Full Text Available In this paper we study the flow of an incompressible Erying-Powell fluid bounded by a linear stretching surface. The mass transfer analysis in the presence of destructive /generative chemical reactions is also analyzed. A similarity transformation is used to transform the governing partial differential equations into ordinary differential equations. Computations for dimensionless velocity and concentration fields are performed by an efficient approach namely the homotopy analysis method (HAM and numerical solution is obtained by shooting technique along with Runge-Kutta-Fehlberg integration scheme. Graphical results are prepared to illustrate the details of flow and mass transfer characteristics and their dependence upon the physical parameters. The values for gradient of mass transfer are also evaluated and analyzed. A comparison of the present solutions with published results in the literature is performed and the results are found to be in excellent agreement.

  9. Equation of state of sticky-hard-sphere fluids in the chemical-potential route (United States)

    Rohrmann, René D.; Santos, Andrés


    The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route (μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxter's model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the μ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.

  10. Chemical potential of a test hard sphere of variable size in a hard-sphere fluid (United States)

    Heyes, David M.; Santos, Andrés


    The Labík and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, P0(η ,σ0) , of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS fluid of diameter σ and packing fraction, η , up to 0.5. It is shown analytically that the only polynomial representation of -ln ⁡P0 (η ,σ0) consistent with the limits σ0→0 and σ0→∞ has necessarily a cubic form, c0(η ) +c1(η ) σ0 /σ +c2(η ) (σ0/σ ) 2 +c3(η ) (σ0/σ ) 3 . Our MD data for -ln ⁡P0 (η ,σ0) are fitted to such a cubic polynomial and the functions c0(η ) and c1(η ) are found to be statistically indistinguishable from their exact solution forms. Similarly, c2(η ) and c3(η ) agree very well with the Boublík-Mansoori-Carnahan-Starling-Leland and Boublík-Carnahan-Starling-Kolafa formulas. The cubic polynomial is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host fluid, or σ0→σ , as β μex =c0+c1+c2+c3 . Excellent agreement between the Carnahan-Starling and Carnahan-Starling-Kolafa theories with our MD data is evident.

  11. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.


    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  12. Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Samuel; Kirikova, Marina [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zaïdi, Warda; Bonnet, Jean-Pierre [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Marre, Samuel; Aymonier, Cyril [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zhang, Junxian; Cuevas, Fermin; Latroche, Michel [ICMPE, CNRS-UPEC, UMR 7182, 2-8 rue Henri Dunant, 94320-Thiais (France); Aymard, Luc [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Bobet, Jean-Louis, E-mail: [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)


    Highlights: •Nanoparticles of Pd were deposed on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method. •Numerous parameters were tested and optimized in order to obtain a homogeneous deposition. •At the first step, Pd@Mg0.65Sc0.35 decomposes into ScH{sub 2} and MgH{sub 2} under hydrogen pressure (1 MPa) at 330 °C. •The mixture, after decomposition absorbs hydrogen reversibly on Mg/MgH{sub 2} couple with good kinetics. -- Abstract: The deposition of Pd nanoparticles on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method was performed. There, the SFCD operating parameters (co-solvent, temperature, CO{sub 2} and hydrogen pressure, reaction time) have been optimized to obtain homogeneous deposition of Pd nanoparticles (around 10 nm). The hydrogenation properties of the optimized Pd@Mg{sub 0.65}Sc{sub 0.35} material were determined and compared to those of Mg{sub 0.65}Sc{sub 0.35}Pd{sub 0.024}. The latter compound forms at 300 °C and 1 MPa of H{sub 2} a hydride that crystallizes in the fluorite structure, absorbs reversibly 1.5 wt.% hydrogen and exhibits fast kinetics. In contrast, Pd@Mg{sub 0.65}Sc{sub 0.35} compound decomposes into ScH{sub 2} and MgH{sub 2} during hydrogen absorption under the same conditions. However, reversible sorption reaches 3.3 wt.% of hydrogen while keeping good kinetics. The possible roles of Pd on the hydrogen-induced alloy decomposition are discussed.

  13. Human breast biomonitoring and environmental chemicals: use of breast tissues and fluids in breast cancer etiologic research. (United States)

    LaKind, Judy S; Wilkins, Amy A; Bates, Michael N


    Extensive research indicates that the etiology of breast cancer is complex and multifactorial and may include environmental risk factors. Breast cancer etiology and exposure to xenobiotic compounds, diet, electromagnetic fields, and lifestyle have been the subject of numerous scientific inquiries, but research has yielded inconsistent results. Biomonitoring has been used to explore associations between breast cancer and levels of environmental chemicals in the breast. Research using breast tissues and fluids to cast light on the etiology of breast cancer is, for the most part, predicated on the assumption that the tissue or fluid samples either contain measurable traces of the environmental agent(s) associated with the cancer or that they retain biological changes that are biomarkers of such exposure or precursors of carcinogenic effect. In this paper, we review breast cancer etiology research utilizing breast biomonitoring. We first provide a brief synopsis of the current state of understanding of associations between exposure to environmental chemicals and breast cancer etiology. We then describe the published breast cancer research on tissues and fluids, which have been used for biomonitoring, specifically human milk and its components, malignant and benign breast tissue, nipple aspirate fluid (NAF) and breast cyst fluid. We conclude with a discussion on recommendations for biomonitoring of breast tissues and fluids in future breast cancer etiology research. Both human milk and NAF fluids, and the cells contained therein, hold promise for future biomonitoring research into breast cancer etiology, but must be conducted with carefully delineated hypotheses and a scientifically supportable epidemiological approach.

  14. Miscible viscous fingering involving viscosity changes of the displacing fluid by chemical reactions (United States)

    Nagatsu, Yuichiro; Iguchi, Chika; Matsuda, Kenji; Kato, Yoshihito; Tada, Yutaka


    In our previous study, we experimentally studied the effects of changes in the viscosity of the displaced more-viscous liquid by instantaneous reactions on miscible viscous fingering pattern [Y. Nagatsu, K. Matsuda, Y. Kato, and Y. Tada, "Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions," J. Fluid Mech. 571, 475 (2007)]. In the present study, experiments have been performed on the miscible viscous fingering involving changes in the viscosity of the displacing less-viscous liquid by instantaneous reactions in a radial Hele-Shaw cell. We have found that the shielding effect is suppressed and the fingers are widened when the viscosity is increased. As a result, the reaction makes the fingering pattern denser. In contrast, the shielding effect is enhanced, and the fingers are narrowed when the viscosity is decreased. As a result, the reaction makes the fingering pattern less dense. These results are essentially same as those obtained by the above-mentioned previous study. This shows that the effects of changes in the viscosity due to the instantaneous reactions are independent of whether the changes occur in the displaced liquid or in the displacing liquid. A mechanism for the independence is discussed.

  15. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    Directory of Open Access Journals (Sweden)

    M. Isabel Burguete


    Full Text Available This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs, to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  16. Flow of Chemically Reactive non-Newtonian Fluids in Twin-Screw Extruders (United States)

    Zhu, Weimin; Jaluria, Yogesh


    Many applications of twin-screw extruders are found in the processing of food, plastics, pharmaceutical materials and other highly viscous materials. In reactive extrusion, complex interactions in which the flow pattern, and the heat and mass transfer are affected by viscous dissipation, reaction energy, convection, residence time distribution and rheology of the materials may occur. The fluid flow, heat transfer and chemical reactions in a fully intermeshing, corotating and self wiping twin screw extruder were investigated numerically by using the finite volume method. The screw channel of a twin screw extruder are approximated as translation (parabolic) domain and intermeshing (elliptic) domain. The full governing equations were solved to determine the velocity components in the three coordinate directions. The energy equation is coupled with the equations of motion through viscosity. The Residence Time Distribution (RTD), was obtained by using a particle tracking method. The flow field, temperature field, pressure as well as RTD and chemical conversion were obtained by numerical simulation and the results yielded agreement with experimental measurements and expected physical characteristic of the process.

  17. Inquiry guided learning in a chemical engineering core curriculum: General instructional approach and specific application to the fluid mechanics case


    Atilhan, Mert; Eljack, Fadwa; Alfadala, Hassan; Froyd, Jeffrey E.; El-Halwagi, Mahmoud; Mahalec, Vladimir


    This paper presents results from a preliminary study of the effectiveness of using inquiry-guided learning instructional strategies both in chemical engineering classrooms and laboratories. For readers unfamiliar with the instructional strategy, the paper describes the general approach and then reports on results of its application for the fluid mechanics course taken by undergraduate students in the Chemical Engineering Department at Qatar University. Inquiry-guided activities were developed...

  18. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    Energy Technology Data Exchange (ETDEWEB)

    Dutrow, Barbara


    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  19. Dipolar nuclear spin relaxation in liquids and plane fluids undergoing chemical reactions (United States)

    Fries, P. H.

    We describe the correlated translational and rotational relative brownian motions of two reacting groups of atoms, alternatively bound and free, by the normalized solutions of a set of coupled diffusion equations. Under equilibrium conditions we calculate the spectral densities j(ω) characteristic of the fluctuations of the intermolecular dipolar coupling between spins of these diffusing groups of atoms. When ωτ density j2(ω) in three-dimensional liquids is j2(0) - α3ω1/2. The coefficient α3 is independent of the molecular local order, of the diffusional rotation speed of the spin-carrying groups of atoms and of their association and dissociation rates. In plane fluids, when ωτ density j(0)(ω) may be written as -a2 ln (ωτ) where the dependence of a2 on the average relative distribution of the interacting spins varies with the rate of the chemical reactions. In both three- and two-dimensional fluids spectral densities show an ω-3/2 or ω-2 behaviour for ωτ >> 1 according to the magnitude of the association rate of the reacting groups of atoms. In liquid glycerol we analyse the low- and high-frequency limits of the experimental proton relaxation rate 1/T1 and 1/T1ρ measured by Harmon, Harmon and Burnett, and Lenk. We also discuss the proton spin-lattice relaxation times measured by Kleinberg and Silbernagel in layered intercalation compounds TiS2-NH3 and TaS2-NH3.

  20. A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program (United States)

    Sozen, Mehmet; Majumdar, Alok


    The Generalized Fluid System Simulation Program (GFSSP) is a computer code developed at NASA Marshall Space Flight Center for analyzing steady state and transient flow rates, pressures, temperatures, and concentrations in a complex flow network. The code, which performs system level simulation, can handle compressible and incompressible flows as well as phase change and mixture thermodynamics. Thermodynamic and thermophysical property programs, GASP, WASP and GASPAK provide the necessary data for fluids such as helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, water, a hydrogen, isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, several refrigerants, nitrogen trifluoride and ammonia. The program which was developed out of need for an easy to use system level simulation tool for complex flow networks, has been used for the following purposes to name a few: Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump Secondary Flow Circuits, Axial Thrust Balance of the Fastrac Engine Turbopump, Pressurized Propellant Feed System for the Propulsion Test Article at Stennis Space Center, X-34 Main Propulsion System, X-33 Reaction Control System and Thermal Protection System, and International Space Station Environmental Control and Life Support System design. There has been an increasing demand for implementing a combustion simulation capability into GFSSP in order to increase its system level simulation capability of a liquid rocket propulsion system starting from the propellant tanks up to the thruster nozzle for spacecraft as well as launch vehicles. The present work was undertaken for addressing this need. The chemical equilibrium equations derived from the second law of thermodynamics and the energy conservation equation derived from the first law of thermodynamics are solved simultaneously by a Newton-Raphson method. The numerical scheme was implemented as a User

  1. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧


    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  2. Topics in Chemical Instrumentation--An Introduction to Supercritical Fluid Chromatography: Part 1: Principles and Instrumentation. (United States)

    Palmieri, Margo D.


    Identifies the properties and characteristics of supercritical fluids. Discusses the methodology for supercritical fluid chromatography including flow rate, plate height, column efficiency, viscosity, and other factors. Reviews instruments, column types, and elution conditions. Lists supercritical fluid data for 22 compounds, mostly organic. (MVL)

  3. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough (United States)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)


    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  4. Chemically reacting micropolar fluid flow and heat transfer between expanding or contracting walls with ion slip, Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    Odelu Ojjela


    Full Text Available The aim of the present study is to investigate the Hall and ion slip currents on an incompressible free convective flow, heat and mass transfer of a micropolar fluid in a porous medium between expanding or contracting walls with chemical reaction, Soret and Dufour effects. Assume that the walls are moving with a time dependent rate of the distance and the fluid is injecting or sucking with an absolute velocity. The walls are maintained at constant but different temperatures and concentrations. The governing partial differential equations are reduced into nonlinear ordinary differential equations by similarity transformations and then the resultant equations are solved numerically by quasilinearization technique. The results are analyzed for velocity components, microrotation, temperature and concentration with respect to different fluid and geometric parameters and presented in the form of graphs. It is noticed that with the increase in chemical reaction, Hall and ion slip parameters the temperature of the fluid is enhanced whereas the concentration is decreased. Also for the Newtonian fluid, the numerical values of axial velocity are compared with the existing literature and are found to be in good agreement.

  5. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria


    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  6. Does pleural fluid appearance really matter? The relationship between fluid appearance and cytology, cell counts, and chemical laboratory measurements in pleural effusions of patients with cancer

    Directory of Open Access Journals (Sweden)

    Ozcakar Bulent


    Full Text Available Abstract Background Previous reports have suggested that the appearance of pleural effusions (i.e., the presence or absence of blood might help to establish the etiology of the effusions. This study explores the relationship between pleural fluid appearance and the results of chemical and cytological analyses in a group of patients with recurrent symptomatic pleural effusions and a diagnosis of cancer. Methods Medical records were reviewed from all 390 patients who were diagnosed with cancer, who underwent thoracentesis before placement of an intrapleural catheter (IPC between April 2000 and January 2006. Adequate information for data analysis was available in 365 patients. The appearance of their pleural fluid was obtained from procedure notes dictated by the pulmonologists who had performed the thoracenteses. The patients were separated into 2 groups based on fluid appearance: non-bloody and bloody. Group differences in cytology interpretation were compared by using the chi square test. Cellular counts, chemical laboratory results, and survival after index procedure were compared by using the student's t test. Results Pleural fluid cytology was positive on 82.5% of the non-bloody effusions and on 82.4% of the bloody ones. The number of red blood cells (220.5 × 103/μL vs. 12.3 × 103/μL and LDH values (1914 IU/dl vs. 863 IU/dl were statistically higher in bloody pleural effusions. Conclusion The presence or absence of blood in pleural effusions cannot predict their etiology in patients with cancer and recurrent symptomatic pleural effusions.

  7. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. (United States)

    Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C


    Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.

  8. U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Kate; DePaolo, Donald J.; Christensen, John N.


    Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

  9. Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime

    Institute of Scientific and Technical Information of China (English)

    R.C.Chaudhary; Abhay Kumar Jha


    Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.

  10. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems (United States)

    Nakamura, Kentaro; Takai, Ken


    In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isotope compositions of the hydrothermal fluid are, in turn, controlled by subseafloor physical and chemical processes, including fluid-rock interactions, phase separation and partitioning of fluids, and precipitation of minerals. We hypothesized that specific physicochemical principles describe the linkages among the living ecosystems, hydrothermal fluids, and geological background in deep-sea hydrothermal systems. We estimated the metabolic energy potentially available for productivity by chemolithotrophic microorganisms at various hydrothermal vent fields. We used a geochemical model based on hydrothermal fluid chemistry data compiled from 89 globally distributed hydrothermal vent sites. The model estimates were compared to the observed variability in extant microbial communities in seafloor hydrothermal environments. Our calculations clearly show that representative chemolithotrophic metabolisms (e.g., thiotrophic, hydrogenotrophic, and methanotrophic) respond differently to geological and geochemical variations in the hydrothermal systems. Nearly all of the deep-sea hydrothermal systems provide abundant energy for organisms with aerobic thiotrophic metabolisms; observed variations in the H2S concentrations among the hydrothermal fluids had little effect on the energetics of thiotrophic metabolism. Thus, these organisms form the base of the chemosynthetic microbial community in global deep-sea hydrothermal environments. In contrast, variations in H2 concentrations in hydrothermal fluids significantly impact organisms with aerobic and anaerobic hydrogenotrophic metabolisms

  11. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids. (United States)

    Yost, Erin E; Stanek, John; Burgoon, Lyle D


    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  12. An integrated fluid-chemical model towards modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Jacopo eBiasetti


    Full Text Available Abdominal Aortic Aneurysms (AAAs are frequently characterized by the presenceof an Intra-Luminal Thrombus (ILT known to influence biochemically and biomechanicallytheir evolution. ILT progression mechanism is still unclear and little is known regardingthe impact on this mechanism of the chemical species transported by blood flow.Chemical agonists and antagonists of platelets activation, aggregation, and adhesion andthe proteins involved in the coagulation cascade (CC may play an important role in ILTdevelopment. Starting from this assumption, the evolution of chemical species involvedin the CC, their relation to coherent vortical structures (VSs and their possible effect onILT evolution have been studied. To this end a fluido-chemical model that simulates theCC through a series of convection-diffusion-reaction (CDR equations has been developed.The model involves plasma-phase and surface bound enzymes and zymogens, and includesboth plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonianincompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinicalobservations showing that the thickest ILT is usually seen in the distal AAA region. Theproposed model, due to its ability to couple the fluid and chemical domains, provides anintegrated mechanochemical picture that potentially could help unveil mechanisms of ILTformation and development.

  13. A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit


    Li, Minghua; Hikihara, Takashi


    The redox (Reduction-Oxidation) flow battery is one of the most promising rechargeable batteries due to its ability to average loads and output of power sources. The transient characteristics are well known as the remarkable feature of the battery. Then it can also compensate for a sudden voltage drop. The dynamics are governed by the chemical reactions, fluid flow, and electrical circuit of its structure. This causes the difficulty of the analysis at transient state. This paper discusses the...

  14. Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates (United States)

    Frei, S.; Richter, T.; Wick, T.


    In this work, we develop numerical schemes for mechano-chemical fluid-structure interactions with long-term effects. We investigate a model of a growing solid interacting with an incompressible fluid. A typical example for such a situation is the formation and growth of plaque in blood vessels. This application includes two particular difficulties: First, growth may lead to very large deformations, up to full clogging of the fluid domain. We derive a simplified set of equations including a fluid-structure interaction system coupled to an ODE model for plaque growth in Arbitrary Lagrangian Eulerian (ALE) coordinates and in Eulerian coordinates. The latter novel technique is capable of handling very large deformations up to contact. The second difficulty stems from the different time scales: while the dynamics of the fluid demand to resolve a scale of seconds, growth typically takes place in a range of months. We propose a temporal two-scale approach using local small-scale problems to compute an effective wall stress that will enter a long-scale problem. Our proposed techniques are substantiated with several numerical tests that include comparisons of the Eulerian and ALE approaches as well as convergence studies.

  15. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones (United States)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.


    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  16. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow (United States)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a

  17. Chemical and radiolytical characterization of some perfluorocarbon fluids used as coolants for LHC experiments

    CERN Document Server

    Battistin, M; Setnescu, R; Teissandier, B; CERN. Geneva. TS Department


    Perfluorocarbon fluids, - mainly C6F14 - used as coolants within High Energy Physics Detectors in the Large Hadrons Collider (LHC) at CERN, were characterized by applying mainly the following methods: GC, FT-IR and UV-Vis. The aim of this work was the quality control, the identification and the quantification of different impurities which could increase the radiation sensitivity of these fluids. Thus, the presence of H containing molecules within perfluorocarbons strongly influences the appearance of hydrofluoric acid during their irradiation. The procedures settled-up in this work are sensitive to the presence of such impurities and would be used for the analyses of the received perfluorocarbon fluids as well as to assess the radiation induced modifications and the efficiency of their purification treatments.

  18. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Teunissen, W.; Dam, van J.E.G.; Jong, de E.; Gellerstedt, G.; Scott, E.L.; Sanders, J.P.M.


    Valorisation of lignin plays a key role in further development of lignocellulosic biorefinery processes the production of biofuels and bio-based materials. In the present study, organosolv hardwood and wheat straw lignins were converted in a supercritical fluid consisting of carbon dioxide/acetone/w

  19. Chiral Separation of G-type Chemical Warfare Nerve Agents via Analytical Seupercritical Fluid Chromatography (United States)


    by HPLC have not been well characterized . Supercritical fluid chromatography (SFC) is a well- established chiral chromatography technology that offers...smoothed chromatograms. For presentation purposes only smoothed chromatograms are shown. Chromatographic Characterization Chromatography parameters were...under these conditions (data not shown). Various other polysaccharide -type chiral columns (Chiralpak AD-H, Chiralcel OJ-RH, Chiralpak IB) were tested

  20. Mixed convection effects on heat and mass transfer in a non Newtonian fluid with chemical reaction over a vertical plate

    Institute of Scientific and Technical Information of China (English)


    This paper studies mixed convection,double dispersion and chemical reaction effects on heat and mass transfer in a non-Darcy non-Newtonian fluid over a vertical surface in a porous medium under the constant temperature and concentration.The governing boundary layer equations,namely,momentum,energy and concentration,are converted to ordinary differential equations by introducing similarity variables and then are solved numerically by means of fourth-order Runge-Kutta method coupled with double-shooting techn...

  1. A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection

    Energy Technology Data Exchange (ETDEWEB)

    Spycher, Nicolas; Larkin, Randy


    A new disposal well was drilled in the vicinity of an injection well that had been in operation for 12 years. The drilling activities provided an opportunity to assess the fate and transport of waste products injected in the nearby well, and the impact, if any, on the host geologic formation. The origin of the fluid collected while drilling the new well and the interaction between injected waste and the formation were investigated using analyses of formation waters, waste, and formation minerals, by applying traditional graphical methods and sophisticated numerical models. This approach can be used to solve a wide range of geochemical problems related to deep well injection of waste. Trilinear Piper diagrams, Stiff diagrams, and correlation plots show that the chemical characteristics of recovered fluid at the new well are similar to those of formation water. The concentrations of most major constituents in the fluid appear diluted when compared to formation water sampled at other locations. This could be explained by mixing with waste, which is less saline than formation water. However, the waste injected near the new well consists primarily of ammonia and sulfate, and these waste constituents are not found at concentrations elevated enough to suggest that significant mixing of formation water with waste has occurred. To determine whether chemical interactions between injected waste and formation could explain the chemistry of fluid recovered from the new well, we simulated the chemical reaction between waste, formation water, and the formation rock by numerical modeling. Initial modeling calculations were done using a multicomponent geochemical reaction-path model to simulate fresh waste reacting with the formation. A more complex simulation coupling flow, transport, and reaction was then run using a multicomponent geochemical reactive transport model. These numerical simulations were carried out to calculate porosity changes and evaluate chemical processes

  2. Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid (United States)

    Sohail, Ayesha; Maqbool, K.; Sher Akbar, Noreen; Younas, Muhammad


    This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number, chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity, temperature and concentration fields are shown graphically.

  3. Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction

    Directory of Open Access Journals (Sweden)

    P. Bala Anki Reddy


    Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.

  4. Evaluation of Bacteriological and Chemical Quality of Dialysis Water and Fluid in Isfahan, Central Iran


    Shahryari, Ali; Nikaeen, Mahnaz; HATAMZADEH, Maryam; Vahid Dastjerdi, Marzieh; Hassanzadeh, Akbar


    Background: Chemical and microbial quality of water used in hemodialysis play key roles in a number of dialysis-related complications. In order to avoid the complications and to guarantee safety and health of patients therefore, vigorous control of water quality is essential. The objective of present study was to investigate the chemical and bacteriological characteristics of water used in dialysis centers of five hospitals in Isfahan, central Iran.Methods: A total of 30 water samples from th...

  5. Chemical and isotopic characteristics of the coso east flankhydrothermal fluids: implications for the location and nature of the heatsource

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.


    Fluids have been sampled from 9 wells and 2 fumaroles fromthe East Flank of the Coso hydrothermal system with a view toidentifying, if possible, the location and characteristics of the heatsource inflows into this portion of the geothermal field. Preliminaryresults show that there has been extensive vapor loss in the system, mostprobably in response to production. Wells 38A-9, 51-16 and 83A-16 showthe highest CO2-CO-CH4-H2 chemical equilibration temperatures, rangingbetween 300-340oC, and apart from 38A-9, the values are generally inaccordance with the measured temperatures in the wells. Calculatedtemperatures for the fractionation of 13C between CO2 and CH4 are inexcess of 400oC in fluids from wells 38A-9, 64-16-RD2 and 51A-16,obviously pointing to equilibrium conditions from deeper portions of thereservoir. Given that the predominant reservoir rock lithologies in theCoso system are relatively silicic (granitic to dioritic), the isotopicsignatures appear to reflect convective circulation and equilibrationwithin rocks close to the plastic-brittle transition. 3He/4He signatures,in conjunction with relative volatile abundances in the Coso fluids,point to a possibly altered mantle source for the heat sourcefluids.

  6. Identifying chemicals of concern in hydraulic fracturing fluids used for oil production. (United States)

    Stringfellow, William T; Camarillo, Mary Kay; Domen, Jeremy K; Sandelin, Whitney L; Varadharajan, Charuleka; Jordan, Preston D; Reagan, Matthew T; Cooley, Heather; Heberger, Matthew G; Birkholzer, Jens T


    Chemical additives used for hydraulic fracturing and matrix acidizing of oil reservoirs were reviewed and priority chemicals of concern needing further environmental risk assessment, treatment demonstration, or evaluation of occupational hazards were identified. We evaluated chemical additives used for well stimulation in California, the third largest oil producing state in the USA, by the mass and frequency of use, as well as toxicity. The most frequently used chemical additives in oil development were gelling agents, cross-linkers, breakers, clay control agents, iron and scale control agents, corrosion inhibitors, biocides, and various impurities and product stabilizers used as part of commercial mixtures. Hydrochloric and hydrofluoric acids, used for matrix acidizing and other purposes, were reported infrequently. A large number and mass of solvents and surface active agents were used, including quaternary ammonia compounds (QACs) and nonionic surfactants. Acute toxicity was evaluated and many chemicals with low hazard to mammals were identified as potentially hazardous to aquatic environments. Based on an analysis of quantities used, toxicity, and lack of adequate hazard evaluation, QACs, biocides, and corrosion inhibitors were identified as priority chemicals of concern that deserve further investigation.

  7. Wearable technology for bio-chemical analysis of body fluids during exercise. (United States)

    Morris, Deirdre; Schazmann, Benjamin; Wu, Yangzhe; Coyle, Shirley; Brady, Sarah; Fay, Cormac; Hayes, Jer; Lau, King Tong; Wallace, Gordon; Diamond, Dermot


    This paper details the development of a textile based fluid handling system with integrated wireless biochemical sensors. Such research represents a new advancement in the area of wearable technologies. The system contains pH, sodium and conductivity sensors. It has been demonstrated during on-body trials that the pH sensor has close agreement with measurements obtained using a reference pH probe. Initial investigations into the sodium and conductivity sensors have shown their suitability for integration into the wearable system. It is thought that applications exist in personal health and sports performance and training.

  8. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS (United States)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.


    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  9. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)



    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  10. Analysis of physical-chemical processes governing SSME internal fluid flows (United States)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Prakash, C.; Przekwas, A. J.; Kannapel, M.


    The basic issues concerning the physical chemical processes of the Space Shuttle Main Engine are discussed. The objectives being to supply the general purpose CFD code PHOENICS and the associated interactive graphics package - GRAFFIC; to demonstrate code usage on SSME related problems; to perform computations and analyses of problems relevant to current and future SSME's; and to participate in the development of new physical models of various processes present in SSME components. These objectives are discussed in detail.

  11. Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations. (United States)

    Cavallotti, Carlo; Masi, Maurizio


    Though most of the current silicon photovoltaic technology relies on trichlorosilane (SiHCl3) as a precursor gas to deposit Si, only a few studies have been devoted to the investigation of its gas phase and surface kinetics. In the present work we propose a new kinetic mechanism apt to describe the gas phase and surface chemistry active during the deposition of Si from SiHCl3. Kinetic constants of key reactions were either taken from the literature or determined through ab initio calculations. The capability of the mechanism to reproduce experimental data was tested through the implementation of the kinetic scheme in a fluid dynamic model and in the simulation of both deposition and etching of Si in horizontal reactors. The results of the simulations show that the reactivity of HCl is of key importance in order to control the Si deposition rate. When HCl reaches a critical concentration in the gas phase it starts etching the Si surface, so that the net deposition rate is the net sum of the adsorption rate of the gas phase precursors and the etching rate due to HCl. In these conditions the possibility to further deposit Si is directly related to the rate of consumption of HCl through its reaction with SiHCl3 to give SiCl4. The proposed reaction mechanism was implemented in a 3D fluid dynamic model of a simple Siemens reactor. The simulation results indicate that the proposed interpretation of the growth process applies also to this class of reactors, which operate in what can be defined as a mixed kinetic-transport controlled regime.

  12. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet (United States)

    Mishra, S. R.; Pattnaik, P. K.; Bhatti, M. M.; Abbas, T.


    This article addresses the mass and heat transfer analysis over an electrically conducting viscoelastic (Walters B') fluid over a stretching surface in presence of transverse magnetic field. The impact of chemical reaction, as well as non-uniform heat source, are also taken into account. Similarity transformations are employed to model the equations. The governing equations comprises of momentum, energy, and concentration which are modified to a set of non-linear differential equations and then solved by applying confluent hypergeometric function known as " Kummer's function". The exact solution for heat equation is obtained for two cases i.e. (1) Prescribed surface temperature, (2) Prescribed wall heat flux. Physical behavior of all the sundry parameters are against concentration, temperature, and velocity profile are presented through graphs. The inclusion of magnetic field is counterproductive in diminishing the velocity distribution whereas reverse effect is encountered for concentration and temperature profiles.

  13. Mixed convection flow of couple stress fluid between rotating discs with chemical reaction and double diffusion effects (United States)

    Kaladhar, K.; Srinivasacharya, D.


    The chemical reaction, Soret and Dufour effects on steady flow of a couple stress fluid between two rotating disks are studied. The lower disc is rotating with angular velocity Ω1 where as the upper disc is rotating with Ω2. The density variation in centrifugal and Coriolis force terms are taken into consideration by invoking a linear density-temperature relation and Boussinesq approximation to account the buoyancy effects. The non-linear governing partial differential equations are transformed into system of ordinary differential equations by using the similarity transformations. Homotopy Analysis Method (HAM) has been used to solve the resulting equations. Graphical illustrations of the dimensionless velocity, concentration and temperature profiles are presented at different values of the emerging parameter of the present study. It has been found that as an increase in couple stresses leads to the decrease in velocity, temperature and increase in concentration of the fluid. Flow velocities, temperature and concentration profiles are decreases with an increase in reaction parameter.

  14. Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium (United States)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa


    SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front

  15. Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids. (United States)

    Apfelbaum, E M; Vorob'ev, V S


    We have found the curves on the density-temperature plane, along which the values of free energy and chemical potential correspond to ideal gas quantities. At first, we have applied the van der Waals equation to construct them and to derive their equations. Then we have shown that the same lines for real substances (Ar, N2, CH4, SF6, H2, H2O) and for the model Lennard-Jones system constructed on the basis of the measurements data and calculations are well matched with the derived equations. The validity and deviations from the obtained similarity laws are discussed.

  16. [Optimize the extraction process with supercritical CO2 fluid from lotus leaves by the uniform design and analysis on the chemical constituents by GC-MS]. (United States)

    Yin, Hui-jing; Qian, Yi-fan; Pu, Cun-hai


    To study the optimum parameters of the supercritical CO, fluid extraction of lotus leaves and chemical constituents of extractive matters. Supercritical CO2 fluid extraction condition was selected by uniform design. The extraction pressure, extraction temperature, extraction time were three factors in the experiment. GC-MS was applied for analyzing the extraction. The optimum condition were obtained: the extraction pressure was 26 Mpa, the extraction temperature was 40 degrees C, the extracion time was 90 minutes. The major constituent was 1H-Pyrrole-2-carboxaldehyde, 1-ethyl-in extractive matters. Uniform design can optimize the CO2 Supercritical Fluid Extraction process quickly and accuratly with satisfactory results.

  17. Quick, portable toxicity testing of marine or terrigenous fluids, sediments, or chemicals with bioluminescent organism

    Energy Technology Data Exchange (ETDEWEB)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L. [Lumitox Gulf L.C., New Orleans, LA (United States)


    A hand-held, battery-operated instrument, which measures bioluminescence inhibition of the microscopic marine dinoflagellate Pyrocystis lunula, is capable of field-testing substances for toxicity. The organism is sensitive to ppb of strong toxicants. It tolerates some solvents in concentrations necessary for testing lipophylic samples. A test consumes only micrograms of sample. This method requires no adjustments for salinity, pH, color, or turbidity. It has been used successfully to test oil-well drilling fluids, brines produced with oil, waters and sediments from streams and lakes and petroleum-plant effluents containing contaminants such as benzene. The test is non-specific; however, if the substance is known, the end-point effects a direct measurement of its concentration. One-hour toxicity screening tests in the field produce results comparable to the standard four-hour laboratory test. Keeping the sample in the dark during incubation and testing, together with shortness of the overall procedure, eliminates anomalies from light-sensitive substances. Day-to-day variation, as well as among test replicates, is less than 10%. This quick method yields results comparable with a quick test that uses Photobacterium phosphoria, and with 96-hour tests that use Mysidopsis bahia, Artemia salina, Gonyaulax polyedra, Pimephales promelas, Ceriodaphnia dubia, and Cyprinodon variegatus.

  18. Chemical potential of a test hard sphere of variable size in a hard-sphere fluid

    CERN Document Server

    Heyes, David M


    The Lab\\'ik and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is extended using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, $P_0(\\eta,\\sigma_0)$, of tracer hard-sphere (HS) particles of different diameters, $\\sigma_0$, in a host HS fluid of diameter $\\sigma$ and packing fraction, $\\eta$, up to $0.5$. It is shown analytically that the only polynomial representation of $-\\ln P_0(\\eta,\\sigma_0)$ consistent with the limits $\\sigma_0\\to 0$ and $\\sigma_0\\to\\infty$ has necessarily a cubic form, $c_0(\\eta)+c_1(\\eta)\\sigma_0/\\sigma+c_2(\\eta)(\\sigma_0/\\sigma)^2+c_3(\\eta)(\\sigma_0/\\sigma)^3$. Our MD data for $-\\ln P_0(\\eta,\\sigma_0)$ are fitted to such a cubic polynomial and the functions $c_0(\\eta)$ and $c_1(\\eta)$ are found to be statistically indistinguishable from their exact solution forms. Similarly, $c_2(\\eta)$ and $c_3(\\eta)$ agree very well with the Boubl\\'ik--Mansoori--Carnahan--Starling--Leland and Boubl\\'ik--Carnahan--Starling-...

  19. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.


    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  20. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. (United States)

    Gosselink, Richard J A; Teunissen, Wouter; van Dam, Jan E G; de Jong, Ed; Gellerstedt, Göran; Scott, Elinor L; Sanders, Johan P M


    Valorisation of lignin plays a key role in further development of lignocellulosic biorefinery processes the production of biofuels and bio-based materials. In the present study, organosolv hardwood and wheat straw lignins were converted in a supercritical fluid consisting of carbon dioxide/acetone/water (300-370°C, 100bar) to a phenolic oil consisting of oligomeric fragments and monomeric aromatic compounds with a total yield of 10-12% based on lignin. These yields are similar to the state-of-the-art technologies such as base-catalysed thermal processes applied for lignin depolymerisation. Addition of formic acid increases the yield of monomeric aromatic species by stabilizing aromatic radicals. Supercritical depolymerisation of wheat straw and hardwood lignin yielded monomeric compounds in different compositions with a maximum yield of 2.0% for syringic acid and 3.6% for syringol, respectively. The results of the present study showed that under the applied conditions competition occurred between lignin depolymerisation and recondensation of fragments.

  1. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Seright, F.S.; Martin, F.D.


    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  2. Chemical association in simple models of molecular and ionic fluids. III. The cavity function (United States)

    Zhou, Yaoqi; Stell, George


    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  3. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces (United States)

    DePaolo, D. J.


    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  4. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa


    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  5. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng


    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  6. Qualitative/Chemical Analyses of Ankaferd Hemostat and Its Antioxidant Content in Synthetic Gastric Fluids (United States)

    Koluman, Ahmet; Akar, Nejat; Malkan, Umit Y.; Haznedaroglu, Ibrahim C.


    Introduction. Ankaferd hemostat (ABS) is the first topical haemostatic agent involving the red blood cell-fibrinogen interactions. The antihemorrhagic efficacy of ABS has been tested in controlled clinical trials. The drug induces the formation of an encapsulated complex protein web with vital erythroid aggregation. The aim of this study is to detect the essential toxicity profile and the antioxidant molecules inside ABS. Methods. The pesticides were analyzed by GC-MS and LC-MS. The determination by ICP-MS after pressure digestion was performed for the heavy metals. HPLC was used for the detection of mycotoxins. Dioxin Response Chemically Activated Luciferase Gene Expression method was used for the dioxin evaluation. TOF-MS and spectra data were evaluated to detect the antioxidants and other molecules. Results. TOF-MS spectra revealed the presence of several antioxidant molecules (including tocotrienols, vitamin E, tryptophan, estriol, galangin, apigenin, oenin, 3,4-divanillyltetrahydrofuran, TBHQ, thymol, BHA, BHT, lycopene, glycyrrhetinic acid, and tomatine), which may have clinical implications in the pharmacobiological actions of ABS. Conclusion. The safety of ABS regarding the presence of heavy metals, pesticides, mycotoxins, GMO and dioxins, and PCBs was demonstrated. Thus the present toxicological results indicated the safety of ABS. The antioxidant content of ABS should be investigated in future studies. PMID:26925418

  7. Qualitative/Chemical Analyses of Ankaferd Hemostat and Its Antioxidant Content in Synthetic Gastric Fluids

    Directory of Open Access Journals (Sweden)

    Ahmet Koluman


    Full Text Available Introduction. Ankaferd hemostat (ABS is the first topical haemostatic agent involving the red blood cell-fibrinogen interactions. The antihemorrhagic efficacy of ABS has been tested in controlled clinical trials. The drug induces the formation of an encapsulated complex protein web with vital erythroid aggregation. The aim of this study is to detect the essential toxicity profile and the antioxidant molecules inside ABS. Methods. The pesticides were analyzed by GC-MS and LC-MS. The determination by ICP-MS after pressure digestion was performed for the heavy metals. HPLC was used for the detection of mycotoxins. Dioxin Response Chemically Activated Luciferase Gene Expression method was used for the dioxin evaluation. TOF-MS and spectra data were evaluated to detect the antioxidants and other molecules. Results. TOF-MS spectra revealed the presence of several antioxidant molecules (including tocotrienols, vitamin E, tryptophan, estriol, galangin, apigenin, oenin, 3,4-divanillyltetrahydrofuran, TBHQ, thymol, BHA, BHT, lycopene, glycyrrhetinic acid, and tomatine, which may have clinical implications in the pharmacobiological actions of ABS. Conclusion. The safety of ABS regarding the presence of heavy metals, pesticides, mycotoxins, GMO and dioxins, and PCBs was demonstrated. Thus the present toxicological results indicated the safety of ABS. The antioxidant content of ABS should be investigated in future studies.

  8. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.


    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  9. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. (United States)

    Kimbell, J S; Gross, E A; Joyner, D R; Godo, M N; Morgan, K T


    For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.

  10. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: Example from Long Valley, CA, USA (United States)

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.


    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150-180 °C is fractionated by ca. -0.3‰ to -0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  11. Fiscal 1996 investigational research on the chemical process technology using supercritical fluids; 1996 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Importance was studied of making a research on the chemical process technology using the supercritical fluid. As for its effect on global warming, the amount of CO2 emission was compared during the operation between the conventional process and the process using the supercritical fluid, the CO2 reduction rate and amount were trially calculated, and a CO2 reduction of a several ten thousand ton scale in carbon conversion was predicted. As to hazardous materials and the reaction of waste retrieval, it was made clear that the process using the supercritical fluid was valid also for objects for which the chemical process used to be impossible, which indicates a possibility of the widening field of application. Concerning its effect on the energy conservation, energy reduction of several ten thousand tons in heavy oil conversion was predicted by replacing all the existing processes with supercritical fluids. Relating to the recycling, with the use of supercritical fluids, the process is possible which produces higher quality and yield and fewer unnecessary products such as char than the conventional process. 197 refs., 102 figs., 71 tabs.

  12. A cytopreparatory method for cerebrospinal fluid in which the cell yield is high and the fluid is saved for chemical analysis. (United States)

    Tutuarima, J A; Hische, E A; Sylva-Steenland, R M; van der Helm, H J


    A method for the concentration of cells from cerebrospinal fluid is described. An adaptation of a commercial cytochamber, consisting of a holder that fixes a disposable chamber directly on a microscope slide, was used. The cells were spun down in a conventional swing-out centrifuge, which was provided with a bucket for the cytochamber system. After removing most of the supernatant with a pipette, the remaining fluid was absorbed by means of a suction device consisting of a disposable pipette tip covered with a piece of Leukopor and filled with Sephadex G10 beads. The method gives a high recovery of cells (90%), together with a good preservation of cell morphology, and leaves about 80% of the fluid available for analysis of the soluble components.

  13. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the Liquid Droplet Radiator (United States)

    Gulino, Daniel A.; Coles, Carolyn E.


    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethylsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed depolymerization of the fluid molecule.

  14. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas water interaction between magmatic component and shallow fluids (United States)

    Inguaggiato, S.; Martin-Del Pozzo, A. L.; Aguayo, A.; Capasso, G.; Favara, R.


    Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas-water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80-100° C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO 2 in the springs was also detected and associated with high CO 2 degassing.

  15. Chemical reaction, thermal relaxation time and internal material parameter effects on MHD viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation (United States)

    Khan, Sabeel M.; Hammad, M.; Sunny, D. A.


    In this article, the influence of thermal relaxation time and chemical reaction is studied on the MHD upper-convected viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation for the first time in the literature. The flow-governing equations are formulated and are converted into their respective ordinary differential equations (ODEs) with the application of similarity functions. The resulting system of coupled nonlinear ODEs is solved along with the prescribed conditions at boundary using a finite-difference code in MATLAB. Influence of chemical reaction, thermal relaxation time and internal material parameter on the macroscopic and micropolar velocities as well as on the temperature and concentration profiles is examined along with other physical parameters ( e.g., magnetic parameter, Eckert number, Prandtl number and fluid relaxation time). The accuracy of the obtained numerical solution is shown by comparing the physical parameters of interest with particular cases of existing results in the literature.

  16. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah


    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  17. [Comparison of Chemical Components of Essential Oil from Ocimum basilicum var. pilosum Extracted by Supercritical CO2 Fluid and Steam Distillation]. (United States)

    Wang, Zhao-yu; Zheng, Jia-huan; Shi, Sheng-ying; Luo, Zhi-xiong; Ni, Shun-yu; Lin, Jing-ming


    To compare the chemical components of essential oil prepared by steam distillation extraction (SD) and supercritical CO2 fluid extraction (SFE-CO2) from Ocimum basilicum var. pilosum whole plant. The essential oil of Ocimum basilicum var. pilosum were extracted by SD and SFE-CO2. The chemical components of essential oil were separated and analyzed by gas chromatography-mass spectrometry( GC-MS). Their relative contents were determined by normalization of peak area. 40 and 42 compounds were detected in the essential oil prepared by SD and SFE-CO2 respectively. 25 compounds were common. Thereare significant differences of the chemical components between the Ocimum basilicum var. pilosum essential oil prepared by SD and thatby SFE-CO2. Different methods showed different extraction efficiency with a special compound. It might be a good idea to unite several methods in the modern traditional Chinese medicine industry.

  18. The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks (United States)

    Hedenquist, Jeffrey W.; Browne, Patrick R. L.


    shallow waters is also supported by the oxygen and hydrogen isotopic composition of the mixture, with the deep fluid being enriched in δ 18O and δD from local meteoric by ~7 and 10%., respectively. The patterns in whole rock δ 18O indicate that they were largely shifted in isotopic composition prior to incursion of steam-heated waters (possibly induced by a series of hydrothermal eruptions ~900 years ago). In contrast, the δ 18O composition of late vug calcite indicates its formation is related to the initial incursion of steam-heated groundwater and subsequent cooling; this is supported by fluid inclusion evidence. The δD shift from local groundwater composition, and the δ 13C composition of CO 2 determined from calcite (-4 to -6%.), may be evidence for a magmatic input to the meteoric convection cell. The shallow portion of the Waiotapu geothermal system has recently evolved, both chemically and physically, by incursion of fluids from a steam-heated carapace. Continued refluxing of these relatively cool, hybrid fluids progressively deeper (with their 'recycled' CO 2 content) will hasten hydrolytic leaching (in contrast to a single pass of adiabatically cooling deep fluids). This action, accompanied by argillic alteration, may eventually seal the deeper portions of the system, hastening its demise. There is evidence for similar events occurring in the fossil environment at epithermal depths


    CERN Document Server

    Medical Service


    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or Chemistry Service : TIS-GS-GC : 78546

  20. Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid (United States)

    Ustinov, E. A.


    The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.

  1. The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada) (United States)

    Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.


    At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry

  2. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. (United States)

    Soso, Simone B; Koziel, Jacek A


    Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species.

  3. Chemical Reaction Effects on an Unsteady MHD Free Convection Fluid Flow past a Semi-Infinite Vertical Plate Embedded in a Porous Medium with Heat Absorption

    Directory of Open Access Journals (Sweden)

    J. Anand Rao


    Full Text Available In the present paper , an analysis is carried out the chemical reaction effects on an unsteady magneto hydrodynamics (MHD free convection fluid flow past a semi-infinite vertical plate embedded in a porous medium with heat absorption was formulated. The non dimensional governing equations are formed with the help of suitable dimensionless governing parameter. The resultant coupled non dimensional governing equations are solved by a finite element method. The effect of important physical parameters on the velocity, temperature and concentration are shown graphically and also discussed the skin-friction coefficient, Nusselt number and Sherwood number are shown in tables.

  4. Perturbation analysis of magnetohydrodynamics oscillatory flow on convective-radiative heat and mass transfer of micropolar fluid in a porous medium with chemical reaction

    Directory of Open Access Journals (Sweden)

    Dulal Pal


    Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.

  5. Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink (United States)

    Bilal Ashraf, M.; Alsaedi, A.; Hayat, T.; Shehzad, S. A.


    Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.

  6. The Effects of Chemical Reaction, Hall, and Ion-Slip Currents on MHD Micropolar Fluid Flow with Thermal Diffusivity Using a Novel Numerical Technique

    Directory of Open Access Journals (Sweden)

    S. S. Motsa


    Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.

  7. [Analyze on chemical compositions of Dalbergia odorifera essential oils extracted by CO2-supercritical-fluid-extraction and steam distillation extraction]. (United States)

    Song, Wei-Feng; Liao, Mei-Jin; Luo, Shu-Yuan


    To analyze the chemical compositions of Dalbergia odorifera essential oils extacted by CO2-supercritical-fluid-extraction (SFE-CO2) and steam distillation extraction (SD). The essential oils of Dalbergia odorifera were extracted by steam distillation extraction and SFE-CO2. The chemical components were separated and analyzed by gas chromatography-mass spectrometry. 12 compounds were identified in SFE sample. The major components from essential oils were 2-propenoic acid-3(4-methoxyphenyl)-ethyl ester (14.53%), nerolidol (14.95%), ageratochromene (1.33%). 9 compounds were identified in SD sample. The major components from essential oils were nerolidol (26.61%), cedrol (1.65%). The SFE method is better than the SD method in reliability stability and reproducibility, and suitable for essential oils extraction of Dalbergia odorifera.

  8. Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation (United States)

    Pushpalatha, K.; Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.


    The problem of an unsteady MHD Casson fluid flow towards a stretching surface with cross diffusion effects is considered. The governing partial differential equations are converted into a set of nonlinear coupled ordinary differential equations with the help of suitable similarity transformations. Further, these equations have been solved numerically by using Runge-Kutta fourth order method along with shooting technique. Finally, we studied the influence of various non-dimensional governing parameters on the flow field through graphs and tables. Results indicate that Dufour and Soret numbers have tendency to enhance the fluid velocity. It is also found that Soret number enhances the heat transfer rate where as an opposite result is observed with Casson parameter. A comparison of the present results with the previous literature is also tabulated to show the accuracy of the results.

  9. Chemical reactions in supercritical fluids%超临界流体中的化学反应

    Institute of Scientific and Technical Information of China (English)

    杨梅; 邵荣; 云志; 钱仁渊


    超临界流体中的化学反应可分为两大类,即超临界流体作为反应介质的反应和超临界流体作为反应原料的反应,分别介绍了其研究进展,着重介绍了第一类反应中的酶催化反应、超临界水氧化、高分子合成。%The progress of the reactions in supercritical fluids, which were classified into two sorts, was reviewed. Biocatalysis in supercritical CO2, supercritical water oxidation and synthesis in supercritical fluids were introduced in detail.

  10. Membrane-supported sample preparation for chemical analysis in fluid flow systems; Membrangestuetzte Probenvorbereitung zur chemischen Analyse in Fliesssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Kiesow, T.; Frenzel, W. [TU-Berlin, Fachgebiet Luftreinhaltung im Inst. fuer Technischen Umweltschutz, Berlin (Germany)


    Membrane-supported separation processes are described in detail, i.e. gas diffusion, dialysis and liquid membrane extraction in fluid flow systems. The focus is on gas diffusion and on the analysis of ammonium and short-chain amines. (orig.) [German] Im folgendem werden die membrangestuetzten Trennverfahren Gasdiffusion, Dialyse und Fluessigmembranextraktion im Fliesssystem naeher beschrieben. Dabei soll im besonderen auf die Gasdiffusion mit einem Bestimmungsverfahren fuer Ammonium und kurzkettige Amine eingegangen werden. (orig.)

  11. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout


    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  12. Chemical and boron isotope microanalysis of tourmalines as a guide to fluid-rock interaction in the Habachtal emerald deposit, Tauern Window, Austria (United States)

    Trumbull, R. B.; Krienitz, M.-S.; Grundmann, G.; Wiedenbeck, M.


    Tourmalines from the Habachtal emerald deposit in the Eastern Alps formed together with emerald in a ductile shear zone during blackwall metasomatism between pelitic country rocks and a serpentinite body. Electron microprobe and secondary ion mass spectrometric (SIMS) analyses provide a record of chemical and B-isotope variations in tourmalines which represent an idealized profile from metapelites into the blackwall sequence of biotite and chlorite schists. Tourmaline is intermediate schorl-dravite in the country rock and become increasingly dravitic in the blackwall zones, while F and Cr contents increase and Al drops. Metasomatic tourmaline from blackwall zones is typically zoned optically and chemically, with rim compositions rich in Mg, Ti, Ca and F compared with the cores. The total range in delta-11B values is -13.8 to -5.1 permil and the within-sample variations are typically 3 to 5 permil. Both of these ranges are beyond the reach of closed-system fractionation at the estimated 500-550C conditions of formation, and at least two boron components with contrasting isotopic composition are indicated. A key observation from tourmaline core analyses is a systematic shift in delta-11B from the country rock (-14 to -10 permil) to the inner blackwall zones (-9 to -5 permil). We suggest that two separate fluids were channeled and partially mixed in the Habachtal shear zone during blackwall alteration and tourmaline-emerald mineralization. A regional metamorphic fluid carried isotopically light boron as observed in the metapelite country rocks. The other fluid is derived from the serpentinite association and has isotopically heavier boron typical for MORB or altered oceanic crust.

  13. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese. (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R


    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  14. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores) (United States)

    Carvalho, M. R.; Forjaz, V. H.; Almeida, C.


    The Ribeira Grande geothermal field is a water-dominated geothermal system, located within Água de Pau/Fogo Volcano in the central part of the São Miguel Island. This geothermal system is exploited for energy production by wells sustaining two power plants. The wells produce from a formation of pillow lavas divided into different aquifers, with a fairly isothermal zone from 800 to 1300 m in depth, where reservoir temperature reaches 230 to 245 °C. Below the depth of 1300 m there is a slight temperature reversal. The fluid produced has excess enthalpy and, separated at atmospheric pressure, is characterized by mineralization of sodium-chloride type up to 6-7 g/l, the concentration of dissolved silica varies between 450 and 650 mg/l and the pH ranges between 8 and 8.6. The gas phase is dominantly CO 2, at a concentration of 98% of NCG. The composition of the deep geothermal fluid was obtained by computer simulation, using the WATCH program, and was compared with the composition of the bottom-hole samples. The approximations, in this simulation, were considered the single- and multi-step steam separation. The reference temperatures were based on: (i) the measured temperature in wells; (ii) the Na/K geothermometric temperature and (iii) the enthalpy-saturation temperature. According to both the measured and geothermometric temperatures, the deep fluid of the wells has two phases with a steam fraction up to 0.34, at higher well discharges. The measured enthalpy is always greater than the calculated enthalpy. The calcite equilibrium indicates scaling, since the fluid is flashing, around 2.28 mg/l CaCO 3 at the maximum discharge. The geothermal wells exploit three different aquifers, the lower of which is liquid and slightly colder than the upper ones. The intermediate is a two-phase aquifer with a steam fraction up to 0.081. The upper aquifer is probably of steam phase. The main differences between the aquifers are the temperature and boiling; both enthalpy and

  15. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions. (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas


    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  16. Effects of a Modified Through-Mask Drinking System (MDS) on Fluid Intake During Exercise in Chemical Protective Gear (United States)


    in chemical protective gear. METHODS Test Subiects: Eighteen (18) unacclimated male volunteers were recruited from the military population at USARIEM...hydration status, a pretest urine sample was analyzed for specific gravity ( refractometry ) and no significant difference was observed between the two

  17. Effect of Physical and Chemical Changes on the Antimicrobial Activity of Culture Supernatant Fluid of Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Leila Goudarzi (MSc


    Full Text Available Background and Objective: Lactic acid bacteria are Gram-positive, catalase-negative, nonsporulating, either rod- or coccus-shaped bacteria that have beneficial effects on their hosts by producing antimicrobial substances such as lactic acid, hydrogen peroxide, bacteriocins and biosurfactants. Bacteriocins are antimicrobial peptides that are produced by bacteria and can inhibit the growth of other bacteria. Methods: In this experimental study, bacteriocin production by Lactobacilli as known probiotic strains was evaluated in different physicochemical conditions. Antagonistic activity was evaluated using quantitative method of Microscale Optical Density Assay (MODA. After neutralization of acid and treatment with various enzymes, temperature, pH and NaCl conditions, the antimicrobial activity of culture supernatant fluid of Lactobacillus acidophilus and L. plantarum was investigated against pathogenic Proteus. Results: The culture supernatant fluid of Lactobacilli was sensitive to proteolytic enzymes with relatively good stability to temperature. The antimicrobial activity was also present due to production of bacteriocin under different NaCl conditions (1 to 4% NaCl and pH range of 5 to 8. Conclusion: It seems that the antimicrobial liquid of Lactobacillus strains contains bacteriocin, which shows antimicrobial effects against pathogenic strains of Proteus. To investigate further this effect, some complementary studies should be performed.

  18. Coupled Chemical and Thermal Processes During Contact Metamorphism: Constraining Rates and Duration with Time-Dependent 3-D Heat and Mass Transport Modeling of Fluid-Rock Systems (United States)

    Dutrow, B. L.; Henry, D.; Gable, C. W.; Heydari, E.; Travis, B. J.


    Hydrothermal, metamorphic and metasomatic rocks develop through a complex set of coupled thermal, chemical and mechanical processes that contain non-linear feedbacks. The integrated outcome results in a mineral assemblage with a specific texture that records the rates, magnitude and duration of the controlling processes. However, it is often difficult to extract this coupled information from the rock record due to the competing and time-integrated nature of the final product. A particularly problematic case arises when advective metasomatism accompanies thermal energy transport. Advective transport of reactive components by thermally driven flowing fluids can dramatically alter the original bulk rock chemistry. In some instances, these chemical transformations are slow but in others, these alterations can occur over short time scales (yrs). To facilitate investigations of coupled, complex systems and to constrain the rates, duration and relative importance of governing processes during a thermal event, high-resolution 3-D time dependent computational modeling is used. An example of the integrated effects of thermal and chemical transport is found in subsurface Louisiana. Here, an 11m alkali igneous dike intruded Late Jurassic sandy limestones transforming these into new mineral assemblages rich in alkali, alkaline earth elements and F; hydrogrossular, diopside, pectolite (pct), apophyllite, fluorite, and feldspars. Increased temperatures (Ts) and significant mass transport of components from the dike into the host rocks are required. A series of coupled heat and mass transport calculations constrain the rates and duration of the thermal pulse and provide insights into the time-scale of mass transport within this system. For example, calculations incorporating silica transport indicate that at the pct zone (1.5m), thermal conditions remained above 150oC for 2.8 yrs assuming anisotropic permeability (K) and 4.2 yrs (layered K) reaching Tmax at 0.36 (aniso) or 0.53 yr

  19. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks (United States)

    Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.

    In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.


    Directory of Open Access Journals (Sweden)

    Yu. S. Sidorenko


    Full Text Available Thirty two with the ascitic form of Stages IIIC—IV ovarian cancer underwent 1 to 3 courses of intraperitoneal multidrug therapy using a protein ascitic fluid concentrate (PAFC as a solvent of drugs (cisplatin, cyclophosphan, doxorubicin according to the CAP regimen. The induction chemotherapy allowed remission to be achieved in 78.1% of cases (against 40% with standard intraperitoneal therapy, the stan- dard volume of surgical treatment was performed in 28 (87.5% patients (21 (70% receiving the control regime; with the use of PAFC, the size of minimum residual tumour (less than 1 cm was achieved in 81.3% versus 63.3% with standard intraperitoneal chemotherapy. This treatment enables the use large-dose chemotherapy regimens that cause no severe systemic toxic reactions. The method is highly-effective, low-toxic and may be recommended for the treatment of patients with the ascitic form of Stages III—IV ovarian cancer.

  1. Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation

    Directory of Open Access Journals (Sweden)

    Khilap Singh


    Full Text Available The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.

  2. Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.


    This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

  3. Combined Influence of Thermal Diffusion and Diffusion Thermo on Unsteady MHD Free Convective Fluid Flow Past an Infinite Vertical Porous Plate in Presence of Chemical Reaction (United States)

    Srinivasa Raju, Rallabandi


    The present investigation is concerned with the effects of thermal diffusion (Soret) and diffusion thermo (Dufour) on an unsteady MHD free convective flow with heat and mass transfer of an electrically conducting fluid in the presence of chemical reaction. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The problem is governed by coupled non-linear partial differential equations with appropriate boundary conditions. A finite element numerical solution is developed to solve the resulting well-posed two-point boundary value problem. The present numerical results are compared with available data and are found in an excellent agreement. The expressions for velocity, temperature and concentration fields are obtained. With the aid of these, the expressions for the coefficient of skin-friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are derived. Finally the effects of various physical parameters of the flow quantities are studied with the help of graphs and tables.

  4. Analytical and numerical solution of three-dimensional channel flow in presence of a sinusoidal fluid injection and a chemical reaction

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed


    Full Text Available Modeling of three-dimensional channel flow in a chemically-reacting fluid between two long vertical parallel flat plates in the presence of a transverse magnetic field is presented. The stationary plate is subjected to a transverse sinusoidal injection velocity distribution while the uniformly moving plate is subjected to a constant suction and slip boundary conditions. Due to this type of injection velocity, the flow becomes three dimensional. Comparisons with previously published work are performed and the results are found to be in excellent agreement. An increase in the permeability/magnetic parameter is found to escalate the velocity near the plate in motion. Growing Reynolds number or magnetic parameter enhances the x-component and reduces the z-component of the skin-friction at the wall at rest. The acquired knowledge in our study can be used by designers to control MHD flow as suitable for certain applications which include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.

  5. Supercritical Fluid Technology and Chemical Process Intensification%超临界流体技术与化工过程强化

    Institute of Scientific and Technical Information of China (English)

    张珺; 邵凡


    化工过程强化是通过减小设备体积、简化工艺或提高设备生产能力达到提高效率、减少废弃物的排放、降低成本、降低物耗等的目的.与传统方法相比,超临界流体技术作为一种新兴的技术提高了效率、简化了工艺、节约了材料、无二次污染,达到了过程强化的目的.介绍了超临界流体技术的优势,从而得到过程强化的效果.%Chemical process intensification can increase efficiency, reduce waste discharge, reduce cost and reduce material consumptions by reducing equipment volume, simplifying process and improving equipment production capacity. Compared with traditional method, supercritical fluid technology as a new technique can improve efficiency, simplify process, save materials and eliminate secondary pollution to reach the purpose of process intensification. In this paper, advantages of supercritical fluid technology was introduced, and effect of process intensification was discussed.

  6. MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction

    Directory of Open Access Journals (Sweden)

    J.C. Misra


    Full Text Available In the present paper, the problem of oscillatory MHD flow of blood in a porous arteriole in presence of chemical reaction and an external magnetic field has been investigated. Heat and mass transfer during arterial blood flow are also studied. A mathematical model is developed and analyzed by using appropriate mathematical techniques. Expressions for the velocity profile, volumetric flow rate, wall shear stress and rates of heat and mass transfer have been obtained. Variations of the said quantities with different parameters are computed by using MATHEMATICA software. The quantitative estimates are presented through graphs and table.

  7. Effect of Geometric and Chemical Anisotropy of Janus Ellipsoids on Janus Boundary Mismatch at the Fluid–Fluid Interface

    Directory of Open Access Journals (Sweden)

    Dong Woo Kang


    Full Text Available We investigated the geometric and chemical factors of nonspherical Janus particles (i.e., Janus ellipsoids with regard to the pinning and unpinning behaviors of the Janus boundary at the oil–water interface using attachment energy numerical calculations. The geometric factors were characterized by aspect ratio (AR and location of the Janus boundary (α separating the polar and apolar regions of the particle. The chemical factor indicated the supplementary wettability (β of the two sides of the particle with identical deviations of apolarity and polarity from neutral wetting. These two factors competed with each other to determine particle configurations at the interface. In general, the critical value of β (βc required to preserve the pinned configuration was inversely proportional to the values of α and AR. From the numerical calculations, the empirical relationship of the parameter values of Janus ellipsoids was found; that is, λ = Δ β c / Δ α ≈ 0.61 A R − 1.61 . Particularly for the Janus ellipsoids with AR > 1, the βc value is consistent with the boundary between the tilted only and the tilted equilibrium/upright metastable region in their configuration phase diagram. We believe that this work performed at the single particle level offers a fundamental understanding of the manipulation of interparticle interactions and control of the rheological properties of particle-laden interfaces when particles are used as solid surfactants.

  8. Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment. (United States)

    Maioli, Margherita; Contini, Giovanni; Santaniello, Sara; Bandiera, Pasquale; Pigliaru, Gianfranco; Sanna, Raimonda; Rinaldi, Salvatore; Delitala, Alessandro P; Montella, Andrea; Bagella, Luigi; Ventura, Carlo


    Mouse embryonic stem cells were previously observed along with mesenchymal stem cells from different sources, after being treated with a mixed ester of hyaluronan with butyric and retinoic acids, to show a significant increase in the yield of cardiogenic and vascular differentiated elements. The aim of the present study was to determine if stem cells derived from primitive fetal cells present in human amniotic fluid (hAFSCs) and cultured in the presence of a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids show a higher yield of differentiation toward the cardiovascular phenotype as compared with untreated cells. During the differentiation process elicited by exposure to HA + BU + RA, genes controlling pluripotency and plasticity of stem cells, such as Sox2, Nanog, and Oct4, were significantly downregulated at the transcriptional level. At this point, a significant increase in expression of genes controlling the appearance of cardiogenic and vascular lineages in HA + BU + RA-treated cells was observed. The protein expression levels typical of cardiac and vascular phenotypes, evaluated by Western blotting, immunofluorescence, and flow cytometry, were higher in hAFSCs cultured in the presence of HA + BU + RA, as compared with untreated control cells. Appearance of the cardiac phenotype was further inferred by ultrastructural analysis using transmission and scanning electron microscopy. These results demonstrate that a mixture of HA + BU + RA significantly increased the yield of elements committed toward cardiac and vascular phenotypes, confirming what we have previously observed in other cellular types.

  9. Hydroferrate fluid, MRN-100, provides protection against chemical-induced gastric and esophageal cancer in Wistar rats. (United States)

    Ghoneum, Mamdooh H; Badr El-Din, Nariman K; Abdel Fattah, Salma M; Pan, Deyu; Tolentino, Lucilene


    In the current study, we examined the protective effect of hydroferrate fluid MRN-100 against the carcinogen methylnitronitrosoguanidine (MNNG)-induced gastric and esophageal cancer in rats. MRN-100 is an iron-based compound composed of bivalent and trivalent ferrates. At 33 weeks post treatment with MNNG, rats were killed and examined for the histopathology of esophagus and stomach; liver, spleen, and total body weight; and antioxidant levels in the blood and stomach tissues. Results showed that 17/20 (85%) gastroesophageal tissues from carcinogen MNNG-treated rats developed dysplasia and cancer, as compared to 8/20 (40%) rats treated with MNNG plus MRN-100. In addition, MRN-100 exerted an antioxidant effect in both the blood and stomach tissues by increasing levels of GSH, antioxidant enzymes SOD, CAT, and GPx, and total antioxidant capacity (TAC) level. This was accompanied by a reduction in the total free-radical and malondialdehyde levels. Furthermore, MRN-100 protected against body and organ weight loss. Thus, MRN-100 exhibited significant cancer chemopreventive activity by protecting tissues against oxidative damage in rats, which may suggest its effectiveness as an adjuvant for the treatment of gastric/esophageal carcinoma.

  10. Chemical, mineralogical and molecular biological characterization of the rocks and fluids from a natural gas storage deep reservoir as a baseline for the effects of geological hydrogen storage (United States)

    Morozova, Daria; Kasina, Monika; Weigt, Jennifer; Merten, Dirk; Pudlo, Dieter; Würdemann, Hilke


    Planned transition to renewable energy production from nuclear and CO2-emitting power generation brings the necessity for large scale energy storage capacities. One possibility to store excessive energy produced is to transfer it to chemical forms like hydrogen which can be subsequently injected and stored in subsurface porous rock formations like depleted gas reservoirs and presently used gas storage sites. In order to investigate the feasibility of the hydrogen storage in the subsurface, the collaborative project H2STORE ("hydrogen to store") was initiated. In the scope of this project, potential reactions between microorganism, fluids and rocks induced by hydrogen injection are studied. For the long-term experiments, fluids of natural gas storage are incubated together with rock cores in the high pressure vessels under 40 bar pressure and 40° C temperature with an atmosphere containing 5.8% He as a tracer gas, 3.9% H2 and 90.3% N2. The reservoir is located at a depth of about 2 000 m, and is characterized by a salinity of 88.9 g l-1 NaCl and a temperature of 80° C and therefore represents an extreme environment for microbial life. First geochemical analyses showed a relatively high TOC content of the fluids (about 120 mg l-1) that were also rich in sodium, potassium, calcium, magnesium and iron. Remarkable amounts of heavy metals like zinc and strontium were also detected. XRD analyses of the reservoir sandstones revealed the major components: quartz, plagioclase, K-feldspar, anhydrite and analcime. The sandstones were intercalated by mudstones, consisting of quartz, plagioclase, K-feldspar, analcime, chlorite, mica and carbonates. Genetic profiling of amplified 16S rRNA genes was applied to characterize the microbial community composition by PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results indicate the presence of microorganisms belonging to the phylotypes alfa-, beta- and gamma

  11. Quantitative analysis of methadone in biological fluids using deuterium-labeled methadone and GLC-chemical-ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hackey, D.L. (Argonne National Lab., IL); Kreek, M.J.; Mattson, D.H.


    The (+)-, (-)-, and (+-)-/sup 2/H/sub 5/-methadones, which contained five deuterium atoms in one aromatic ring, were synthesized for use in clinical pharmacological studies and as internal standards. GLC--chemical-ionization mass spectrometry was used to determine plasma and urinary methadone levels by an inverse isotope dilution assay. Plasma drug levels could be determined to 10 pmoles/ml, and urine levels could be measured to 5 pmoles/ml. Plasma methadone levels were examined in several patients undergoing methadone maintenance therapy. These levels generally ranged between 100 and 400 ng/ml (320 to 1300 pmoles/ml) after an average oral dose of 1 mg/kg/day. The methadone half-life was 28.8 +- 4.8 hr.

  12. Computational Fluid Dynamics Applied to Chemical Reaction Engineering La mécanique des fluides numérique appliquée au génie des réactions chimiques

    Directory of Open Access Journals (Sweden)

    Trambouze P.


    Full Text Available Computational Fluid Dynamics (CFD and its applications have developed quite rapidly during the last ten years. This fast growing hybrid branch of Mechanics and Mathematics is certainly to be considered as a potentially useful and efficient tool in the field of Chemical Engineering and more specifically in the area of Chemical Reaction Engineering (CRE. The difficulties in this new approach stems from the consequence of the complexity of the mechanims to be simulated simultaneously : fluid dynamics, chemical reactions and physical aspects of each system considered. Another difficulty comes from the numerical treatment of the equations for the final model, resulting in very sophisticated and diversified mathematical treatments. The types of chemical reactors to be considered for potential performance improvements when applying CFD as a new tool for their design are numerous ; two broad classes of problem have be identified as relevant to this new approach :(a Systems involving fast chemical reactions, with characteristic times of the same order of magnitude as the characteristic time scales of turbulence. In-line mixing equipment should preferably be studied for this type of reactions. (b Multiphase systems, whose scaling-up still has to be performed with great difficulty and, more often than not, according to empirical procedures based on very simplified models. When looking at the various types of systems found in practice, it appears that gas-liquid and fluid-solid systems should be considered first. However, basic knowledge is still missing concerning the physical behaviour of these systems, especially for the coalescence of bubbles and the momentum transfer between gas and solid. Specific research should be done in order to get this missing information. Presently there are a certain number of existing CFD software packages available commercially or developed by various research laboratories. This is certainly an interesting starting point

  13. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.


    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  14. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt


    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  15. Magneto-nanofluid numerical modelling of chemically reactive Eyring-Powell fluid flow towards both flat and cylindrical an inclined surfaces: A comparative study (United States)

    Rehman, Khalil Ur; Ali Khan, Abid; Malik, M. Y.


    An article is made to report the combined effects of both chemical reaction and dual stratification on boundary layer magneto-hydrodynamic Eyring Powell nanofluid flow towards both flat and cylindrical an inclined stretching surfaces under the region of stagnation point along with heat and mass transfer characteristics. The flow situation is carried out by considering physical effects namely, thermal radiation and heat generation. To be more specific, the fluid flow is entertained through no slip condition i-e the velocity of particles is directly related to velocity of surface due to stretching. The physical situation within the real concerned constraints is translated in terms of differential equations as a boundary value problem. To make implementation of computational algorithm possible, firstly the intricate PDE's are transformed into ODE's by using suitable transformation, secondly resulting boundary value problem is converted into an initial value problem. These constructed ordinary differential equations are solved computationally by shooting technique charted with Runge-Kutta scheme. The effect logs of involved physical flow parameters are explored with the aid of graphical outcomes and tabular values. A straight line curve fitting way of communication is executed to inspect the impact of both thermophoresis parameter and Brownian motion parameter on heat and mass transfer rates. It is found that heat transfer normal to the cylindrical surface shows decline attitude towards both thermophoresis and Brownian motion parameters.

  16. Fiscal 1995 research investigation on chemical process technology using supercritical fluid; 1995 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    With relation to the supercritical fluid utilization technology, conducted in fiscal 1995 were collection of basic data, extraction of R and D subjects and survey/analysis of application fields based on the literature survey and overseas field survey. From the research results, the following were selected as research subjects: as to the clean/recycling process technology, non-selection cascade treatment process of mixed waste plastics, hazardous waste treatment process, and radioactive waste treatment process. As to the unused resource utilization process technology, the supercritical submerged combustion power generation process, heavy hydrocarbon resource reutilization process, biomass synthetic utilization process, and carbon dioxide reutilization process. As to the next generation reaction process technology, the simple reaction process, de-organic solvent process, chemical materialization process for methane, and reaction separation combined process. As the innovative material process technology, the plastic forming process, high-functional materials, high-efficiency energy conversion materials, and heightening of function of solid wastes. 537 refs., 116 figs., 54 tabs.

  17. Synthetic Base Fluids (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  18. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare


    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (, which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  19. Amniotic fluid (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  20. Heat and Mass Transfer Effects on Unsteady MHD Natural Convection Flow of a Chemically Reactive and Radiating Fluid through a Porous Medium Past a Moving Vertical Plate with Arbitrary Ramped Temperature

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth


    Full Text Available Investigation of unsteady hydromagnetic natural convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, chemically reactive and optically thin radiating fluid past an exponentially accelerated moving vertical plate with arbitrary ramped temperature embedded in a fluid saturated porous medium is carried out. Exact solutions of momentum, energy and concentration equations are obtained in closed form by Laplace transform technique. The expressions for the shear stress, rate of heat transfer and rate of mass transfer at the plate for both ramped temperature and isothermal plates are derived. The numerical values of fluid velocity, fluid temperature and species concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. It is found that, for isothermal plate, the fluid temperature approaches steady state when t  1.5 . Consequently, the rate of heat transfer at isothermal plate approaches steady state when t  1.5 .

  1. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO{sub 2} geological sequestration; Etude experimentale du couplage chimie-mecanique lors de la percolation d'un fluide reactif dans des roches sous contrainte, dans le contexte de la sequestration geologique du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, Y


    CO{sub 2} injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO{sub 2}. Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10{sup -12} s{sup -1} on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO{sub 2}-rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO{sub 2} which increases rock solubility and reaction kinetics. On the opposite, small effect of CO{sub 2} on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  2. Chemical Compositions of Fluid Inclusions in the Jalal –Abad iron oxide deposit, North West of Zarand, Using LA-ICP-MS Microanalysis

    Directory of Open Access Journals (Sweden)

    Behrouz Karimi Shahraki


    Full Text Available Introduction The Poshtebadam Bafq Zarand district in central Iran is a world class iron oxide province. This region contains over two billion tons of iron ore reserves within more than 34 major magnetic anomalies and deposits in an area of 7,500 km2 (Stosch et al., 2011. The Jalal-Abad iron ore deposit (200Mt at 45% Fe, 1.18% S and 0.08% P is located 38 km northwest of Zarand, 16 km southeast of the Rizu town in the Kerman province, Iran. Iron ore deposits are hosted by the Early Cambrian Rizu Series, composed mainly of sedimentary, volcanic and volcaniclastic rocks which are dominated by dolomite, sandstone, shale, siltstone, tuff, ignimbrite and rhyodacite. The origin of the iron oxide deposits is controversial and various genetic models have been suggested. Some researchers believe in magmatic origins or Kiruna type, while others suggest metasomatic replacement from pre-existing rocks (Stosch et al., 2011. LA-ICP-MS has been used to characterize the multi element chemistry of the diverse fluid inclusions found in the Jalal–Abad iron oxide deposit. The aim of this investigation was to understand the genesis of the ore body and identify possible hydrothermal fluid sources in the Jalal-Abad district. Sampling and method of study About 100 samples from different types of ore were collected from surface outcrops and a drill core whose association with mineralization are well established. Thin sections, polished thin sections and polished sections were prepared. SEM studies (FEI 5900LV and LA-ICP-MS analyses of fluid inclusions were carried out in the School of Earth and Environment, the University of Leeds, UK. Fluid inclusions were studied using a Linkam THM-600 heating-freezing stage mounted on Zeiss petrography microscope at the Iranian Mineral Processing Research Center. Result and discussion Jalal Abad deposit is hosted by the early Cambrian volcano-sedimentary rocks of the Rizu series. Stratabound mineralization occurs in a variety of

  3. Cross diffusion and MHD effects on a high order chemically reactive micropolar fluid of naturally convective heat and mass transfer past through an infinite vertical porous medium with a constant heat sink (United States)

    Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.


    High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.

  4. Fluid Mechanics. (United States)

    Drazin, Philip


    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius


    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  6. Fluid Mechanics. (United States)

    Drazin, Philip


    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  7. Computerized tomography with X-rays: an instrument in the analysis physico-chemical between formations and drilling fluids interactions; Tomografia computadorizada com raios-X: uma ferramenta na analise das interacoes fisico-quimicas entre as formacoes rochosas e fluidos de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Marcus Vinicius Cavalcante


    In this study it is demonstrated the applicability of the Computerized Tomography technique with x-rays to evaluate the reactivity degree between various drilling fluids and argillaceous sediments (Shales and Sandstones). The research has been conducted in the Rock-Fluid Interaction Pressure Simulator (RFIPS), where the possible physico-chemical alterations can be observed through successive tomography images, which are obtained during the flow of the fluid through the samples. In addition, it was noticed the formation of mud cake in Berea Sandstones samples in the RFIPS, though the Computerized Tomography with X-rays, when utilizing drilling fluids weighted with the baryte. (author) 35 refs., 38 figs., 5 tabs.

  8. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry. (United States)

    Yen, H-C; Wei, H-J; Lin, C-L


    F2-isoprostanes (F2-IsoPs) generated from arachidonic acid (AA) have been recognized as the most reliable marker of nonenzymatic lipid peroxidation in vivo. F2-IsoPs are initially produced in esterified form on phospholipids, and then released into body fluids in free form. The same mechanism can lead to generation of F4-neuroprostanes (F4-NPs) and F2-dihomo-IsoPs from docosahexaenoic acid (DHA) and adrenic acid, respectively. In addition, isofurans (IsoFs) and neurofurans (NFs) may be preferentially produced from AA and DHA, respectively, under high oxygen tension. The detection of F2-IsoPs using gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) has been widely employed, which is important for human body fluids containing low quantity of free-form F2-IsoPs. F4-NPs have also been detected using GC/NICI-MS, but multiple peaks need to be quantified. In this paper, we summarize the basic workflow of the GC/NICI-MS method for analyzing F2-IsoPs and F4-NPs, and various formats of assays conducted by different groups. We then discuss the feasibility of simultaneous analysis of IsoFs, NFs, and F2-dihomo-IsoPs with F2-IsoPs or F4-NPs. Representative GC chromatograms for analyzing these markers in human body fluids and rat brain tissue are demonstrated. Furthermore, we discuss several factors that may affect the performance of the analysis, such as those related to the sample processing steps, interference from specimens, types of GC liners used, and the addition of electron multiplier voltage in the method setting for the MS detector. Finally, we question the appropriateness of measuring total (free plus esterified) levels of these markers in body fluids.

  9. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R


    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  10. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    Energy Technology Data Exchange (ETDEWEB)

    Spetzler, Hartmut


    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible

  11. Chemical behaviour of geothermal silica after precipitation from geothermal fluids with inorganic flocculating agents at the Hawaii Geothermal Project Well-A (HGP-A)

    Energy Technology Data Exchange (ETDEWEB)

    De Carlo, E.H.


    The report summarizes the results of experiments dealing with the problem of removal of waste-silica from spent fluids at the experimental power generating facility in the Puna District of the island of Hawaii. Geothermal discharges from HGP-A represent a mixture of meteoric and seawaters which has reacted at depth with basalts from the Kilauea East Rift Zone under high pressure and temperature. After separation of the steam phase of the geothermal fluid from the liquid phase and a final flashing stage to 100 degrees Celsius and atmospheric pressure, the concentration of the silica increases to approximately 1100 mg/L. This concentration represents five to six times the solubility of amorphous silica in this temperature range. We have evaluated and successfully developed bench scale techniques utilizing adsorptive bubble flotation for the removal of colloidal silica from the spent brine discharge in the temperature range of 60 to 90 degrees C. The methods employed resulted in recovery of up to 90% of the silica present above its amorphous solubility in the experimental temperature range studied.

  12. Chemical and stable isotopic geochemical characteristics of ore-forming fluid of the Shizishan copper and gold ore-field, Tongling, China%铜陵狮子山铜金矿田成矿流体成分及稳定同位素地球化学

    Institute of Scientific and Technical Information of China (English)

    陆三明; 徐晓春; 谢巧勤; 楼金伟; 储国正; 熊亚平


    Shizishan ore-field is a nonferrous and noble metal ore-field which is most rich in copper and gold. There are many types of fluid inclusions in minerals of the deposits. The homogeneous temperatures and the salinities of the fluid inclusions in main mineralization stages have wide ranges, while the different types of the fluid inclusions existed together and their homogeneous temperatures are almost identical in the same mineralization stage, which indicates that the ore-forming process has great relation with the fluid boiling. The gas and liquid chemical compositions and the carbon, hydrogen and oxygen isotopic compositions of the fluid inclusions show that the ore-forming fluids of copper-gold deposits have the same characteristics and evolution tendency, which reflects that the ore-forming material mainly came from the magmatism. The stratigraphic component and the meteoric water may mix in oreforming fluids in the later mineralization stages. Furthermore, with the fall of the ore-forming temperature the ratios of water and rock decreased. The characteristics of chemical composition and carbon isotopic composition of fluid inclusions indicate that CH4 may play an important role for separating copper and gold in the ore-forming process.

  13. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  14. Supercritical fluid reverse micelle separation (United States)

    Fulton, John L.; Smith, Richard D.


    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  15. Supercritical fluid reverse micelle separation (United States)

    Fulton, J.L.; Smith, R.D.


    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  16. Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry

    Directory of Open Access Journals (Sweden)

    Simone B. Soso


    Full Text Available Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC composition and odors emitted by total marking fluid (MF associated with Siberian tigers (Panthera tigris altaica. Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the “characteristic” odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural and four tentatively identified compounds (3-methylbutanamine, (R-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species.

  17. Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy


    The governing equations of the flow have been transformed into ordinary differential equations by using similarity transformation technique and solved using the Runge-Kutta method associated with shooting technique. The numerical solutions are achieved showing the effects of pertinent parameters. For verification of the present findings the results of this study have been compared with the earlier works in particular cases; Darcian and non-Darcian fluids are discussed separately. It is worth reporting that effect of porosity of the medium combined with inertia gives rise to a transverse compression producing thinner boundary layer the solution by finite element method (FEM and Runge–Kutta method, do agree within a reasonable error limit.


    Directory of Open Access Journals (Sweden)

    Choukimath M Sharanabasav


    Full Text Available This study is intended to utilize biochemical parameters like ADA and protein levels in comparison with cell count and cell type in pleural fluid to differentiate tubercular and non-tubercular effusions. We have analyzed a total of 208 cases and among them 59.61% cases were ADA positive and 40.39% cases were ADA negative, and 156 cases were exudates and 52 cases were transudates. Categorized these effusions into 4 groups taking consideration of ADA, cell count, lymphocyte and protein levels as exudate with ADA positive, exudate with ADA negative, transudate with ADA positive and transudate with ADA negative. This study has shown promising results to diagnose tuberculosis with immediate and cost effectiveness that can be undertaken by any basic laboratory, in a endemic areas and developing countries like India

  19. Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study

    Energy Technology Data Exchange (ETDEWEB)

    Harmut Spetzler


    This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

  20. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.


    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  1. Complex Fluids and Hydraulic Fracturing. (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H


    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  2. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko


    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  3. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L


    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  4. Effects of chemical reaction in thermal and mass diffusion of micropolar fluid saturated in porous regime with radiation and ohmic heating

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh


    Full Text Available The present paper analyzes the chemically reacting free convection MHD micropolar flow, heat and mass transfer in porous medium past an infinite vertical plate with radiation and viscous dissipation. The non-linear coupled partial differential equations are solved numerically using an implicit finite difference scheme known as Keller-box method. The results for concentration, transverse velocity, angular velocity and temperature are obtained and effects of various parameters on these functions are presented graphically. The numerical discussion with physical interpretations for the influence of various parameters also presented.

  5. Fluid dynamics

    CERN Document Server

    Bernard, Peter S


    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.


    Energy Technology Data Exchange (ETDEWEB)

    Danielson, M. J.; Koski, O. H.; Shannon, D. W.


    The objectives of this program are to develop probes that can determine the water chemistry of high temperature geothermal fluids. The entire probe system includes a high temperature reference electrode, oxidation potention (redox potential) , conductivity probe, pH, corrosivity, and specific ion probe (sulfide). The objective of this study for FY 1977 was to develop a reference electrode and conductivity probe that would operate in the geothermal environment and provide data. This work also involved a study of sealing materials. A high temperature-pressure, thermodynamic reference electrode was developed which was demonstrated to be operative in a simulated geothermal environment up to 250°C containing the contaminants that would affect its operation. An electrodeless conductivity probe was developed for use in the geothermal environment. This design is particularly resistant to the effects of scale deposition. A large number o f sealing materials were investigated for use in the 250°C geothermal environment. From this study, PNL has developed a spring-loaded seal that may have other applications in the geothermal industry.

  7. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources (United States)

    Lacombe, Olivier; Rolland, Yann


    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  8. 天津市华苑产业园区地热流体化学特征及质量评述%Chemical Characteristics and Quality Evaluation of the Geothermal Fluids in the Huayuan Economical Area, Tianjin

    Institute of Scientific and Technical Information of China (English)

    李嫄嫄; 唐永香; 李俊峰; 陈瑞军; 靳宝珍


    华苑产业园区的热储层主要为新近系明化镇组、馆陶组和奥陶系,通过地球化学分析,推断其地热流体均属于大气降水成因,化学组分均表现出自东向西或自北东向南西、由山前到盆地中心的水平分带特征。本区各热储层地热流体及浅层第四系地下水在垂向上有较大变化,经分析,明化镇组有接受上覆第四系地下水的越流补给可能,而馆陶组热流体则在凸起区接受了下伏基岩热流体的顶托补给。经推断,地热流体补给源位于华苑产业园东侧或东北侧,补给缓慢。本区地热流体具有轻微-强腐蚀性,有硫酸钙结垢趋势,不宜直接作为饮用水源和渔业用水,也不适宜农业灌溉用水;但明化镇组适合大多数工业用水。可喜的是,各层热流体中偏硅酸和氟的含量都较高,经过一定的处理,可具医疗价值,如在此开发温泉旅游,将带来良好的经济效益。%The reservoirs in the Huayuan Economical Area are mainly in the Minghuazhen, Guantao and Or-dovician Formations. Based on the geochemical analysis, we deduced the geothermal fluids here is original from precipitation. All the chemical compositions obey the horizontal strip characteristics from east to west, north-east to south-west and mountain front to basin center. The geothermal fluids of each reservoirs and groundwater of Quaternary System all change a lot in vertical. By analysis, it is possible for the Minghua-zhen reservoir to accept the leakage recharge from Quaternary groundwater. And the geothermal fluids in the Guantao reservoir may accept the top alimentation from bed-rock in hump area. In deduction, the recharge area is location in the east or north-east of the Huayuan Economical Area and the speed of recharge is very slow. In addition, the geothermal fluids here have light-strong corrosivity and scaling tendency of calcium sulfate, it is not suitable for drinking water and fish

  9. Chemical changes in well fluids from the Los Humeros geothermal field: Evidences for deep recharge; Cambios quimicos en fluidos de pozos del campo geotermico de Los Humeros: Evidencia de recarga profunda

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor Manuel [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail:; Flores Armenta, Magaly [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Tovar Aguado, Rigoberto [Comision Federal de Electricidad (Mexico)


    Fluid (water and steam) chemical changes over time were studied in 20 wells in the Los Humeros, Mexico, geothermal field for the purpose of correlating such changes with physical processes occurring in the reservoir due to exploitation. Most wells (except well H-1) produce high-enthalpy fluids with almost no liquid, making gas geochemistry important in this field. Liquid-phase studies include fluid classification, determination of water-rock equilibrium state, and reservoir-temperature estimates. Changes in gas composition through time were studied using the Fischer-Tropsch (FT) reaction and the combined balance pyrite-hematite-magnetite (HSH2) as the buffer controlling H{sub 2}S fluid concentration. Data for most wells from 1987-1995 and 2000-2005 indicate the presence of deeper-fluid recharge, with maximum temperatures occurring in 1994-95 and 2005. The estimated temperature in well H-1 in 1994 was 305 degrees Celsius and the estimated temperature in well H-7 was 338 degrees Celsius in 1995. Temperature estimations from 2005 data were 222 degrees Celsius in well H-1D and 350 degrees Celsius in well H-7. These results are considered caused by the entrance of deeper fluids due to the increase of secondary permeability, which in turn is related to the seismicity increase in the zone. At the same time, re-injection returns in the steam phase were identified in well discharges during 1995-2000 by means of the FT-HSH2 diagram. [Spanish] Se realizo un estudio de los cambios quimicos ocurridos en fluidos (liquido y vapor) de veinte pozos del campo geotermico de Los Humeros, Pue., Mexico, con objeto de investigar la ocurrencia de procesos del yacimiento relacionados con la explotacion. La mayoria de los pozos (excepto el pozo H-1) se caracterizan por producir descargas de alta entalpia con escasa produccion de liquido, por lo que en este campo la geoquimica de gases juega un papel importante. El estudio de la fase liquida incluyo la clasificacion de los fluidos, la

  10. R fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.


    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater

  11. R Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.


    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  12. 汤市地热流体化学成因分析%Analysis of geothermal fluid chemical causes in Tangshi area

    Institute of Scientific and Technical Information of China (English)

    武飞; 肖江; 皮建高; 孙锡良; 姚腾飞; 刘浩


    汤市地热资源丰富,具有流量大、温度高、无色的特点,3个自溢泉是当地居民主要的生活用水来源,也是当地主要的旅游开发资源。在分析 ZK01,ZK02,QK02,QK03和 QK04的基础上对汤市地热流体化学成因和循环条件进行研究分析,确定地热成因、热储条件等主要是由于断层 F 和 F1的相互作用形成,水化学主要是纳、钙、重碳酸根离子为主,偏弱酸性的低矿化度水。%Tangshi area has enriched geothermal resources,characterized by large quantity of flow,high temperature,and colorless.There have three fountains,which are a major source of domestic water as well as tourism development.Based on the analysis of borehole ZK01,ZK02,QK02,QK03,and QK04,this paper analyzes the chemical causes and the circulation conditions.It shows that the cause of geothermal and the thermal storage conditions are mainly affected by the mutual interaction between fault F and F1. The hydrochemistry is mainly Na,Ca,and bicarbonate ions,so the water is week -acid and low -salinity.

  13. Fluid Shifts (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.


    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  14. Thermal Anomalies and Fluid Geochemistry Framework In Occurrence of The 2000-2001 Nizza Monferrato Seismic Sequence (northern Italy): Episodic Changes In The Fault Zone Heat Flow Or Chemical Mixing Phenomena ? (United States)

    Quattrocchi, F.; Favara, R.; Capasso, G.; Pizzino, L.; Bencini, R.; Cinti, D.

    Soon after and soon before the August 21, 2000 earthquake (Ml = 5.2), occurred at 7:14 pm, in the Nizza Monferrato area (Piemonte, Northern Italy) several episodes of heating up (reaching 30 C from a normal regional background around 10oC) affecting groundwater from wells and springs were recorded. The area affected by the temperature uprising in the shallow aquifers is around 20 Km x 30 Km wide, elongated in a N-S direction (the same evidenced by the strike-slip left -lateral focal mechanism), from Incisa Scapaccino to Nizza Monferrato towns. Water temperatures of some wells remained anomalous, lasting for 3-4 months, returning to normal values very slowly. Also in concomitance with the Ml = 4.0 event, occurred on August 2001 in the same area, similar phenomena were observed. We performed geochemical and hydrogeological surveys (around 40 sites as a whole were selected for chemical and isotopic analyses and the hottest wells several times, in a yearly period) to understand the causes of this temperature uprising also in relation to the presence of the Acqui Terme thermal spring (70 C) located at 30 Km o Southward. On field we measured temperature, pH, Eh, electrical conductivity, and 222Rn. Moreover major elements (Ca, Mg, Na, K, Cl, SO4), minor elements (NH4 e NO3, PO4, Li, B, SiO2, F, Br, Sr), and trace elements (Fe, Mn, As, Sb, Hg, U) as well as H, O, C isotopic ratios were analyzed in laboratory. Dissolved gases water analyzed selecting 9 sites. The collected data showed that, apart from the noteworthy changes in the well temperatures, no peculiar variations in fluid geochemistry occurred in time. On the basis of the experimental geochemical evidences, the work focuses on the geochemical and physico-chemical trends, the isotopic analyses and the anomalous- episodic change of the heat flow in an "activated" fault zoneas the Bacino Terziario Piemontese one. The "frictional heating" process, the "stress-driven phase transitions" and episodic variations in the

  15. The Effects of Variable Viscosity, Viscous Dissipation and Chemical Reaction on Heat and Mass Transfer Flow of MHD Micropolar Fluid along a Permeable Stretching Sheet in a Non-Darcian Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Salem


    Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.

  16. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W


    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  18. Physics of complex and supermolecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Safran, S.A.; Clark, N.A.


    The authors present a collection of papers from the International Symposium on Complex and Supermolecular Fluids presents tutorials and minireviews focusing on the physical properties of complex fluids using the concepts and techniques of condensed matter physics. The book stresses the unifying principles, rather than chemical details, behind the physics of diverse materials. Principal topics include colloids, microemulsions, ferrofluids, and micellar systems. It characterizes supermolecular and complex fluids by exploiting their analogies to atomic systems.

  19. Body fluid identification in forensics

    Directory of Open Access Journals (Sweden)

    Ja Hyun An1, Kyoung-Jin Shin1,2, Woo Ick Yang1 & Hwan Young Lee1,2,*


    Full Text Available At a crime scene can give important insights into crime scenereconstruction by supporting a link between sample donorsand actual criminal acts. For more than a century, numeroustypes of body fluid identification methods have beendeveloped, such as chemical tests, immunological tests,protein catalytic activity tests, spectroscopic methods andmicroscopy. However, these conventional body fluididentification methods are mostly presumptive, and are carriedout for only one body fluid at a time. Therefore, the use of amolecular genetics-based approach using RNA profiling orDNA methylation detection has been recently proposed tosupplant conventional body fluid identification methods.Several RNA markers and tDMRs (tissue-specific differentiallymethylated regions which are specific to forensically relevantbody fluids have been identified, and their specificities andsensitivities have been tested using various samples. In thisreview, we provide an overview of the present knowledge andthe most recent developments in forensic body fluididentification and discuss its possible practical application toforensic casework.

  20. Pleural Fluid Analysis Test (United States)

    ... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...

  1. Vieillissement du polyamide 11 utilisé dans les conduites flexibles : influence de la composition du fluide transporté Influence of the Chemical Nature of the Environment on the Aging of Polyamide 11 Used for Offshore Flexible Pipes

    Directory of Open Access Journals (Sweden)

    Ubrich E.


    émontrée et a pu être attribuée à certains types d'hydrocarbures dont la nature a été précisée. Les résultats obtenus ont permis de conclure que le phénomène principal mis en jeu au cours du vieillissement est une hydrolyse causée par l'eau absorbée dans le matériau et qui entraîne une coupure des chaînes macromoléculaires et la fragilisation du polymère. 3 D'étendre l'application du modèle établi avec des coupes gazoles au cas d'un vieillissement dans un pétrole brut et de vérifier son caractère prédictif. Polyamide 11 is used as a leakproof sheath inside flexible flowlines for petroleum products. Under some operating conditions, this polymer undergoes a degradation of its original physicochemical and mechanical properties, which may be assimilated with a phenomenon of aging. Material exchanges occur between polyamide 11 and the fluid transported. The components present in the fluid (water, hydrocarbons may be absorbed, and the principal additive of the material (the plasticizer is extracted. This study was carried out to determine the influence of the composition of the chemical environment of aging on the properties of polyamide 11. In the first phase, a new analysis method was developed for quantifying diffusing materials in polyamide 11. Effectively, several techniques can be used for determining such materials. However, interference problems may be encountered when the polymer is in contact with oil containing sulfur-bearing products. Likewise, none of these techniques is capable of simultaneously making a complete analysis of all the materials. The principle of the method developed consists in performing a thermodesorption of the different materials present in the polymer and in analyzing them on line by medium-resolution mass spectrometry (resolution = 3000. This resolution is also capable of determining the distribution, by chemical families, of the hydrocarbons absorbed. The method was checked with aged polyamide 11 samples containing either

  2. Tortuous path chemical preconcentrator (United States)

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.


    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  3. On the fluid mechanics of fires

    Energy Technology Data Exchange (ETDEWEB)



    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  4. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.


    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  5. Analysis of the Performance of a Chemical Vessel Make-up Water Pump Based on a Fluid-solid Coupling%基于流固耦合的化容补水泵性能分析

    Institute of Scientific and Technical Information of China (English)

    朱利凯; 胡敬宁; 张军辉; 李浩


    Three groups of models were designed for chemical vessel supplementary water pumps and three-dimensional models were established by using the software Pro/E. CFD software was used to conduct a simulation and a test was per formed of the hydraulic models to acquire an optimum model by comparing the test results with the simulation ones. The link of the CFD with the Static Structural and Modal was established by using the Ansys Workbench to conduct an analysis of the optimum model. On the basis of the three-dimensional steady numerical calculation results of the pump and by making use of the sequence coupling technology, an iterative calculation was performed of the solid and fluid domain to analyze the static stress and vibration mode of the impeller. It has been found that under the action of the hydraulic pressure,the maximal displacement due to the blade deformation occurs at a place nearing the trailing edge of the blade. Due to an action of the balance holes,the equivalent stress of the blade is relatively uniform and small. Under the action of the pressure difference before and after the wheel,the hub has a relatively big e-quivalent stress. Under the design operating condition,the deformation of the hub has a conspicuous influence on the vibration mode.%设计3组化容补水泵模型,运用Pro/E建立三维模型,由CFD软件仿真,并对水力模型进行试验,对比试验与仿真结果,获取最优模型.通过ANSYS Workbench建立CFD与Static Structural(静力学)和Modal(模态)连接,对最优模型进行分析,以泵三维定常数值计算结果为基础,利用顺序耦合技术,对固体和流体域进行迭代,分析叶轮的静态应力和振型.结果表明,在水压力作用下叶片变形最大位移发生在叶片出水边靠近叶片边缘处,由平衡孔作用,叶片的等效应力相对均匀较小,叶轮轮毂处因叶轮前后面压差作用,等效应力较大.设计工况下,叶轮轮毂变形对振型的影响明显.

  6. Yielding to stress: Recent developments in viscoplastic fluid mechanics


    Balmforth, Neil; Frigaard, Ian A.; Ovarlez, Guillaume


    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  7. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi


    and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  8. Fluid mechanics in fluids at rest. (United States)

    Brenner, Howard


    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  9. Videotapes and Movies on Fluid Dynamics and Fluid Machines


    Carr, Bobbie; Young, Virginia E.


    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  10. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS (United States)

    Motil, Brian; Urban, David


    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  11. Dissipative charged fluid in a magnetic field

    Directory of Open Access Journals (Sweden)

    Navid Abbasi


    Full Text Available We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  12. High Performance Calcium Titanate Nanoparticle ER Fluids (United States)

    Wang, Xuezhao; Shen, Rong; Wen, Weijia; Lu, Kunquan

    A type of calcium titanate (CTO) nanoparticles was synthesized by means of wet chemical method [1] without coating on the particles. The CTO/silicone oil ER fluid exhibits excellent electrorheological properties: high shear stress (~50-100 kPa) under dc electric field, a low current density (less than 2μA/cm2 at 5kV/mm), and long term stability against sedimentation. Although there are not special additives in the ER fluids, it is found from the chemical analysis that a trace of alkyl group, hydroxyl group, carbonyl group and some ions is remained in the particles which may dominate the ER response.

  13. Chemical Emergencies (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  14. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos


    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  15. Fluid migration in the subduction zone: a coupled fluid flow approach (United States)

    Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane


    Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.

  16. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi


    fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a

  17. Synovial fluid analysis (United States)

    ... bursae (fluid-filled sacs in the joints), and tendon sheaths. After the joint area is cleaned, the ... HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes ...

  18. Amniotic fluid (image) (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  19. Pericardial Fluid Analysis (United States)

    ... help diagnose the cause of inflammation of the pericardium (pericarditis) and/or fluid accumulation around the heart ( ... pressure within blood vessels or inflammation of the pericardium. An initial set of tests, including fluid protein ...

  20. Pericardial fluid Gram stain (United States)

    ... staining a sample of fluid taken from the pericardium. This is the sac surrounding the heart to ... sample of fluid will be taken from the pericardium. This is done through a procedure called pericardiocentesis . ...

  1. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin


    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  2. Electric fluid pump (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun


    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  3. Fluid force transducer (United States)

    Jendrzejczyk, Joseph A.


    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  4. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles. (United States)

    Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong


    Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids.

  5. 超临界CO2萃取法与水蒸气蒸馏法提取香茅草挥发油化学成分比较%Comparison of Chemical Components in the Essential Oil Extracted by Supercritical CO2 Fluid and Steam Distillation from Cymbopogon citratus

    Institute of Scientific and Technical Information of China (English)

    谢丽莎; 龚志强; 欧阳炜; 黄振园


    [Objective] To compare the chemical components in the essential oil extracled by different methods from Cymbopogon citratus (DC. ) Stapf. [ Method] The essential oils were extracted by supercritical CO3 fluid and steam distillation. And then their chemical components were qualitatively and quantitatively analyzed by GC-MS. [Result] 31 components were identified in the essential oil extracted by supercritical CO, fluid from Cymbopogon citratus, accounting for over 91% of the total volatile components; while 17 components were identified in the essential oil extracted by steam distillation, accounting for about 94% of the total components. The essential oil extracted by the two methods had different types and different contents of chemical components, geranial and neral were the most. [ Conclusion ] The essential oil extracted by supercritical C02 fluid is better than that extracted by steam distillation to truly and comprehensively reflect the chemical components in medicines.%[目的]比较不同方法提取的香茅草挥发油化学成分.[方法]采用超临界CO2流体萃取法(SCDE)及水蒸气蒸馏法(SD)从香茅草中提取挥发油,用气相色谱-质谱联用技术(GC-MS)对其化学成分进行定性定量分析.[结果]在超临界CO2流体萃取法提取的挥发油中共鉴定了31种成分,占挥发油总成分的91%以上;在水蒸气蒸馏法提取的挥发油中共鉴定了17种成分,占挥发油的94%以上.2种提取方法得到的挥发油组分及其含量差异较大,含量最高的都是香叶醛和橙花醛.[结论]超临界CO2流体萃取法提取的挥发油比水蒸气蒸馏法能更真实、全面的反映药材中的化学成分.

  6. Sensors for Fluid Leak Detection

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares Martinsanz


    Full Text Available Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.[...

  7. A Non-Newtonian Fluid Robot. (United States)

    Hachmon, Guy; Mamet, Noam; Sasson, Sapir; Barkai, Tal; Hadar, Nomi; Abu-Horowitz, Almogit; Bachelet, Ido


    New types of robots inspired by biological principles of assembly, locomotion, and behavior have been recently described. In this work we explored the concept of robots that are based on more fundamental physical phenomena, such as fluid dynamics, and their potential capabilities. We report a robot made entirely of non-Newtonian fluid, driven by shear strains created by spatial patterns of audio waves. We demonstrate various robotic primitives such as locomotion and transport of metallic loads-up to 6-fold heavier than the robot itself-between points on a surface, splitting and merging, shapeshifting, percolation through gratings, and counting to 3. We also utilized interactions between multiple robots carrying chemical loads to drive a bulk chemical synthesis reaction. Free of constraints such as skin or obligatory structural integrity, fluid robots represent a radically different design that could adapt more easily to unfamiliar, hostile, or chaotic environments and carry out tasks that neither living organisms nor conventional machines are capable of.

  8. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    Van Rijswick, R.; Van Rhee, C.


    Piston diaphragm pumps are used world-wide for the transport of aggressive and/or abrasive fluids in the chemical, mining and mineral processing industries. Figure 1 shows a cross section of a piston diaphragm pump as is used in the mining and mineral processing industries for the transport of

  9. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    Van Rijswick, R.; Van Rhee, C.


    Piston diaphragm pumps are used world-wide for the transport of aggressive and/or abrasive fluids in the chemical, mining and mineral processing industries. Figure 1 shows a cross section of a piston diaphragm pump as is used in the mining and mineral processing industries for the transport of miner

  10. Fluid and particle mechanics

    CERN Document Server

    Michell, S J


    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  11. Micromachined chemical jet dispenser

    Energy Technology Data Exchange (ETDEWEB)

    Swierkowski, S.; Ciarlo, D.


    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  12. GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, P.R.; Sackinger, P.A.; Rao, R.R. [and others


    GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.

  13. Fluid cooled electrical assembly (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.


    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  14. Spinning fluids reactor (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert


    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  15. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server


    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  16. Computational Fluid Dynamics Methods and Their Applications in Medical Science


    Kowalewski Wojciech; Roszak Magdalena; Kołodziejczak Barbara; Ren-Kurc Anna; Bręborowicz Andrzej


    As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  17. Field Demonstration of Biobased Fluids in Military Construction Equipment (United States)


    to mineral oils. But, they do not have identical chemical structures and lubrication properties5. In response to the demand of military BHFs...petroleum based fluids, the BHFs evaluated did not contain organo -metal additives. However, field samples contaminated with petroleum based fluid

  18. Nonlinear interactions between the pumping kinetics, fluid dynamics and optical resonator of cw fluid flow lasers. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sentman, L.H.; Nayfeh, M.H.


    This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.

  19. Synovial fluid over the centuries

    Directory of Open Access Journals (Sweden)

    P. Marson


    Full Text Available This review deals with the most meaningful historical topics on the study of synovial fluid, by starting from the Greco- Roman Medicine, up to Paracelsus (1493-1541, who introduced the term “synovia” to name the intra-articular humour. Afterwards, some till now unreported historical sources are recorded, e.g., a short text by the Italian XVIII century physician Giambattista Contoli (“Breve Instruzione sopre il Glutine, ò Colla…, 1699”. Then, in keeping with some recent researches, a brief history of arthrocentesis is outlined, by considering the first procedures, which should have been performed in Mexico, during the precolonial period. Moreover, the first chemical analysis of synovial fluid, as carried out by the French chemist Jean-Louis Margueron (1792, and the first modern study on the synovial membrane by Marie-François-Xavier Bichat (1800 are explained. Finally, some XIX century investigations concerning the synovial pharmacodynamics, in particular an Italian one based on the elimination of certain chemical substances through the synovial membrane, are discussed.


    Macromolecules in the pore fluid influence the mobility of hydrophobic compounds through soils. his study evaluated the significance of macromolecules in facilitating chemical transport under laboratory conditions. Partition coefficients between 14C-labeled hexachlorobenzene and ...

  1. Molecular Thermodynamics for Chemical Process Design (United States)

    Prausnitz, J. M.


    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  2. Metalworking and machining fluids (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark


    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  3. Viscous fingering with partially miscible fluids (United States)

    Fu, X.; Cueto-Felgueroso, L.; Juanes, R.


    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in

  4. Electrorheological fluids and methods

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F.; McIntyre, Ernest C.


    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  5. The Fluids RAP (United States)

    Nedyalkov, Ivaylo


    After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.

  6. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K


    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  7. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W


    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  8. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. (United States)

    Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan


    Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.

  9. Isotopic-chemical study of fluid of producing wells and natural springs from Las Tres Virgenes, Baja California Sur systems, Mexico. Estudio quimico-isotopico de fluidos de pozos productores y manantiales del sistema Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Portugal Marin, Enrique; Barragan, Rosa Maria; Arellano Gomez, Victor Manuel (Instituto de Investigaciones Electricas, Cuernavaca (Mexico)); Tello H, Enrique (Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Garcia, Consuelo (Residencia del Campo Geotermico Las Tres Virgenes, Baja California Sur (Mexico))


    Results of the chemical and isotopic studies from springs, domestic and geothermal wells in Las Tres Virgenes, Baja California Sur, Mexico are presented. Three water types were found to be in the study zone. Sulphate-type water at the North, bicarbonate-type waters at the South and sodium chloride type at the West. The last group includes the reservoir water. The estimated geothermometric temperature for the LV-1 well was 259 degrees Celsius with CCG geothermometer, while the estimated temperature for the springs were low, due to high dilution of the deep fluid with groundwater. The isotopic data (d[sup 18]O and dD) were used to define the local meteoric line, the isotopic composition of the reservoir recharge and the possible elevation where the reservoir recharge is likely to occur. Finally a discussion about the possible origin of the geothermal water based on the isotopic data is presented.

  10. Multiple Chemical Sensitivity

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz

    Multiple chemical sensitivity (MCS) is a chronic disorder characterized by reports of symptoms from various organ systems attributed by the individuals to exposure to common odors and airborne chemicals in doses far below those known to induce toxic effects. There exists a general lack of knowledge...... controls at baseline, immediately after and four hours after a controlled chemical (n-butanol) exposure, in an exposure chamber previously verified to induce symptom elicitation in MCS subjects. In manuscript III, mucosal lining fluid samples were collected and levels of 19 cytokines and chemokines were...... quantified and compared between MCS subjects and healthy controls. The investigation did not identify any group associated differences in mediator levels, either at baseline or upon the exposure session. However, time dependent changes were identified for four of the 19 mediators, with decreasing mediator...

  11. Development of an analytical model for organic-fluid fouling

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Watkinson, A.P.


    The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

  12. Molecular Modeling of Solid Fluid Phase Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Monson


    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  13. Supercritical Fluid Reactions for Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Charles A. Eckert


    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  14. An Introduction to Thermal-Fluid Engineering (United States)

    Warhaft, Zellman


    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  15. Space Station fluid management logistics (United States)

    Dominick, Sam M.


    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  16. Caracteres físico-químicos e citológicos do liquor de cães em diferentes fases da cinomose Physical, chemical and cytological profiles of cerebrospinal fluid of dogs in different stages of distemper

    Directory of Open Access Journals (Sweden)

    Fernanda Gomes Velasque Gama


    Full Text Available O líquido cerebrospinal é útil no diagnóstico, acompanhamento e prognóstico de enfermidades neurológicas caninas. Dentre elas, a cinomose é considerada a encefalite mais comum nos cães e inúmeras alterações podem ocorrer neste fluido frente a esta enfermidade. Sendo assim, diante da possível verificação de anormalidades precoces relacionadas com esta virose, amostras liquóricas de cães portadores do vírus da cinomose, na fase neurológica e não neurológica foram avaliadas quanto à coloração, aspecto, pH, densidade, glicose, proteínas totais, celularidade e comparadas com amostras liquóricas de cães hígidos. Os parâmetros coloração, aspecto, pH, densidade e glicose mostraram-se semelhantes entre animais acometidos pela cinomose, independentemente da fase evolutiva da doença, e animais normais. A concentração liquórica de proteínas totais mostrou-se mais elevada nos animais portadores de sinais neurológicos, bem como a celularidade total, cuja pleocitose foi observada em 50% dos cães deste mesmo grupo, com predominância de mononucleares.The cerebrospinal fluid is useful to diagnosis, monitoring and prognosis canine neurological diseases. Among them distemper is considered the most common encephalitis in dogs and several alterations can be observed in this fluid with this disease. Since the early abnormalities related to this virus were possibly verified, CSF samples of dogs infected by distemper virus, with or without neurological signs were collected. The samples were evaluated according to colour, turbidity, pH, specific gravity, glucose, total proteins, and cytological examination, and then were compared to CSF samples of healthy dogs. The parameters related to colour, turbidity, pH, specific gravity, glucose showed to be similar between all animals studied in this attempt. The CSF total protein concentration revealed higher values in animals with neurological signs of distemper, as the celularity, whose

  17. Introduction to supercritical fluids a spreadsheet-based approach

    CERN Document Server

    Smith, Richard; Peters, Cor


    This text provides an introduction to supercritical fluids with easy-to-use Excel spreadsheets suitable for both specialized-discipline (chemistry or chemical engineering student) and mixed-discipline (engineering/economic student) classes. Each chapter contains worked examples, tip boxes and end-of-the-chapter problems and projects. Part I covers web-based chemical information resources, applications and simplified theory presented in a way that allows students of all disciplines to delve into the properties of supercritical fluids and to design energy, extraction and materials formation systems for real-world processes that use supercritical water or supercritical carbon dioxide. Part II takes a practical approach and addresses the thermodynamic framework, equations of state, fluid phase equilibria, heat and mass transfer, chemical equilibria and reaction kinetics of supercritical fluids. Spreadsheets are arranged as Visual Basic for Applications (VBA) functions and macros that are completely (source code) ...

  18. Evolving patterns of the fluids within the TAG hydrothermal field

    Institute of Scientific and Technical Information of China (English)


    The mixing of seawater/hydrothermal fluid within the large seafloor hydrothermal sulfide deposits plays a key role in the formation processes of the sulfide deposits.Some issues attract considerable attentions in the study of seafloor hydrothermal system in recent years,such as the relationships among different types of vent fluids,the characteristics of chemical compositions and mineral assemblages of the hydrothermal deposits and their governing factors.Combined with the measured data of hydrothermal fluid in the TAG field,the thermodynamic model of mixing processes of the heated seawater at different temperatures and the hydrothermal fluid is calculated to understand the precipitation mechanism of anhydrite and the genetic relationships between the black and white smoker fluids within the TAG mound.The results indicate that the heating of seawater and the mixing of hydrothermal fluid/seawater are largely responsible for anhydrite precipitation and the temperature of the heated seawater is not higher than 150 ℃ and the temperature of the end-member hydrothermal fluid is not lower than 400℃.Based on the simulated results,the evolving patterns of fluids within the TAG deposit are discussed.The mixed fluid of the end-member hydrothermal fluid and the seawater heated by wall rock undergoes conductive cooling during upflowing within the deposit and forms "White Smoker" eventually.In addition,the end-member hydrothermal fluid without mixed with seawater,but undergoing conductive cooling,vents out of the deposit and forms "Black Smoker".

  19. Dynamics of Complex Fluid-Fluid Interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.


    This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables

  20. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart


    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary

  1. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart


    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  2. Peritoneal fluid culture (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  3. Applications of fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.R.; Garg, V.K.


    This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.

  4. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart


    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  5. Supercritical fluids: Reactions, materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.


    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  6. Fluid blade disablement tool

    Energy Technology Data Exchange (ETDEWEB)

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM


    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  7. Amniotic fluid water dynamics. (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  8. In situ NMR analysis of fluids contained in sedimentary rock (United States)

    de Swiet TM; Tomaselli; Hurlimann; Pines


    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press.

  9. Tribological and electrochemical studies on biomimetic synovial fluids

    Institute of Scientific and Technical Information of China (English)


    In this study, tribological and electrochemical performances of the new biomimetic synovial fluids were studied according to different composition concentrations, including hyaluronic acid, albumin and alendronic acid sodium. By using Taguchi method, the composition contents of the biomimetic synovial fluids were designed. Items such as friction coefficient, mean scar diameter and viscosity were investigated via a four-ball tribo-tester, viscosity meter and optical microscope. Polarization studies were carried out to analyze the electrochemical behaviour of the fluids. Results showed that hyaluronic acid dominates the viscosity of the fluids. High albumin concentration will reduce friction, while increasing wear rate due to the electro-chemical effect. Alendronic acid sodium is found to reduce the biocorrosion of CoCrMo as well as provide better lubricating. In conclusion, biomimetic synovial fluids partially recover the functions of natural synovial fluids and provide good lubricating property.

  10. The Thermodynamical Instability Induced by Pressure Ionization in Fluid Helium

    CERN Document Server

    Li, Qiong; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng


    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Pad\\'e interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves good agreement with the first principles simulations of fluid helium.

  11. Chemical use (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  12. Chemical Peel (United States)

    ... 20, 2015. Anitha B. Prevention of complications in chemical peeling. Journal of Cutaneous and Aesthetic Surgery. 2010;3:186. Langsdon PR, et al. Latest chemical peel innovations. Facial and Plastic Surgery Clinics of ...

  13. Chemical Reactors. (United States)

    Kenney, C. N.


    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  14. Micromachined Fluid Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Shiqiang Liu


    Full Text Available Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern.


    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah


    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  16. Electrical breakdown strength characteristics of palm kernel oil ester-based dielectric fluids


    Abdelmalik, A. A.; Fothergill, J; Dodd, S.J.


    Natural ester fluids have been synthesized from crude palm kernel oil for consideration as an alternative to mineral oil based insulating fluid. Chemical modification of the oil enhanced the physico-chemical properties of the fluid. This paper presents the statistical analysis of the AC electrical breakdown strength of the synthesized esters in comparison with the crude palm kernel oil sample. The breakdown test was carried out in accordance with ASTM 1816 test method using a bespoke test cel...

  17. Applied fluid mechanics; Mecanique des fluides appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P.L.; Chabard, J.P.; Esposito, P.; Laurence, D. [Ecole Nationale des Ponts et Chaussees (ENPC), 75 - Paris (France)]|[Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches


    Computational hydraulics, computational fluid dynamics, and hydro-informatics have invaded virtually all domains of research and application in hydro-science and fluids engineering. To the extent that this invasion has led to improved understanding of complex fluid phenomena and provided a frame of reference for testing and verifying designs and operational schemes, we have all benefited from it. But to the extent that it has shifted attention away from fundamental descriptions and understanding of fluid phenomena, and toward computational and numerical issues, this invasion has left avoid in the scientific and technical literature. This void exists somewhere between student exposure to first principles of solid and fluid mechanics on the one hand, and advanced-student and researcher/practitioner exposure to computational techniques and applications on the other. This new text naturally and refreshingly steps in to fill this void, and as such is a most welcome addition to the literature and to personal and institutional libraries. The text is refreshing in its innovative and careful attention to setting the historical framework of general and specific topics. This is most notable in the first chapter, which very gracefully and efficiently leads the reader through historical developments to contemporary mathematical statements of basic fluid phenomena. Once the authors have established this foundation of fundamental principles, they tie each succeeding chapter back into the introduction with appropriate and supportive historical contexts. Although the text does not shy away from rigorous analytical descriptions of fluid phenomena, it is unique in providing this delightful historical context for each topic. The authors have also made a special effort to tie the chapters together into a unified whole, with ample references forward and back; this is indeed rare, and much appreciated, in a text of multiple authorship. The topics treated and chapter structures reflect

  18. Fundamentals of fluid lubrication (United States)

    Hamrock, Bernard J.


    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  19. Physics of Fluids



    Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the topology of that motion and continuity of the fluid. Work in this area has focused largely on using physical rods as stirrers, but the theory also applies when the "stirrers" are passive fluid particles. We demonstrate the occurrence of topological chaos for Stokes flow in a two-dimensional lid-driv...

  20. Supercritical fluid extraction (United States)

    Wai, Chien M.; Laintz, Kenneth


    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  1. Geophysical fluid flow experiment (United States)

    Broome, B. G.; Fichtl, G.; Fowlis, W.


    The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.

  2. Introduction to Computational Fluid Dynamics (United States)

    Date, Anil W.


    This is a textbook for advanced undergraduate and first-year graduate students in mechanical, aerospace, and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practicing engineers will find this particularly useful for reference and for continuing education.

  3. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave


    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  4. Peritoneal Fluid Analysis (United States)

    ... Peritoneal fluid glucose, amylase, tumor markers, bilirubin, creatinine, lactate dehydrogenase (LD) Microscopic examination – may be performed if infection or cancer is suspected; a laboratory professional may use a ...

  5. Culture - joint fluid (United States)

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  6. Pericardial fluid culture (United States)

    ... the thin sac that surrounds the heart (the pericardium). A small amount of fluid is removed. You ... may be due to an infection of the pericardium. The specific organism causing the infection may be ...

  7. Polymer Fluid Dynamics. (United States)

    Bird, R. Byron


    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  8. Nonpolluting drilling fluid composition

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.; Mocek, C.J.; Mouton, R.J.


    Disclosed is a nonpolluting drilling fluid composition. The composition mixture consisting essentially of a concentrate and any nonpolluting oil. The concentrate consists essentially of diethanolamide, a fatty acid, and a imidazoline/amide mixture.

  9. Cerebrospinal fluid (CSF) culture (United States)

    ... is a laboratory test to look for bacteria, fungi, and viruses in the fluid that moves in ... culture medium. Laboratory staff then observe if bacteria, fungi, or viruses grow in the dish. Growth means ...

  10. [Diagnosis: synovial fluid analysis]. (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente


    Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  11. Conventional cerebrospinal fluid scanning

    Energy Technology Data Exchange (ETDEWEB)

    Schicha, H.


    Conventional cerebrospinal fluid scanning (CSF scanning) today is mainly carried out in addition to computerized tomography to obtain information about liquor flow kinetics. Especially in patients with communicating obstructive hydrocephalus, CSF scanning is clinically useful for the decision for shunt surgery. In patients with intracranial cysts, CSF scanning can provide information about liquor circulation. Further indications for CSF scanning include the assessment of shunt patency especially in children, as well as the detection and localization of cerebrospinal fluid leaks.

  12. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil


    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  13. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild


    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...

  14. Autocatalytic chemical smoke rings

    CERN Document Server

    Rogers, M C; Rogers, Michael C.; Morris, Stephen W.


    Buoyant plumes, evolving free of boundary constraints, may develop well-defined mushroom shaped heads. In normal plumes, overturning flow in the head entrains less buoyant fluid from the surroundings as the head rises, robbing the plume of its driving force. We consider here a new type of plume in which the source of buoyancy is an autocatalytic chemical reaction. The reaction occurs at a sharp front which separates reactants from less dense products. In this type of plume, entrainment assists the reaction, producing new buoyancy which fuels an accelerating plume head. When the head has grown to a critical size, it detaches from the upwelling conduit, forming an accelerating, buoyant vortex ring. This vortex is analogous to a rising smoke ring. A second-generation head then develops at the point of detachment.Multiple generations of chemical vortex rings can detach from a single triggering event.

  15. COOEE bitumen: chemical aging

    CERN Document Server

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S


    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  16. 维药神香草挥发油与超临界 CO2流体萃取物化学成分的比较研究%The comparison of chemical constituents in the volatile oil and supercritical CO2 fluid extracts of Hyssopus officinalis L

    Institute of Scientific and Technical Information of China (English)

    祖丽菲亚·吾斯曼; 努尔江·肉孜; 买吾拉尼江·依孜布拉; 麦合苏木·艾克木


    目的:研究维药神香草水蒸气蒸馏提取挥发油与超临界 CO2流体萃取物化学成分的异同。方法采用水蒸气蒸馏法与超临界 CO2流体萃取法分别提取神香草挥发油和超临界 CO2流体萃取物,并通过气相色谱-质谱(GC-MS)联用仪对其化学成分进行分析和鉴定。结果维药神香草挥发油的水蒸气蒸馏法提取率为0.68%,GC-MS 分析、鉴定出所有65种化合物,其中含量较高的是亚油酸(13.83%)、棕榈酸(13.80%)、(+)-胡薄荷酮(8.31%)、(+)斯巴醇(6.27%)、二十一烷(5.34%)、香茅酸(4.07%)、二十六烷(4.02%)、二十四烷(3.28%)、二十烷(3.06%)。维药神香草超临界 CO2流体萃取物的萃取得率为5.5%,GC-MS 分析、鉴定出所有34种化合物,其中γ-谷甾醇(31.882%)、二十八烷(19.953%)、亚麻酸(16.279%)、三十六烷(15.939%)、棕榈酸(10.658%)、亚麻酸乙酯(12.471%)、三十一烷(12.215%)、9,12,15-十八烷三烯酸乙酯(9.057%)化合物含量较高。结论维药神香草挥发油与超临界 CO2流体萃取物化学组成存在较大的差异,超临界 CO2流体萃取物中的γ-谷甾醇、亚麻酸、亚麻酸乙酯等被认为是具有较强生物活性的化合物,且含量较高,具有较大的潜在研究前景。%Objective To study the similarity and differences in chemical composition and relative content of volatile oil by steam distillation and supercritical CO2 Fluid extraction extracts of Hyssopus officinalis L. (Hyssop),a Traditional Uighur Hreb Medicine.Methods Hyssopus volatile oil and SFE exctracts was extracted by steam distillation and supercritical CO2 Fluid extraction methods and the gas chromatography-mass spectrometry (GC-MS)were used to analyze its chemical composition.Then,relative content of each component has been calculated

  17. Chemical constituents of essential oil from a Tibetan herb-Bibilin (Piper longum L.) extracted by supercritical CO2 fluid extraction%藏药毕毕林二氧化碳超临界流体萃取精油化学成分研究

    Institute of Scientific and Technical Information of China (English)

    热增才旦; 刘斌; 董芳; 王英锋


    目的 研究习称为“三辛药”之一的藏药毕毕林精油化学成分及其相对含量.方法 采用超临界CO2流体萃取法提取毕毕林精油,采用气相色谱-质谱联用方法分离鉴定精油化学成分并测定其相对含量.结果 毕毕林超临界CO2流体萃取精油得率为9.7%,分离得到59个色谱峰,鉴定出52种成分,主要成分是胡椒碱(19.24%)、毕澄茄烯(l0.62%)、4-硝基苯酯邻甲氧基苯甲酸(6.47%)、1-(1-氧代-11,14-二十碳三烯基)-吡咯烷(4.75%)、14(E)-十六碳烯醛(4.38%)、十五烷(4.35%)和反亚油酸甲酯(4.28%)等.结论 二氧化碳超临界流体萃取精油是藏药毕毕林的药效组分之一,且是其辛味的主要物质基础.%Objective To study the chemical constituents and relevant content of essential oil from a Tibetan herb-Bibilin (Piper longum L. ) , which was usually considered as one of "three pungent herbs". Methods The essential oil from Bibilin was extracted by using supercritical CO2 fluid extraction, the chemical constituents were separated and identified and their relevant content was determined by using gas chromatography-mass spectrometry ( GC-MS). Results The yield of the essential oil was 9. 7%. There were 59 peaks separated and 52 constituents identified. The main constituents were piperylpiperidine (19.24% ), cubebene (10.62% ), 4-nitrophenyl o-anisic ester (6.47% ), l-( 1-oxo-11, 14-eicosadienyl)-pyrrolidine (4.75%), E-14-hexadecenal (4.38%), n-pentadecane (4.35%) and trans-methyl linolelaidate (4.28% ). ConclusionThe essential oil extracted by supercritical CO2 fluid extraction is one of effective components of Bibilin, which is the major material base of its pungent flavor.

  18. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)


    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  19. Chemical reactions in reverse micelle systems (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.


    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  20. Boiler using combustible fluid (United States)

    Baumgartner, H.; Meier, J.G.


    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  1. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur


    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  2. FEM simulation of non-isothermal viscoelastic fluids


    Damanik, Hogenrich


    Thermo-mechanically coupled transport processes of viscoelastic fluids are important components in many applications in mechanical and chemical engineering. The aim of this thesis is the development of efficient numerical techniques for incompressible, non-isothermal, viscoelastic fluids which take into account the multiscale behaviour in space and time, the multiphase character and significant geometrical changes. Based on special CFD techniques including adaptivity/local grid alignment in s...

  3. Scales and effects of fluid flow in the upper crust. (United States)

    Cathles, L M


    Two of the most important agents of geological change, solar energy and internal heat from the mantle, meet and battle for dominance in propelling aqueous and related fluids in the earth's upper crust. Which prevails and how they interact are subjects of active research. Recent work has demonstrated that both agents can propel fluids over nearly continental-scale distances in a fashion that influences a host of important geological processes and leaves a record in chemical alteration, mineral deposits, and hydrocarbon resources.

  4. Capillary supercritical fluid chromatography-mass spectrometry (SFC-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Kalinoski, H.T.; Udseth, H.R.; Chess, E.K.; Smith, R.D.


    The physical and chemical characteristics of supercritical fluids have prompted the development of supercritical fluid chromatography (SFC) for the analysis of labile and less volatile compounds. High resolution chromatographic separations with efficiencies approaching those of gas chromatography and high speed analyses are possible in capillary SFC using pressure programming methods and narrow bore columns. Further refinement of the SFC-mass spectrometry interface (SFC-MS) provides the basis for extension to more polar fluid systems with greater solvating power and the selectivity and sensitivity of mass spectrometric detection. The use of polar modified fluids has been facilitated by advances in understanding of supercritical fluid phase behavior. Fluid mixtures have been prepared for analysis of more polar, higher molecular weight analytes, that allow mild chromatographic temperatures and allow full exploitation of selectivity offered through control of fluid pressure (i.e., density). Continuing development of the SFC-MS interface has led to designs which can be near routinely applied with fluids such as CO/sub 2/, and providing enhanced transport of truly nonvolatile compounds to the mass spectrometer ionization regions. These advances also include an SFC interface to a high resolution, dual electric magnetic sector instrument, allowing supercritical fluid solvents to be explited for on-line extraction-mass spectrometry for characterization of complex, often otherwise intractable, materials. 26 refs., 5 figs., 1 tab.

  5. 化学反应对高对流Maxwell流体在多孔面上作MHD流动和传质的影响%MHD Flow and Mass Transfer of a Chemically Reactive Upper Convected Maxwell(UCM)Fluid Past a Porous Surface

    Institute of Scientific and Technical Information of China (English)

    K·法拉菲路; K·V·普拉撒德; A·苏亚沙; 吴朝安; 黄雅意


    The MHD flow and mass transfer of an electrically conducting upper convected Maxwell fluid at a porous surface in the presence of a chemically reactive species was studied. The governing nonlinear partial differential equations along with the appropriate boundary conditions were transformed into nonlinear ordinary differential equations, and were solved numerically by the Keller-Box method. The effects of various physical parameters on the flow and mass transfer characteristics were presented graphically and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore , available results in the literature are obtained as a special case.%研究导电的高对流Maxwell流体在多孔表面上,作计及物质化学反应时的MHD流动及其传质.将非线性的偏微分控制方程及其相应的边界条件,变换为非线性的常微分方程,并利用Kel-let-Box法进行数值求解.用图形给出了各种物理参数对流动和传质特性的影响,并对结果进行了讨论.可以看到,化学反应阶次提高了扩散边界层的厚度;还可以看到,传质率强烈地依赖于Schmidt数和反应率参数.此外,在特例情况下得到了以往文献中可供利用的结果.

  6. Chemical sensors (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.


    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  7. Stochastic interpenetration of fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.; Clark, T.T.; Harlow, F.H.


    We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  8. Vorticity in holographic fluids

    CERN Document Server

    Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos


    In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.

  9. Laser-launched flyers with organic working fluids (United States)

    Mulford, Roberta; Swift, Damian


    The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.

  10. Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops (United States)

    Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.


    We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.

  11. Dependence of Reaction Rate Constants on Density in Supercritical Fluids

    Institute of Scientific and Technical Information of China (English)

    WANGTao; SHENZhongyao


    A new method,which correlates rate constants of chemical reactions and density or pressure in supercritical fluids,was developed.Based on the transition state theory and thermodynamic principles, the rate constant can be reasonably correlated with the density of the supercritical fluid,and a correlation equation was obtained. Coupled with the equation of state (EOS) of a supercritical solvent,the effect of pressure on reaction rate constant could be represented.Two typical systems were used to test this method.The result indicates that this method is suitable for dilute supercritical fluid solutions.

  12. Computational fluid dynamics

    CERN Document Server

    Magoules, Frederic


    Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow.Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel ap

  13. Fluids in cosmology

    CERN Document Server

    Cervantes-Cota, Jorge L


    We review the role of fluids in cosmology by first introducing them in General Relativity and then applied to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.

  14. Computational fluid dynamics

    CERN Document Server

    Blazek, Jiri


    Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new

  15. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0


    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  16. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis


    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management

  17. Application of SPCALC for chemical and thermodynamic speciation of fluids -example for wells LV-4A, LV-11 and LV-13, Las Tres Virgenes geothermal field, BCS; Aplicacion del SPCALC en la especiacion quimica y termodinamica de fluidos: ejemplo del caso de los pozos LV-4A, LV-11 y LV-13, del campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano Guerra, J.C.; Sandoval Medina, F.; Flores Armenta, M.C. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail:, E-mail:; Perez, R.J. [Universidad de Calgary (Canada); Gonzalez Partida, E. [Universidad Nacional Autonoma de Mexico, Centro de Geociencias, Mexico, D.F. (Mexico)


    SPCALC is an excellent software application providing chemical and multi-phase speciation for geothermal fluids. Recently it was acquired by the Comision Federal de Electricidad (CFE) through a contract with the National Autonomous University of Mexico (UNAM) and the University of Calgary, Canada. Software methodology consists of calculating thermodynamic variables, such as activity (a) and fugacity (f) of chemical species, as well as the saturation indices (log Q/K) of mineral phases of the reservoir. In other words, it models the thermodynamic conditions of the reservoir (pH among other) and simulates the fluid-corrosion rate. This allows the software to foresee scaling and corrosion. In this paper, pervasive fluids in Cretaceous granitic rocks penetrated by wells LV-4A, LV-11 and LV-13 in Las Tres Virgenes geothermal field, BCS, are modeled, starting with chemical analyses. The more important ratios among activities [those which influence the fluid-rock interaction (i.e. {sup a}K{sup +}/{sup a}H{sup +}, {sup a}Ca{sup ++}/{sup a}H{sup +}, {sup a}Na{sup +}/{sup a}H{sup +}, {sup a}Mg{sup ++}/{sup a}H{sup +}) and whose results are the minerals visible under a microscope] are graphed in balance diagrams compatible with the pressure (P) and temperature (T) conditions in the reservoir. Epidote (zoisite) is the mineral found in congruent equilibrium with the system. The main mineral association at those conditions (200-250 degrees Celsius and {approx}18 bar), as observed in the well cuttings, is calcite+illite-quartz{+-}epidote, which is explained by the hydrolithic reactions that form replacement calcite in the presence of CO{sub 2}, thus restricting the formation of epidote and eventually eliminating it. The process enhances the CO{sub 2} molarity in the residual fluid, even up to {sup m}CO{sub 2} 1, which means the CO{sub 2} can be diluted back into fluid and intervene again in the process of calcite formation (2HCO{sub 3}{sup -} + Ca{sup ++} = calcite + H{sub 2}O

  18. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann


    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  19. Molecular Thermodynamics of Charged Hard-Dumbbell Fluids

    Institute of Scientific and Technical Information of China (English)

    秦原; 刘洪来; 胡英


    Chemical potentials of charged hard-dumbbell fluids are obtained by Monte Carlo simulations using Widom's test-particle method, corresponding compressibility factors are achieved by integration of chemical potentials at different densities. A molecular thermodynamic model is also developed for these charged hard-dumbbell fluids where the residual Helmholtz function is composed of two terms: a reference term responsible for the charged hard spheres and a bonding contribution measuring the sticky interactions between positive and negative hard ions.Model predictions are in good agreement with simulation results.

  20. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts


    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  1. Attracting Students to Fluid Mechanics with Coffee (United States)

    Ristenpart, William


    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  2. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.


    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of o

  3. Proteomics of body fluids

    NARCIS (Netherlands)

    L.J.M. Dekker (Lennard)


    textabstractIn this thesis we present newly developed methods for biomarker discovery. We applied these methods to discover biomarkers of leptomeningeal metastasis (LM) in the cerebrospinal fluid (CSF) from breast cancer patients and in serum from patients with prostate cancer. Early diagnos

  4. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.


    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of

  5. Orbital Fluid Resupply Assessment (United States)

    Eberhardt, Ralph N.


    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  6. Fluid resuscitation in trauma

    Directory of Open Access Journals (Sweden)

    Rudra A


    Full Text Available Appropriate fluid replacement is an essential component of trauma fluid resuscitation. Once hemorrhage is controlled, restoration of normovolemia is a priority. In the presence of uncontrolled haemorrhage, aggressive fluid management may be harmful. The crystalloid-colloid debate continues but existing clinical practice is more likely to reflect local biases rather than evidence based medicine. Colloids vary substantially in their pharmacology and pharmacokinetics,and the experimental finding based on one colloid cannot be extrapolated reliably to another. In the initial stages of trauma resuscitation the precise fluid used is probably not important as long as an appropriate volume is given. Later, when the microcirculation is ′leaky′, there may be some advantages to high or medium weight colloids such as hydroxyethyl starch. Hypertonic saline solutions may have some benefit in patients with head injuries. A number of hemoglobin solutions are under development, but one of the most promising of these has been withdrawn recently. It is highly likely that at least one of these solutions will eventually become routine therapy for trauma patient resuscitation. In the meantime, contrary to traditional teaching, recent data suggest that restrictive strategy of red cell transfusion may improve outcome in some critically ill patients.

  7. Amniotic Fluid Embolism (United States)

    ... embolisms are rare, which makes it difficult to identify risk factors. It's estimated that there are between 1 ... Kramer MS, et al. Amniotic fluid embolism: Incidence, risk factors, and impact on perinatal outcome. BJOG: An International Journal of Obstetrics and Gynaecology. 2012;119:874. Baskett ...

  8. Relativistic viscoelastic fluid mechanics. (United States)

    Fukuma, Masafumi; Sakatani, Yuho


    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  9. Speeding chemical reactions by focusing

    CERN Document Server

    Lacasta, A M; Sancho, J M; Lindenberg, K


    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  10. Chemical logging of geothermal wells (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.


    African Journals Online (AJOL)

    However, the amount of soil organic matter and total nitrogen content was. T DIFFERENT HOURS ... burning such as improvement in soil physical ... chemical properties. The aim is to find .... Humid Tropics with particular reference to. Nigeria.

  12. Fluid transport due to nonlinear fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard Jensen, J.


    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.

  13. Review of progress in understanding the fluid geochemistry of the Cerro Prieto Geothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.


    Fluid geochemistry has played a major role in the authors present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts, and gases, original subsurface temperature and fluid flow, fluid-production mechanims, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretation for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field.

  14. A review of progress in understanding the fluid geochemistry of the Cerro Prieto geothermal system (United States)

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.


    Fluid geochemistry has played a major role in our present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts and gases, original subsurface temperature and fluid flow, fluid-production mechanisms, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretations for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field. ?? 1984.

  15. Adaptive methods in computational fluid dynamics of chemically reacting flows (United States)

    Rogg, B.


    Possible approaches to fully implicit adaptive algorithms suitable for the numerical simulation of unsteady two-dimensional reactive flows are examined. Emphasis is placed on self-adaptive gridding procedures applicable to time-dependent two-dimensional reactive flows. Pulsating flame propagation, autoignition in a nonpremixed flow, flame propagation in a strained mixing layer, and hot-spot-like self-ignition are considered as examples.

  16. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System (United States)

    Majumdar, Alok; Flachbart, Robin


    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  17. Microgravity Fluids for Biology, Workshop (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.


    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  18. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.


    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...... secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper...... into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets...

  19. Electrorheologic fluids; Fluidos electroreologicos

    Energy Technology Data Exchange (ETDEWEB)

    Rejon G, Leonardo; Lopez G, Francisco; Montoya T, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Manero B, Octavio [Instituto de Investigaciones en Materiales, UNAM.(Mexico)


    The present article has as an objective to offer a review of the research work made in the Instituto de Investigaciones Electricas (IIE) on the study of the electrorheologic fluids whose flow properties can abruptly change in the presence of an electric field when this is induced by a direct current. The electrorheologic fluids have their main application in the manufacture of self-controlling damping systems. [Spanish] El presente articulo tiene por objetivo ofrecer una resena de los trabajos de investigacion realizados en el Instituto de Investigaciones Electricas (IIE) sobre el estudio de los fluidos electroreologicos cuyas propiedades de flujo pueden cambiar abruptamente en presencia de un campo electrico cuando este es inducido por una corriente directa. Los fluidos electroreologicos tienen su principal aplicacion en la fabricacion de sistemas de amortiguamiento autocontrolables.


    KAUST Repository



    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  1. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter


    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  2. Zinc Determination in Pleural Fluid


    Nazan DEMİR; DEMİR, Yaşar


    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  3. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E


    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  4. Amniotic fluid embolism


    Thongrong, Cattleya; Kasemsiri, Pornthep; Hofmann, James P; Bergese, Sergio D.; Thomas J Papadimos; Gracias, Vicente H.; Adolph, Michael D.; Stawicki, Stanislaw P A


    Amniotic fluid embolism (AFE) is an unpredictable and as-of-yet unpreventable complication of maternity. With its low incidence it is unlikely that any given practitioner will be confronted with a case of AFE. However, this rare occurrence carries a high probability of serious sequelae including cardiac arrest, ARDS, coagulopathy with massive hemorrhage, encephalopathy, seizures, and both maternal and infant mortality. In this review the current state of medical knowledge about AFE is outline...

  5. Galilean relativistic fluid mechanics


    Ván, Péter


    Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...

  6. Physics of Fluids


    Luton, J. A.; Ragab, Saad A.


    The interaction of vortices passing near a solid surface has been examined using direct numerical simulation. The configuration studied is a counter-rotating vortex pair approaching a wall in an otherwise quiescent fluid. The focus of these simulations is on the three-dimensional effects, of which little is known. To the authors' knowledge, this is the first three-dimensional simulation that lends support to the short-wavelength instability of the secondary vortex. It has been shown how this ...

  7. Soluble oil cutting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, A.P.; White, J.


    A soluble oil, suitable when diluted with water, for use as a cutting fluid comprises an alkali or alkaline-earth metal alkyl benzene sulphonate, a fatty acid diethanolamide, a mixed alkanolamine borate, a polyisobutenesuccinimide and a major proportion of mineral oil. The soluble oil is relatively stable without the need for a conventional coupling agent and some soluble oil emulsions are bio-static even though conventional biocides are not included.

  8. Fluids in micropores. II. Self-diffusion in a simple classical fluid in a slit pore (United States)

    Schoen, M.; Cushman, J. H.; Diestler, D. J.; Rhykerd, C. L., Jr.


    Self-diffusion coefficients D are computed for a model slit pore consisting of a rare-gas fluid confined between two parallel face-centered cubic (100) planes (walls) of rigidly fixed rare-gas atoms. By means of an optimally vectorized molecular-dynamics program for the CYBER 205, the dependence of D on the thermodynamic state (specified by the chemical potential μ, temperature T, and the pore width h) of the pore fluid has been explored. Diffusion is governed by Fick's law, even in pores as narrow as 2 or 3 atomic diameters. The diffusion coefficient oscillates as a function of h with fixed μ and T, vanishing at critical values of h, where fluid-solid phase transitions occur. A shift of the pore walls relative to one another in directions parallel with the walls can radically alter the structure of the pore fluid and consequently the magnitude of D. Since the pore fluid forms distinct layers parallel to the walls, a local diffusion coefficient D(i)∥ associated with a given layer i can be defined. D(i)∥ is least for the contact layer, even for pores as wide as 30 atomic diameters (˜100 Å). Moreover, D(i)∥ increases with increasing distance of the fluid layer from the wall and, for pore widths between 16 and 30 atomic diameters, D(i)∥ is larger in the center of the pore than in the bulk fluid that is in equilibrium with the pore fluid. The opposite behavior is observed in corresponding smooth-wall pores, in which the discrete fluid-wall interactions have been averaged by smearing the wall atoms over the plane of the wall. The temperature dependence of D for fixed h is determined and the nature of melting of a pore solid is examined. It is found that the solid tends to melt first in the middle of the pore. All of the various results are related to the structural properties of the pore fluid, as manifested by the local density and pair correlation functions.

  9. Fluid Dynamics and Viscosity in Strongly Correlated Fluids

    CERN Document Server

    Schaefer, Thomas


    We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.

  10. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner


    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  11. Astrophysical fluid dynamics (United States)

    Ogilvie, Gordon I.


    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  12. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.


    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  13. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph


    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  14. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph


    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  15. Galilean relativistic fluid mechanics (United States)

    Ván, P.


    Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

  16. The Viscosity of Polymeric Fluids. (United States)

    Perrin, J. E.; Martin, G. C.


    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  17. CT of retrorenal fluid collections

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.; Demos, T.C.; Posniak, H.


    Fluid collections dorsal to one or both kidneys are often observed on CT. Most of these collections are located in the posterior pararenal space, but occasionally fluid collections that do not originate in this space also occur. The authors review retrorenal fluid collections with explanations for their occurrence.

  18. Basic concepts of fluid responsiveness

    NARCIS (Netherlands)

    T.G.V. Cherpanath (Thomas); B.F. Geerts (Bart); W.K. Lagrand (Wim); M.J. Schultz (Marcus); A.B.J. Groeneveld (Johan)


    textabstractPredicting fluid responsiveness, the response of stroke volume to fluid loading, is a relatively novel concept that aims to optimise circulation, and as such organ perfusion, while avoiding futile and potentially deleterious fluid administrations in critically ill patients. Dynamic param

  19. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard


    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  20. 超临界二氧化碳萃取及水蒸气蒸馏法提取降香挥发油及其GC-MS分析%Analyze on Chemical Compositions of Dalbergia odorifera Essential Oils Extracted by CO2-Supercritical-Fluid-Extraction and Steam Distillation Extraction

    Institute of Scientific and Technical Information of China (English)

    宋伟峰; 廖美金; 罗淑媛


    目的:用超临界二氧化碳萃取及水蒸气蒸馏法提取降香挥发油,并对挥发油进行GC-MS分析.方法:采用超临界二氧化碳萃取法(SFE-CO2)及水蒸气蒸馏法提取降香挥发油,并应用气相色谱-质谱联用(GC-MS)技术分析挥发油的化学成分,用峰面积归一法测定各化合物的相对含量.结果:在超临界CO2提取物中共鉴定出12种化合物,占总峰面积的34.49%,含量最高的是橙花叔醇(14.95%)、2-丙烯酸3-(4-甲氧基)乙酯(14.53%)、胜红蓟色烯(1.33%).在水蒸气蒸馏法提取的降香挥发油中共鉴定出9种化合物,占总峰面积的30.62%,含量最高的是橙花叔醇(26.61%)、雪松醇(1.65%).结论:超临界法较水蒸气法更加稳定可靠、重现性好,适用于降香挥发油的提取.%Objective;To analyze the chemical compositions of Dalbergia odorifera essential oils extacted by CO2-supercritical-fluid-extraction (SFE-CO2)and steam distillation extraction (SD). Methods:The essential oils of Dalbergia odorifera were extracted by steam distillation extraction and SFE-CO2. The chemical components were separated and analyzed by gas chromatography-mass spec-trometry. Results: 12 compounds were identified in SFE sample. The major components from essential oils were 2-propenoic acid-3(4-methoxyphenyl)-ethyl ester( 14. 53% ), nerolidol( 14. 95% ), ageratochromene(1. 33% ). 9 compounds were identified in SD sample. The major components from essential oils were nerolidol(26. 61% ) ,cedrol( 1. 65% ). Conclusion:The SFE method is better than the SD method in reliability stability and reproducibility, and suitable for essential oils extraction of Dalbergia odorifera.

  1. Chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rock, P.A.


    This book, suitable as an introductory text for undergraduates, presents temperature, internal energy, and entropy with a minimum of mathematics. The basic mathematical models of classical chemical thermodynamics are developed later in the text. Includes numerous problems at the end of each chapter, an appendix giving thermodynamic data for common substances, a short list of references, answers to selected problems, and a subject index. Contents, abridged: Energy and the first law of thermodynamics. Thermodynamic functions. The third law of thermodynamics and absolute entropies. Thermodynamics of chemical reactions. Phase equilibria: the activity function. Thermodynamics of ions in solution. Statistical thermodynamics. Appendices. Index.

  2. Supercritical fluid thermodynamics from equations of state (United States)

    Giovangigli, Vincent; Matuszewski, Lionel


    Supercritical multicomponent fluid thermodynamics are often built from equations of state. We investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low density with that of ideal gas mixtures starting from a pressure law. We further study the structure of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate mathematically the corresponding thermodynamics. This thermodynamics is then used to study the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate the role of nonidealities in a transcritical H2-O2-N2 flame.

  3. Classification of refrigerants; Classification des fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)



    This document was made from the US standard ANSI/ASHRAE 34 published in 2001 and entitled 'designation and safety classification of refrigerants'. This classification allows to clearly organize in an international way the overall refrigerants used in the world thanks to a codification of the refrigerants in correspondence with their chemical composition. This note explains this codification: prefix, suffixes (hydrocarbons and derived fluids, azeotropic and non-azeotropic mixtures, various organic compounds, non-organic compounds), safety classification (toxicity, flammability, case of mixtures). (J.S.)

  4. Statistic fluid dynamic of multiphase flow (United States)

    Lim, Hyunkyung; Glimm, James; Zhou, Yijie; Jiao, Xiangmin


    We study a turbulent two-phase fluid mixing problem from a statistical point of view. The test problem is high speed turbulent two-phase Taylor-Couette flow. We find extensive mixing in a transient state between an initial unstable and a final stable configuration. With chemical processing as a motivation, we estimate statistically surface area, droplet size distribution and transient droplet duration. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, Battelle Energy Alliance LLC 00088495.

  5. Fluid-fluid versus fluid-solid demixing in mixtures of parallel hard hypercubes (United States)

    Lafuente, Luis; Martínez-Ratón, Yuri


    It is well known that increase of the spatial dimensionality enhances the fluid-fluid demixing of a binary mixture of hard hyperspheres, i.e. the demixing occurs for lower mixture size asymmetry as compared to the three-dimensional case. However, according to simulations, in the latter dimension the fluid-fluid demixing is metastable with respect to the fluid-solid transition. According to the results obtained from approximations to the equation of state of hard hyperspheres in higher dimensions, the fluid-fluid demixing might become stable for high enough dimension. However, this conclusion is rather speculative since none of these works have taken into account the stability of the crystalline phase (by a minimization of a given density functional, by spinodal calculations or by MC simulations). Of course, the lack of results is justified by the difficulty of performing density functional calculations or simulations in high dimensions and, in particular, for highly asymmetric binary mixtures. In the present work, we will take advantage of a well tested theoretical tool, namely the fundamental measure density functional theory for parallel hard hypercubes (in the continuum and in the hypercubic lattice). With this, we have calculated the fluid-fluid and fluid-solid spinodals for different spatial dimensions. We have obtained, no matter what the dimensionality, the mixture size asymmetry or the polydispersity (included as a bimodal distribution function centered around the asymmetric edge lengths), that the fluid-fluid critical point is always located above the fluid-solid spinodal. In conclusion, these results point to the existence of demixing between at least one solid phase rich in large particles and one fluid phase rich in small ones, preempting a fluid-fluid demixing, independently of the spatial dimension or the polydispersity.

  6. Potential heat exchange fluids for use in sulfuric acid vaporizers (United States)

    Lawson, D. D.; Petersen, G. R.


    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  7. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.


    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  8. Structural Transition in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Boris I. Sedunov


    Full Text Available The extension of the saturation curve ( on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves st( for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.

  9. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning


    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  10. Heat transfer fluids containing nanoparticles (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.


    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. Undulatory swimming in viscoelastic fluids. (United States)

    Shen, X N; Arratia, P E


    The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  12. Dispersion of a solute in peristaltic motion of a couple stress fluid through a porous medium

    National Research Council Canada - National Science Library

    G. Radhakrishnamacharya; Habtu Alemayehu


    The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium in the presence of both homogeneous and heterogeneous chemical reactions...

  13. Drosophila melanogaster seminal fluid can protect the sperm of other males

    DEFF Research Database (Denmark)

    Holman, Luke


    #  1. Many internally-fertilizing animals produce seminal fluid which is transferred along with sperm during mating. Seminal fluid typically contains a diverse range of chemicals that coordinate sperm storage, moderate sperm motility, provide advantages in sexual selection and influence female....... These findings suggest that residual seminal fluid inside females could benefit the sperm of subsequent mates, affecting the outcome of sperm competition and influencing the evolution of ejaculates and mating systems....

  14. Flow study in channel with the use computational fluid dynamics (CFD) (United States)

    Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.


    The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.

  15. High-resolution signatures of oxygenation and microbiological activity in speleothem fluid inclusions


    Blamey, Nigel J. F.; Penelope J. Boston; Laura Rosales-Lagarde


    Speleothems frequently host “fossil” fluids that were trapped in small inclusions during growth. Such fluids may provide valuable clues to past microbial, geochemical, and climatic processes during their formation. However, one difficulty is to understand which gases represent background atmosphere and fluids within a given cave system at a particular time, and which may be the product of post-trapping residual microbial activity or abiotic chemical reactions? Do we have any hope of sorting o...

  16. Volcanic lake systematics II. Chemical constraints (United States)

    Varekamp, J.C.; Pasternack, G.B.; Rowe, G.L.


    A database of 373 lake water analyses from the published literature was compiled and used to explore the geochemical systematics of volcanic lakes. Binary correlations and principal component analysis indicate strong internal coherence among most chemical parameters. Compositional variations are influenced by the flux of magmatic volatiles and/or deep hydrothermal fluids. The chemistry of the fluid entering a lake may be dominated by a high-temperature volcanic gas component or by a lower-temperature fluid that has interacted extensively with volcanic rocks. Precipitation of minerals like gypsum and silica can strongly affect the concentrations of Ca and Si in some lakes. A much less concentrated geothermal input fluid provides the mineralized components of some more dilute lakes. Temporal variations in dilution and evaporation rates ultimately control absolute concentrations of dissolved constituents, but not conservative element ratios. Most volcanic lake waters, and presumably their deep hydrothermal fluid inputs, classify as immature acid fluids that have not equilibrated with common secondary silicates such as clays or zeolites. Many such fluids may have equilibrated with secondary minerals earlier in their history but were re-acidified by mixing with fresh volcanic fluids. We use the concept of 'degree of neutralization' as a new parameter to characterize these acid fluids. This leads to a classification of gas-dominated versus rock-dominated lake waters. A further classification is based on a cluster analysis and a hydrothermal speedometer concept which uses the degree of silica equilibration of a fluid during cooling and dilution to evaluate the rate of fluid equilibration in volcano-hydrothermal systems.

  17. Fluid viscosity under confined conditions (United States)

    Rudyak, V. Ya.; Belkin, A. A.


    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  18. Chemical Mahjong (United States)

    Cossairt, Travis J.; Grubbs, W. Tandy


    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  19. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  20. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  1. Noncommutative Fluid and Cosmological Perturbations

    CERN Document Server

    Das, Praloy


    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...

  2. Active colloids in complex fluids

    CERN Document Server

    Patteson, Alison E; Arratia, Paulo E


    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension proper...

  3. Fluid dynamics of heart development. (United States)

    Santhanakrishnan, Arvind; Miller, Laura A


    The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics.

  4. Cerebrospinal fluid cutaneous fistula following obstetric epidural analgaesia. Case report. (United States)

    Fedriani de Matos, J J; Quintero Salvago, A V; Gómez Cortés, M D


    Cutaneous fistula of cerebrospinal fluid is a rare complication of neuroaxial blockade. We report the case of a parturient in whom an epidural catheter was placed for labour analgesia and 12h after the catheter was removed, presented an abundant asymptomatic fluid leak from the puncture site, compatible in the cyto-chemical analysis with cerebrospinal fluid. She was treated with acetazolamide, compression of skin orifice of the fluid leakage, antibiotic prophylaxis, hydration and rest, and progressed satisfactorily without requiring blood patch. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir


    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  6. Reduced Chemical Kinetic Model for Titan Entries

    Directory of Open Access Journals (Sweden)

    Romain Savajano


    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  7. Fluid and Electrolyte Nutrition (United States)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.


    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  8. Standard Practice for Field Sampling of Aerospace Fluids in Containers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers field sampling of fluids from hermetically sealed containers and other fluid containers of 208-L volume maximum. It may be utilized at manufacturing, storage, or use levels for obtaining representative fluid samples for chemical, physical, or particulate matter determinations. 1.2 Use of this practice depends upon variables such as fluid toxicity, restrictive fluid odors, fluid flammability, and so forth. It is suitable for most hydraulic fluids; however, care should be exercised in determining compatibility before use. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For hazard statement, see 6.5.1.

  9. Acoustic concentration of particles in fluid flow (United States)

    Ward, Michael D.; Kaduchak, Gregory


    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  10. Acoustic concentration of particles in fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Michael W.; Kaduchak, Gregory


    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  11. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M.; Norman, David; Owens, Lara


    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  12. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan


    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  13. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg


    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  14. Electrochemistry in supercritical fluids (United States)

    Branch, Jack A.; Bartlett, Philip N.


    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  15. Electrochemistry in supercritical fluids. (United States)

    Branch, Jack A; Bartlett, Philip N


    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  16. Mixture of Anisotropic Fluids (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  17. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech


    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  18. Conformal fluid dynamics

    CERN Document Server

    Jarvis, P D


    We present a conformal theory of a dissipationless relativistic fluid in 2 space-time dimensions. The theory carries with it a representation of the algebra of 2-$D$ area-preserving diffeomorphisms in the target space of the complex scalar potentials. A complete canonical description is given, and the central charge of the current algebra is calculated. The passage to the quantum theory is discussed in some detail; as a result of operator ordering problems, full quantization at the level of the fields is as yet an open problem.

  19. Reliability of fluid systems

    Directory of Open Access Journals (Sweden)

    Kopáček Jaroslav


    Full Text Available This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element, which is seen as a random variable and their data (values can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.

  20. Influence of Clays on Borehole Stability : a Literature Survey Part One: Occurence of Drilling Problems. Physico-Chemical Description of Clays and of Their Interaction with Fluids Influence des argiles sur la stabilité des parois de puits : revue bibliographique. Première partie : les problèmes rencontrés lors du forage dans les argiles. Description physico-chimique des argiles et de leur interaction avec les fluides

    Directory of Open Access Journals (Sweden)

    Forsans T.


    , generally performed in the presence of a gas phase, cannot be readily compared to the in situ behaviour of the shales, but give insights on the possible artefacts of laboratory experiments. Caution is thus necessary before any application of literature results to real samples, all preliminary conditioning (initial state and composition of the clay and the water, way of hydration/dehydration, or compaction being able to modify the behaviour of the clay-water system. The third section sets the problem of describing the mechanical behaviour of the rock formation on drilling. This behaviour depends on initial in situ stresses, pore pressure and temperature, and on the constitutive law of the rock, i. e. the relation between stress and strain. As an example, the Cam Clay elasto-plastic law is developed. Then the laboratory experimental sets used to identify mechanical properties are described : triaxial tests, drained or undrained, oedometric tests, and hollow cylinder tests, the first ones being used to calibrate borehole stability, while the latter simulate drilled boreholes. Specific aspects of shales are then recalled : dependence of mechanical properties on the water content, anisotropy and influence of time. Coupling between physico-chemistry and mechanics arises from the lack of chemical equilibrium between the solid and the liquid. This desequilibrium induces a transfer of water and chemical species in solution, modifying the pore pressure, thus the stress on the rock, and leading to chemical reactions, which have been described in section III. Follows a description of stability models, which should be able to predict mud characteristics for the drilling as well as evolution of the borehole with time. Stability models intend to calculate the maximum/minimum mud weight, from a relevant instability criterion, drawn from well data, mechanical data and fluid properties. The choice of the constitutive law is thus important, and elasto-plastic ones seem the more relevant

  1. Null Fluids - A New Viewpoint of Galilean Fluids

    CERN Document Server

    Banerjee, Nabamita; Jain, Akash


    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  2. Null fluids: A new viewpoint of Galilean fluids (United States)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash


    In this article, we study a Galilean fluid with a conserved U (1 ) current up to anomalies. We construct a relativistic system, which we call a null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in the derivative expansion. We also devise a mechanism to introduce U (1 ) anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean fluid.

  3. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.V.; Mincher, B.J.


    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  4. Pressure–Temperature–Fluid Constraints for the Poona Emerald Deposits, Western Australia: Fluid Inclusion and Stable Isotope Studies

    Directory of Open Access Journals (Sweden)

    Dan Marshall


    Full Text Available Emerald from the deposits at Poona shows micrometre-scale chemical, optical, and cathodoluminescence zonation. This zonation, combined with fluid inclusion and isotope studies, indicates early emerald precipitation from a single-phase saline fluid of approximately 12 weight percent NaCl equivalent, over the temperature range of 335–525 °C and pressures ranging from 70 to 400 MPa. The large range in pressure and temperature likely reflects some post entrapment changes and re-equilibration of oxygen isotopes. Secondary emerald-hosted fluid inclusions indicate subsequent emerald precipitation from higher salinity fluids. Likewise, the δ18O-δD of channel fluids extracted from Poona emerald is consistent with multiple origins yielding both igneous and metamorphic signatures. The combined multiple generations of emerald precipitation, different fluid compositions, and the presence of both metamorphic and igneous fluids trapped in emerald, likely indicate a protracted history of emerald precipitation at Poona conforming to both an igneous and a metamorphic origin at various times during regional lower amphibolite to greenschist facies metamorphism over the period ~2710–2660 Ma.

  5. Copolymer SJ-1 as a Fluid Loss Additive for Drilling Fluid with High Content of Salt and Calcium

    Directory of Open Access Journals (Sweden)

    Hongping Quan


    Full Text Available A ternary copolymer of 2-acrylamide-2-methyl propane sulfonic acid (AMPS, acrylamide (AM, and allyl alcohol polyoxyethylene ether (APEG with a side chain polyoxyethylene ether (C2H4On SJ-1 were designed and synthesized in this work. Good temperature resistance and salt tolerance of “–SO3-” of AMPS, strong absorption ability of “amino-group” of AM, and good hydrability of side chain polyoxyethylene ether (C2H4On of APEG provide SJ-1 excellent properties as a fluid loss additive. The chemical structure of ternary copolymer was characterized by Fourier transform infrared (FTIR spectroscopy. The molecular weight and its distribution were determined by gel permeation chromatography (GPC. The API fluid loss of drilling fluid decreased gradually with the increasing concentration of NaCl and CaCl2 in the mud system. SJ-1 was applied well in the drilling fluid even at a high temperature of 220°C. Results of zeta potential of modified drilling fluid showed the dispersion stability of drilling fluid system. Scanning electron microscopy (SEM analysis showed the microstructure of the surface of the filter cake obtained from the drilling fluid modified by SJ-1.

  6. Bioreactor Studies and Computational Fluid Dynamics (United States)

    Singh, H.; Hutmacher, D. W.

    The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  7. Scanning Probe Microscope-Based Fluid Dispensing

    Directory of Open Access Journals (Sweden)

    Murali Krishna Ghatkesar


    Full Text Available Advances in micro and nano fabrication technologies have enabled fabrication of smaller and more sensitive devices for applications not only in solid-state physics but also in medicine and biology. The demand for devices that can precisely transport material, specifically fluids are continuously increasing. Therefore, integration of various technologies with numerous functionalities in one single device is important. Scanning probe microscope (SPM is one such device that has evolved from atomic force microscope for imaging to a variety of microscopes by integrating different physical and chemical mechanisms. In this article, we review a particular class of SPM devices that are suited for fluid dispensing. We review their fabrication methods, fluid-pumping mechanisms, real-time monitoring of dispensing, physics of dispensing, and droplet characterization. Some of the examples where these probes have already been applied are also described. Finally, we conclude with an outlook and future scope for these devices where femtolitre or smaller volumes of liquid handling are needed.

  8. (Chemical thermodynamics)

    Energy Technology Data Exchange (ETDEWEB)

    Mesmer, R.E.


    The purpose of this travel was for the traveler to participate in the 11th IUPAC International Conference on Chemical Thermodynamics and to present a paper of which he is co-author entitled The Transition from Strong-to-Weak Electrolyte Behavior Near the Critical Point of Water'' in the session on Solutions. The conference brought together nearly 500 scientists from around the world to discuss broad aspects of experimental thermodynamics and theoretical modeling. The traveler also visited the University of Karlsruhe to discuss current research with E.U. Franck and his collaborators. This institution has been for many years one of the leading centers for experimental studies on phase equilibrium and physical chemical studies especially on pure substances under the direction of Franck.

  9. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Rudra A


    Full Text Available The disastrous entry of amniotic fluid into the maternal circulation leads to dramatic sequelae of clinical events, characteristically referred to as Amniotic fluid embolism (AFE. The underlying mechanism for AFE is still poorly understood. Unfortunately, this situation has very grave maternal and fetal consequences. AFE can occur during labor, caesarean section, dilatation and evacuation or in the immediate postpartum period. The pathophysiology is believed to be immune mediated which affects the respiratory, cardiovascular, neurological and hematological systems. Undetected and untreated it culminates into fulminant pulmonary edema, intractable convulsions, disseminated intravascular coagulation (DIC, malignant arrhythmias and cardiac arrest. Definite diagnosis can be confirmed by identification of lanugo, fetal hair and fetal squamous cells (squames in blood aspirated from the right ventricle. Usually the diagnosis is made clinically and by exclusion of other causes. The cornerstone of management is a multidisciplinary approach with supportive treatment of failing organs systems. Despite improved modalities for diagnosing AFE, and better intensive care support facilities, the mortality is still high.

  10. Suction blister fluid as potential body fluid for biomarker proteins. (United States)

    Kool, Jeroen; Reubsaet, Léon; Wesseldijk, Feikje; Maravilha, Raquel T; Pinkse, Martijn W; D'Santos, Clive S; van Hilten, Jacobus J; Zijlstra, Freek J; Heck, Albert J R


    Early diagnosis is important for effective disease management. Measurement of biomarkers present at the local level of the skin could be advantageous in facilitating the diagnostic process. The analysis of the proteome of suction blister fluid, representative for the interstitial fluid of the skin, is therefore a desirable first step in the search for potential biomarkers involved in biological pathways of particular diseases. Here, we describe a global analysis of the suction blister fluid proteome as potential body fluid for biomarker proteins. The suction blister fluid proteome was compared with a serum proteome analyzed using identical protocols. By using stringent criteria allowing less than 1% false positive identifications, we were able to detect, using identical experimental conditions and amount of starting material, 401 proteins in suction blister fluid and 240 proteins in serum. As a major result of our analysis we construct a prejudiced list of 34 proteins, relatively highly and uniquely detected in suction blister fluid as compared to serum, with established and putative characteristics as biomarkers. We conclude that suction blister fluid might potentially serve as a good alternative biomarker body fluid for diseases that involve the skin.

  11. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering


    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  12. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity......). A number of different work materials were considered, with emphasis on austenitic stainless steel. Cutting fluids from two main groups were investigated, water miscible (reviewed from previous work) and straight oils. Results show that correlation of cutting fluid performance in different operations exists...... within the same group of cutting fluids, for stainless steel. A possible rationalisation of cutting fluid performance tests is suggested. In order to select a set of basic tests and optimise them for use as general and standardised testing methods, an original approach to the evaluation of cutting force...

  13. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus


    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  14. Conductivity effect in electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yu; WEN; Shizhu; MENG; Yonggang


    Based on conduction model and cubic particle model, the relationship between current density and shear yield stress of electrorheological (ER) fluids was calculated and compared with some reported experimental results. The conductivity of the insulating oils is found to have been changed by the mixed particles. Several ways to decrease insulating liquid conductivity and increase the conductivity ratio of ER fluids have been proposed to prepare ER fluids with high shear yield stresses but low current densities.

  15. Fluid/Gas Process Controller (United States)

    Ramos, Sergio


    Fluid/gas controller, or "Super Burper", developed to obtain precise fill quantities of working fluid and noncondensable gas in heat pipe by incorporating detachable external reservoir into system during processing stage. Heat pipe filled with precise quantities of working fluid and noncondensable gas, and procedure controlled accurately. Application of device best suited for high-quality, high performance heat pipes. Device successfully implemented with various types of heat pipes, including vapor chambers, thermal diodes, large space radiators, and sideflows.

  16. Working memory and fluid intelligence


    Engel de Abreu, Pascale; Gathercole; Conway, A.


    The present study investigates how working memory and fluid intelligence are related in young children and which aspect of working memory span tasks– short-term storage or controlled attention - might drive the relationship. A sample of 119 children were followed from kindergarten to 2nd grade and completed assessments of working memory, short-term memory, and fluid intelligence. The data showed that working memory, verbal short-term memory, and fluid intelligence were highly related but sepa...

  17. Highly oxidising fluids generated during serpentinite breakdown in subduction zones. (United States)

    Debret, B; Sverjensky, D A


    Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.

  18. Inflationary universe in fluid description

    CERN Document Server

    Bamba, Kazuharu


    We investigate a fluid description of inflationary cosmology. It is shown that the three observables of the inflationary universe: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be compatible with the Planck analysis. In addition, we reconstruct the equation of state (EoS) for a fluid from the spectral index of the curvature perturbations consistent with the Planck results. We explicitly demonstrate that the universe can gracefully exit from inflation in the reconstructed fluid models. Furthermore, we explore the singular inflation for a fluid model.

  19. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus


    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  20. Supersaturation in human gastric fluids. (United States)

    Bevernage, Jan; Hens, Bart; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick


    The current study reports on supersaturation, precipitation and excipient mediated precipitation inhibition of five poorly soluble drugs (loviride, glibenclamide, itraconazole, danazol, and etravirine) in human and simulated gastric fluids. Upon induction of supersaturation in human gastric fluids (HGFs), simulated gastric fluid (SGF), and fasted state simulated gastric fluid (FaSSGF) using a solvent shift method, supersaturation and precipitation were assessed as a function of time. In addition, the precipitation inhibitory capacity of three polymers (Eudragit® E PO, HPMC-E5, and PVP K25) was investigated. Supersaturation in human gastric fluids was observed for all model compounds, but proved to be relatively unstable (fast precipitation), except for itraconazole. Only modest excipient-mediated stabilizing effects on supersaturation were observed using HPMC-E5 and Eudragit® E PO whereas PVP K25 exerted no effect. In contrast to SGF, the observed precipitation behavior in FaSSGF was similar to the behavior in human gastric fluids. The present study demonstrates that supersaturation stability of drugs in human gastric fluids is in general inferior to supersaturation stability in intestinal fluids. As the potential for excipient mediated precipitation inhibition in gastric fluids was only limited, our data suggest that supersaturation should preferably be targeted to the intestine. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. CISM Course on Rotating Fluids

    CERN Document Server


    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  2. Assessing and documenting fluid balance. (United States)

    Pinnington, Sarah; Ingleby, Sarah; Hanumapura, Prasanna; Waring, Deryn


    Concerns about inadequate patient hydration and suboptimal monitoring of fluid balance have been documented in recent reports. The Fluid Balance Improvement Project at Central Manchester University Hospitals NHS Foundation Trust was undertaken to identify risk factors influencing hydration and to implement a revised process to manage these risks, resulting in the development of a hydration pathway. This new approach to monitoring patient hydration, together with staff education and support, has resulted in improved compliance with fluid balance monitoring standards, as well as significant improvements in identifying patients at risk of dehydration, and an increase in patients with acute kidney injury commencing appropriate fluid balance monitoring.

  3. Magnetoviscous model fluids

    CERN Document Server

    Kröger, M; Hess, S


    We review, apply and compare diverse approaches to the theoretical understanding of the dynamical and rheological behaviour of ferrofluids and magnetorheological (MR) fluids subject to external magnetic and flow fields. Simple models are introduced which are directly solvable by nonequilibrium Brownian or molecular dynamics computer simulation. In particular, the numerical results for ferrofluids quantify the domain of validity of uniaxial alignment of magnetic moments (in and) out of equilibrium. A Fokker-Planck equation for the dynamics of the magnetic moments - corresponding to the Brownian dynamics approach - and its implications are analysed under this approximation. The basic approach considers the effect of external fields on the dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates), whose size should depend on the strength of flow and magnetic field, the magnetic interaction parameter and concentration (or packing fraction). Results from analytic calculations and from simulation ar...

  4. Supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Penninger, J.M.L.; McHugh, M.A.; Radosz, M.; Krukonis, V.J.


    This book presents the state-of-the-art in the science and technology of supercritical fluid (scf) processing. Current research as described in the book, focuses on developments in equations of state for binary and multicomponent mixtures (including polymer solutions), solubility measurements at near-critical conditions, measurements of critical properties of binary mixtures and their correlation with equations of state. Progress in thermodynamics, coupled with advances in the design and construction of high pressure equipment, has opened up a wide avenue of commercial application (e.g. decaffeination of coffee beans, extractions of flavours and spices, purification of pharmaceutical products, separations of polymeric materials, deodorization and deacidification of vegetable oils, fractionation of fatty acids, coal liquefaction, wood delignitication, etc.)


    Spence, R.; Streeton, R.J.W.


    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  6. Catenaries in viscous fluid

    CERN Document Server

    Chakrabarti, Brato


    This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...

  7. Fluid Genetic Algorithm (FGA

    Directory of Open Access Journals (Sweden)

    Ruholla Jafari-Marandi


    Full Text Available Genetic Algorithm (GA has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA, some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP, is shown and experienced.

  8. Respiratory fluid mechanics. (United States)

    Grotberg, James B


    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  9. Chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula A. Oliveira


    Full Text Available The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.A sociedade obtém numerosos benefícios da utilização de compostos químicos. A aplicação dos pesticidas, por exemplo, permitiu obter alimento em quantidade suficiente para satisfazer as necessidades alimentares de milhões de pessoas, condição relacionada com o aumento da esperança de vida. Os benefícios estão, por

  10. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger


    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environments.  Heterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  11. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA


    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  12. Salinity of oceanic hydrothermal fluids: a fluid inclusion study (United States)

    Nehlig, Pierre


    An extensive microthermometric study of quartz, epidote, plagioclase, anhydrite and sphalerite-hosted fluid inclusions from ophiolitic [Semail (Oman) and Trinity (California) ophiolites] and oceanic (East Pacific Rise hydrothermal vents, Gorringe Bank, ODP Leg 111 Hole 504B) crust has been carried out in order to constrain a model accounting for wide salinity variations measured in the oceanic hydrothermal fluids. Recorded salinities in fluid inclusions vary between 0.3 and 52 wt% NaCl eq. However, more than 60% of the mean (± standard deviation) salinities of the samples are within the range 3.2 ± 0.3wt% NaCl eq (= microthermometric error) and the mean salinity of all fluid inclusions (without the brines) is 4.0 wt% NaCl eq with a standard deviation of 1.6 wt% NaCl eq. Whereas most samples display slightly higher salinities than seawater, several samples exhibit very high salinities (more than two times that of seawater). These high salinities are restricted to the plagiogranites (Semail and Trinity ophiolites) which mark the top of the fossil magma chamber, in the transition zone between the plutonic sequence and the sheeted dyke complex. The fluid inclusion population studied in the plagiogranites is characterized by the occurrence of four major fluid inclusion families: (1) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the liquid phase; (2) low-salinity Liquid/Vapor fluid inclusions with pseudocritical homogenization; (3) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the vapor phase; and (4) high-salinity Liquid/Vapor/Halite fluid inclusions which homogenize into the liquid phase by halite dissolution and exhibit salinities as high as 52 wt% NaCl eq. These fluid inclusion families are interpreted as resulting from phase separation occurring in hydrothermal or magmatic fluids within the transition zone between the hydrothermal system and the magma chamber at temperatures higher than 500°C. Very low

  13. Physical-chemical analysis of the cerebrospinal fluid of healthy dogs submitted to different storage periods and temperatures Análise físico-química do líquido cerebroespinal de cães hígidos em diferentes períodos e temperaturas de estocagem

    Directory of Open Access Journals (Sweden)

    Paula Nunes Rosato


    Full Text Available Disorders involving the nervous system have a great importance in veterinary medicine because they have a high incidence and few auxiliary tools for their diagnostic, prognostic and evaluation of the employed therapy. Today, the diagnostic is based, mainly, on the patient history and neurologic examination. Hence, evaluation of the cerebrospinal fluid elements is one of the few alternatives to clinically access the central nervous system (CNS. Even with the great usefullness of the physical-chemical and cytoscopy exams of the CSF in veterinary neurology, there are few studies concerning the stability of its elements under freezing storage. The present study was aimed at verifing the influence of temperature and period of conservation on physical-chemical characteristics of the CSF of healthy dogs. For that purpose, CSF samples were collected by puncture of the cisterna magna of dogs clinically healthy, and then were analysed for density, pH, glucorrhachia, total proteins and activity of the enzymes creatine kinase (CK and aspartate aminotransferase (AST, after storage in different temperatures (25°C, 4°C and -4°C and periods (immediately after collection and after 24 hours, 48 hours, a week and a month. Regarding the obtained results it was possible to verify that the parameters studied were stable up to a month of storage, under freezing at -4°C.Disfunções envolvendo o sistema nervoso são de grande importância na Medicina Veterinária, pois tratam-se de enfermidades de elevada incidência e com poucos subsídios auxiliares no seu diagnóstico, prognóstico e na avaliação de terapias empregadas. Ainda hoje, o diagnóstico baseia-se, em grande parte, no histórico e no exame clínico neurológico. Dessa forma, a análise dos constituintes do fluido cefalorraquidiano torna-se uma das poucas alternativas de acesso clínico ao sistema nervoso central (SNC. Mesmo com a grande utilidade do exame físico-químico e citoscópico do liquor na

  14. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou


    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  15. Preparation of Rare-Earth Composite Ferrite Magnetic Fluid

    Institute of Scientific and Technical Information of China (English)

    蒋荣立; 刘永超; 刘守坤; 鞠明礼


    Water-based rare-earth ferrite (RexFe3-xO4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy3+)=30∶1. The modification and formation mechanism of RexFe3-xO4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.

  16. Fluid description of multi-component solar partially ionized plasma

    CERN Document Server

    Khomenko, Elena; Diaz, Antonio; Vitas, Nikola


    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed we particularize to some frequently considered cases as for the interaction of matter and radiation.

  17. Fluid description of multi-component solar partially ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, E., E-mail:; Collados, M.; Vitas, N. [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Díaz, A. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)


    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation.

  18. Preliminary evaluation of fluid chemistry in the East Mesa KGRA

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, J.R.


    One of the major problems needing consideration when bringing a geothermal field into production is the anticipation and control of mineral precipitation in both the producing formations and production equipment. Prediction of the chemical interactions between natural multicomponent thermal fluids and the minerals comprising a producing formation can be accomplished by the study of equilibrium models approximating the natural system. Models are constructed from theoretically and experimentally derived thermodynamic data for the involved minerals and aqueous species. This equilibrium modeling approach was applied to the rock-water system at the East Mesa geothermal area in the Imperial Valley of California. Results of petrographic and fluid analyses are given. (JGB)

  19. CISM course on stochastic methods in fluid mechanics

    CERN Document Server

    Chibbaro, Sergio


    Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechan

  20. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube (United States)

    Zhang, Zhiqiang; Lockwood, Frances E.


    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  1. Core-flood experiment for transport of reactive fluids in rocks. (United States)

    Ott, H; de Kloe, K; van Bakel, M; Vos, F; van Pelt, A; Legerstee, P; Bauer, A; Eide, K; van der Linden, A; Berg, S; Makurat, A


    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO(2) and/or H(2)S in geological formations. Potential applications are geological sequestration of CO(2) in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  2. Localization of chemical sources using e. coli chemotaxis (United States)

    Davison, Timothy; Nguyen, Hoa; Nickels, Kevin; Frasch, Duncan; Basagaoglu, Hakan


    This paper furthers the application of chemotaxis to small-scale robots by simulating a system that localizes a chemical source in a dynamic fluid environment. This type of system responds to a chemical stimulus by mimicking, for example, the way that E. Coli bacteria move toward attractants (nutrients) and away from repellents. E. Coli use the intracellular signaling pathway to process the temporal change in the chemical concentration to determine if the cells should run or tumble. Previous work has shown that this process can be simulated with robots and used to localize chemical sources based upon a fixed nutrient gradient. Our work furthers this study by simulating the injection of an effluent of chemical at a specified location in an environment and uses computational fluid dynamics to model the interactions of the robot with the fluid while performing chemotaxis. The interactions between the chemical and fluid are also modelled with the advection diffusion equation to determine the concentration gradient. This method allows us to compute, over a lattice, the chemical concentration at all points and feed these results into an existing E. Coli controller for the robot, which results in the robot executing a tumble or a run according to a probabilistic formula. By simulating the robot in this complex environment, our work facilitates refinement of the chemotaxis controller while proving the ability of chemotactic robots to localize specific chemicals in environments that more closely resemble those encountered in the wide-ranging types of locations in which this robotic system might be deployed.

  3. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten


    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  4. Chemical Engineering in Space (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)


    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  5. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.


    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  6. Thermomolecular Orientation of Nonpolar Fluids

    NARCIS (Netherlands)

    Römer, F.; Bresme, F.; Muscatello, J.; Bedeaux, D.; Rubi, J.M.


    We investigate the response of molecular fluids to temperature gradients. Using nonequilibrium molecular dynamics computer simulations we show that nonpolar diatomic fluids adopt a preferred orientation as a response to a temperature gradient. We find that the magnitude of this thermomolecular orien

  7. Fetal fluid and protein dynamics

    NARCIS (Netherlands)

    Pasman, Suzanne


    In this thesis fetal fluid and protein dynamics are investigated to gain insight in fetal (patho-)physiology. Studies were performed in fetuses with severe anemia and/or hydrops fetalis. Measurements were performed in fetal blood or amniotic fluid, obtained before or during intrauterine transfusion.

  8. Prehospital fluid resuscitation in trauma

    NARCIS (Netherlands)

    Raum, M. R.; Waydhas, C.


    The indications for and type and amount of fluid resuscitation for trauma patients in the field remains highly controversial. There is unanimity, however, that trauma victims may suffer from acute blood loss. In addition to stopping the bleeding fluid resuscitation is the second mainstay in shock th

  9. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert


    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  10. Applied Fluid Mechanics. Lecture Notes. (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  11. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E


    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  12. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn


    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  13. An Introduction to Fluid Dynamics (United States)

    Batchelor, G. K.


    First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.

  14. Heart failure - fluids and diuretics (United States)

    ... this page: // Heart failure - fluids and diuretics To use the sharing features on ... at Home When you have heart failure, your heart does not pump out enough blood. This causes fluids to build up in your body. If you ...

  15. Applied Fluid Mechanics. Lecture Notes. (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  16. Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport (United States)

    Wilson, A.; Ruppel, C.


    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  17. Supercritical Fluid Extraction and Chromatography Using a Lee Scientific Series 600 SFE/SFC System (United States)


    Dioxide and Ethylene. Journal of Chemical Engineering Data , 26:47. Lee, M.L. and K.E. Markides 1987 Chromatography with Supercritical Fluids. Science...Publishers, Stoneham, MA. McHugh, M.A., and M.E. Paulaitis 1980 Solid Solubilities of Naphthalene and Biphenyle in Supercritical Carbon Dioxide. Journal of Chemical Engineering Data , 25

  18. Effective perfect fluids in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail:, E-mail: [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)


    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  19. Hybrid models for complex fluids

    CERN Document Server

    Tronci, Cesare


    This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...

  20. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  1. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M. [Hattenburg Dilley & Linnell, LLC, Anchorage, AL (United States)


    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  2. Chemical Analyses (United States)

    Bulluck, J. W.; Rushing, R. A.


    As a preliminary study on the effects of chemical aging of polymer materials MERL and TRI have examined two polymeric materials that are typically used for offshore umbilical applications. These two materials were Tefzel, a copolymer of ethylene and tetrafluoroethylene, and Coflon, polyvinylidene fluoride. The Coflon specimens were cut from pipe sections and exposed to H2S at various temperatures and pressures. One of these specimens was tested for methane permeation, and another for H2S permeation. The Tefzel specimens were cut from .05 mm sheet stock material and were exposed to methanol at elevated temperature and pressure. One of these specimens was exposed to methanol permeation for 2 days at 100 C and 2500 psi. An additional specimen was exposed to liquid methanol for 3 days at 150 C and 15 Bar. Virgin specimens of each material were similarly prepared and tested.

  3. Effects of Drilling Fluid Exposure to Oil and Gas Workers Presented with Major Areas of Exposure and Exposure Indicators

    Directory of Open Access Journals (Sweden)

    Eric Broni-Bediako


    Full Text Available Drilling fluid is any fluid which is circulated through a well in order to remove cuttings from a wellbore. They are used broadly in the oil and gas industry, on exploration rigs, and are critical to ensuring a safe and productive oil or gas well. During drilling, a large volume of fluids are circulated through the well and into open, partially enclosed or completely enclosed systems at elevated temperatures. When these drilling fluids are agitated during circulating process there is significant potential for chemical exposure to workers and subsequent health effects. This study seeks to identify major areas of drilling fluid exposure and health hazard associated with the use of drilling fluid. The study also presents some challenges in setting drilling fluid exposure standard which has always not been given the same attention or concern as effects and risk management of drilling fluid. Some exposure indicators are also presented.

  4. Regulation of amniotic fluid volume. (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however, in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Water flux across biologic membranes may be driven by osmotic or hydrostatic forces; existing data suggest that intramembranous flow in humans is driven by the osmotic difference between the amniotic fluid and the fetal serum. The driving force for placental flow is more controversial, and both forces may be in effect. The mechanism(s) responsible for regulating water flow to and from the amniotic fluid is unknown. In other parts of the body, notably the kidney, water flux is regulated by the expression of aquaporin water channels on the cell membrane. We hypothesize that aquaporins have a role in regulating water flux across both the amnion and the placenta, and present evidence in support of this theory. Current knowledge of gestational water flow is sufficient to allow prediction of fetal outcome when water flow is abnormal, as in twin-twin transfusion syndrome. Further insight into these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  5. Heating production fluids in a wellbore (United States)

    Orrego, Yamila; Jankowski, Todd A.


    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  6. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A


    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  7. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.


    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  8. Determining gaseous composition of fluid inclusions with quadrupole mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHU; Heping


    [1]Joseph, R. G., Stephen, E. K., Factors affecting gas analysis of inclusion fluid by quadrupole mass spectrometry, Geo-chimica et Acta, 1995, 59(19): 3977-3986.[2]Masakatsu, S., Takayuki, S., Naoto, T., Analysis of fluid inclusion gases from geothermal systems, using a rapid-scanning quadrupole mass spectrometer, Eur. J. Mineral., 1992, 4: 895-906.[3]Van den Kerkhof, A. M., Isochoric phase diagrams in the systems CO2-CH4 and CO2-N2: Application to fluid inclusions, Geochimica et Cosmochimica Acta, 1990, 54: 621-629.[4]Colin, B., Michael, P. S., Mass spectrometric determination of gases in individual fluid inclusions in natural minerals, Anal. Chem., 1986, 58: 1330-1333.[5]David, I. N., Fredrick, J. S., Analysis of volatiles in fluid inclusions by mass spectrometry, Chemical Geology, 1987, 61: 1-10.[6]Yoichi, M., Ryo, K., Takayuki, S. et al., Gas composition of fluid inclusion from the Mori Geothermal Reservoir, South-western Hokkaido, Japan, Resource Geology, 1997, 47(5): 283-291.[7]Lu Huanzhang, Guo Dijiang, Progress and trends of researches on fluid inclusions, Geological Review, 2000, 46(4): 385-392.[8]Xia Xinyu, Wang Xianbin, Chen Jiangfeng, Geningjie, composition of fluid inclusions and CO2 carbon isotope of ultra-high pressure metamorphic rocks in Shuanghe area, Dabieshan Mountain, Science in China (in Chinese), Ser. D, 1999, 29(4): 314-320.

  9. Blister fluid composition in a pediatric patient with toxic epidermal necrolysis. (United States)

    Gandhi, Mona; Kowal-Vern, Areta; An, Gary; Hanumadass, Marella


    Toxic epidermal necrolysis (TEN) is a rare life-threatening disease mostly related to drug ingestion. Apoptotic keratinocytes lead to separation of the epidermis from dermis and widespread blistering of the skin. This case is a pediatric patient with a seizure disorder who developed TEN after starting carbamezepine. Blister fluid was analyzed for protein, chemical, and mineral content. The TEN blister fluid composition was similar to burn blister, except that the burn blister fluid has a 3-fold increase in albumin and protein. There was a substantial increase in lactate dehydrogenase, calcium, and magnesium in both blister fluid specimens compared with serum levels. To our knowledge, this report is the first in the literature to analyze TEN blister fluid composition and compare it to burn blister fluid.

  10. Chemical engineering aspects in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chmiel, H.


    Many basic chemical engineering processes are based on transport processes due, for example, to differences in temperature, pressure, and concentration. Such transport processes abound in the healthy circulatory system. Thus, metabolic processes supply the human body with the necessary warmth. The heart serves as a blood pump to provide optimal blood pressure in all vessels. Highly complex membranes in the kidneys ensure the efficient detoxification of the blood. It is therefore natural that the chemical engineer be involved in the solution of a number of biomedical engineering problems that come up in the field of medicine. Some typical tasks are: the characterization of the flow properties of biological fluids; research on the interaction between blood and foreign substances of the purpose of finding materials suitable for temporary or permanent use in the body and the development of blood pumps and artifical substitutes for the lungs, the liver, and the kidneys.

  11. Tribology analysis of chemical-mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, S.R.; Eyman, L.M. (Sematech, Austin, TX (United States))


    To better understand the variation of material removal rate on a wafer during chemical-mechanical polishing (CMP), knowledge of the stress distribution on the wafer surface is required. The difference in wafer-surface stress distributions could be considerable depending on whether or not the wafer hydroplanes during polishing. This study analyzes the fluid film between the wafer and pad and demonstrates that hydroplaning is possible for standard CMP processes. The importance of wafer curvature, slurry viscosity, and rotation speed on the thickness of the fluid film is also demonstrated.

  12. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)


    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  13. CAMEO Chemicals Software (United States)

    CAMEO Chemicals is an extensive chemical database, available for download, with critical response information for thousands of chemicals, and a tool that tells you what reactions might occur if chemicals were mixed together.

  14. Internal fluid mechanics research on supercomputers for aerospace propulsion systems (United States)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.


    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  15. Fluidos supercríticos em química analítica. I. Cromatografia com fluido supercrítico: conceitos termodinâmicos Supercritical fluid in analytical chemistry. I. Supercritical fluid chromatography: thermodynamic definitions

    Directory of Open Access Journals (Sweden)

    Emanuel Carrilho


    Full Text Available Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in Brazil, even considering the enormous potential of their applications, and their use in several techniques, such as chromatography (SFC and supercritical fluid extration (SFE. This article series is intended to discuss the historical evolution, instrumentation features and potential and limitations of the supercritical fluid use in analytical chemistry. A special focus will be centered on chromatography and extration techniques using supercritical fluids.

  16. Diamond growth in mantle fluids (United States)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick


    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  17. Fluid-structure interaction of panel in supersonic fluid passage

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; ZHANG Yun-feng; TIAN Xin


    Fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme.The passage is formed with two parallel panels,one is risid and the other is flexible.The interaction between fluid flows and flexible panel is numerically studied,mainly focused on the effect of dynamic pressure and distance between two parallel panels.Subcycling and spline interpolation based predict-correct scheme is utihzed to combine the vibration and fluid analysis and to stabilize long-term calculations to get accurate resuhs.It's demonstrated that the flutter characteristic of flexible panel is more complex with the increase of dynamic pressure and the decrease of distance between two parallel panels.Via analyzing the propagation and reflection of disturbance in passage,it's determined as a main cause of the variations.

  18. Fluid Dynamics with Cryogenic Fluid Transfer in Space Project (United States)

    National Aeronautics and Space Administration — During chilldown of cryogenic fluid tanks and lines, the interface between the liquid and vapor rapidly changes. Understanding these rapid changes is key...

  19. Cerebrospinal fluid sodium rhythms

    Directory of Open Access Journals (Sweden)

    Johnson Benjamin


    Full Text Available Abstract Background Cerebrospinal fluid (CSF sodium levels have been reported to rise during episodic migraine. Since migraine frequently starts in early morning or late afternoon, we hypothesized that natural sodium chronobiology may predispose susceptible persons when extracellular CSF sodium increases. Since no mammalian brain sodium rhythms are known, we designed a study of healthy humans to test if cation rhythms exist in CSF. Methods Lumbar CSF was collected every ten minutes at 0.1 mL/min for 24 h from six healthy participants. CSF sodium and potassium concentrations were measured by ion chromatography, total protein by fluorescent spectrometry, and osmolarity by freezing point depression. We analyzed cation and protein distributions over the 24 h period and spectral and permutation tests to identify significant rhythms. We applied the False Discovery Rate method to adjust significance levels for multiple tests and Spearman correlations to compare sodium fluctuations with potassium, protein, and osmolarity. Results The distribution of sodium varied much more than potassium, and there were statistically significant rhythms at 12 and 1.65 h periods. Curve fitting to the average time course of the mean sodium of all six subjects revealed the lowest sodium levels at 03.20 h and highest at 08.00 h, a second nadir at 09.50 h and a second peak at 18.10 h. Sodium levels were not correlated with potassium or protein concentration, or with osmolarity. Conclusion These CSF rhythms are the first reports of sodium chronobiology in the human nervous system. The results are consistent with our hypothesis that rising levels of extracellular sodium may contribute to the timing of migraine onset. The physiological importance of sodium in the nervous system suggests that these rhythms may have additional repercussions on ultradian functions.

  20. Artificial Heart Fluid Dynamics. (United States)

    Mussivand, Tofigh Varcaneh

    Flow characteristics within pneumatic, pulsatile, and pusher plate prosthetic hearts were studied. The blood pumps evaluated were duplicates of pumps used for in vivo calf and for clinical implantation at the Cleveland Clinic Foundation. Human dura mater bioprosthetic, caged disk, and Bjork-Shiley tilting disk valves were employed in the pumps. Dual camera video tape and synchronized still photography were used to study flow patterns. Diffused light and a planar laser source provided illumination. The laser light was fanned into a plane with a thickness of 0.2 mm to 10 mm. Magnesium oxide and Amberlite particles were used as tracers. Aqueous-glycerol, aqueous-sucrose solutions and mineral oil were used as blood analog fluids. Inflow, outflow, drive, and afterload pressures, diaphragm motion, cardiac output, and heart rate were measured and recorded. An electrical circuit was developed to synchronize pump diaphragm motion with captured images of flow trajectories. After digitizing the trajectories, velocities, global and local turbulence, and shear stresses were obtained. Disturbed and recirculating zones were identified. Qualitative and quantitative analyses were performed using data obtained from the digitization of flow trajectories. Simultaneous turbulence and stasis were observed during most phases of the cardiac cycles in all the pumps tested. A maximum Reynold's shear stress of 2889 dynes/cm ^2 occurred at 120 beats per minute (bpm). The peak velocity was 146 cm/sec during systole. The identified regions of recirculation, low velocity and disturbed flow were shown to correlate with thrombosed areas of explanted blood pumps. The maximum calculated turbulence intensity was 106 cm/sec which occurred at 120 bpm during systole.