WorldWideScience

Sample records for fluid ionic regulation

  1. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  2. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  3. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  4. Regulation of amniotic fluid volume.

    Science.gov (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however, in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Water flux across biologic membranes may be driven by osmotic or hydrostatic forces; existing data suggest that intramembranous flow in humans is driven by the osmotic difference between the amniotic fluid and the fetal serum. The driving force for placental flow is more controversial, and both forces may be in effect. The mechanism(s) responsible for regulating water flow to and from the amniotic fluid is unknown. In other parts of the body, notably the kidney, water flux is regulated by the expression of aquaporin water channels on the cell membrane. We hypothesize that aquaporins have a role in regulating water flux across both the amnion and the placenta, and present evidence in support of this theory. Current knowledge of gestational water flow is sufficient to allow prediction of fetal outcome when water flow is abnormal, as in twin-twin transfusion syndrome. Further insight into these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  5. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  6. Criticality in charge-asymmetric hard-sphere ionic fluids.

    Science.gov (United States)

    Aqua, Jean-Noël; Banerjee, Shubho; Fisher, Michael E

    2005-10-01

    Phase separation and criticality are analyzed in z:1 charge-asymmetric ionic fluids of equisized hard spheres by generalizing the Debye-Hückel approach combined with ionic association, cluster solvation by charged ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic association into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical temperatures, Tc* (normalized by z), decrease with charge asymmetry, while the critical densities increase rapidly with . The results compare favorably with simulations and represent a distinct improvement over all current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z not equal to 1, the interphase Galvani (or absolute electrostatic) potential difference, Deltaphi(T), between coexisting liquid and vapor phases is calculated and found to vanish as absolute value (T-Tc) beta when T-->Tc-with, since our approximations are classical, beta = (1/2). Above Tc, the compressibility maxima and so-called k-inflection loci (which aid the fast and accurate determination of the critical parameters) are found to exhibit a strong z dependence.

  7. Fluid flow sensing with ionic polymer-metal composites

    Science.gov (United States)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  8. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    Science.gov (United States)

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  9. Ionic regulation in genetic translation systems.

    Science.gov (United States)

    Douzou, P; Maurel, P

    1977-03-01

    The polyelectrolyte theory can provide an interpretation of the interdependence of pH, ionic strength, and polyamines one observes in the activity of ribonuclease acting on RNA. According to this theory: (i) A nucleic acid-enzyme complex and the suspending medium may be considered as two phases in equilibrium, even though within limits, the complex is soluble in water. (ii) The enzymatic catalysis is under tight control of the electrostatic potential generated by the system. Consequently, modification in electrostatic potential will induce a concomitant change in activity. (iii) The electrostatic potential can be modified through action on the system of "modulators", either "external" (ionic strength, pH, temperature, etc.) or "internal" (specific ligands, substrates, protein factors, etc.). Similarities between the reaction of ribonuclease (ribonuclease 3'-pyrimidino-oligonucleotidohydrolase; EC 3.1.4.22) and RNA and those observed with highly organized systems catalyzing DNA, RNA, and protein synthesis suggest that the electrostatic potential also provides an important regulatory mechanism in genetic translation. In this view, an essential function of nucleic acids is to provide their enzyme partners with polyanionic microenvironments within which their catalytic activities are controlled by variation in physicochemical parameters, including the proton concentration induced through "modulation" of the local electrostatic potential.

  10. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions.

    Science.gov (United States)

    Weiss, Volker C

    2016-06-21

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  11. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.

    Science.gov (United States)

    Zeng, Zhenping; Ai, Ye; Qian, Shizhi

    2014-02-14

    Mimicking biological ion channels capable of pH-regulated ionic transport, synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have been considered as versatile tools for active transport control of ions, fluids, and bioparticles on the nanoscale. The ionic current rectification (ICR) phenomenon through a conical nanopore functionalized with PE brushes whose charge highly depends upon the local solution properties (i.e., pH and background salt concentration) is studied theoretically for the first time. The results show that the rectification magnitude, as well as the preferential rectification direction, is sensitive to the pH stimulus. The bulk concentration of the background salt can also significantly influence the charge of the PE brushes and accordingly affect the ICR phenomenon. The obtained results provide an insightful understanding of the pH-regulated ICR and guidelines for designing nanopores functionalized with PE brushes for pH-tunable applications.

  12. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  13. Neurohumoral fluid regulation in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Henriksen, Jens Henrik

    1998-01-01

    Impaired homeostasis of the blood volume, with increased fluid and sodium retention, is a prevailing element in the deranged systemic and splanchnic haemodynamics in patients with liver disease. In this review, some basic elements of the circulatory changes that take place and of neurohumoral fluid...... oxide and vasodilating peptides seem to play an important role. The development of central hypovolaemia and activation of potent vasoconstricting systems such as the renin-angiotensin-aldosterone system and the sympathetic nervous system lead to a hyperdynamic circulation with increased heart rate...... fluid regulation in chronic liver disease....

  14. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    Science.gov (United States)

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  15. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    Science.gov (United States)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  16. Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Su [Hoseo University, Asan (Korea, Republic of)

    2015-12-15

    A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy- Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, Ra{sub D} and the porous medium Schmidt number, Sc{sub p}. For the Darcy's limit of Sc{sub p}>>Ra{sub D}, the Sherwood number, Sh is a function of Ra{sub D} only. However, for the region of high Ra{sub D}, Sh can be related with Ra{sub D}Sc{sub p}. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.

  17. Application of a density functional approach to nonuniform ionic fluids: the effect of association

    Directory of Open Access Journals (Sweden)

    J.Reszko-Zygmunt

    2004-01-01

    Full Text Available In the present paper we discuss a density functional approach for nonuniform ionic fluids, which takes into account the existence of ion pairs. The theory is based on a fundamental measure theory of hard-spheres, the theory of Gillespie et al., which leads to a more accurate description of the electrostatic part of the grand potential as well as on Wertheim's association theory. The results of model calculations indicate that the inclusion of the associative term in the grand potential leads to the structure of the double layer, which differs from the structure evaluated by neglecting the association. These differences are important at low temperatures only.

  18. The liquid-vapour interface of the restricted primitive model (RPM) of ionic fluids

    Science.gov (United States)

    Weiss, Volker C.; Schröer, Wolffram

    2000-03-01

    The liquid-vapour interface of the restricted primitive model (RPM) of ionic fluids is investigated within a square-gradient theory. We compute density profiles and interfacial tensions for different temperatures using Debye-Hückel (DH) theory and its recent extension for ion-pair formation and interactions between the dipolar ion pairs and free ions developed by Fisher and Levin. This Fisher-Levin (FL) theory is known to give an accurate description of the coexistence curve of the RPM. To account for the inhomogeneities in the interfacial region, the local free-energy density is expanded in terms of the density gradient. For small gradients, e.g. reasonably close to the critical point, such an expansion can be truncated after the square-gradient term. The coefficient of the latter is calculated from the direct correlation function using an approximate (quadratic) hypernetted-chain (AHNC) relation and, alternatively, from an extended van der Waals approach in conjunction with different approximations to the local density. The results from the AHNC relation and various local density approximations in the thermodynamic framework of DH theory and FL theory, respectively, are compared, and it is asserted that the AHNC relation in conjunction with FL theory predicts reliably the interfacial properties of the RPM even within this simple square-gradient theory. In contrast to the situation for simple fluids, the local density approximation must be chosen carefully for ionic fluids since properties such as the interfacial thickness and the surface tension may vary by a factor of three or four depending on the applied local density approximation.

  19. Lymphatic fluid: exchange mechanisms and regulation

    Science.gov (United States)

    Huxley, Virginia H; Scallan, Joshua

    2011-01-01

    Abstract Regulation of fluid and material movement between the vascular space of microvessels penetrating functioning organs and the cells therein has been studied extensively. Unanswered questions as to the regulatory mechanisms and routes remain. Significantly less is known about the lymphatic vascular system given the difficulties in seeing, no less isolating, these vessels lying deeper in these same tissues. It has become evident that the exchange microvasculature is not simply a passive biophysical barrier separating the vascular and interstitial compartments but a dynamic, multicellular structure subject to acute regulation and chronic adaptation to stimuli including inflammation, sepsis, diabetes, injury, hypoxia and exercise. Similarly lymphatic vessels range, in their simplest form, from lymphatic endothelium attached to the interstitial matrix, to endothelia and phasic lymphatic smooth muscle that act as Starling resistors. Recent work has demonstrated that among the microvascular lymphatic elements, the collecting lymphatics have barrier properties similar to venules, and thus participate in exchange. As with venules, vasoactive agents can alter both the permeability and contractile properties thereby setting up previously unanticipated gradients in the tissue space and providing potential targets for the pharmacological prevention and/or resolution of oedema. PMID:21521763

  20. Contact angle hysteresis on superhydrophobic surfaces: an ionic liquid probe fluid offers mechanistic insight.

    Science.gov (United States)

    Krumpfer, Joseph W; Bian, Pei; Zheng, Peiwen; Gao, Lichao; McCarthy, Thomas J

    2011-03-15

    Silicon/silicon dioxide surfaces containing 3 μm (width) × 6 μm (length) × 40 μm (height) staggered rhombus posts were prepared using photolithography and hydrophobized using a perfluoroalkyl-containing monofunctional silane. These surfaces exhibit water contact angles of θ(A)/θ(R) = 169°/156°. Water drops come to rest on a carefully aligned horizontal sample but roll when the surface is tilted slightly. No visible trail or evidence of water "left behind" at the receding edge of the drop is apparent on surfaces that water drops have rolled on or on samples removed from water through the air-water interface. When dimethylbis(β-hydroxyethyl)ammonium methanesulfonate (N(+)S(-), a nonvolatile ionic liquid) is used as the liquid probe fluid (instead of water), contact angles of θ(A)/θ(R) = 164°/152° are observed and ∼3-μm-diameter sessile drops are visible (by scanning electron microscopy - SEM) on the top of every post of a sample drawn out of this liquid. We interpret the formation of these sessile microdrops as arising from microcapillary bridge failure that occurs during receding events and emphasize that the capillary bridges rupture in primarily a tensile failure mode. Smaller sessile drops could be prepared using mixtures of water and N(+)S(-). Microdroplets of N(+)S(-) were also observed to form selectively at particular features on surfaces containing square holes separated by ridges. This suggests that pinning sites can be identified using microscopy and this ionic liquid probe fluid.

  1. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current

  2. Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation.

    Science.gov (United States)

    Sakamoto, Tatsuya; Ogawa, Satoshi; Nishiyama, Yudai; Akada, Chiaki; Takahashi, Hideya; Watanabe, Taro; Minakata, Hiroyuki; Sakamoto, Hirotaka

    2015-09-25

    Acclimation from marine to dilute environments constitutes among the dramatic evolutionary transitions in the history of life. Such adaptations have evolved in multiple lineages, but studies of the blood/hemolymph homeostasis mechanisms are limited to those using evolutionarily advanced Deuterostome (chordates) and Ecdysozoa (crustaceans). Here, we examined hemolymph homeostasis in the advanced Lophotrochozoa/mollusc, the other unexplored taxa, and its possible regulation by the vasopressin/oxytocin superfamily peptides known to be implicated in fluid homeostasis in Chordata and Arthropoda. The hemolymph osmotic and ionic status in the euryhaline cephalopod (Octopus ocellatus) following transfer from 30-ppt normal seawater to 20 ppt salinity indicate hyperosmo- and hyperionoregulatory abilities for more than 1 week, as in crustaceans and teleost fish. While ventilation frequency decreased by 1 day, Na(+)/K(+)-ATPase activity, which has been generally implicated in ion transport, was induced in two of the eight posterior gills after 1 week. In addition, the octopuses were intravenously injected with 1 or 100 ng/g octopressin or cephalotocin, which are Octopus vasopressin/oxytocin orthologs. After 1 day, octopressin, but not cephalotocin, decreased the hemolymph osmolality and Ca concentrations, as well as urinary Na concentrations. These data provide evidence for possible parallel evolution in hyperionoregulatory mechanisms and coordination by conserved peptides.

  3. Consistent prediction of streaming potential in non-Newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity.

    Science.gov (United States)

    Bandopadhyay, Aditya; Chakraborty, Suman

    2015-03-21

    By considering an ion moving inside an imaginary sphere filled with a power-law fluid, we bring out the implications of the fluid rheology and the influence of the proximity of the other ions towards evaluating the conduction current in an ionic solution. We show that the variation of the conductivity as a function of the ionic concentration is both qualitatively and quantitatively similar to that predicted by the Kohlrausch law. We then utilize this consideration for estimating streaming potentials developed across narrow fluidic confinements as a consequence of the transport of ions in a convective medium constituting a power-law fluid. These estimates turn out to be in sharp contrast to the classical estimates of streaming potential for non-Newtonian fluids, in which the effect of rheology of the solvent is merely considered to affect the advection current, disregarding its contributions to the conduction current. Our results have potential implications of devising a new paradigm of consistent estimation of streaming potentials for non-Newtonian fluids, with combined considerations of the confinement effect and fluid rheology in the theoretical calculations.

  4. Attraction between neutral dielectrics mediated by multivalent ions in an asymmetric ionic fluid

    Science.gov (United States)

    Kanduč, Matej; Naji, Ali; Forsman, Jan; Podgornik, Rudolf

    2012-11-01

    We study the interaction between two neutral plane-parallel dielectric bodies in the presence of a highly asymmetric ionic fluid, containing multivalent as well as monovalent (salt) ions. Image charge interactions, due to dielectric discontinuities at the boundaries, as well as effects from ion confinement in the slit region between the surfaces are taken fully into account, leading to image-generated depletion attraction, ion correlation attraction, and steric-like repulsive interactions. We investigate these effects by employing a combination of Monte Carlo simulation methods, including explicit-ion simulations (where all electrostatic interactions are simulated explicitly) and implicit-ion simulations (where monovalent ions are replaced by an effective screened electrostatic potential between multivalent ions), as well as an approximate analytical theory. The latter incorporates strong ion-image charge correlations, which develop in the presence of high valency ions in the mixture. We show that the implicit-ion simulations and the proposed analytical theory can describe the explicit simulation results on a qualitative level, while excellent quantitative agreement can be obtained for sufficiently large monovalent salt concentrations. The resultant attractive interaction between the neutral surfaces is shown to be significant, as compared with the usual van der Waals interactions between semi-infinite dielectrics, and can thus play an important role at the nano scale.

  5. Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2013-01-01

    Full Text Available The cycle performance of refrigeration cycles depends not only on their configuration, but also on thermodynamic properties of working pairs regularly composed of refrigerant and absorbent. The commonly used working pairs in absorption cycles are aqueous solutions of either lithium bromide water or ammonia water. However, corrosion, crystallization, high working pressure, and toxicity are their major disadvantages in industrial applications. Therefore, seeking more advantageous working pairs with good thermal stability, with minimum corrosion, and without crystallization has become the research focus in the past two decades. Ionic liquids (ILs are room-temperature melting salts that can remain in the liquid state at near or below room temperature. ILs have attracted considerable attention due to their unique properties, such as negligible vapor pressure, nonflammability, thermal stability, good solubility, low melting points, and staying in the liquid state over a wide temperature range from room temperature to about 300°C. The previously mentioned highly favorable properties of ILs motivated us for carrying out the present research and reviewing the available ILs found in the literature as the working fluids of absorption cycles. Absorption cycles contain absorption heat pumps, absorption chillers, and absorption transformers.

  6. Crystalline polymorphism induced by charge regulation in ionic membranes.

    Science.gov (United States)

    Leung, Cheuk-Yui; Palmer, Liam C; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2013-10-08

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (-1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal-rectangular-C-rectangular-P-rectangular-C-hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups.

  7. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    Science.gov (United States)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  8. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  9. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  10. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Science.gov (United States)

    Villarreal, Fernando D; Kültz, Dietmar

    2015-01-01

    Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  11. Ionic fluids in lubrication of aluminium-steel contacts. Surface and tribochemical interactions

    Science.gov (United States)

    Jimenez Ballesta, Ana Eva

    Room-temperature ionic liquids (ILs) are high performance fluids with a wide thermal stability range. They are being studied as new lubricants in a variety of sliding contacts. One of their more interesting tribological applications is that of steel-aluminium lubrication. In this work we study the influence of the lateral alkyl chain length and of the anion on the lubricating ability of six imidazolium ILs, a pyridinium and a phosphonium derivative. For first time, these ILs have been studied as neat lubricants and as 1wt.% base oil additives in variable conditions of velocity, load and temperature in pin-on-disk tests for AISI 52100 steel-ASTM 2011 aluminium contacts. In this work we present the first study of ILs as lubricants under extreme temperature conditions. The tribological performance of ILs has been compared with that of a mineral oil and of a synthetic ester. Under these conditions, ILs show lower friction and wear values than conventional oils at all temperatures. As 1wt.% additives, the conditions of optimum lubrication and the transitions between regimes and lubrication mechanisms have been determined. We have also studied the performance of ILs as 1wt.% additives of the synthetic oil. A relationship between additive polarity and wear index has been established. If the more soluble phosphonium IL additive is used, no friction or wear reduction takes place due to competition between solvation and adsorption processes. Electronic microscopy (SEM), energy dispersive (EDS) and X-ray photoelectron (XPS) spectroscopies have been used to study the wear mechanisms and tribochemical processes that take place in the contact. Finally, we have studied the performance of three aluminium alloys in corrosion and erosion-corrosion tests. In immersion tests with free-water ILs, the aluminium alloy 2011 shows a good resistance to corrosion, but dilution of 1-ethyl, 3-methylimidazolium tetrafluoroborate in water produces the hydrolysis of the anion and the corrosion of

  12. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  13. Impact of Single-Particle Compressibility on the Fluid-Solid Phase Transition for Ionic Microgel Suspensions

    Science.gov (United States)

    Pelaez-Fernandez, M.; Souslov, Anton; Lyon, L. A.; Goldbart, P. M.; Fernandez-Nieves, A.

    2015-03-01

    We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses. We measure the osmotic pressure π of these suspensions and show that it is dominated by the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension ϕ , we can determine ϕ from π , even at volume fractions so high that the microgel particles are compressed. We find that the width of the fluid-solid phase coexistence, measured using ϕ , is larger than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction. By calculating the dependence on ϕ of the mean volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid phase coexistence.

  14. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane;

    2013-01-01

    intake, but the specific pathways involved and the relations between them are not well defined. In animals, renin secretion is a log-linear function of sodium intake. Close associations exist between sodium intake, total body sodium, extracellular fluid volume, and blood volume. Plasma volume increases...... by about 1.5 mL/mmol increase in daily sodium intake. Several lines of evidence indicate that central blood volume may vary substantially without measurable changes in arterial blood pressure. At least five intertwining feedback loops of renin regulation are identifiable based on controlled variables......The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  15. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    Science.gov (United States)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  16. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore.

    Science.gov (United States)

    Lin, Dong-Huei; Lin, Chih-Yuan; Tseng, Shiojenn; Hsu, Jyh-Ping

    2015-09-01

    The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF.

  17. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.

    Science.gov (United States)

    Xue, Zhimin; Sun, Xiaofu; Li, Zhonghao; Mu, Tiancheng

    2015-07-11

    A controllable synthetic route has been developed for the preparation of chitosan supported Pd catalysts in an ionic liquid, 1-butyl-3-methylimidazolium acetate ([Bmim]OAc), by using compressed CO2 as the anti-solvent and regulator. It was found that the dispersion of Pd particles on chitosan and the catalytic activity of the as-prepared catalysts for the hydrogenation of styrene could be tuned by changing the pressure of CO2.

  18. A NEW CLASS OF IONIC SOLVENTS, ELECTROLYTES AND ENGINEERING FLUIDS BASED ON 1,3-ALKYLMETHYL-1,2,3-BENZOTRIAZOLIUM SALTS

    Directory of Open Access Journals (Sweden)

    Ahmad Mudzakir

    2010-06-01

    Full Text Available A new series of ionic liquids based on 1,3-alkylmethyl-1,2,3-benzotriazolium cation has been prepared. The spectroscopic, physical and electrochemical characteristics of this family of salts have been investigated with respect to potential usage as ionic solvents, electrolytes and engineering fluids. Incorporation of diverse anions including weak coordinating anion and pseudohalide with this benzotriazolium cation produces ionic liquids with advantageously low melting points and good thermal stability. Thermal analyses of these very stable salts included the determination of melting points (-65 to 164 oC and decomposition temperatures (up to 291 oC. The electrochemical windows of representative benzotriazolium species has been investigated by cyclic voltammetry and determined to be ~ 3 V. The X-ray single crystal and spectroscopic studies revealed that weak hydrogen-bonding interactions between the benzotriazolium ring protons and the anions are present both in the solid state as well as in solution.   Keywords: ionic liquids, X-ray single crystal, thermal analysis, electrochemical analysis, benzotriazolium salt

  19. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids.

    Science.gov (United States)

    Eisenberg, Bob; Hyon, Yunkyong; Liu, Chun

    2010-09-14

    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new

  20. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria in Response to Salinity Challenges

    Directory of Open Access Journals (Sweden)

    Chia-Hao Lin

    2016-08-01

    Full Text Available Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan have not been determined. In this study, we examined the effect of exposure to hypo (10‰- and hyper (35‰-osmotic salinity on hard clams raised at their natural salinity (20‰. The osmolality, [Na+], and [Cl-] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na+,K+-ATPase (NKA activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore

  1. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    Science.gov (United States)

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  2. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis.

    Science.gov (United States)

    Zhang, Jie; Lu, Anrui; Kong, Lulu; Zhang, Qiaoli; Ling, Erjun

    2014-12-26

    Molting fluid accumulates between the old and new cuticles during periodical ecdysis in Ecdysozoa. Natural defects in insect ecdysis are frequently associated with melanization (an immunity response) occurring primarily in molting fluids, suggesting that molting fluid may impact immunity as well as affect ecdysis. To address this hypothesis, proteomic analysis of molting fluids from Bombyx mori during three different types of ecdysis was performed. Many proteins were newly identified, including immunity-related proteins, in each molting fluid. Molting fluids inhibited the growth of bacteria in vitro. The entomopathogenic fungi Beauveria bassiana, which can escape immune responses in feeding larvae, is quickly recognized by larvae during ecdysis, followed by melanization in molting fluid and old cuticle. Fungal conidia germination was delayed, and no hyphae were detected in the hemocoels of pharate instar insects. Molting fluids protect the delicate pharate instar insects with extremely thin cuticles against microorganisms. To explore the function of molting fluids in ecdysis regulation, based on protein similarity, 32 genes were selected for analysis in ecdysis regulation through RNAi in Tribolium castaneum, a model commonly used to study integument development because RNAi is difficult to achieve in B. mori. We identified 24 molting proteins that affected ecdysis after knockdown, with different physiological functions, including old cuticle protein recycling, molting fluid pressure balance, detoxification, and signal detection and transfer of molting fluids. We report that insects secrete molting fluid for protection and regulation of ecdysis, which indicates a way to develop new pesticides through interrupting insect ecdysis in the future.

  3. Hiccups and amniotic fluid regulation in early pregnancy.

    Science.gov (United States)

    Murchison, Andrew G

    2015-05-01

    Hiccups are an unexplained phenomenon and a subject of medical curiosity. They arise through a reflex arc with central control at the level of the medulla, and their primary physiological effect is the generation of negative intra-thoracic pressure. This paper presents the hypothesis that hiccups serve a purpose during the first half of gestation, when they are most prevalent; namely, that they promote amniotic fluid influx to the primitive gut, allowing fluid to be transferred to the foetal and then maternal vasculature. Furthermore, hiccups could be provoked by increasing amniotic fluid volume and pressure, and act in a regulatory capacity. This hypothesis could be tested by studying foetal movements in the first half of gestation, and assessing whether there is correlation with amniotic fluid flux in the developing gut. Ascertaining whether hiccups increase in frequency with increasing amniotic fluid volume would provide evidence for or against a regulatory function.

  4. Electrostatics in ionic solution : work and energy, charge regulation, and inhomogeneous surfaces

    NARCIS (Netherlands)

    Boon, N.J.H.|info:eu-repo/dai/nl/313960143

    2012-01-01

    This thesis concerns the electrostatic properties of charged objects that are immersed into an ionic solvent, for example water with dissolved salt. Typically, the ions inside such a solvent form layers of countercharge close to the charged objects, causing `screening' of the charges. By employing

  5. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    Science.gov (United States)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  6. Local fluid transfer regulation in heart extracellular matrix.

    Science.gov (United States)

    McGee, Maria P; Morykwas, Michael J; Jordan, James E; Wang, Rui; Argenta, Louis C

    2016-06-01

    The interstitial myocardial matrix is a complex and dynamic structure that adapts to local fluctuations in pressure and actively contributes to the heart's fluid exchange and hydration. However, classical physiologic models tend to treat it as a passive conduit for water and solute, perhaps because local interstitial regulatory mechanisms are not easily accessible to experiment in vivo. Here, we examined the interstitial contribution to the fluid-driving pressure ex vivo. Interstitial hydration potentials were determined from influx/efflux rates measured in explants from healthy and ischemia-reperfusion-injured pigs during colloid osmotic pressure titrations. Adaptive responses were further explored by isolating myocardial fibroblasts and measuring their contractile responses to water activity changes in vitro. Results show hydration potentials between 5 and 60 mmHg in healthy myocardia and shifts in excess of 200 mmHg in edematous myocardia after ischemia-reperfusion injury. Further, rates of fluid transfer were temperature-dependent, and in collagen gel contraction assays, myocardial fibroblasts tended to preserve the micro-environment's hydration volume by slowing fluid efflux rates at pressures above 40 mmHg. Our studies quantify components of the fluid-driving forces in the heart interstitium that the classical Starling's equation does not explicitly consider. Measured hydration potentials in healthy myocardia and shifts with edema are larger than predicted from the known values of hydrostatic and colloid osmotic interstitial fluid pressures. Together with fibroblast responses in vitro, they are consistent with regulatory mechanisms that add local biological controls to classic fluid-balance models.

  7. Fluid phase behaviour of ionic liquid-based systems of interest for green processes: measurements and modelling

    NARCIS (Netherlands)

    Kühne, E.

    2008-01-01

    In the last decades a large number of applications with ionic liquids (IL) have emerged, and since the discovery that carbon dioxide can tune the miscibility of IL+organic mixtures, special attention has been drawn to the use of IL and CO2 as combined solvents for synthesis and extractions. To evalu

  8. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    Science.gov (United States)

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2015-01-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981

  9. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    Directory of Open Access Journals (Sweden)

    Felipe Orgaz

    2016-03-01

    Full Text Available A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16 and a borosilicate bioglass (BSG. Combined processing techniques (gel casting and foam replication were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016 [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973 [3] and (Nieto, 1984 [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016 [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.

  10. Study on the application of starch derivatives as the regulators of potassium drilling fluids filtration

    OpenAIRE

    Rupinski, Slawomir; Brzozowski, Zbigniew K.; Uliasz, Malgorzata

    2009-01-01

    Derivatives of starch, such as graft copolymer of acrylamide onto starch, carbamoylethylated starch, carbamoylethyl-dihydroxypropylated starch, and dihydroxypropylated starch have been tested for their properties as components of drilling fluids used for clay inhibition and for the regulation of their rheology. The influence of modified starch and their blends with tylose as protective agents in the filtration of drilling fluids, as well as replacement of tylose, by modified starch w...

  11. Regulation of intramembranous absorption and amniotic fluid volume by constituents in fetal sheep urine.

    Science.gov (United States)

    Anderson, Debra F; Jonker, Sonnet S; Louey, Samantha; Cheung, Cecilia Y; Brace, Robert A

    2013-09-01

    Our objective was to test the hypothesis that fetal urine contains a substance(s) that regulates amniotic fluid volume by altering the rate of intramembranous absorption of amniotic fluid. In late gestation ovine fetuses, amniotic fluid volumes, urine, and lung liquid production rates, swallowed volumes and intramembranous volume and solute absorption rates were measured over 2-day periods under control conditions and when urine was removed and continuously replaced at an equal rate with exogenous fluid. Intramembranous volume absorption rate decreased by 40% when urine was replaced with lactated Ringer solution or lactated Ringer solution diluted 50% with water. Amniotic fluid volume doubled under both conditions. Analysis of the intramembranous sodium and chloride fluxes suggests that the active but not passive component of intramembranous volume absorption was altered by urine replacement, whereas both active and passive components of solute fluxes were altered. We conclude that fetal urine contains an unidentified substance(s) that stimulates active intramembranous transport of amniotic fluid across the amnion into the underlying fetal vasculature and thereby functions as a regulator of amniotic fluid volume.

  12. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  13. Controls of ionic strength and macromolecule chemistry on calcite nucleation: Salinity and ion hydration as levers for regulating biomineralization

    Science.gov (United States)

    Dove, P. M.; Giuffre, A. J.; Mergelsberg, S. T.; Han, N.; De Yoreo, J. J.

    2016-12-01

    Organisms form shells and skeletons with remarkable fidelity by controlling the timing and placement of the minerals that nucleate and subsequently grow. An extensive effort has identified features of the organic matrix that regulate this process. Recent measurements from our group show the energy barrier to nucleation onto polysaccharide (PS) substrates is dependent upon hydrophilicity through functional group chemistry and suggest that free energy of the macromolecule-liquid interface influences where and when mineral nucleation occurs (Giuffre et al., 2013, PNAS). The importance of interfacial free energy in regulating nucleation raises the question of whether local changes in salinity or electrolyte composition can be tuned to further modulate the onset of calcite nucleation. Using alginate (negatively charged by carboxyl groups) and chitosan (small positive charge by amine groups), the rate of calcite nucleation was measured at controlled supersaturations and pH as a function of NaCl concentration (65-600 mM). Analyses of the data show the thermodynamic barrier to calcite nucleation onto both types of PS increases with ionic strength. The evidence suggests this effect arises from an increasing concentration of solvated ions at the PS-water interface while also increasing the hydrophilic character of that interface; thus decreasing the substrate-liquid interfacial free energy. To test this explanation, a second group of nucleation experiments used a suite of electrolytes (alkali chlorides for alginate and sodium halides for chitosan) while holding ionic strength constant. Indeed, the nucleation barriers for calcite formation are electrolyte-specific and correlated with the hydration free energy of the ion. This suggests solvated electrolyte ions indirectly regulate calcite nucleation onto substrates through their competition with the substrate for water thereby influencing net interfacial free energy. These effects are consistent with the long

  14. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    Science.gov (United States)

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  15. An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish.

    Science.gov (United States)

    Perry, Steve; Kumai, Y; Porteus, C S; Tzaneva, V; Kwong, R W M

    2016-02-01

    Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na(+)/K(+)-ATPase and H(+)-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na(+) uptake in zebrafish larvae and contributes to lowering Na(+) uptake capacity in fish acclimated to Na(+)-enriched water whereas it stimulates Ca(2+) uptake in larvae exposed to Ca(2+)-poor water.

  16. Electrophoretic behavior of charge regulated zwitter ionic buffers in covalently and dynamically coated fused silica capillaries

    Directory of Open Access Journals (Sweden)

    Medhat A. Al-Ghobashy

    2014-06-01

    Full Text Available In this work, the electrophoretic behavior of zwitterionic buffers is investigated in the absence of electroosmotic flow (EOF. Electro mobilization of capillary contents is noted when zwitterionic buffers are employed as the background electrolyte at a pH where the buffering moiety carries a net charge. The bulk flow of capillary contents was demonstrated via monitoring the migration of a neutral marker as well as a free and micellar negatively charged marker and SDS–protein complexes. This electrolyte-driven mobilization (EDM was investigated in detail using 4-(2-hydroxyethylpiprazine-1-ethanesulfonic acid (HEPES buffer over a wide pH range (pH 4.0–8.0. Results confirmed that at a pH where HEPES molecules carry a net negative charge, a bulk flow toward the anode is observed. This was attributed to the migration of HEPES ions toward the anode along with their hydration shells. The relatively large difference in size and solvation number between the ionic buffering moiety and its counter-migrating ions (Na+ or H+ resulted in such a net movement. Results indicated that at constant voltage, plotting the measured current versus buffer pH can be used for determination of the isoelectric point of the zwitterionic buffering moiety. Furthermore, this novel mobilization modality was demonstrated using five different HEPES analogs over pH range 5.0–8.0. More in depth investigations are required in order to explore the applicability of EDM in coated capillaries of different wall chemistries and dimensions.

  17. Regulation of cerebrospinal fluid production by caffeine consumption

    Directory of Open Access Journals (Sweden)

    Yoon Sik

    2009-09-01

    Full Text Available Abstract Background Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date. Results In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF. In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats. Conclusion The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.

  18. Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure

    Science.gov (United States)

    Tian, Yongming; M. Beavers, Christine; Busani, Tito; Martin, Kathleen E.; Jacobsen, John L.; Mercado, Brandon Q.; Swartzentruber, Brian S.; van Swol, Frank; Medforth, Craig J.; Shelnutt, John A.

    2012-02-01

    Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room

  19. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C. [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1996-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  20. Mathematical modelling of fluid transport and its regulation at multiple scales.

    Science.gov (United States)

    Chara, Osvaldo; Brusch, Lutz

    2015-04-01

    Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Osmotic/ionic status of body fluids in the euryhaline cephalopod suggest possible parallel evolution of osmoregulation

    OpenAIRE

    Tatsuya Sakamoto; Satoshi Ogawa; Yudai Nishiyama; Chiaki Akada; Hideya Takahashi; Taro Watanabe; Hiroyuki Minakata; Hirotaka Sakamoto

    2015-01-01

    Acclimation from marine to dilute environments constitutes among the dramatic evolutionary transitions in the history of life. Such adaptations have evolved in multiple lineages, but studies of the blood/hemolymph homeostasis mechanisms are limited to those using evolutionarily advanced Deuterostome (chordates) and Ecdysozoa (crustaceans). Here, we examined hemolymph homeostasis in the advanced Lophotrochozoa/mollusc, the other unexplored taxa, and its possible regulation by the vasopressin/o...

  2. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  3. The Regulation of Inflammatory Pathways and Infectious Disease of the Cervix by Seminal Fluid

    Directory of Open Access Journals (Sweden)

    Anthonio Adefuye

    2014-01-01

    Full Text Available The connection between human papillomavirus (HPV infection and the consequent sequelae which establishes cervical neoplastic transformation and invasive cervical cancer has redefined many aspects of cervical cancer research. However there is still much that we do not know. In particular, the impact of external factors, like seminal fluid in sexually active women, on pathways that regulate cervical inflammation and tumorigenesis, have yet to be fully understood. HPV infection is regarded as the initiating noninflammatory cause of the disease; however emerging evidence points to resident HPV infections as drivers of inflammatory pathways that play important roles in tumorigenesis as well as in the susceptibility to other infections such as human immunodeficiency virus (HIV infection. Moreover there is emerging evidence to support a role for seminal fluid, in particular, the inflammatory bioactive lipids, and prostaglandins which are present in vast quantities in seminal fluid in regulating pathways that can exacerbate inflammation of the cervix, speed up tumorigenesis, and enhance susceptibility to HIV infection. This review will highlight some of our current knowledge of the role of seminal fluid as a potent driver of inflammatory and tumorigenic pathways in the cervix and will provide some evidence to propose a role for seminal plasma prostaglandins in HIV infection and AIDS-related cancer.

  4. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence.

    Science.gov (United States)

    Higgins, Joseph J; Tal, Adit L; Sun, Xiaowei; Hauck, Stefanie C R; Hao, Jin; Kosofosky, Barry E; Rajadhyaksha, Anjali M

    2010-03-01

    A mild form of autosomal recessive, nonsyndromal intellectual disability (ARNSID) in humans is caused by a homozygous nonsense mutation in the cereblon gene (mutCRBN). Rodent crbn protein binds to the intracellular C-terminus of the large conductance Ca(2+)-activated K(+)channel (BK(Ca)). An mRNA variant (human SITE 2 INSERT or mouse strex) of the BK(Ca) gene (KCNMA1) that is normally expressed during embryonic development is aberrantly expressed in mutCRBN human lymphoblastoid cell lines (LCLs) as compared to wild-type (wt) LCLs. The present study analyzes the temporal and spatial distribution of crbn and kcnma1 mRNAs in the mouse brain by the quantitative real-time reverse transcriptase-polymerase chain reaction (qPCR). The spatial expression pattern of endogenous and exogenous crbn proteins is characterized by immunostaining. The results show that neocortical (CTX) crbn and kcnma1 mRNA expression increases from embryonic stages to adulthood. The strex mRNA variant is >3.5-fold higher in embryos and decreases rapidly postnatally. Mouse crbn mRNA is abundant in the cerebellum (CRBM), with less expression in the CTX, hippocampus (HC), and striatum (Str) in adult mice. The intracytoplasmic distribution of endogenous crbn protein in the mouse CRBM, CTX, HC, and Str is similar to the immunostaining pattern described previously for the BK(Ca) channel. Exogenous hemagglutinin (HA) epitope-tagged human wt- and mutCRBN proteins using cDNA transfection in HEK293T cell lines showed the same intracellular expression distribution as endogenous mouse crbn protein. The results suggest that mutCRBN may cause ARNSID by disrupting the developmental regulation of BK(Ca) in brain regions that are critical for memory and learning.

  5. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis

    Science.gov (United States)

    Panayiotidis, Mihalis I.; Franco, Rodrigo; Bortner, Carl D.; Cidlowski, John A.

    2012-01-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+-K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+-K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or Tumor necrosis factor--related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+-K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+-K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL. PMID:20422450

  6. Insulin regulates ionic metabolism in a fresh water teleost, anabas testudineus (bloch).

    Science.gov (United States)

    Vijayasree, A S; Divya, L; Sreejith, P; Cyril, J; Smita, M; Oommen, O V

    2005-08-01

    Short term effects of insulin on total brain and branchial Na+K+ ATPase, Ca2+ ATPase and Na+, K+ and Ca2+ ions were investigated in A. testudineus. The increase in brain Ca2+ ATPase after alloxan treatment may account for an increased amount of intracellular calcium required for biochemical events taking place inside the cells. Branchial Na+K+ATPase was significantly stimulated while Ca2+ ATPase significantly inhibited after alloxan treatment. This suggests that alloxan exerts its inhibitory effect on the ATP-driven Ca2+ transport via; its action on the Ca2+ pump protein rather than the membrane permeability to Ca2+. The increased activity of brain Na+K+ ATPase at 3 and 24 hr by insulin to alloxan pretreated fish may account for the stimulated co-transport of glucose and its utilization for energy requirements and the excitatory action on neurons in the brain. The elevated brain Ca2+ ATPase may be due to the role of calcium as a second messenger in hormone action. At 24 hr, the activity of branchial Na+K+ ATPase and Ca2+ ATPase in alloxan pretreated specimens was significantly stimulated by insulin. This may be due to increased synthesis of these enzyme units. Administration of insulin (lU/fish) in normal fish significantly inhibited the activity of brain and branchial Na+K+ ATPase while brain Ca2+ ATPase showed a stimulatory effect at 3 and 24 hr compared to control. Inhibition of total branchial Ca2+ ATPase activity by insulin may be due to increased Ca2+ concentration. Higher plasma glucose level in alloxan treated groups confirms the diabetic effect of alloxan. Insulin reverses this effect. The possible mechanism by which insulin controls Na+K+ ATPase activity appears to be tissue specific. The results seem to be the first report on the effect of insulin on ATPase activity in a teleost. These data are consistent with the hypothesis that insulin performs a role in hydro mineral regulation in freshwater teleosts.

  7. Antimicrobial performance of alkaline ionic fluid (GC-100X) and its ability to remove Escherichia coli O157:H7 from the surface of tomatoes.

    Science.gov (United States)

    Kwon, N H; Kim, S H; Kim, J Y; Lim, J Y; Kim, J M; Jung, W K; Park, K T; Bae, W K; Noh, K M; Choi, J W; Hur, J; Park, Y H

    2003-09-01

    An efficacy test of GC-100X, a noncorrosive alkaline ionic fluid (pH 12) composed of free radicals and supplemented with xylitol, was carried out against six major foodborne pathogens-Staphylococcus aureus FRI 913, Salmonella enterica serovar Enteritidis ATCC 13076, S. enterica serovar Typhimurium DT104 Korean isolate, Vibrio parahaemolyticus ATCC 17803, Escherichia coli O157:H7 ATCC 43894, and Pseudomonas aeruginosa KCTC 1637-at three different temperatures (4, 25, and 36 degrees C) with or without organic load (2% yeast extract). Results revealed a more than 4-log10 (CFU/ml) reduction (1.0 x 10(4) CFU/ml reduction) against all pathogens reacted at 37 degrees C for 3 h in the absence of organic material. GC-100X solution diluted with an equal volume of distilled or standard hard water (300 ppm CaCO3) showed effective bactericidal activity, particularly against gram-negative bacteria. Washing efficacy of GC-100X solution was compared against E. coli O157:H7 on cherry tomato surfaces with those of a commercially used detergent and chlorine water (100 ppm). Viable cell counts of E. coli O157:H7 that had penetrated to the cores of tomatoes after sanitizing treatment revealed that GC-100X stock and its 5% diluted solutions had similar washing effects to 100-ppm chlorine water and were more effective than the other kitchen detergent. These results indicate that GC-100X has good bactericidal and sanitizing activities and is useful as a new sanitizer for food safety and kitchen hygiene.

  8. The Drosophila melanogaster seminal fluid protease "seminase" regulates proteolytic and post-mating reproductive processes.

    Directory of Open Access Journals (Sweden)

    Brooke A LaFlamme

    2012-01-01

    Full Text Available Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs. Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females.

  9. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

    Science.gov (United States)

    Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y

    2014-11-15

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport.

  10. Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.

    Directory of Open Access Journals (Sweden)

    Runzhen Zhao

    Full Text Available Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC, cystic fibrosis transmembrane conductance regulator (CFTR, and aquaporin 5 (AQP5 proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI and II (ATII-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3 was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.

  11. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    Science.gov (United States)

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  12. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory.

    Science.gov (United States)

    Neves, Catarina M S S; Held, Christoph; Mohammad, Sultan; Schleinitz, Miko; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg(-1)). At salt molalities higher than 0.2 mol kg(-1), all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.2 mol kg(-1). To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K(+) and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K(+)/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid-liquid phase behaviour.

  13. Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) posterior intestine.

    Science.gov (United States)

    Ruhr, Ilan M; Bodinier, Charlotte; Mager, Edward M; Esbaugh, Andrew J; Williams, Cameron; Takei, Yoshio; Grosell, Martin

    2014-11-01

    The physiological effects of guanylin (GN) and uroguanylin (UGN) on fluid and electrolyte transport in the teleost fish intestine have yet to be thoroughly investigated. In the present study, the effects of GN, UGN, and renoguanylin (RGN; a GN and UGN homolog) on short-circuit current (Isc) and the transport of Cl-, Na+, bicarbonate (HCO3-), and fluid in the Gulf toadfish (Opsanus beta) intestine were determined using Ussing chambers, pH-stat titration, and intestinal sac experiments. GN, UGN, and RGN reversed the Isc of the posterior intestine (absorptive-to-secretory), but not of the anterior intestine. RGN decreased baseline HCO3- secretion, but increased Cl- and fluid secretion in the posterior intestine. The secretory response of the posterior intestine coincides with the presence of basolateral NKCC1 and apical cystic fibrosis transmembrane conductance regulator (CFTR), the latter of which is lacking in the anterior intestine and is not permeable to HCO3- in the posterior intestine. However, the response to RGN by the posterior intestine is counterintuitive given the known role of the marine teleost intestine as a salt- and water-absorbing organ. These data demonstrate that marine teleosts possess a tissue-specific secretory response, apparently associated with seawater adaptation, the exact role of which remains to be determined.

  14. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.

    Science.gov (United States)

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries.

  15. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  16. Importance of a Lys113-Glu195 intermonomer ionic bond in F-actin stabilization and regulation by yeast formins Bni1p and Bnr1p.

    Science.gov (United States)

    Wen, Kuo-Kuang; McKane, Melissa; Rubenstein, Peter A

    2013-06-28

    Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys(113) of one monomer and Glu(195) of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion.

  17. Fluid Cognitive Ability is a Resource for Successful Emotion Regulation in Older and Younger Adults

    Directory of Open Access Journals (Sweden)

    Philipp C. Opitz

    2014-06-01

    Full Text Available The Selection, Optimization, and Compensation with Emotion Regulation (SOC-ER framework suggests that (1 emotion regulation (ER strategies require resources and that (2 higher levels of relevant resources may increase ER success. In the current experiment, we tested the specific hypothesis that individual differences in one internal class of resources, namely cognitive ability, would contribute to greater success using cognitive reappraisal (CR, a form of ER in which one reinterprets the meaning of emotion-eliciting situations. To test this hypothesis, 60 participants (30 younger and 30 older adults completed standardized neuropsychological tests that assess fluid and crystallized cognitive ability, as well as a CR task in which participants reinterpreted the meaning of sad pictures in order to alter (increase or decrease their emotions. In a control condition, they viewed the pictures without trying to change how they felt. Throughout the task, we indexed subjective emotional experience (self-reported ratings of emotional intensity, expressive behavior (corrugator muscle activity, and autonomic physiology (heart rate and electrodermal activity as measures of emotional responding. Multilevel models were constructed to explain within-subjects variation in emotional responding as a function of ER contrasts comparing increase or decrease conditions with the view control condition and between-subjects variation as a function of cognitive ability and/or age group (older, younger. As predicted, higher fluid cognitive ability – indexed by perceptual reasoning, processing speed, and working memory – was associated with greater success using reappraisal to alter emotional responding. Reappraisal success did not vary as a function of crystallized cognitive ability or age group. Collectively, our results provide support for a key tenet of the SOC-ER framework that higher levels of relevant resources may confer greater success at emotion regulation.

  18. Organophilization of bentonite clays with non-ionic surfactants aiming their use in drilling fluids base oil; Organofilizacao de argilas bentoniticas com tensotivo nao-ionico visando seu uso em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.A.; Costa, J.M.R.; Neves, G.A.; Ferreira, H.C. [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Ferreira, H.S. [Universidade Federal da Paraiba (DEMAT/CT/UFPB), Joao Pessoa, PB (Brazil). Dept. de Materiais

    2010-07-01

    The use of nonionic surfactants has been replacing the traditional ionic surfactants among others by its high potential for resistance to thermal degradation. This work aims at the development of organoclay by the addition of nonionic surfactants for use in drilling fluids for oil wells based oil. The bentonite clay was organophilized and then characterized by X-ray diffraction and swelling Foster, seeking the most appropriate choice of surfactant to liquid organic dispersing media: ester, diesel and paraffin. With the obtained dispersions were measured apparent viscosities and plastic. The results showed that incorporation of surfactants used in the clay interlayer spacing increased significantly and that the dispersions showed rheological properties within the specifications of PETROBRAS, for the use of organophilic clays in drilling fluids in a non-aqueous base. (author)

  19. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  20. A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion.

    Science.gov (United States)

    Li, Yan; Xiang, Yun-Yan; Lu, Wei-Yang; Liu, Chuanyong; Li, Jingxin

    2012-08-15

    γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, and it is produced via the enzymatic activity of glutamic acid decarboxylase (GAD). GABA generates fast biological signaling through type A receptors (GABA(A)R), an anionic channel. Intriguingly, GABA is found in the jejunum epithelium of rats. The present study intended to determine whether a functional GABA signaling system exists in the intestinal epithelium and if so whether the GABA signaling regulates intestinal epithelial functions. RT-PCR, Western blot, and immunohistochemical assays of small intestinal tissues of various species were performed to determine the expression of GABA-signaling proteins in intestinal epithelial cells. Perforated patch-clamp recording was used to measure GABA-induced transmembrane current in the small intestine epithelial cell line IEC-18. The fluid weight-to-intestine length ratio was measured in mice that were treated with GABA(A)R agonist and antagonist. The effect of GABA(A)R antagonist on allergic diarrhea was examined using a mouse model. GABA, GAD, and GABA(A)R subunits were identified in small intestine epithelial cells of mice, rats, pigs, and humans. GABA(A)R agonist induced an inward current and depolarized IEC-18. Both GABA and the GABA(A)R agonist muscimol increased intestinal fluid secretion of rats. The increased intestinal secretion was largely decreased by the GABA(A)R antagonist picrotoxin or gabazine, but not by tetrodotoxin. The expression levels of GABA-signaling proteins were increased in the intestinal epithelium of mice that were sensitized and challenged with ovalbumin (OVA). The OVA-treated mice exhibited diarrhea, which was alleviated by oral administration of gabazine or picrotoxin. An endogenous autocrine GABAergic signaling exists in the mammalian intestinal epithelium, which upregulates intestinal fluid secretion. The intestinal GABAergic signaling becomes intensified in allergic diarrhea, and

  1. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    Science.gov (United States)

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

  2. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance.

    Science.gov (United States)

    Peti-Peterdi, János

    2013-07-01

    Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitochondrial the citric acid(TCA) cycle intermediate α-ketoglutarate (αKG), which via its OXGR1 receptor plays an unexpected, nontraditional role in the adaptive regulation of renal HCO(3⁻) secretion and salt reabsorption.

  3. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation.

    Science.gov (United States)

    Thomas, S Randall; Baconnier, Pierre; Fontecave, Julie; Françoise, Jean-Pierre; Guillaud, François; Hannaert, Patrick; Hernández, Alfredo; Le Rolle, Virginie; Mazière, Pierre; Tahi, Fariza; White, Ronald J

    2008-09-13

    We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.

  4. 离子风空气加速器流场特性的实验平台设计及研究%Design and research of experimental platform on ionic wind air accelerator for measuring fluid field characteristic

    Institute of Scientific and Technical Information of China (English)

    庄蒙蒙; 周砚江; 孔春林; 朱继保; 任燕; 刘杰

    2013-01-01

    Aiming at the characteristic of the complex flow fluid of ionic wind air accelerator, ionic wind technology was put into the aspect of air flow accelerating. Research of ionic wind technology was investigated and principle of the ion wind air accelerator was analyzed. After the analysis of particle imaging technology having effect on experimental study of ionic wind effect at home and abroad, the relationship of partied image velocimetry (PIV) technology and the fluid field of the ion wind air accelerator was established. An experimental designed method based on PIV technology was presented to test the internal flow field of ionic wind air accelerator. PIV measuring device, high voltage power supply, discharge electrode and fluid channel were designed. The PIV experimental platform was demonstrated. The purpose and meaning of the PIV experimental platform, the key and difficult point for PIV technology in ion wind air accelerator were analyzed. The controlling of tracing particle distribution, which is the key to the success of PIV experiment, was evaluated. The process of PIV experiment was demonstrated; the resources of errors from PIV experiment measurement and the experimental operations were shown. The results show that the design and research of PIV experimental platform based on ionic wind air accelerator are reasonable and rigor.%针对离子风空气加速器内部的复杂流场特点,将离子风技术应用于气流加速方面.开展了离子风技术研究,分析了离子风空气加速器的原理.通过对国内外粒子成像技术在离子风效应实验研究方面的分析,建立了粒子图像测速(PIv)技术与离子风空气加速器流场的关系,提出了针对离子风空气加速器流场特性的PIV实验装置平台搭建的实验设计思路,包括PIV测量装置、高压电源、放电电极与流体通道四部分.对实验平台进行了论证,在此基础上,对PIV实验平台搭建的目的和意义、PIV实验设计的重点

  5. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2016-11-01

    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.

  6. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application

    Science.gov (United States)

    Rafiee, Ezzat; Mirnezami, Fakhrosadat

    2017-02-01

    By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.

  7. Hypothalamic knife cuts alter fluid regulation, vasopressin secretion, and natriuresis during water deprivation.

    Science.gov (United States)

    Bealer, S L; Crofton, J T; Share, L

    1983-05-01

    To investigate central neural pathways involved in release of vasopressin and in fluid electrolyte regulation, a retractable wire knife was used to make coronal knife cuts posterior to the organum vasculosum lamina terminalis (OVLT). 4 days following cuts or control surgery, animals were housed in metabolism cages and: (1) deprived of food and water for 48 h; (2) deprived of water only for 48 h; or (3) allowed continuous access to food and water. Water ingestion, food ingestion, urine volume, sodium excretion and urine osmolality were recorded daily. Trunk blood was then collected following decapitation for determination of plasma vasopressin, sodium, and protein concentrations, and osmolality. Animals with knife cuts and ad libitum access to food and water had significantly higher plasma osmolality (310 +/- 2 mosm/kg), and plasma vasopressin concentration (2.02 +/- 0.5 microunits/ml) than controls (306 +/- 1 mosm/kg and 0.60 +/- 0.04 microunits/ml, respectively). When rats were deprived of both food and water, there were no significant differences between the two groups in plasma vasopressin concentration, although plasma osmolality wa higher in animals with cuts. However, rats with knife cuts deprived of water only had significantly higher plasma osmolality (358 +/- 8 mosm/kg), sodium (164 +/- 19 mEq/l) and vasopressin (17.7 +/- 4 microunits/ml), than similarly treated control animals (317 +/- 1 mosm/kg, 145.5 +/- 1.0 mEq/1, 5.5 +/- 3 microunits/ml, respectively). These data indicate that a neural pathway in this brain region is critical for normal fluid and electrolyte balance during ad libitum access to food and water, and during water deprivation.

  8. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  9. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    Science.gov (United States)

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  10. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties.

    Science.gov (United States)

    Ji, Mengxia; Xia, Jiexiang; Di, Jun; Wang, Bin; Yin, Sheng; Xu, Li; Zhao, Junze; Li, Huaming

    2016-09-15

    In this study, novel visible-light-driven carbon quantum dots (CQDs)/Bi4O5I2 material has been prepared via a reactable ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted bidirectional regulation solvothermal method. This is the first time for the preparation of CQDs/Bi4O5I2 material with halogen and CQDs bidirectional regulation at the same time. With CQDs modified on the surface of Bi4O5I2, fast transfer of photogenerated charges and low recombination of photo-induced electron-hole pairs facilitated the enhancement of photodegradation activity. At the same time, the introduction of CQDs made the electrons occupied in high-energy potential on the conduction band of Bi4O5I2 transfer to the reaction center CQDs and the molecular oxygen can be thus activated. The enhanced mechanisms for the active species (holes, hydroxyl and superoxide radicals) during the photocatalytic reaction under visible irradiation were analyzed using DRS analysis, electron spin resonance (ESR) technique and free radicals trapping experiments.

  11. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts.

    Science.gov (United States)

    Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L

    2014-06-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm(2) FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

  12. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress.

    Science.gov (United States)

    Li, Yan; Wang, Jinfeng; Xing, Juan; Wang, Yuanliang; Luo, Yanfeng

    2016-12-01

    Scaffolds provide a physical support for osteoblasts and act as the medium to transfer mechanical stimuli to cells. To verify our hypothesis that the surface chemistry of scaffolds regulates the perception of cells to mechanical stimuli, the sensitivity and tolerability of osteoblasts to fluid shear stress (FSS) of various magnitudes (5, 12, 20 dynes/cm(2) ) were investigated on various surface chemistries (-OH, -CH3 , -NH2 ), and their follow-up effects on cell proliferation and differentiation were examined as well. The sensitivity was characterized by the release of adenosine triphosphate (ATP), nitric oxide (NO) and prostaglandin E2 (PGE2 ) while the tolerability was by cellular membrane integrity. The cell proliferation was characterized by S-phase cell fraction and the differentiation by ALP activity and ECM expression (fibronectin and type I collagen). As revealed, osteoblasts demonstrated higher sensitivity and lower tolerability on OH and CH3 surfaces, yet lower sensitivity and higher tolerability on NH2 surfaces. Observations on the focal adhesion formation, F-actin organization and cellular orientation before and after FSS exposure suggest that the potential mechanism lies in the differential control of F-actin organization and focal adhesion formation by surface chemistry, which further divergently mediates the sensitivity and tolerability of ROBs to FSS and the follow-up cell proliferation and differentiation. These findings are essentially valuable for design/selection of desirable surface chemistry to orchestrate with FSS stimuli, inducing appropriate cell responses and promoting bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2978-2991, 2016.

  13. Function curve of the membranes that regulate amniotic fluid volume in sheep.

    Science.gov (United States)

    Faber, Job; Anderson, Debra; Hohimer, Roger; Yang, Qin; Giraud, George; Davis, Lowell

    2005-07-01

    Seven singleton 120-day fetal lambs were prepared with a shunt from the lung to the gastric end of the esophagus, a bladder catheter, and multiple amniotic fluid and vascular catheters. The urachus was ligated. Beginning 7 days later, amniotic fluid volumes were determined by drainage, followed by replacement with 1 liter of lactated Ringer (LR) solution. Urine flow into the amnion was measured continuously. In 14 of 27 experiments, amniotic fluid volumes were determined again 2 days after the inflow into the amnion had consisted of urine only and in 13 experiments after the inflow of urine had been supplemented by an intraamniotic infusion of LR solution. Intramembranous absorption was calculated from the inflows and the changes in volume between the beginning and end of each experiment. The relations between absorption rate and amniotic fluid volume, the "function curves," were highly individual. Urine production during the infusion of LR solution did not decrease, fetal plasma renin activity decreased (P amniotic fluid volume increased by 140% [SE (27%), P amniotic fluid per day. During the infusion of LR solution, the increase in the rate of absorption matched the rate of infusion (both in ml/h), with a regression coefficient of 0.75 (P amniotic fluid volumes, volume is not limited by the absorptive capacity of the amniochorion, and, at least in these preparations, the position of the function curve and not the natural rate of inflow was the major determinant of resting amniotic fluid volume.

  14. Wettability by Ionic Liquids.

    Science.gov (United States)

    Liu, Hongliang; Jiang, Lei

    2016-01-06

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges.

  15. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Hecking Manfred

    2012-06-01

    Full Text Available Abstract Background Data generated with the body composition monitor (BCM, Fresenius show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR and/or regulation of ultrafiltration and temperature (UTR will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. Methods/design BCM measurements yield results on fluid overload (in liters, relative to extracellular water (ECW. In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW. Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, ‘final’ dry weight is set to normohydration weight −7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase. In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study

  16. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    Data.gov (United States)

    U.S. Environmental Protection Agency — NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and...

  17. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    Science.gov (United States)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  18. Role of nitric oxide in the regulation of mechanosensitive ionic channels in cardiomyocytes: contribution of NO-synthases.

    Science.gov (United States)

    Kazanski, V E; Kamkin, A G; Makarenko, E Yu; Lysenko, N N; Sutiagin, P V; Kiseleva, I S

    2010-12-01

    The role of NO in the regulation of currents passing through ion channels activated by cell stretching (mechanically gated channels, MGC), particularly through cation-selective K(+)-channels TRPC6, TREK1 (K(2P)2.1), and TREK2 (K(2P)10.1), was studied on isolated mouse, rat, and guinea pig cardiomyocytes using whole-cell patch-clamp technique. In non-deformed cells, binding of endogenous NO with PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxy-3-oxide) irreversibly shifted the diastolic membrane potential towards negative values, modulates K(ir)-channels by reducing I(K1), and blocks MGC. Perfusion of stretched cells with PTIO solution completely blocked MG-currents. NO-synthase inhibitors L-NAME and L-NMMA completely blocked MGC. Stretching of cardiomyocytes isolated from wild type mice and from NOS1(-/-)- and NOS2(-/-)- knockout mice led to the appearance in MG-currents typical for the specified magnitude of stretching, while stretching of cardiomyocytes from NOS3(-/-)- knockout mice did not produce in MG-current. These findings suggest that NO plays a role in the regulation of MGC activity and that endothelial NO-synthase predominates as NO source in cardiomyocyte response to stretching.

  19. The MAPK pathway is involved in the regulation of rapid pacing-induced ionic channel remodeling in rat atrial myocytes.

    Science.gov (United States)

    Cheng, Wei; Zhu, Yun; Wang, Haidong

    2016-03-01

    Alterations to the expression L‑type calcium channels (LTCCs) and Kv4.3 potassium channels form the possible basis of atrial electrical remodeling during rapid pacing. The mitogen‑activated protein kinase (MAPK) pathway is affected by increases in cytoplasmic Ca2+, and therefore represents an attractive candidate for the regulation and mediation of Ca2+‑induced ion channel remodeling. The present study aimed to investigate alterations to the ion channel‑MAPK axis, and to determine its influence on ion channel remodeling during atrial fibrillation. Rat atrial myocytes were isolated, cultured, and in vitro rapid pacing was established. Intracellular Ca2+ signals were monitored using the Fluo‑3/AM Ca2+ indicator. Verapamil, PD98058 and SB203580 were added to the culture medium of various groups at specific time‑points. The mRNA expression levels of LTCC‑α1c and Kv4.3 potassium channels were detected by reverse transcription‑polymerase chain reaction. Western blotting was performed to determine the expression levels of channel and signaling proteins. The results demonstrated that fast pacing significantly increased the intracellular Ca2+ concentration in atrial myocytes, whereas treatment with verapamil markedly inhibited this increase. In addition, verapamil significantly antagonized the rapid pacing‑induced activation of extracellular signal‑regulated kinase (ERK) and p38MAPK. These results indicated that the MAPK pathway may have an important role in the opening of LTCCs, and alterations to MAPK molecule expression could affect the expression and remodeling of ion channels.

  20. MAST205 competes with cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand for binding to CFTR to regulate CFTR-mediated fluid transport.

    Science.gov (United States)

    Ren, Aixia; Zhang, Weiqiang; Yarlagadda, Sunitha; Sinha, Chandrima; Arora, Kavisha; Moon, Chang-Suk; Naren, Anjaparavanda P

    2013-04-26

    The PDZ (postsynaptic density-95/discs large/zona occludens-1) domain-based interactions play important roles in regulating the expression and function of the cystic fibrosis transmembrane conductance regulator (CFTR). Several PDZ domain-containing proteins (PDZ proteins for short) have been identified as directly or indirectly interacting with the C terminus of CFTR. To better understand the regulation of CFTR processing, we conducted a genetic screen and identified MAST205 (a microtubule-associated serine/threonine kinase with a molecular mass of 205 kDa) as a new CFTR regulator. We found that overexpression of MAST205 increased the expression of CFTR and augmented CFTR-mediated fluid transport in a dose-dependent manner. Conversely, knockdown of MAST205 inhibited CFTR function. The PDZ motif of CFTR is required for the regulatory role of MAST205 in CFTR expression and function. We further demonstrated that MAST205 and the CFTR-associated ligand competed for binding to CFTR, which facilitated the processing of CFTR and consequently up-regulated the expression and function of CFTR at the plasma membrane. More importantly, we found that MAST205 could facilitate the processing of F508del-CFTR mutant and augment its quantity and channel function at the plasma membrane. Taken together, our data suggest that MAST205 plays an important role in regulating CFTR expression and function. Our findings have important clinical implications for treating CFTR-associated diseases such as cystic fibrosis and secretory diarrheas.

  1. Up-regulated Proteins in the Fluid Bathing the Tumour Cell Microenvironment as Potential Serological Markers for Early Detection of Cancer of the Breast

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Bunkenborg, Jakob

    2010-01-01

    -based proteomics in combination with mass spectrometry and immunohistochemistry (IHC) of the tumour interstitial fluids (TIF) and normal interstitial fluids (NIF) collected from 69 prospective breast cancer patients. The goal of this study was to identify abundant cancer up-regulated proteins that are externalised...

  2. Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection of cancer of the breast

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Bunkenborg, Jakob

    2010-01-01

    -based proteomics in combination with mass spectrometry and immunohistochemistry (IHC) of the tumour interstitial fluids (TIF) and normal interstitial fluids (NIF) collected from 69 prospective breast cancer patients. The goal of this study was to identify abundant cancer up-regulated proteins that are externalised...

  3. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  4. Copper oxide nano-fluid stabilized by ionic liquid for enhancing thermal conductivity of reservoir formation: Applicable for thermal Enhanced Oil Recovery processes

    Directory of Open Access Journals (Sweden)

    Barahoei M.

    2016-01-01

    Full Text Available Since the oil reservoirs are limited and energy demand is increasing, seeking for high efficient EOR processes or enhancing the efficiency of current proposed EOR methods for producing trapped oil from reservoirs are highly investigated. As a way out, it is possible to couple the EOR and nanotechnology to utilize the efficiency of both methods together. Regarding this possibility, in the current study, in the first stage of investigation stable and uniform water-based solution of nano size particles of copper oxide with different concentrations (0.01-0.05 M were prepared and then injected into the core samples. In the first stage, the effects of different surfactants respect to their concentrations was investigated. Then, different scenarios of using nano-fluid as a thermal conductivity modifier were examined. The obtained results clearly demonstrate that changing concentration of nano particles of copper oxide from 0.01 M to 0.05 M is able to enhance the thermal conductivity of rocks from 27 % to 48 % compared with the thermal conductivity of dry core.

  5. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance

    OpenAIRE

    Peti-Peterdi, János

    2013-01-01

    Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitoch...

  6. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE

    OpenAIRE

    Ayton, Scott; Faux, Noel G.; Bush, Ashley I.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack Jr, Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Leslie M Shaw

    2015-01-01

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively asso...

  7. Ionic Liquids as Additives of Coffee Bean Oil in Steel-Steel Contacts

    Directory of Open Access Journals (Sweden)

    James Grace

    2015-10-01

    Full Text Available Environmental awareness and ever-growing restrictive regulations over contamination have increased the need for more environmentally-friendly lubricants. Due to their superior biodegradability and lower toxicity, vegetable oils are a good alternative to replace currently-used mineral oils. However, vegetable oils show low oxidation and thermal stability and poor anti-wear properties. Most of these drawbacks can be attenuated through the use of additives. In the last decade, ionic liquids have emerged as high-performance fluids and lubricant additives due to their unique characteristics. In this study, the tribological behavior of two phosphonium-based ionic liquids is investigated as additives of coffee bean oil in steel-steel contact. Coffee bean oil-ionic liquid blends containing 1, 2.5, and 5 wt% of each ionic liquid are studied using a block-on-flat reciprocating tribometer and the test results are compared to commercially-available, fully-formulated lubricant. Results showed that the addition of the ionic liquids to the coffee bean oil reduces wear volume of the steel disks, and wear values achieved are comparable to that obtained when the commercially-available lubricant is used.

  8. Follicular fluid cerebellin and betatrophin regulate the metabolic functions of growing follicles in polycystic ovary syndrome.

    Science.gov (United States)

    Ersahin, Aynur Adeviye; Acet, Mustafa; Ersahin, Suat Suphan; Acet, Tuba; Yardim, Meltem; Kenanoglu, Omer; Aydin, Suleyman

    2017-03-01

    The aim of this study was to assess the changes of follicular fluid (FF) and serum levels of cerebellin precursor protein 1 (cbln1) and betatrophin in patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) with a gonadotropin-releasing hormone (GnRH) antagonist protocol. Twenty infertile women with PCOS and 20 control women diagnosed as poor responders undergoing ovarian stimulation with a GnRH antagonist were included. Blood samples were obtained during ovum pick-up. Follicular fluid from a dominant follicle was collected from the subjects. Using enzyme-linked immunosorbent assays, FF and serum levels of cbln1 and betatrophin were measured in both groups of participants. Metabolic and hormonal parameters were also determined and correlated with each other. Both groups of women had similar serum and FF betatrophin levels (55.0±8.9 ng/mL vs. 53.1±10.3 ng/mL, p=0.11). The serum and FF betatrophin levels of poor responders were found to be similar (49.9±5.9 ng/mL vs. 48.9±10.7 ng/mL, p=0.22). Conversely, the FF cbln1 levels of PCOS women were found to be significantly higher than the serum cbln1 levels (589.1±147.6 ng/L vs. 531.7±74.3 ng/L, p<0.02). The FF cbln1 levels of control participants without PCOS were significantly higher than their serum cbln1 levels (599.3±211.5 ng/L vs. 525.3±87.0 ng/L, p=0.01). Positive correlations were detected among body mass index, insulin resistance, serum insulin, total testosterone, and betatrophin levels in the PCOS group. Follicular fluid betatrophin and cbln1 concentrations may play a pivotal role on follicular growth in PCOS subjects undergoing IVF/ICSI with an antagonist protocol.

  9. Advanced Ionic Liquid Monopropellant for Payload Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a monopropellant replacement for hydrazine using eutectic mixtures of ionic liquids (EILs). These liquids offer us the ability to tailor fluid...

  10. Do genes and environment meet to regulate cerebrospinal fluid dynamics? Relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Joana A Palha

    2012-08-01

    Full Text Available Schizophrenia is a neurodevelopment disorder in which the interplay of genes and environment contributes to disease onset and establishment. The most consistent pathological feature in schizophrenic patients is an enlargement of the brain ventricles. Yet, so far, no study has related this finding with dysfunction of the choroid plexus, the epithelial cell monolayer located within the brain ventricles that is responsible for the production of most of the cerebrospinal fluid (CSF. Enlarged brain ventricles are already present at the time of disease onset (young adulthood and, of notice, isolated mild ventriculomegaly detected in utero is associated with subsequent mild neurodevelopmental abnormalities similar to those observed in children at high risk of developing schizophrenia. Here we propose that an altered choroid plexus/CSF dynamics during neurodevelopment may be considered as a risk, causative and/or participating-key factor for development of schizophrenia.

  11. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE.

    Science.gov (United States)

    Ayton, Scott; Faux, Noel G; Bush, Ashley I

    2015-05-19

    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD.

  12. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism

    Directory of Open Access Journals (Sweden)

    Dreyer Erwin

    2010-03-01

    Full Text Available Abstract Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this

  13. Role of Microvascular Tone and Extracellular Matrix Contraction in the Regulation of Interstitial Fluid: Implications for Aortic Dissection.

    Science.gov (United States)

    Mallat, Ziad; Tedgui, Alain; Henrion, Daniel

    2016-09-01

    The pathophysiology of aortic dissection is poorly understood, and its risk is resistant to medical treatment. Most studies have focused on a proposed pathogenic role of transforming growth factor-β in Marfan disease and related thoracic aortic aneurysms and aortic dissections. However, clinical testing of this concept using angiotensin II type 1 receptor antagonists to block transforming growth factor-β signaling fell short of promise. Genetic mutations that predispose to thoracic aortic aneurysms and aortic dissections affect components of the extracellular matrix and proteins involved in cellular force generation. Thus, a role for dysfunctional mechanosensing in abnormal aortic wall remodeling is emerging. However, how abnormal mechanosensing leads to aortic dissection remains a mystery. Here, we review current knowledge about the regulation of interstitial fluid dynamics and myogenic tone and propose that alteration in contractile force reduces vascular tone in the microcirculation (here, aortic vasa vasorum) and leads to elevations of blood flow, transmural pressure, and fluid flux into the surrounding aortic media. Furthermore, reduced contractile force in medial smooth muscle cells coupled with alteration of structural components of the extracellular matrix limits extracellular matrix contraction, further promoting the formation of intramural edema, a critical step in the initiation of aortic dissection. The concept is supported by several pathophysiological and clinical observations. A direct implication of this concept is that drugs that lower blood pressure and limit interstitial fluid accumulation while preserving or increasing microvascular tone would limit the risk of dissection. In contrast, drugs that substantially lower microvascular tone would be ineffective or may accelerate the disease and precipitate aortic dissection.

  14. Gap junctional regulation of pressure, fluid force, and electrical fields in the epigenetics of cardiac morphogenesis and remodeling.

    Science.gov (United States)

    Seki, Akiko; Nishii, Kiyomasa; Hagiwara, Nobuhisa

    2015-05-15

    Epigenetic factors of pressure load, fluid force, and electrical fields that occur during cardiac contraction affect cardiac development, morphology, function, and pathogenesis. These factors are orchestrated by intercellular communication mediated by gap junctions, which synchronize action potentials and second messengers. Misregulation of the gap junction protein connexin (Cx) alters cardiogenesis, and can be a pathogenic factor causing cardiac conduction disturbance, fatal arrhythmia, and cardiac remodeling in disease states such as hypertension and ischemia. Changes in Cx expression can occur even when the DNA sequence of the Cx gene itself is unaltered. Posttranslational modifications might reduce arrhythmogenic substrates, improve cardiac function, and promote remodeling in a diseased heart. In this review, we discuss the epigenetic features of gap junctions that regulate cardiac morphology and remodeling. We further discuss potential clinical applications of current knowledge of the structure and function of gap junctions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interaction between ionic lattices and superconducting condensates

    OpenAIRE

    2007-01-01

    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.

  16. Regulation of human cerebrospinal fluid malate dehydrogenase 1 in sporadic Creutzfeldt-Jakob disease patients

    Science.gov (United States)

    Schmitz, Matthias; Llorens, Franc; Pracht, Alexander; Thom, Tobias; Correia, Ângela; Zafar, Saima; Ferrer, Isidre; Zerr, Inga

    2016-01-01

    The identification of reliable diagnostic biomarkers in differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous two-dimensional proteomic study on cerebrospinal fluid (CSF) revealed an elevated level of an enzyme, mitochondrial malate dehydrogenase 1 (MDH1), in sporadic Creutzfeldt-Jakob disease (sCJD) patients. Here, we could demonstrate the expression of MDH1 in neurons as well as in the neuropil. Its levels are lower in sCJD brains than in control brains. An examination of CSF-MDH1 in sCJD patients by ELISA revealed a significant elevation of CSF-MDH1 levels in sCJD patients (independently from the PRNP codon 129 MV genotype or the prion protein scrapie (PrPSc) type) in comparison to controls. In combination with total tau (tau), CSF-MDH1 detection exhibited a high diagnostic accuracy for sCJD diagnosis with a sensitivity of 97.5% and a specificity of 95.6%. A correlation study of MDH1 level in CSF with other neurodegenerative marker proteins revealed a significant positive correlation between MDH1 concentration with tau, 14-3-3 and neuron specific enolase level. In conclusion, our study indicated the potential of MDH1 in combination with tau as an additional biomarker in sCJD improving diagnostic accuracy of tau markedly. PMID:27852982

  17. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  18. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    Science.gov (United States)

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-03-15

    this review, we draw together existing literature about the formation, function and homeostatic regulation of embryonic cerebrospinal fluid, from the closure of the anterior neuropore to the formation of functional fetal choroid plexuses, from an evolutionary perspective. The relevance of these processes to the normal functions and diseases of adult brain will also be discussed.

  19. CD4(+ cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis.

    Directory of Open Access Journals (Sweden)

    Jamie C Zampell

    Full Text Available INTRODUCTION: Lymphedema is a chronic disorder that occurs commonly after lymph node removal for cancer treatment and is characterized by swelling, fibrosis, inflammation, and adipose deposition. Although previous histological studies have investigated inflammatory changes that occur in lymphedema, the precise cellular make up of the inflammatory infiltrate remains unknown. It is also unclear if this inflammatory response plays a causal role in the pathology of lymphedema. The purpose of this study was therefore to characterize the inflammatory response to lymphatic stasis and determine if these responses are necessary for the pathological changes that occur in lymphedema. METHODS: We used mouse-tail lymphedema and axillary lymph node dissection (ANLD models in order to study tissue inflammatory changes. Single cell suspensions were created and analyzed using multi-color flow cytometry to identify individual cell types. We utilized antibody depletion techniques to analyze the causal role of CD4+, CD8+, and CD25+ cells in the regulation of inflammation, fibrosis, adipose deposition, and lymphangiogenesis. RESULTS: Lymphedema in the mouse-tail resulted in a mixed inflammatory cell response with significant increases in T-helper, T-regulatory, neutrophils, macrophages, and dendritic cell populations. Interestingly, we found that ALND resulted in significant increases in T-helper cells suggesting that these adaptive immune responses precede changes in macrophage and dendritic cell infiltration. In support of this we found that depletion of CD4+, but not CD8 or CD25+ cells, significantly decreased tail lymphedema, inflammation, fibrosis, and adipose deposition. In addition, depletion of CD4+ cells significantly increased lymphangiogenesis both in our tail model and also in an inflammatory lymphangiogenesis model. CONCLUSIONS: Lymphedema and lymphatic stasis result in CD4+ cell inflammation and infiltration of mature T-helper cells. Loss of CD4+ but

  20. Osmotic regulation of transcription in Lactococcus lactis: ionic strength-dependent binding of the BusR repressor to the busA promoter.

    Science.gov (United States)

    Romeo, Yves; Bouvier, Jean; Gutierrez, Claude

    2007-07-24

    The busA locus of Lactococcus lactis encodes a glycine betaine uptake system. At low osmolarity, the transcription of busA is repressed by the BusR protein, which is responsible for the osmotic inducibility of the busA promoter (busAp). In this work, we investigated the mechanism of the osmo-dependent repression by BusR. We found that BusR binding to the busA promoter is dependent on the ionic strength in vitro. Using a BusR derivative carrying a phosphorylation site and the Escherichia coli RNA polymerase holoenzyme, we showed that these proteins are able to form a stable ternary complex by both binding to the same busAp fragment. The association/dissociation of BusR to the RNA polymerase-busAp complex is strictly correlated to the surrounding ionic strength. Together, these results suggest that during growth at low osmolarity BusR represses transcription from busAp at a step further the recruitment of the RNA polymerase. At high osmolarity, an elevated cytoplasmic ionic strength would dissociate BusR from busAp, resulting in the osmotic induction of the busA operon.

  1. Seminal Fluid Regulates Accumulation of FOXP3(+) Regulatory T Cells in the Preimplantation Mouse Uterus Through Expanding the FOXP3(+) Cell Pool and CCL19-Mediated Recruitment

    NARCIS (Netherlands)

    Guerin, Leigh R.; Moldenhauer, Lachlan M.; Prins, Jelmer R.; Bromfield, John J.; Hayball, John D.; Robertson, Sarah A.

    2011-01-01

    Regulatory T (Treg) cells facilitate maternal immune tolerance of the semiallogeneic conceptus in early pregnancy, but the origin and regulation of these cells at embryo implantation is unclear. During the preimplantation period, factors in the seminal fluid delivered at coitus cause expansion of a

  2. Prediction of gas solubilities in ionic liquids.

    Science.gov (United States)

    Oliferenko, Alexander A; Oliferenko, Polina V; Seddon, Kenneth R; Torrecilla, José S

    2011-10-14

    Ionic liquids (of which it is estimated that there are at least one million simple fluids) generate a rich chemical space, which is now just at the beginning of its systematic exploration. Many properties of ionic liquids are truly unique and, which is more important, can be finely tuned. Differential solubility of industrial chemicals in ionic liquids is particularly interesting, because it can be a basis for novel, efficient, environmentally friendly technologies. Given the vast number of potential ionic liquids, and the impossibility of a comprehensive empirical exploration, it is essential to extract the maximum information from extant data. We report here some computational models of gas solubility. These multiple regression- and neural network-based models cover a chemical space spanned by 48 ionic liquids and 23 industrially important gases. Molecular polarisabilities and special Lewis acidity and basicity descriptors calculated for the ionic liquid cations and anions, as well as for the gaseous solutes, are used as input parameters. The quality of fit "observed versus predicted Henry's law constants" is particularly good for the neural network model. Validation was established with an external dataset, again with a high quality fit. In contrast to many other neural network models published, our model is no "black box", since contributions of the parameters and their nonlinearity characteristics are calculated and analysed.

  3. Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-12

    The critical point, CP (T, P), of the phase diagram quantifies the minimum amount of kinetic energy needed to prevent a substance from existing in a condensed phase. Therefore, the CP is closely related to the properties of the fluid far below the critical temperature. Approaches designed to predict thermophysical properties of a system necessarily aim to provide reliable estimates of the CP. Vice versa, CP estimation is impossible without knowledge of the vapor phase behavior. We report ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations of sodium and potassium chlorides, NaCl and KCl, at and above their expected CPs. We advance the present knowledge regarding the existence of ionic species in the vapor phase by establishing significant percentages of atomic clusters: 29-30% in NaCl and 34-38% in KCl. A neutral pair of counterions is the most abundant cluster in the ionic vapors (ca. 35% of all vaporized ions exist in this form). Unexpectedly, an appreciable fraction of clusters is charged. The ionic vapor composition is determined by the vapor density, rather than the nature of the alkali ion. The previously suggested CPs of NaCl and KCl appear overestimated, based on the present simulations. The reported results offer essential insights into the ionic fluid properties and assist in development of thermodynamic theories. The ab initio BOMD method has been applied to investigate the vapor phase composition of an ionic fluid for the first time.

  4. Complement Receptor 2 is increased in cerebrospinal fluid of multiple sclerosis patients and regulates C3 function.

    Science.gov (United States)

    Lindblom, Rickard P F; Aeinehband, Shahin; Ström, Mikael; Al Nimer, Faiez; Sandholm, Kerstin; Khademi, Mohsen; Nilsson, Bo; Piehl, Fredrik; Ekdahl, Kristina N

    2016-05-01

    Besides its vital role in immunity, the complement system also contributes to the shaping of the synaptic circuitry of the brain. We recently described that soluble Complement Receptor 2 (sCR2) is part of the nerve injury response in rodents. We here study CR2 in context of multiple sclerosis (MS) and explore the molecular effects of CR2 on C3 activation. Significant increases in sCR2 levels were evident in cerebrospinal fluid (CSF) from both patients with relapsing-remitting MS (n=33; 6.2ng/mL) and secondary-progressive MS (n=9; 7.0ng/mL) as compared to controls (n=18; 4.1ng/mL). Furthermore, CSF sCR2 levels correlated significantly both with CSF C3 and C1q as well as to a disease severity measure. In vitro, sCR2 inhibited the cleavage and down regulation of C3b to iC3b, suggesting that it exerts a modulatory role in complement activation downstream of C3. These results propose a novel function for CR2/sCR2 in human neuroinflammatory conditions.

  5. SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis.

    Science.gov (United States)

    Thomas, S; Abdulhay, Enas; Baconnier, Pierre; Fontecave, Julie; Francoise, Jean-Pierre; Guillaud, Francois; Hannaert, Patrick; Hernandez, Alfredo; Le Rolle, Virginie; Maziere, Pierre; Tahi, Fariza; Zehraoui, Farida

    2007-01-01

    We present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations.

  6. Ionic solvents used in ionic polymer transducers, sensors and actuators

    OpenAIRE

    2004-01-01

    Ionic liquids are incorporated into transducers, actuators or sensors which employ the ionic polymer membranes. The ionic liquids have superior electrochemical stability, low viscosity and low vapor pressure. The transducers, actuators and sensors which utilize ionic polymer membranes solvated with ionic liquids have long term air stability. Superior results are achieved when a conductive powder and ionomer mixture is applied to the ionic polymer membrane to form the electrodes during or afte...

  7. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways.

    Science.gov (United States)

    Christou, Anastasis; Manganaris, George A; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-04-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H(2)O(2) in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a

  8. Modeling of ionic liquids

    Science.gov (United States)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  9. Transport-Induced Inversion of Screening Ionic Charges in Nanochannels.

    Science.gov (United States)

    Zhu, Xin; Guo, Lingzi; Ni, Sheng; Zhang, Xingye; Liu, Yang

    2016-12-15

    This work reveals a counterintuitive but basic process of ionic screening in nanofluidic channels. Steady-state numerical simulations and mathematical analysis show that, under significant longitudinal ionic transport, the screening ionic charges can be locally inverted in the channels: their charge sign becomes the same as that of the channel surface charges. The process is identified to originate from the coupling of ionic electro-diffusion transport and junction two-dimensional electrostatics. This finding may expand our understanding of ionic screening and electrical double layers in nanochannels. Furthermore, the charge inversion process results in a body-force torque on channel fluids, which is a possible mechanism for vortex generation in the channels and their nonlinear current-voltage characteristics.

  10. Theory of fluid slip in charged capillary nanopores

    CERN Document Server

    Catalano, J; Biesheuvel, P M

    2016-01-01

    Based on the capillary pore model (space-charge theory) for combined fluid and ion flow through cylindrical nanopores or nanotubes, we derive the continuum equations modified to include wall slip. We focus on the ionic conductance and streaming conductance, cross-coefficients of relevance for electrokinetic energy conversion and electro-osmotic pumping. We combine the theory with a Langmuir-Stern 1-pK charge regulation boundary condition resulting in a non-monotonic dependence of the cross-coefficients on salt concentration.

  11. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  12. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  13. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  14. Detection of miRNAs contents in cerebrospinal fluid and serum of patients with epilepsy and their regulating effect on related cytokines

    Institute of Scientific and Technical Information of China (English)

    Lan Li

    2016-01-01

    Objective:To study the contents of miRNAs in cerebrospinal fluid and serum of patients with epilepsy and their regulating effect on related cytokines. Methods:Serum and cerebrospinal fluid of epilepsy group and non-epilepsy group were collected to detect the contents of miR-146a, miR-221, miR-222, miR-21 and miR-34a as well as inflammatory factors and apoptosis molecules. Results:miR-146a, miR-221, miR-222 and miR-21 contents in cerebrospinal fluid of epilepsy group were significantly lower than those of non-epilepsy group, and miR-34a content was higher than that of non-epilepsy group;miR-146a, miR-221, miR-222 and miR-21 contents in serum were significantly higher than those of non-epilepsy group, and miR-34a content was lower than that of non-epilepsy group;TNF-α, IL-2, IL-6 and ICAM-1 contents in cerebrospinal fluid of epilepsy group were higher than those of non-epilepsy group and negatively correlated with miR-146a, miR-221 and miR-222 contents;Bax, Bim, Caspase-3 and Caspase-9 contents in cerebrospinal fluid of epilepsy group were higher than those of non-epilepsy group and negatively correlated with miR-21, and Bcl-2 content was lower than that of non-epilepsy group and negatively correlated with miR-34a. Conclusion:miR-146a, miR-221, miR-222 and miR-21 contents decrease while miR-34a content increases in cerebrospinal fluid of patients with epilepsy, and miRNAs can regulate the expression of inflammatory factors and apoptosis molecules and be involved in the changes of neuron function.

  15. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F. [Univ. of Notre Dame, IN (United States)

    2017-03-07

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILs and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.

  16. Amniotic fluid metabolomics and biochemistry analysis provides novel insights into the diet-regulated foetal growth in a pig model

    Science.gov (United States)

    Wan, Jin; Jiang, Fei; Zhang, Jiao; Xu, Qingsong; Chen, Daiwen; Yu, Bing; Mao, Xiangbing; Yu, Jie; Luo, Yuheng; He, Jun

    2017-01-01

    Foetal loss and intrauterine growth restriction are major problems in mammals, but there are few effective ways in preventing it. Intriguingly, chitosan oligosaccharide (COS), a biomaterial derived from chitosan, can promote foetal survival and growth. Therefore, we have investigated how COS affects foetal survival and growth in a pig model. Fifty-two sows were divided into two treatment groups (n = 26) and fed either solely a control diet or a control diet that includes 100 mg/kg COS. Amniotic fluid and foetus samples from six sows that were of average body weight in each group were collected on gestation day 35. We applied a 1H NMR-based metabolomics approach combined with biochemistry analysis to track the changes that occurred in the amniotic fluid of pregnant sows after COS intervention. Maternal COS inclusion had enhanced (P < 0.05) the foetal survival rate and size at 35 days. COS supplementation had both increased (P < 0.05) SOD, CAT and T-AOC activities and elevated (P < 0.05) IL-10, IgG and IgM concentrations in the amniotic fluid. Moreover, COS had affected (P < 0.05) the amniotic fluid’s lysine, citrate, glucose and hypoxanthine levels. Overall, COS inclusion induced amniotic fluid antioxidant status and metabolic profiles modifications characterising improvements in foetal survival and growth in a pig model. PMID:28300194

  17. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    Science.gov (United States)

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-02-01

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations.

  18. Osmo and ionic regulation of black tiger prawn (Penaeus monodon Fabricius 1798) juveniles exposed to K(+) deficient inland saline water at different salinities.

    Science.gov (United States)

    Tantulo, Uras; Fotedar, Ravi

    2007-02-01

    An 11-day trial was conducted to investigate the osmoregulatory capacity (OC) and regulation of K(+), Na(+), Ca(2+) and Mg(2+) of Penaeus monodon juveniles when exposed to K(+) deficient inland saline water (ISW) of four different salinities (5, 15, 25 and 35 ppt). The survival of juveniles showed a positive linear relationship (R(2) ranging from 0.72 to 0.98) with salinity. At the end of the trial, juveniles were able to survive only in 5 ppt of ISW and showed no changes in OC when transferred from ocean water (OW) to ISW. Further, the OC of juveniles in 5 ppt of ISW was significantly different (Pjuveniles exposed to 15, 25 and 35 ppt and exhibited strong serum K(+), Na(+), Ca(2+) and Mg(2+) regulation monitored over 16 h. In contrast, at 35 ppt, significant decrease (Pjuveniles, which in turn causes decrease in the OC of the juveniles. The results of this study suggest that K(+) deficiency in ISW has a negative effect on survival, OC and the ability of P. monodon juveniles to regulate serum Na(+), K(+), Ca(2+) and Mg(2+) concentrations. These effects are compounded as salinity increases.

  19. Analysis of TNF-α-induced Leukocyte Adhesion to Vascular Endothelial Cells Regulated by Fluid Shear Stress Using Microfluidic Chip-based Technology

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; YANG De-yu; LIAO Juan; GONG Fang; HE Ping; LIU Bei-zhong

    2015-01-01

    This paper aims to the research of the impact of fluid shear stress on the adhesion between vascular endothelial cells and leukocyte induced by tumor necrosis factor-α(TNF-α) by microfliudic chip technology. Microfluidic chip was fabricated by soft lithograph;Endothelial microfluidic chip was constructed by optimizing types of the extracellular matrix proteins modified in the microchannel and cell incubation time;human umbilical vein endothelial cells EA.Hy926 lined in the microchannel were exposed to fluid shear stress of 1.68 dynes/cm2 and 8.4 dynes/cm2 respectively. Meanwhile, adhesion between EA.Hy926 cells and leukocyte was induced by TNF-αunder a flow condition. EA. Hy926 cell cultured in the static condition was used as control group. The numbers of fluorescently-labeled leukocyte in microchannel were counted to quantize the adhesion level between EA. Hy926 cells and leukocyte; cell immunofluorescence technique was used to detect the intercellular adhesion molecule (ICAM-1) expression. The constructed endothelial microfluidic chip can afford to the fluid shear stress and respond to exogenous stimulus of TNF-α;compared with the adhesion numbers of leukocyte in control group, adhesion between EA. Hy926 cells exposed to low fluid shear stress and leukocyte was reduced under the stimulus of TNF-α at a concentration of 10 ng/ml(P<0.05);leukocyte adhesion with EA. Hy926 cells exposed to high fluid shear stress was reduced significantly than EA. Hy926 cells in control group and EA.1Hy926 cells exposed to low fluid shear stress ( P<0.01); the regulation mechanism of fluid shear stress to the adhesion between EA. Hy926 cells and leukocyte induced by TNF-αwas through the way of ICAM-1. The endothelial microfluidic chip fabricated in this paper could be used to study the functions of endothelial cell in vitro and provide a new technical platform for exploring the pathophysiology of the related cardiovascular system diseases under a flow environment.

  20. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  1. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly

  2. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    Science.gov (United States)

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  3. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis is regulated by different stimuli from prey through jasmonates.

    Directory of Open Access Journals (Sweden)

    Michaela Libiaková

    Full Text Available The trap of the carnivorous plant Venus flytrap (Dionaea muscipula catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl and P(K stimulation on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA but jasmonic acid (JA and its isoleucine conjugate (JA-Ile accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA, salicylic acid (SA and abscisic acid (ABA did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

  4. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates.

    Science.gov (United States)

    Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej

    2014-01-01

    The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

  5. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate.

    Science.gov (United States)

    Rees, Martin D; Maiocchi, Sophie L; Kettle, Anthony J; Thomas, Shane R

    2014-07-01

    Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.

  6. Mesoscale studies of ionic closed membranes with polyhedral geometries

    Science.gov (United States)

    Olvera de la Cruz, Monica

    2016-06-01

    Large crystalline molecular shells buckle spontaneously into icosahedra while multicomponent shells buckle into various polyhedra. Continuum elastic theory explains the buckling of closed shells with one elastic component into icosahedra. A generalized elastic model, on the other hand, describes the spontaneous buckling of inhomogeneous shells into regular and irregular polyhedra. By co-assembling water-insoluble anionic (-1) amphiphiles with cationic (3+) amphiphiles, we realized ionic vesicles. Results revealed that surface crystalline domains and the unusual shell shapes observed arise from the competition of ionic correlations with charge-regulation. We explain here the mechanism by which these ionic membranes generate a mechanically heterogeneous vesicle.

  7. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI; Xuehui; ZHAO; Dongbin; FEI; Zhaofu; WANG; Lefu

    2006-01-01

    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  8. Fun with Ionic Compounds

    Science.gov (United States)

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  9. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Tien, Joe; Nelson, Celeste M

    2016-03-14

    Many solid tumors exhibit elevated interstitial fluid pressure (IFP). This elevated pressure within the core of the tumor results in outward flow of interstitial fluid to the tumor periphery. We previously found that the directionality of IFP gradients modulates collective invasion from the surface of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. Here, we used this 3D engineered tumor model to investigate the molecular mechanisms underlying IFP-induced changes in invasive phenotype. We found that IFP alters the expression of genes associated with epithelial-mesenchymal transition (EMT). Specifically, the levels of Snail, vimentin, and E-cadherin were increased under pressure conditions that promoted collective invasion. These changes in gene expression were sufficient to direct collective invasion in response to IFP. Furthermore, we found that IFP modulates the motility and persistence of individual cells within the aggregates, which are also influenced by the expression levels of EMT markers. Together, these data provide insight into the molecular mechanisms that guide collective invasion from primary tumors in response to IFP.

  10. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  11. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  12. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Deng Wang

    2012-03-01

    Full Text Available Abstract Background Stimulation of epithelial sodium channel (ENaC increases Na+ transport, a driving force of alveolar fluid clearance (AFC to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI. It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. Methods A model of ALI (LPS at a dose of 5.0 mg/kg with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF, total lung water content(TLW, and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR and western blotting. Results In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Conclusions Our study

  13. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  14. Immunodepletion of high-abundant proteins from acute and chronic wound fluids to elucidate low-abundant regulators in wound healing

    Directory of Open Access Journals (Sweden)

    Chojnacki Caroline

    2010-12-01

    Full Text Available Abstract Background The process of wound healing consists of several well distinguishable and finely tuned phases. For most of these phases specific proteins have been characterized, although the underlying mechanisms of regulation are not yet fully understood. It is an open question as to whether deficits in wound healing can be traced back to chronic illnesses such as diabetes mellitus. Previous research efforts in this field focus largely on a restricted set of marker proteins due to the limitations detection by antibodies imposes. For mechanistic purposes the elucidation of differences in acute and chronic wounds can be addressed by a less restricted proteome study. Mass spectrometric (MS methods, e.g. multi dimensional protein identification technology (MudPIT, are well suitable for this complex theme of interest. The human wound fluid proteome is extremely complex, as is human plasma. Therefore, high-abundant proteins often mask the mass spectrometric detection of lower-abundant ones, which makes a depletion step of such predominant proteins inevitable. Findings In this study a commercially available immunodepletion kit was evaluated for the detection of low-abundant proteins from wound fluids. The dynamic range of the entire workflow was significantly increased to 5-6 orders of magnitude, which makes low-abundant regulatory proteins involved in wound healing accessible for MS detection. Conclusion The depletion of abundant proteins is absolutely necessary in order to analyze highly complex protein mixtures such as wound fluids using mass spectrometry. For this the used immunodepletion kit is a first but important step in order to represent the entire dynamic range of highly complex protein mixtures in the future.

  15. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  16. Cyclic phosphonium ionic liquids

    Directory of Open Access Journals (Sweden)

    Sharon I. Lall-Ramnarine

    2014-01-01

    Full Text Available Ionic liquids (ILs incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonylamide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners.

  17. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  18. On a basic model of circulatory, fluid, and electrolyte regulation in the human system based upon the model of Guyton

    Science.gov (United States)

    White, R. J.

    1973-01-01

    A detailed description of Guyton's model and modifications are provided. Also included are descriptions of several typical experiments which the model can simulate to illustrate the model's general utility. A discussion of the problems associated with the interfacing of the model to other models such as respiratory and thermal regulation models which is prime importance since these stimuli are not present in the current model is also included. A user's guide for the operation of the model on the Xerox Sigma 3 computer is provided and two programs are described. A verification plan and procedure for performing experiments is also presented.

  19. Pentosan polysulfate regulates scavenger receptor-mediated, but not fluid-phase, endocytosis in immortalized cerebral endothelial cells.

    Science.gov (United States)

    Deli, M A; Abrahám, C S; Takahata, H; Katamine, S; Niwa, M

    2000-12-01

    1. Effects of pentosan polysulfate (PPS) and the structurally related sulfated polyanions dextran sulfate, fucoidan, and heparin on the scavenger receptor-mediated and fluidphase endocytosis in GP8 immortalized rat brain endothelial cells were investigated. 2. Using 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarboxyamine perchlorate-labeled acetylated low-density lipoprotein (DiI-AcLDL), we found a binding site with high affinity and low binding capacity, and another one with low affinity and high binding capacity. Increasing ligand concentrations could not saturate DiI-AcLDL uptake. DiI-AcLDL uptake, but not binding, was sensitive to pretreatment with filipin, an inhibitor of caveola formation. 3. PPS (20-200 microg/ml) significantly reduced the binding of DiI-AcLDL after coincubation for 3 hr, though this effect was less expressed after 18 hr. Among other polyanions, only fucoidan decreased the DiI-AcLDL binding after 3 hr, whereas dextran sulfate significantly increased it after 18 hr. PPS treatment induced an increase in DiI-AcLDL uptake, whereas other polysulfated compounds caused a significant reduction. 4. Fluid-phase endocytosis determined by the accumulation of Lucifer yellow was concentration and time dependent in GP8 cells. Coincubation with PPS or other sulfated polyanions could not significantly alter the rate of Lucifer yellow uptake. 5. In conclusion. PPS decreased the binding and increased the uptake of DiI-AcLDL in cerebral endothelial cells, an effect not mimicked by the other polyanions investigated.

  20. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  1. Graphene-ionic liquid composites

    Science.gov (United States)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  2. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  3. Electrochemical aspects of ionic liquids

    CERN Document Server

    Ohno, Hiroyuki

    2011-01-01

    The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liqui

  4. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  5. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  6. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  7. Separations of Metal Ions Using Ionic Liquids:The Challenges of Multiple Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ionic liquids are a distinct sub-set of liquids, comprising only of cations and anions, often with negligible vapor pressure. As a result of the low or non-volatility of these fluids, ionic liquids are often considered in liquid/liquid separation schemes where the goal is to replace volatile organic solvents. Unfortunately,it is often not yet recognized that the ionic nature of these solvents can result in a variety of extraction mechanisms, including solvent ion-pair extraction, ion exchange, and simultaneous combinations of these.This paper discusses current ionic liquid-based separations research where the effects of the nature of the solvent ions, ligands, and metal ion species were studied in order to be able to understand the nature of the challenges in utilizing ionic liquids for practical applications.

  8. Obtenção de argilas organofílicas purificadas através de tensoativos iônicos e não iônicos visando uso em fluidos de perfuração base óleo Getting purified organoclays by ionic and non-ionic surfactant aiming use in oil based drilling fluids

    Directory of Open Access Journals (Sweden)

    J. M. R. Costa

    2012-12-01

    Full Text Available Em perfurações de petróleo sensíveis ao contato com água, torna-se necessária a utilização de fluidos de perfuração base óleo. Nestes casos, utilizam-se argilas organofílicas, que são obtidas a partir de argilas bentoníticas purificadas e tratadas com a adição de tensoativos. A utilização do hidrociclone pode representar uma ferramenta eficiente e de custo acessível para purificar argilas naturais em escala industrial. Este trabalho tem por objetivo estudar a purificação de argilas bentoníticas utilizando-se um hidrociclone, visando o desenvolvimento de argilas organofílicas para uso em fluidos de perfuração base óleo. As caracterizações das amostras das argilas estudadas - Brasgel PA e Chocolate - foram efetuadas por meio das técnicas: análise granulométrica por difração de laser, difração de raios X (DRX e análise química por fluorescência de raios X. A caracterização das argilas organofílicas obtidas foi efetuada por meio dos seguintes métodos: DRX e por uma modificação do inchamento de Foster. Os resultados mostram que o processo de purificação foi eficiente na redução de impurezas presentes na bentonita e que a argila organofílica purificada tratada com Praepagen WB e Imidazolina Oléica Vegetal apresenta valores de inchamento de Foster em éster, óleo diesel e parafina superiores aos obtidos com argilas organofílicas sem purificação (natural, e evidenciando maior afinidade com o tensoativo Praepagen WB.Oil drilling in sensitive contact with water, becomes required the use of oil base drilling fluids. In these cases, organoclays are used, which are made from clay bentonite purified and treated with surfactants addition. The use of the hydrocyclone can be a effective tool and affordable for purifying clays in industrial scale. This work aims to study the purification of clays bentonite using a hydrocyclone, aiming to develop organoclays for use in oil base drilling fluids. The

  9. Ionic Vapor Composition in Pyridinium-Based Ionic Liquids.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-26

    Strong electrostatic interactions in ionic compounds make vaporization a complex process. The gas phase can contain a broad range of ionic clusters, and the cluster composition can differ greatly from that in the liquid phase. Room-temperature ionic liquids (RTILs) constitute a complicated case due to their ionic nature, asymmetric structure, and a huge versatility of ions and ionic clusters. This work reports vapor-liquid equilibria and vapor compositions of butylpyridinium (BPY) RTILs formed with hexafluorophosphate (PF6), trifluoromethanesulfonate (TF), and bis(trifluoromethanesulfonyl)imide (TFSI) anions. Unlike inorganic crystals, the pyridinium-based RTILs contain significant percentages of charged clusters in the vapor phase. Ion triplets and ion quadruplets each constitute up to 10% of the vapor phase composition. Triples prevail over quadruples in [BPY][PF6] due to the size difference of the cation and the anion. The percentage of charged ionic clusters in the gas phase is in inverse proportion to the mass of the anion. The largest identified vaporized ionic cluster comprises eight ions, with a formation probability below 1%. Higher temperature fosters formation of larger clusters due to an increase of the saturated vapor density.

  10. Supercritical Fluid Chromatography, Pressurized Liquid Extraction and Supercritical Fluid Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Matthew C.; Yonker, Clement R.

    2006-06-15

    are regulated as food supplements but are intended to treat disease or maintain health. Antioxidants and beneficial lipid products are major examples in this category. The final major category consists of environmental applications, both as an extraction technique for environmental analysis, and as a possible remediation strategy for removing contaminants that would otherwise be too expensive to recover. Most of the work in this area has focused on non-polar compounds, such as polyaromatic hydrocarbons (PAHs) and poly-chlorinated biphenyls (PCB’s), where non-polar supercritical (SC) CO2 offers high extraction efficiencies. Co-solvent systems combining CO2 with one or more modifiers extend the utility of SC CO2 to polar and even ionic compounds. Supercritical water can extract polar compounds, and it has the additional advantage of combining extraction and destruction of contaminants via the supercritical water oxidation (SUWOX) process. Supercritical fluids are also useful in various niche applications. Fuel extraction, conversion, and analysis is one such application. Extraction of metals from various matrixes is also an area of continuing interest. The application of supercritical fluid (SCF) technology to production of nano-structured materials is a new area likely to see rapid growth in the next few years.

  11. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique

    Science.gov (United States)

    Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina

    2017-05-01

    Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.

  12. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  13. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (~100 μV K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (~10,000 μV K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  14. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  15. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  16. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  17. Ionic emission from Taylor cones

    Science.gov (United States)

    Castro Reina, Sergio

    Electrified Taylor cones have been seen as an efficient way to generate thrust for space propulsion. Especially the pure ionic regime (PIR) combines a very high specific impulse (thrust per unit mass) and efficiency, which is very important to reduce fuel transportation costs. The PIR has been primarily based on electrosprays of liquid metals [Swatik and Hendricks 1968, Swatik 1969]. However, emissions dominated by or containing exclusively ions have also been observed from nonmetallic purely ionic substances, initially sulfuric acid [Perel et al. 1969], and more recently room temperature molten salts referred to as ionic liquids (ILs) [Romero-Sanz et al. 2003]. The recent use of the liquid metal ion source (LMIS) with ILs, becoming this "new" source to be known as ionic liquid ion source (ILIS) [Lozano and Martinez-Sanchez 2005], has shown important differences on the emission from Taylor cones with the traditional hollow capillary. This new source seems to be more flexible than the capillary [Paulo, Sergio, carlos], although its low emission level (low thrust) is an important drawback from the space propulsion point of view. Throughout the thesis I have studied some aspects of the ionic emission from ionic liquid Taylor cones and the influence of the properties of the liquids and the characteristic of source on the emission. I have unraveled the reason why ILIS emits such low currents (˜200 nA) and found a way to solve this problem increasing the current up to capillary levels (˜1000 nA) [Castro and Fernandez de la Mora 2009]. I have also tried to reduce ion evaporation while reducing the emitted droplet size in order to increase the thrust generated while keeping the efficiency relatively high and I have measured the energy of evaporation of several cations composing ionic liquids, mandatory step to understand ionic evaporation.

  18. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  19. Nanoconfined Ionic Liquids.

    Science.gov (United States)

    Zhang, Shiguo; Zhang, Jiaheng; Zhang, Yan; Deng, Youquan

    2016-12-29

    Ionic liquids (ILs) have been widely investigated as novel solvents, electrolytes, and soft functional materials. Nevertheless, the widespread applications of ILs in most cases have been hampered by their liquid state. The confinement of ILs into nanoporous hosts is a simple but versatile strategy to overcome this problem. Nanoconfined ILs constitute a new class of composites with the intrinsic chemistries of ILs and the original functions of solid matrices. The interplay between these two components, particularly the confinement effect and the interactions between ILs and pore walls, further endows ILs with significantly distinct physicochemical properties in the restricted space compared to the corresponding bulk systems. The aim of this article is to provide a comprehensive review of nanoconfined ILs. After a brief introduction of bulk ILs, the synthetic strategies and investigation methods for nanoconfined ILs are documented. The local structure and physicochemical properties of ILs in diverse porous hosts are summarized in the next sections. The final section highlights the potential applications of nanoconfined ILs in diverse fields, including catalysis, gas capture and separation, ionogels, supercapacitors, carbonization, and lubrication. Further research directions and perspectives on this topic are also provided in the conclusion.

  20. Hydrophobic ionic liquids

    Science.gov (United States)

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  1. Amniotic fluid water dynamics.

    Science.gov (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  2. Ionic mechanisms in pancreatic β cell signaling.

    Science.gov (United States)

    Yang, Shao-Nian; Shi, Yue; Yang, Guang; Li, Yuxin; Yu, Jia; Berggren, Per-Olof

    2014-11-01

    The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.

  3. Recrystallized quinolinium ionic liquids for electrochemical analysis

    Science.gov (United States)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  4. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    Science.gov (United States)

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  5. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  6. Fluid dynamics of heart development.

    Science.gov (United States)

    Santhanakrishnan, Arvind; Miller, Laura A

    2011-09-01

    The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics.

  7. Use of Ionic Liquid as Green Catalyst, Reagent as Well as Reaction Medium in Chemical Transformations

    Institute of Scientific and Technical Information of China (English)

    Brindaban C. Ranu

    2005-01-01

    @@ 1Introduction The toxic and volatile nature of many organic solvents, particularly chlorinated hydrocarbons that are widely used in organic synthesis have posed a serious threat to the environment. Thus, design of organic solvent - free reaction and use of alternative green solvents like water, supercritical fluids, and ionic liquids have received tremendous attention in recent times in the area of green synthesis. The ionic liquids have been the subject of considerable current interest as environmentally benign reaction media in organic synthesis because of their unique properties of nonvolatility, noninf1ammability, and recyclability among others and during last few years ionic liquids have been successfully employed as green solvents for a variety of important reactions.However, the ability of ionic liquid as a clean catalyst and reagent has not been explored to any great extent although it is of much importance in the context of green synthesis.

  8. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    Science.gov (United States)

    Rachmawati, Heni; Rahma, Annisa; Al Shaal, Loaye; Müller, Rainer H.; Keck, Cornelia M.

    2016-01-01

    We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), sodium carboxymethylcellulose (Na-CMC), d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and sodium dodecyl sulfate (SDS). The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT) fluid. Non-ionic stabilizers (PVA, PVP, and TPGS) were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug. PMID:27763572

  9. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    Directory of Open Access Journals (Sweden)

    Heni Rachmawati

    2016-10-01

    Full Text Available We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP, polyvinyl alcohol (PVA, sodium carboxymethylcellulose (Na-CMC, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, and sodium dodecyl sulfate (SDS. The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT fluid. Non-ionic stabilizers (PVA, PVP, and TPGS were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug.

  10. First title: Ionic liquids-useful reaction green solvents for the future Second title: ionic liquids are the replacements for environmentally damaging solvents in a wide range of chemical processes.

    Directory of Open Access Journals (Sweden)

    K.Vijaya Bhaskar

    2012-09-01

    Full Text Available Ionic liquids (IL represent fascinating new class of solvents with unusual physical and chemical properties; low melting salts (up to 1000C. The main driving force for research in this area is the need to find replacement for environmentally damaging solvents in a wide range of chemical processes. To date, most chemical reactions have been carried out in molecular solvents. For the past twenty years, most of our understanding of our chemistry has been based upon the behavior of molecules in the solution phase in molecular solvents. Recently a new class of solvents has emerged called as Ionic liquids. An ionic liquid is an organic salt in which the ions are poorly coordinated, which results in these solvents being liquid below 100°C, or even at room temperature (room temperature ionic liquids, RTIL's. At least one ion has a delocalized charge and one component is organic, which prevents the formation of a stable crystal lattice. Ionic liquids are composed entirely of ions. For example, molten sodium chloride is an ionic liquid; in contrast, a solution of sodium chloride in water (a molecular solvent is an ionic solution. The term “ionic liquids” has replaced the older phrase “molten salts” (or “melts”, which suggests that they are high-temperature, corrosive, viscous media (like molten minerals. The reality is that ionic liquids can be liquid at temperatures as low as –96°C. Furthermore, room-temperature ionic liquids are frequently colourless, fluid, and easy to handle. In the patent and academic literature, the term “ionic liquids” now refers to liquids composed entirely of ions that are fluid around or below 100°C1. Properties, such as melting point, viscosity, and solubility of starting materials and other solvents, are determined by the substituents on the organic component and by the counter ion. Many ionic liquids have even been developed for specific synthetic problems. For this reason, ionic liquids have been termed

  11. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  12. Selective Extraction of Bioproducts by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    王键吉; 裴渊超; 赵扬; 张锁江

    2005-01-01

    Imidazolium based room temperature ionic liquids have been used to extract selectively L-tryptophan from fermentation broth. BF4 anion was found to enhance dramatically the partitioning of L-tryptophan into ionic liquid phase from aqueous solutions.

  13. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity.

    Science.gov (United States)

    Small, Leo J; Wheeler, David R; Spoerke, Erik D

    2015-10-28

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.

  14. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    Science.gov (United States)

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  15. Energy Harvesting Applications of Ionic Polymers

    OpenAIRE

    Martin, Benjamin Ryan

    2005-01-01

    Energy Harvesting Applications of Ionic Polymers Benjamin R. Martin Abstract The purpose of this thesis is the development and analysis of applications for ionic polymers as energy harvesting devices. The specific need is a self-contained energy harvester to supply renewable power harvested from ambient vibrations to a wireless sensor. Ionic polymers were investigated as mechanical to electrical energy transducers. An ionic polymer device was designed to harvest energy from vi...

  16. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  17. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  18. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    Science.gov (United States)

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  19. The Impact of the New York State Retail Milk Price Regulation on Farm-to-Retail Price Transmission and Supermarket Pricing Strategies in Metropolitan Fluid Milk Markets

    OpenAIRE

    Bolotova, Yuliya; Novakovic, Andrew M.

    2011-01-01

    The New York State Milk Price Gouging Law establishes that the retail prices of fluid milk products are not to exceed 200% of the prices that NYS milk processors pay for Class I milk. The enforcement of this law significantly affected the nature of the Class I fluid milk price transmission process and the milk pricing strategies of supermarkets in the five largest cities in New York State: New York City, Albany, Syracuse, Buffalo and Rochester. During the pre-law period, supermarkets used a r...

  20. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    Science.gov (United States)

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  1. The hype with ionic liquids as solvents

    Science.gov (United States)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  2. Retarded ionic motion in flourites

    NARCIS (Netherlands)

    Schoonman, J.

    1980-01-01

    Metals halides with the fluorite structure attain conductivity values typical of ionic melts far below their melting points, and also go through a second-order transition. Conductivity data for the fluorites are reviewed, and it is shown that the anion vacancies have a large and unique mobility valu

  3. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  4. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  5. Preparation and characterization of salmon calcitonin-sodium triphosphate ionic complex for oral delivery.

    Science.gov (United States)

    Lee, Hea Eun; Lee, Min Jung; Park, Cho Rong; Kim, A Young; Chun, Kyung Hwa; Hwang, Hee Jin; Oh, Dong Ho; Jeon, Sang Ok; Kang, Jae Seon; Jung, Tae Sung; Choi, Guang Jin; Lee, Sangkil

    2010-04-19

    Even though salmon calcitonin (sCT) has been known as a potent hypocalcemic agent, only injection or nasal spray products are available on the market. In order to develop oral delivery system of the agent, a novel sCT-sodium tripolyphosphate (STPP) ionic complex was fabricated and also characterized. For the optimization of the ionic complexation, the effect of incubation time and molar ratio between sCT and STPP was evaluated. Particle size of the ionic complex in aqueous media, SEM images, DSC, FT-IR, in vitro release test, stability within the simulated intestinal fluid, and hypocalcemic effect were evaluated. The optimal molar complexation ratio of sCT to STPP was ranged from 1:5 to 1:10 and the complexation efficiency was about 95%. The SEM image has shown that the freeze dried ionic complex has rough morphology in their surface and the particle size in PBS (pH 7.4) was about 220nm. The DSC and FT-IR results provided evidences for ionic interaction between -NH(2) groups and -P horizontal lineO groups of sCT and STPP, respectively. The sCT ionic complex has shown sustained sCT releasing characteristics for 3weeks. The sCT-STPP ionic complex was protective to enzymatic attack and in vivo animal data revealed that the present ionic complex would show continuous hypocalcemic effect. Conclusively, the present sCT-STPP ionic complex formulation thought to be a novel oral delivery candidate for the treatment of osteoporosis.

  6. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  7. Environment Regulation and Suggestion of Fracturing Flowback Fluids of Shale Gas Development%页岩气开发压裂返排液环境监管及对策建议

    Institute of Scientific and Technical Information of China (English)

    史聆聆; 李小敏; 马建锋; 邹广迅

    2015-01-01

    Hydraulic fracturing treatment is widely used in shale gas extraction, but this means produce flowback fluids, the disposal of huge amounts of flowback fluids arouses public concern. This paper collected the chemical composition of fracturing fluid, water quantity and quality of flowback fluids, analyzed the problems of flowback fluid environment regulation in China from deep well injection, discharging after disposing in municipal sewage treatment plants, reusing after disposing at well area, disposing after disposing at well area, and gave suggestions, including report and registration for chemicals, formulating the industry standard for wastewater discharge, segmenting the shale gas development project acceptance, encouraging developing new technology of sewage treatment, etc.%水力压裂技术是目前页岩气开发广泛采用的储层改造技术,但该技术的应用产生大量的返排液,返排液如何处置和监管引起了人们的广泛关注。本文收集了国内外压裂液的成分、返排液的水量和水质等资料,从深井灌注、市政污水处理厂处理后外排、现场处理后回用、现场处理后外排四种处理方式上,分析我国返排液环境监管存在的问题,针对实际问题提出对策建议,包括对化学品进行申报登记、制订污水排放的行业标准、对页岩气开发项目进行分段验收、鼓励研发污水处理新技术等。

  8. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  9. Observation of ionic Coulomb blockade in nanopores

    Science.gov (United States)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  10. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  11. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  12. Radiation-induced solidification of ionic liquid under extreme electric field

    Science.gov (United States)

    Terhune, Kurt J.; King, Lyon B.; He, Kai; Cumings, John

    2016-09-01

    An extreme electric field on the order of 1010 V m-1 was applied to the free surface of an ionic liquid to cause electric-field-induced evaporation of molecular ions from the liquid. The point of ion emission was observed in situ using a TEM. The resulting electrospray emission process was observed to create nanoscale high-aspect-ratio dendritic features that were aligned with the direction of the electric field. Upon removal of the stressing field the features were seen to remain, indicating that the ionic liquid residue was solidified or gelled. Similar electrospray experiments performed in a field-emission scanning electron microscope revealed that the features are created when the high-energy electron beam damages the molecular structure of the ionic liquid. While the electric field does not play a direct role in the fluid modification, the electric stress was critical in detecting the liquid property change. It is only because the electric stress mechanically elongated the fluid during the electrospray process and these obviously non-liquid structures persisted when the field was removed that the damage was evident. This evidence of ionic liquid radiation damage may have significant bearing on electrospray devices where it is possible to produce high-energy secondary electrons through surface impacts of emitted ions downstream of the emitter. Any such impacts that are in close proximity could see reflected secondary electrons impact the emitter causing gelling of the ionic liquid.

  13. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  14. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  15. Ionic Polymer Microactuator Activated by Photoresponsive Organic Proton Pumps

    Directory of Open Access Journals (Sweden)

    Khaled M. Al-Aribe

    2015-10-01

    Full Text Available An ionic polymer microactuator driven by an organic photoelectric proton pump transducer is described in this paper. The light responsive transducer is fabricated by using molecular self-assembly to immobilize oriented bacteriorhodopsin purple membrane (PM patches on a bio-functionalized porous anodic alumina (PAA substrate. When exposed to visible light, the PM proton pumps produce a unidirectional flow of ions through the structure’s nano-pores and alter the pH of the working solution in a microfluidic device. The change in pH is sufficient to generate an osmotic pressure difference across a hydroxyethyl methacrylate-acrylic acid (HEMA-AA actuator shell and induce volume expansion or contraction. Experiments show that the transducer can generate an ionic gradient of 2.5 μM and ionic potential of 25 mV, producing a pH increase of 0.42 in the working solution. The ΔpH is sufficient to increase the volume of the HEMA-AA microactuator by 80%. The volumetric transformation of the hydrogel can be used as a valve to close a fluid transport micro-channel or apply minute force to a mechanically flexible microcantilever beam.

  16. Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments

    Science.gov (United States)

    Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin

    2012-02-01

    Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).

  17. Externally Wetted Ionic Liquid Thruster

    Science.gov (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  18. R fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater

  19. Multiphysics simulation of corona discharge induced ionic wind

    CERN Document Server

    Cagnoni, Davide; Christen, Thomas; de Falco, Carlo; Parolini, Nicola; Stevanović, Ivica

    2013-01-01

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices, whose main benefit is the ability to accurately predict the amount of charge injected at the corona electrode. Our multiphysics numerical model consists of a highly nonlinear strongly coupled set of PDEs including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are validated by comparison with experimental measurements and are shown to closely match. Finally, our simulation tool is used to estimate the effectiveness of the design of an electrohydrodynamic cooling apparatus for power electronics applicat...

  20. Multiphysics simulation of corona discharge induced ionic wind

    Energy Technology Data Exchange (ETDEWEB)

    Cagnoni, Davide [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Agostini, Francesco; Christen, Thomas [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Parolini, Nicola [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Stevanović, Ivica [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Falco, Carlo de [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); CEN - Centro Europeo di Nanomedicina, 20133 Milano (Italy)

    2013-12-21

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  1. Ionic Liquids for Advanced Materials

    Science.gov (United States)

    2008-12-01

    developed characterization set-ups for the electromechanical responses of conductive network/ ionomer composite (CNIC). The overall research goal... glass transition temperature (Tg) with an increase in dielectric constant and ion content. ILs uniquely combine high dielectric constant, low...from 230-440%. Dissociation of ionic aggregates was observed at 85-88 °C in DMA experiments, and the glass transition temperatures increased with

  2. Modelling room temperature ionic liquids.

    Science.gov (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L

    2008-08-07

    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  3. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  4. Electronic polarizability of ionic crystals

    Science.gov (United States)

    Ivanov, O. V.; Maksimov, E. G.

    1992-01-01

    The electronic polarizability of ionic crystals is considered in the framework of the Gordon-Kim electron gas model. First a polarization of a single ion is calculated by using the modified Sternheimer approach. Then the interaction between two ions with dipole momenta p n and p n' is studied using the Thomas-Fermi type approximation for the energy functional. By expressing the total energy as a functional of the polarizations p n instead of an electric field E and minimizing this functional with respect to p n linear equations for p n are obtained. Solution of these equations leads to the Clausius-Mossotti type expression for dielectric constant ∈ ∞ of ionic crystals in terms of a cell polarizability. It is shown that the cell polarizability can not be expressed in terms of an averaged ion polarizability only but includes also some non-local contributions due to a short-range interactions between ions. Numerical calculations lead to a good agreement with experimental data for a number of ionic crystals.

  5. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  6. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  7. R Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-06-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  8. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  9. First principles approach to ionicity of fragments

    Science.gov (United States)

    Pilania, Ghanshyam; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-01

    We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  10. Ionic Liquids: Just Molten Salts After All?

    Directory of Open Access Journals (Sweden)

    Anna K. Croft

    2009-07-01

    Full Text Available While there has been much effort in recent years to characterise ionic liquids in terms of parameters that are well described for molecular solvents, using these to explain reaction outcomes remains problematic. Herein we propose that many reaction outcomes in ionic liquids may be explained by considering the electrostatic interactions present in the solution; that is, by recognising that ionic liquids are salts. This is supported by evidence in the literature, along with studies presented here.

  11. Comparative study of non-ionic contrast agents Optiray 350 and Ultravist 370 in myelography in dogs

    Directory of Open Access Journals (Sweden)

    Radu Lăcătuș

    2016-11-01

    Full Text Available Introduction: An essential quality of non-ionic contrast agents is that of containing in their chemical composition, elements with high atomic weight, which determine an increasing absorption of the X-ray beam and this will cause intense radiopacity. The possibilities for radiological exploration with non-ionic contrast agents are very wide. Currently the radiological examination with contrast agent no longer constitutes a risky step in medical diagnosis. Aims: To highlight the importance of using the non-ionic contrast agents Optiray 350 and Ultravist 370 in dog’s myelography and to compare the changes induced in cerebrospinal fluid and blood biochemical constituents by the administration of those non-ionic contrast substances. Materials and Methods: To determine the influence of non-ionic preparations Optiray 350 and Ultravist 370 on cerebrospinal fluid and on some haematological parameters were included in the study a total of 10 dogs. Results: Myelographies with Optiray 350 and Ultravist 370 in dogs with severe spinal condition negatively influence biochemical and haematological blood status, being necessary to take preventive measures. Optiray 350 and Ultravist 370 administration cause a slight sensitization of liver with blood biochemical parameters return to normal within 24-48 hours. Conclusion: Non-ionic contrast agents Optiray 350 and Ultravist 370 offer a very good opacification of the subarachnoidian space, but because it causes liver sensitization, we recommend using them with caution and only after a prior check of liver function.

  12. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  13. Tailor-made ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jork, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Kristen, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Pieraccini, D. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Stark, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Technische Chemie und Umweltchemie, Lessingstrasse 12, 07743 Jena (Germany); Chiappe, C. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Beste, Y.A. [BASF AG, GCT/A-L540, 67056 Ludwigshafen (Germany); Arlt, W. [Universitaet Erlangen/Nuernberg, Lehrstuhl fuer Thermische Verfahrenstechnik, Egerlandstrasse 3, 91058 Erlangen (Germany)]. E-mail: wolfgang.arlt@cbi.uni-erlangen.de

    2005-06-15

    This article presents a first consequent thermodynamic optimization of ionic liquids (IL) as entrainers in the distillative separation of both an azeotropic aqueous (tetrahydrofuran + water) and a close-boiling aromatic test system (methylcyclohexane + toluene) on the basis of COSMO-RS predictions. The use of this method allows for the preselection from the large pool of available IL. Thus, favorable structural variations were identified and used for tailoring IL entrainers. For the prediction of activity coefficients with COSMO-RS, the use of different conformations of the components, derived from conformational analyses, leads to varying results. The simulations showed that the influence of conformations of the volatile components and the ionic liquids depends largely on the type of the phase equilibrium, which is investigated. The approach to tailor ionic liquids as additives for separation science starts with the prediction of the activity coefficients at infinite dilution. The simulation indicated that a higher degree of branching or longer alkyl substituents on the cation, as well as a low nucleophilicity of the anion decreases both selectivity and capacity in the polar test mixture. However, COSMO-RS calculations for the non-polar mixture showed that the selection of an entrainer for this system is more complicated, because - contrarily to (tetrahydrofuran + water) - structural variations of the IL entrainer cause converse changes in selectivity and capacity: while the selectivity for toluene increases with a lower degree of branching and a shorter alkyl substituent of the cation as well as with a lower nucleophilicity of the anion, these properties decrease the capacity. In this work, the most favorable IL entrainers were synthesized and the separation factors of the test systems were experimentally validated at finite dilution.

  14. Ionic interactions in the water zone at oil well-sites

    Energy Technology Data Exchange (ETDEWEB)

    Kleven, R.

    1996-11-01

    The aim of this doctoral thesis has been to obtain a better understanding of ionic behaviour in a water zone of sedimentary rock exposed to sea-water based drilling fluid and completion fluid. Interaction processes addressed have been ion exchange on the surface of the reservoir rocks and precipitation of divalent cations with sulphate ions from the sea water. Clay minerals are focused on because of their ability to conduct electricity through ion-exchange reactions. The most important parameters that the distribution of ions around a borehole depends upon are suggested to be (1) the ability of the sedimentary rocks to sorb/desorb ions, (2) the effect of added solutions on the sorption/desorption processes, (3) the mobility of ions. The first of four enclosed papers studies ionic interaction, mainly on homo-ionic clay mineral - salt solution, in batch experiments under pH, ionic strength and temperature conditions likely to occur in the field. Paper II investigates the use of tritiated water as a reference tracer in miscible displacement processes in porous sandstone cores. Ionic interaction processes during drilling of oil wells with conventional KCl bentonite mud tagged with HTO were studied by means of measured ionic and HTO concentration of water sampled in the near well-bore region. A tracer method was developed and ``tracer diagrams`` illustrate sorption/desorption processes. The water analyses, sampling procedure, and tracer techniques are presented in the third paper. Paper IV compares the interpretation of laboratory data and field data. 173 refs., 47 figs., 22 tabs.

  15. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    Science.gov (United States)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  16. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids

    Science.gov (United States)

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2016-12-01

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  18. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  19. Engineered microorganisms having resistance to ionic liquids

    Science.gov (United States)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  20. Chemical and Electrochemical Studies in Ionic Liquids

    Science.gov (United States)

    1990-01-12

    Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft

  1. First principles approach to ionicity of fragments

    Energy Technology Data Exchange (ETDEWEB)

    Pilania, Ghanshyam, E-mail: gpilania@lanl.gov; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-20

    Highlights: • A novel first principles approach towards the fragment ionicity. • Constrained DFT and valance charge density decomposition were employed. • Correct dissociation limit achieved for diatomics. • Ionicity is an input parameter for a new class of atomistic potentials. - Abstract: We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  2. Facile Synthesis of Ureas in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Wei Xing QIAN; Feng Yang JU; Yong Min ZHANG; Wei Liang BAO

    2004-01-01

    The reaction of isocyanates with aliphatic and aromatic amines in the 1-n-butyl-3- methylimidazolium tetrafluoroborate (bmimBF4) ionic liquid in good to excellent yields is described. Due to its insolubility, the desired urea solids could be recovered by simple filtration from the ionic liquid after reaction.

  3. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  4. Base stable quaternary ammonium ionic liquids

    OpenAIRE

    Lethesh, Kallidanthiyil Chellappan; Dehaen, Wim; Binnemans, Koen

    2014-01-01

    Ionic liquids with the bis(2-ethylhexyl)dimethylammonium cation, [BEDMA]+, were prepared by a halide-free route starting from the readily available secondary amine bis(2-ethylhexyl)amine. The following anions were considered: chloride, bromide, iodide, nitrate, hydrogensulphate, dihydrogenphosphate, formate, acetate, propionate, trifluoroacetate, methyl sulphate, methanesulphonate, tosylate, isonicotinate, nicotinate and picolinate. Several of the compounds are room-temperature ionic liquids,...

  5. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  6. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  7. On the calculation of single ion activity coefficients in homogeneous ionic systems by application of the grand canonical ensemble

    DEFF Research Database (Denmark)

    Sloth, Peter

    1993-01-01

    The grand canonical ensemble has been used to study the evaluation of single ion activity coefficients in homogeneous ionic fluids. In this work, the Coulombic interactions are truncated according to the minimum image approximation, and the ions are assumed to be placed in a structureless, homoge...

  8. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  9. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Pleural Fluid Analysis Test

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...

  11. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  12. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations

    Institute of Scientific and Technical Information of China (English)

    Hiroshi MACHIDA; Ryosuke TAGUCHI; Yoshiyuki SATO; Louw J.FLORUSSE; Cor J.PETERS; Richard L.SMITH,Jr

    2009-01-01

    Ionic liquids combined with supercritical fluid technology hold great promise as working solvents for developing compact processes. Ionic liquids, which are organic molten salts, typically have extremely low volatility and high functionality, but possess high viscos-ities, surface tensions and low diffusion coefficients, which can limit their applicability. CO2, on the other hand,especially in its supercritical state, is a green solvent that can be used advantageously when combined with the ionic liquid to provide viscosity and surface tension reduction and to promote mass transfer. The solubility of CO2 in the ionic liquid is key to estimating the important physical properties that include partition coefficients, viscosities,densities, interfacial tensions, thermal conductivities and heat capacities needed in contactor design. In this work, we examine a subset of available high pressure pure component ionic liquid PVT data and high pressure CO2-ionic liquid solubility data and report new correlations for CO2-ionic liquid systems with equations of state that have some industrial applications including: (1) general, (2) fuel desulfurization, (3) CO2 capture, and (4) chiral separation.New measurements of solubility data for the CO2 and 1-butyl-3-methylimidazolium octyl sulfate, [bmim][OcSO4] system are reported and correlated. In the correlation of the CO2 ionic liquid phase behavior, the Peng-Robinson and the Sanchez-Lacombe equations of state were considered and are compared. It is shown that excellent correlation of CO2 solubility can be obtained with either equation and they share some common characteristics regarding inter-action parameters. In the Sanchez-Lacombe equation,parameters that are derived from the supercritical region were found to be important for obtaining good correlation of the CO2-ionic liquid solubility data.

  13. A smart surface with switchable wettability by an ionic liquid.

    Science.gov (United States)

    Chang, Li; Liu, Hongliang; Ding, Yi; Zhang, Jiajing; Li, Li; Zhang, Xiqi; Liu, Mingzhu; Jiang, Lei

    2017-05-11

    Smart control of surface wettability by ionic liquids (ILs) is significant for designing IL-related intelligent materials and devices. Herein, we present mixed molecular brushes comprised of poly(phenylethyl methacrylate) and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PPhEtMA-co-PFDMS) grafted surfaces that are capable of dynamically regulating 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]) wettability. (1)H NMR and quartz crystal microbalance characterization demonstrate that the wettability changes result from a temperature-dominated cation-π interaction between [EMIm][NTf2] and PPhEtMA-co-PFDMS brushes.

  14. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  15. Lattice models of ionic systems

    Science.gov (United States)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  16. Ionic liquids in analytical chemistry.

    Science.gov (United States)

    Soukup-Hein, Renee J; Warnke, Molly M; Armstrong, Daniel W

    2009-01-01

    The role of ionic liquids (ILs) in analytical chemistry is increasing substantially every year. A decade ago there were but a handful of papers in this area of research that were considered curiosities at best. Today, those publications are recognized as seminal articles that gave rise to one of the most rapidly expanding areas of research in chemical analysis. In this review, we briefly highlight early work involving ILs and discuss the most recent advances in separations, mass spectrometry, spectroscopy, and electroanalytical chemistry. Many of the most important advances in these fields depend on the development of new, often unique ILs and multifunctional ILs. A better understanding of the chemical and physical properties of ILs is also essential.

  17. Radiation effects in ionic solids

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Tanimura, Katsumi

    1986-09-01

    Current development of the research of radiation damage in ionic solids is reviewed. Emphasis is placed on the correlation between elementary radiation damage processes and the atomic and electronic structures of the materials. Both the radiation damage induced by electronic excitation and by elastic collision are treated. For the former two crucial processes, the self-trapping of excitons and the formation of stable Frenkel pairs from the self-trapped excitons in several materials, is discussed in terms of the structures of materials. Deficiency in the available data on the knock-on threshold energies are pointed out. Available information of Frenkel pairs produced by electronic and elastic encounters is surveyed. Possible models of defect clustering are summarized and existing information on clustering is discussed on their basis.

  18. Vitamin Fortification of Fluid Milk.

    Science.gov (United States)

    Yeh, Eileen B; Barbano, David M; Drake, MaryAnne

    2017-04-01

    Vitamin concentrates with vitamins A and D are used for fortification of fluid milk. Although many of the degradation components of vitamins A and D have an important role in flavor/fragrance applications, they may also be source(s) of off-flavor(s) in vitamin fortified milk due to their heat, oxygen, and the light sensitivity. It is very important for the dairy industry to understand how vitamin concentrates can impact flavor and flavor stability of fluid milk. Currently, little research on vitamin degradation products can be found with respect to flavor contributions. In this review, the history, regulations, processing, and storage stability of vitamins in fluid milk are addressed along with some hypotheses for the role of vitamin A and D fortification on flavor and stability of fluid milk.

  19. Ionic liquids for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  20. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  1. Ionic Liquid Fuels for Chemical Propulsion

    Science.gov (United States)

    2016-10-31

    energetic materials; chemical kinetics ; hypergolic fuels; salts; ligands; lithium; borohydrides; density functional theory; flammability 16. SECURITY...continuum model  DFT  density functional theory  DME   dimethoxethane  DNB  1,5‐dinitrobiuret  GIL   generalized ionic liquid  He  helium  IL  ionic liquid... kinetics and reaction dynamics involved in the hypergolic and catalytic ignition of ionic liquid propellants with the purpose of identifying key

  2. Crowned Ionic Liquids for Biomolecular Interaction Analysis.

    Science.gov (United States)

    Tseng, Ming-Chung; Yuan, Tsu-Chun; Li, Zhuo; Chu, Yen-Ho

    2016-11-15

    On the basis of affinity recognition with positively charged side chains in peptides and proteins, a series of crowned 1,2,3-triazolium ionic liquids (CIL 1-6) was developed and found to be capable of quantitatively extracting peptides and proteins from the aqueous layer into the ionic liquid phase. All of the synthesized CIL 1-6 are liquid at room temperature. This is the first example of biomolecular recognition of both lysine- and arginine-containing peptides and proteins by CILs in pure ionic liquid phase.

  3. Quantized friction across ionic liquid thin films

    Science.gov (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  4. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  5. Thermophoretic transport of ionic liquid droplets in carbon nanotubes

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2017-04-01

    Thermal-gradient induced transport of ionic liquid (IL) and water droplets through a carbon nanotube (CNT) is investigated in this study using molecular dynamics simulations. Energetic analysis indicates that IL transport through a CNT is driven primarily by the fluid–solid interaction, while fluid–fluid interactions dominate in water–CNT systems. Droplet diffusion analysis via the moment scaling spectrum reveals sub-diffusive motion of the IL droplet, in contrast to the self-diffusive motion of the water droplet. The Soret coefficient and energetic analysis of the systems suggest that the CNT shows more affinity for interaction with IL than with the water droplet. Thermophoretic transport of IL is shown to be feasible, which can create new opportunities in nanofluidic applications.

  6. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  7. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  8. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  9. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2017-09-19

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  10. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...

  11. Size asymmetric hard spheres as a convenient model for the capacitance of the electrical double layer of an ionic liquid.

    Science.gov (United States)

    Lamperski, Stanisław; Sosnowska, Joanna; Bhuiyan, Lutful Bari; Henderson, Douglas

    2014-01-07

    Even though ionic liquids are composed of nonspherical ions, it is shown here that the general features of the capacitance of an electrical double layer can be obtained using a charged hard sphere model. We have shown in our earlier studies that at high electrolyte concentrations or large magnitudes of the electrode charge density the fact that the ions have a finite size, and are not point ions, cause the capacitance near the potential of zero charge to increase and change from a minimum to a maximum as the ionic concentration is increased and to decrease as the magnitude of the electrode charge density increases. Here, we show that the asymmetry of the capacitance of an ionic liquid can be explained qualitatively by using spherical ions of different size without attempting to introduce the ionic shape in a detailed manner. This means that the general features of the capacitance of the double layer of an ionic liquid can be studied without using a complex model, although the study of the density or charge profiles of an ionic fluid would require one. However, this is often unnecessary in the analysis of many experiments.

  12. Ionic liquid polyoxometalates as light emitting materials

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-acosta, Denisse [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Scott, Brian [Los Alamos National Laboratory; Bennett, Bryan L [Los Alamos National Laboratory; Purdy, Geraldine M [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Mc Kigney, Edward [Los Alamos National Laboratory; Gilbertson, Robert [Los Alamos National Laboratory

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  13. Ionic Liquid Epoxy Composite Cryotanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  14. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  15. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  16. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  17. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes;

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  18. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...

  19. Aqueous ionic liquid pretreatment of straw.

    Science.gov (United States)

    Fu, Dongbao; Mazza, Giuseppe

    2011-07-01

    Pretreatment is the key to unlock the recalcitrance of lignocellulose for cellulosic biofuels production. Increasing attention has been drawn to ionic liquids (ILs) for pretreatment of lignocellulosic biomass, because this approach has several advantages over conventional methods. However, cost and energy-intensive recycling of the solvents are major constraints preventing ILs from commercial viability. In this work, a mixture of ionic liquid 1-ethyl-3-methylimidazolium acetate and water was demonstrated to be effective for pretreatment of lignocellulosic biomass, evidenced by the removal of lignin and a reduction in cellulose crystallinity. A higher fermentable sugar yield (81%) was obtained than for pure ionic liquid pretreatment under the same conditions (67%). Aqueous ionic liquid pretreatment has the advantages of less usage and easier recycling of ILs, and reduced viscosity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  1. Phosphonium-based ionic liquids and uses

    Energy Technology Data Exchange (ETDEWEB)

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  2. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  3. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG HaiBo; ZHOU XiaoHai; DONG JinFeng; ZHANG GaoYong; WANG CunXin

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents, which promises widespread applications in industry and other areas. However, the ionic liquids with surface activity are rarely reported. In this work, a series of novel ionic liquids was synthesized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized, which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  4. Superbase-derived protic ionic liquids

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  5. Ionic liquids in the synthesis of nanoobjects

    Energy Technology Data Exchange (ETDEWEB)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A [Institute of Chemistry and Problems of Sustainable Development D.I.Mendeleev University of Chemical Technology of Russia (Russian Federation)

    2010-08-12

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  6. Ionic liquids in the synthesis of nanoobjects

    Science.gov (United States)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  7. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  8. Thermodynamic Properties of Caprolactam Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    JIANG Lu; BAI Liguang; ZHU Jiqin; CHEN Biaohua

    2013-01-01

    A series of caprolactam ionic liquids (ILs) containing incorporated halide anions were synthesized.Their physical properties,such as melting points,heats of fusion and heat capacities,were measured by differential scanning calorimeter (DSC).The results indicate that these ionic liquids exhibit proper melting points,high value of heats of fusion,and satisfying heat capacities which are suitable for thermal energy storage applications.

  9. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  10. Ionic interaction of sulfatide with choline lipids.

    Science.gov (United States)

    Abramson, M B; Katzman, R

    1968-08-09

    Aqueous systems of sphingomyelin-sulfatide and lecithin-sulfatide were compared with aqueous systems of the individual lipids. The acid capacity of the mixed lipids increased, a result of the formation of an ionic bond between the sulfate of one molecule and the positive nitrogen of the other, making the phosphate available for direct titration. Cholesterol reduces this ionic interaction, probably because of the increased spacing of the ionized groups.

  11. Interaction of Novel Ionic Liquids with Soils

    OpenAIRE

    2013-01-01

    With the constant development of new ionic liquids, the understanding of the chemical fate of these compounds also needs to be updated. To this effect, the interaction of a number of novel ionic liquids with soils was determined. Therefore, three novel headgroups (ammonium, phosphonium, or pyrrolidinium) with single or quaternary substitution were tested on a variety of soils with high-to-low organic matter content and high-to-low cation exchange capacity, thereby trying to capture the full r...

  12. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  13. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  14. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  15. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  16. Ultrafast Torsional Relaxation of Thioflavin-T in Tris(pentafluoroethyl)trifluorophosphate (FAP) Anion-Based Ionic Liquids.

    Science.gov (United States)

    Singh, Prabhat K; Mora, Aruna K; Nath, Sukhendu

    2015-11-01

    Ultrafast spectroscopy on solutes, whose dynamics is very sensitive to the friction in its local environment, has strong potential to report on the microenvironment existing in complex fluids such as ionic liquids. In this work, the torsional relaxation dynamics of Thioflavin-T (ThT), an ultrafast molecular rotor, is investigated in two fluoroalkylphosphate ([FAP])-based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM][FAP]) and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([OHEMIM][FAP]), using ultrafast fluorescence up-conversion spectroscopy. The emission quantum yield and the excited-state fluorescence lifetime measurement suggest that the torsional relaxation of Thioflavin-T, in this class of ionic liquids, is guided by the viscosity of the medium. The temporal profile of the dynamic Stokes' shift of ThT, measured from time-resolved emission spectrum (TRES), displays a multiexponential behavior in both ionic liquids. The long time dynamics of the Stokes' shift is reasonably slower for the hydroxyethyl derivative as compared to the ethyl derivative, which is in accordance with their measured shear viscosity. However, the short time dynamics of Stokes' shift is very similar in both the ionic liquids, and seems to be independent of the measured shear viscosity of the ionic liquid. We rationalize these observations in terms of different locations of ThT in these ionic liquids. These results suggest that despite having a higher bulk viscosity in the ionic liquid, they can provide unique microenvironment in their complex structure, where the reaction can be faster than expected from their measured shear viscosity.

  17. Fluorescence lifetime to image epidermal ionic concentrations

    Science.gov (United States)

    Behne, Martin J.; Barry, Nicholas P.; Moll, Ingrid; Gratton, Enrico; Mauro, Theodora M.

    2004-09-01

    Measurements of ionic concentrations in skin have traditionally been performed with an array of methods which either did not reveal detailed localization information, or only provided qualitative, not quantitative information. FLIM combines a number of advantages into a method ideally suited to visualize concentrations of ions such as H+ in intact, unperturbed epidermis and stratum corneum (SC). Fluorescence lifetime is dye concentration-independent, the method requires only low light intensities and is therefore not prone to photobleaching or phototoxic artifacts, and because multiphoton lasers of IR wavelength are used, light penetrates deep into intact tissue. The standard method to measure SC pH is the flat pH electrode, which provides reliable information only about surface pH changes, without further vertical or subcellular spatial resolution; i.e., specific microdomains such as the corneocyte interstices are not resolved, and the deeper SC is inaccessible without resorting to inherently disruptive stripping methods. Furthermore, the concept of a gradient of pH through the SC stems from such stripping experiments, but other confirmation for this concept is lacking. Our investigations into the SC pH distribution so far have revealed the crucial role of the Sodium/Hydrogen Antiporter NHE1 in generation of SC acidity, the colocalization of enzymatic lipid processing activity in the SC with acidic domains of the SC, and the timing and localization of emerging acidity in the SC of newborns. Together, these results have led to an improved understanding of the SC pH, its distribution, origin, and regulation. Future uses for this method include measurements of other ions important for epidermal processes, such as Ca2+, and a quantitative approach to topical drug penetration.

  18. Contact with hospital syringes containing body fluids: implications for medical waste management regulation Jeringas en contacto con sangre y fluidos corporales utilizadas en el hospital: implicaciones para el manejo de desechos hospitalarios

    Directory of Open Access Journals (Sweden)

    Patricia Volkow

    2003-04-01

    Full Text Available OBJECTIVE: To determine amount of syringes used in the hospital and extent of contact with blood and body fluids of these syringes. MATERIAL AND METHODS: Syringe use was surveyed at a tertiary care center for one week; syringes were classified into the following four categories according to use: a contained blood; b contained other body fluids (urine, gastric secretion, cerebrospinal fluid, wound drainage; c used exclusively for drug dilution and application in plastic intravenous (IV tubes, and d for intramuscular (IM, subcutaneous (SC, or intradermic (ID injections. RESULTS: A total of 7 157 plastic disposable syringes was used; 1 227 (17% contained blood during use, 346 (4.8%, other body fluids, 5 257 (73% were used exclusively for drug dilution and application in plastic IV lines, and 327 (4.5% were utilized for IM, SC, or ID injections. An estimated 369 140 syringes used annually, or eight syringes per patient per in-hospital day. All syringes were disposed of as regulated medical waste, in observance of the law. CONCLUSIONS: There is an urgent need to review recommendations for medical waste management by both international agencies and local governments, based on scientific data and a cost-benefit analysis, to prevent resource waste and further environmental damage.OBJETIVO: Cuantificar el número de jeringas que se utilizan en el hospital y calcular cuántas de éstas entran en contacto con sangre o fluidos corporales. MATERIAL Y MÉTODOS: Se hizo una encuesta del uso de jeringas en un hospital de tercer nivel de atención durante toda una semana. Se clasificaron, de acuerdo con el uso que se les dio, en cuatro categorías: a aspiración de sangre, b otros fluidos corporales (orina, secreción gástrica, líquido cefalorraquídeo, drenaje de herida, etcétera, c uso exclusivo para diluir medicamentos y administrarlos a través de tubos de terapia intravenosa, d para aplicación de inyecciones intramusculares (IM, subcutáneas (SC o

  19. Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects.

    Science.gov (United States)

    Wang, Han; Nandigana, Vishal V R; Jo, Kyoo Dong; Aluru, Narayana R; Timperman, Aaron T

    2015-04-01

    The current rectification factor can be tailored by changing the degree of asymmetry between the fluid baths on opposite sides of a nanocapillary membrane (NCM). A symmetric device with symmetric fluid baths connected to opposite sides of the NCM did not rectify ionic current; while a NCM connected between fluid baths with a 32-fold difference in cross-sectional area produced a rectification factor of 75. The data suggests that the primary mechanism for the current rectification is the change in cross-sectional area of the fluid baths and the polarity dependent propagation of the enriched and depleted concentration polarization (CP) zones into these regions. An additional contribution to the increasing rectification factor with increasing bath asymmetry appears to be a result of electroconvection in the macropore, with inside diameters (IDs) of 625 and 850-μm. Power spectral density (PSD) analysis reveals chaotic oscillations that are consistent with electroconvection in the I-t data of the 625 and 850-μm ID macropore devices. In the ON state, current rectification keeps ionic transport toward the NCM high, increasing the speed of processes like sample enrichment. A simple means is provided to fabricate fluidic diodes with tailored current rectification factors.

  20. Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes.

    Science.gov (United States)

    Zhao, Shunbing; Golowasch, Jorge

    2012-09-26

    Ionic conductances in identified neurons are highly variable. This poses the crucial question of how such neurons can produce stable activity. Coexpression of ionic currents has been observed in an increasing number of neurons in different systems, suggesting that the coregulation of ionic channel expression, by thus linking their variability, may enable neurons to maintain relatively constant neuronal activity as suggested by a number of recent theoretical studies. We examine this hypothesis experimentally using the voltage- and dynamic-clamp techniques to first measure and then modify the ionic conductance levels of three currents in identified neurons of the crab pyloric network. We quantify activity by measuring 10 different attributes (oscillation period, spiking frequency, etc.), and find linear, positive and negative relationships between conductance pairs and triplets that can enable pyloric neurons to maintain activity attributes invariant. Consistent with experimental observations, some of the features most tightly regulated appear to be phase relationships of bursting activity. We conclude that covariation (and probably a tightly controlled coregulation) of ionic conductances can help neurons maintain certain attributes of neuronal activity invariant while at the same time allowing conductances to change over wide ranges in response to internal or environmental inputs and perturbations. Our results also show that neurons can tune neuronal activity globally via coordinate expression of ion currents.

  1. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  2. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].

    Science.gov (United States)

    Choi, Eunsong; McDaniel, Jesse G; Schmidt, J R; Yethiraj, Arun

    2014-08-07

    Molecular simulations play an important role in establishing structure-property relations in complex fluids such as room-temperature ionic liquids. Classical force fields are the starting point when large systems or long times are of interest. These force fields must be not only accurate but also transferable. In this work, we report a physically motivated force field for the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) based on symmetry-adapted perturbation theory. The predictions (from molecular dynamics simulations) of the liquid density, enthalpy of vaporization, diffusion coefficients, viscosity, and conductivity are in excellent agreement with experiment, with no adjustable parameters. The explicit energy decomposition inherent in the force field enables a quantitative analysis of the important physical interactions in these systems. We find that polarization is crucial and there is little evidence of charge transfer. We also argue that the often used procedure of scaling down charges in molecular simulations of ionic liquids is unphysical for [BMIM][BF4]. Because all intermolecular interactions in the force field are parametrized from first-principles, we anticipate good transferability to other ionic liquid systems and physical conditions.

  3. Ionic liquids--an overview.

    Science.gov (United States)

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer.

  4. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  5. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing.

  6. The Research Progress of CO2 Capture with Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    赵志军; 董海峰; 张香平

    2012-01-01

    Due to their negligible volatility, reasonable thermal stability, strong dissolubility, wide liquid range and tunability of structure and property, ionic liquids have been regarded as emerging candidate reagents for CO2 cap- ture from industries gases. In this review, the research progresses in CO2 capture using conventional ionic liquids,functionalized ionic liquids, supported ionic-liquids membranes, polymerized ionic liquids and mixtures of ionic liquids with some molecular solvents were investigated and reviewed. Discussion of relevant research fields was presented and the future developments were suggested.

  7. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  8. Contact with hospital syringes containing body fluids: implications for medical waste management regulation Jeringas en contacto con sangre y fluidos corporales utilizadas en el hospital: implicaciones para el manejo de desechos hospitalarios

    OpenAIRE

    Patricia Volkow; Bénédicte Jacquemin; Diana Vilar-Compte; José Ramón Castillo

    2003-01-01

    OBJECTIVE: To determine amount of syringes used in the hospital and extent of contact with blood and body fluids of these syringes. MATERIAL AND METHODS: Syringe use was surveyed at a tertiary care center for one week; syringes were classified into the following four categories according to use: a) contained blood; b) contained other body fluids (urine, gastric secretion, cerebrospinal fluid, wound drainage); c) used exclusively for drug dilution and application in plastic intravenous (IV) tu...

  9. Contact with hospital syringes containing body fluids: implications for medical waste management regulation Jeringas en contacto con sangre y fluidos corporales utilizadas en el hospital: implicaciones para el manejo de desechos hospitalarios

    OpenAIRE

    Patricia Volkow; Bénédicte Jacquemin; Diana Vilar-Compte; José Ramón Castillo

    2003-01-01

    OBJECTIVE: To determine amount of syringes used in the hospital and extent of contact with blood and body fluids of these syringes. MATERIAL AND METHODS: Syringe use was surveyed at a tertiary care center for one week; syringes were classified into the following four categories according to use: a) contained blood; b) contained other body fluids (urine, gastric secretion, cerebrospinal fluid, wound drainage); c) used exclusively for drug dilution and application in plastic intravenous (IV) tu...

  10. Ionic matrices pre-spotted matrix-assisted laser desorption/ionization plates for patient maker following in course of treatment, drug titration, and MALDI mass spectrometry imaging.

    Science.gov (United States)

    Bonnel, David; Franck, Julien; Mériaux, Céline; Salzet, Michel; Fournier, Isabelle

    2013-03-01

    In the current study, we compared plastic matrix-assisted laser desorption/ionization (MALDI) plates pre-spotted with different solid ionic matrices. Data reflect that after 3 months of storage, the standards were oxidized in α-cyano-4-hydroxycinnamic acid (HCCA) whether or not in HCCA/3-acetylpyridine (3APY) and HCCA/aniline, and certain peptides, such as ubiquitin, were not detected using the HCCA matrix, whereas they were detected in pre-spotted ionic matrices. Application in peptidomics of these MALDI matrices pre-spotted plates (after 3 months of storage) with ovarian cyst fluid showed less intense signals with HCCA than with solid ionic matrices. We show that these pre-spotted ionic matrices plates can be used for relative drug quantification, high mass protein detection, and MALDI mass spectrometry imaging.

  11. Normotension, hypertension and body fluid regulation

    DEFF Research Database (Denmark)

    Bie, P; Evans, R G

    2017-01-01

    be an epiphenomenon; (v) plasma renin levels are useful in the analysis of EH only after metabolic standardization and then determination of the renin function line (plasma renin as a function of sodium intake); and (vi) angiotensin II-mediated hypertension is not a model of EH. Recent studies of baroreceptors...... and renal nerves as well as sodium intake and renin secretion help bridge the gap between the neurocentric and renocentric concepts....... activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may...

  12. Sequential Vapor Infiltration Treatment Enhances the Ionic Current Rectification Performance of Composite Membranes Based on Mesoporous Silica Confined in Anodic Alumina.

    Science.gov (United States)

    Liang, Yanyan; Liu, Zhengping

    2016-12-20

    Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.

  13. 7 CFR 1030.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1030.16 Section 1030.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1030.16 Fluid cream product. See § 1000.16....

  14. 7 CFR 1005.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1005.16 Section 1005.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1005.16 Fluid cream product. See § 1000.16....

  15. 7 CFR 1124.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1124.16 Section 1124.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1124.16 Fluid cream product. See § 1000.16....

  16. Nuclear microanalysis of the human amnion: A study of ionic cellular exchanges

    Science.gov (United States)

    Razafindrabe, L.; Moretto, Ph.; Llabador, Y.; Simonoff, M.; Bara, M.; Guiet-Bara, A.

    1995-09-01

    The epithelial cells of the human amniotic membrane have been extensively studied by electrophysiologists with the aim of elucidating the mechanisms of transmembrane ionic transfers. In order to provide complementary information about this model, nuclear microanalysis was performed using the CENBG ion microbeam. Quantitative mapping of the human amnion was carried out and the distributions of most mono- and divalent ions involved in cellular pathways (Na +, Mg 2+, Cl -, Ca 2+) were determined. The ionic cellular content was also compared, before and after incubation in a Hanks' physiological fluid and the resultant ions transfers were determined. The aim of this paper is to expose the advances of this experimental model, more particularly after the development of simulation programs which improved the accuracy of PIXE analysis in the measurement of low energy X-rays emitters. Statistically significant results can now be extracted and can be explained taking into account the results of previous electrophysiological experiments.

  17. Aggregation behavior and total miscibility of fluorinated ionic liquids in water.

    Science.gov (United States)

    Pereiro, Ana B; Araújo, João M M; Teixeira, Fabiana S; Marrucho, Isabel M; Piñeiro, Manuel M; Rebelo, Luis Paulo N

    2015-02-01

    In this work, novel and nontoxic fluorinated ionic liquids (FILs) that are totally miscible in water and could be used in biological applications, where fluorocarbon compounds present a handicap because their aqueous solubility (water and biological fluids) is in most cases too low, have been investigated. The self-aggregation behavior of perfluorosulfonate-functionalized ionic liquids in aqueous solutions has been characterized using conductometric titration, isothermal titration calorimetry (ITC), surface tension measurements, dynamic light scattering (DLS), viscosity and density measurements, and transmission electron microscopy (TEM). Aggregation and interfacial parameters have been computed by conductimetry, calorimetry, and surface tension measurements in order to study various thermodynamic and surface properties that demonstrate that the aggregation process is entropy-driven and that the aggregation process is less spontaneous than the adsorption process. The novel perfluorosulfonate-functionalized ILs studied in this work show improved surface activity and aggregation behavior, forming distinct self-assembled structures.

  18. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  19. Enzyme activity in dialkyl phosphate ionic liquids.

    Science.gov (United States)

    Thomas, Marie F; Li, Luen-Luen; Handley-Pendleton, Jocelyn M; van der Lelie, Daniel; Dunn, John J; Wishart, James F

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  20. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  1. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  2. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  3. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Ku [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: ycbae@hanyang.ac.k [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim; PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim; PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  4. Videotapes and Movies on Fluid Dynamics and Fluid Machines

    OpenAIRE

    Carr, Bobbie; Young, Virginia E.

    1996-01-01

    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  5. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  6. Diffusion and ionic conductivity in solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. N.

    1979-01-01

    In ionic solids, the most usual experimental method of determining the correlation factor (f) has been a comparison of tracer diffusion and ionic conductivity. Theoretical values of f have been determined for many lattice geometries and jump processes and compared with measured values of f as a means of determining the atomic jump process. This paper considers the problems of applying this technique to solid electrolytes where the concentration of defects responsible for diffusion is comparable to the concentration of the mobile ions. The difficulties of applying the more common experimental techniques are discussed and the present level of theoretical understanding of correlation effects will be outlined.

  7. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  8. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  9. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  10. Physical chemistry of reaction dynamics in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  11. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  12. Theoretical and Experimental Study of the Friction Behavior of Halogen-Free Ionic Liquids in Elastohydrodynamic Regime

    Directory of Open Access Journals (Sweden)

    Karthik Janardhanan

    2016-05-01

    Full Text Available Ionic Liquids have emerged as effective lubricants and additives to lubricants, in the last decade. Halogen-free ionic liquids have recently been considered as more environmentally stable than their halogenated counterparts, which tend to form highly toxic and corrosive acids when exposed to moisture. Most of the studies using ionic liquids as lubricants or additives of lubricants have been done experimentally. Due to the complex nature of the lubrication mechanism of these ordered fluids, the development of a theoretical model that predicts the ionic liquid lubrication ability is currently one of the biggest challenges in tribology. In this study, a suitable and existing friction model to describe lubricating ability of ionic liquids in the elastohydrodynamic lubrication regime is identified and compared to experimental results. Two phosphonium-based, halogen-free ionic liquids are studied as additives to a Polyalphaolefin base oil in steel–steel contacts using a ball-on-flat reciprocating tribometer. Experimental conditions (speed, load and roughness are selected to ensure that operations are carried out in the elastohydrodynamic regime. Wear volume was also calculated for tests at high speed. A good agreement was found between the model and the experimental results when [THTDP][Phos] was used as an additive to the base oil, but some divergence was noticed when [THTDP][DCN] was added, particularly at the highest speed studied. A significant decrease in the steel disks wear volume is observed when 2.5 wt. % of the two ionic liquids were added to the base lubricant.

  13. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  14. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    OpenAIRE

    Handy, Scott T.; Steven Bornemann

    2011-01-01

    Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic li...

  15. Transport-induced inversion of screening ionic charges in nanochannels

    OpenAIRE

    Zhu, Xin; Guo, Lingzi; Ni, Sheng; Zhang, Xingye; Liu, Yang

    2016-01-01

    This work reveals a counter-intuitive but basic process of ionic screening in nano-fluidic channels. Steady-state numerical simulations and mathematical analysis show that, under significant longitudinal ionic transport, the screening ionic charges can be locally inverted in the channels: their charge sign becomes the same as that of the channel surface charges. The process is identified to originate from the coupling of ionic electro-diffusion transport and junction 2-D electrostatics. This ...

  16. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  17. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  18. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    OpenAIRE

    Ying Li; Ning Tang; Fuyuhiko Inagaki; Chisato Mukai; Kazuichi Hayakawa

    2013-01-01

    1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs) with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenc...

  19. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC in Ionic Media Including Drug Release

    Directory of Open Access Journals (Sweden)

    Sunil C. Joshi

    2011-10-01

    Full Text Available Sol-gel transformations in HPMC (hydroxypropyl methylcellulose are being increasingly studied because of their role in bio-related applications. The thermo-reversible behavior of HPMC is particularly affected by its properties and concentration in solvent media, nature of additives, and the thermal environment it is exposed to. This article contains investigations on the effects of salt additives in Hofmeister series on the HPMC gelation. Various findings regarding gelation with salt ions as well as with the ionic and non-ionic surfactants are presented. The gel formation in physiological salt fluids such as simulated gastric and intestine fluids is also examined with the interest in oral drug delivery systems. The processes of swelling, dissolution and dispersion of HPMC tablets in simulated bio-fluids are explored and the release of a drug from the tablet affected by such processes is studied. Explanations are provided based on the chemical structure and the molecular binding/association of HPMC in a media. The test results at the body or near-body temperature conditions helped in understanding the progress of the gelation process within the human body environment. The detailed interpretation of various molecule level interactions unfolded the sol-gel mechanisms and the influence of a few other factors. The obtained test data and the established mathematical models are expected to serve as a guide in customizing applications of HPMC hydrogels.

  20. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    Characterizing Microstructures at Ionic Liquid /Electrode Interfaces Report Title This report details the procurement and integration of a multichannel...Haverhals, “Microstructure at the Ionic Liquid /Electrode Interface ”, 226th ECS Meeting, 8 October, 2014, Cancun, Mexico. (c) Presentations Received Paper...Technology Transfer FINAL REPORT “Potentiostat for Characterizing Microstructures at Ionic Liquid /Electrode Interfaces ” Proposal #: 66259CHRI

  1. Single-Base DNA Discrimination via Transverse Ionic Transport

    CERN Document Server

    Wilson, James

    2013-01-01

    We suggest to discriminate single DNA bases via transverse ionic transport, namely by detecting the ionic current that flows in a channel while a single-stranded DNA is driven through an intersecting nanochannel. Our all-atom molecular dynamics simulations indeed show that the ionic currents of the four bases are statistically distinct, thus offering another possible approach to sequence DNA.

  2. Synthesis of electroactive ionic liquids for flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  3. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  4. Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

    Science.gov (United States)

    Zhu, Peixi

    This research is aimed at studying the ionic liquid/n-pentanol interface via video-microscopy and molecular dynamic simulations. Understanding the interfacial phenomena and interfacial transport between ionic liquids and other liquids is of interest to the development and application of ionic liquids in a number of areas. One such area is the biphasic hydroformylation of alkenes to obtain alcohol and aldehyde, in which case ionic liquid is the reaction medium where a catalyst resides. The dissolution of an ionic liquid into an alcohol was studied by microscopically observing and measuring the shrinking of a micropipette-produced droplet in real time. Although microscopic investigation of droplet dissolution has been studied before, no attempt had been made to measure the diffusion coefficient D of the droplet species in the surrounding medium. A key finding of this work is that the Epstein-Plesset mathematical model, which describes the dissolution of a droplet/bubble in another fluid medium, can be used to measure D. Other experimental studies of the ionic liquid/alcohol system include electrical conductivity and UV-visible spectroscopy measurements of solutions of 1-hexyl-3-methylimidazolium tetrafluoroborate in n-pentanol. Those experiments were done in order to understand the molecular state of the particular ionic liquid in n-pentanol, as well as obtaining the dissociation constant K of such weak electrolyte solution. The experimental results provide an entry to the assessment of ionic liquid interaction with n-pentanol at molecular scale. Subsequently, molecular dynamics simulation was implemented for the investigation of such interaction. The computation started with simulation of the bulk phase of 1-butyl-3-methylimidazolium tetrafluoroborate, an affine ionic liquid on which molecular simulations had already been reported. A generalized probability based on Fuoss approximation for the closest ion to a distinguished countercharge ion was developed. In

  5. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    Science.gov (United States)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  6. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    Science.gov (United States)

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  7. Solvation and Reaction in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  8. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  9. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  10. Micro-ionics: next generation power sources.

    Science.gov (United States)

    Tuller, Harry L; Litzelman, Scott J; Jung, Woochul

    2009-05-07

    The desire for ever smarter systems-on-a-chip and plug-free portable electronics with longer operating times between recharge has stimulated growing interest in micro-ionic systems. The use of thin film and photolithographic processing techniques, commonly at temperatures considerably below those utilized in conventional ceramics processing methods, leads to ionic or mixed ionic-electronic materials with nanosized dimensions. The implications for nanosized grains on the conductivity of thin film solid oxide electrolytes are examined. Grain boundary engineering, as a means of controlling and ultimately enhancing transport along and across grain boundaries, becomes essential given that such boundaries often dominate the transport properties of such nano-dimensioned materials. Heterogeneous doping by selective in-diffusion along grain boundaries was introduced as a potentially powerful means of achieving this. This is coupled with the modeling of space charge distributions at such boundaries, taking into account possible dopant segregation to the boundaries. The use of lithographic methods for generating geometrically well defined structures is used to illustrate how one can achieve a much improved understanding of electrode processes in SOFC structures. Indeed, the more idealized structures achievable by application of microelectronic processing provide a marvelous opportunity to uncover the science underlying the technology of micro- and ultimately macro-ionics.

  11. Vaporisation of a dicationic ionic liquid.

    Science.gov (United States)

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  12. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  13. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  14. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  15. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  16. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  17. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  18. Photo-degradation of imidazolium ionic liquids

    OpenAIRE

    Katoh, Ryuzi; Takahashi, Kenji

    2009-01-01

    Degradation of imidazolium ionic liquid, [bmim+][TFSA-] and iodide solution of [bmim+][TFSA-] by UV-laser irradiation has been studied through ground-state absorption and transient absorption spectroscopy. We found that excited state [bmim+]* undergoes degradation efficiently. © 2009 Elsevier Ltd. All rights reserved.

  19. Esterification of Starch in Ionic Liquids

    Science.gov (United States)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  20. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  1. Multiplexed ionic current sensing with glass nanopores.

    Science.gov (United States)

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  2. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    Science.gov (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  3. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity.

    Science.gov (United States)

    Yoshida, Yukihiro; Baba, Osamu; Saito, Gunzi

    2007-05-10

    A series of dicyanamide [N(CN)2]-based ionic liquids were prepared using 1-alkyl-3-methylimidazolium cations with different alkyl chain lengths and ethyl-containing heterocyclic cations with different ring structures, and the influence of such structural variations on their thermal property, density, electrochemical window, viscosity, ionic conductivity, and solvatochromic effects was investigated. We found that the 1,3-dimethylimidazolium salt shows the highest ionic conductivity among ionic liquids free from halogenated anions (3.6 x 10(-2) S cm(-1) at 25 degrees C), and the elongation of the alkyl chain causes the pronounced depression of fluidity and ionic conductivity. Also, such an elongation gives rise to the increase in the degree of ion association in the liquids, mainly caused by the van der Waals interactions between alkyl chains. N(CN)2 salts with 1-ethyl-2-methylpyrazolium (EMP) and N-ethyl-N-methylpyrrolidinium (PY(12)) cations as well as 1-ethyl-3-methylimidazolium (EMI) cation are liquids at room temperature (RT), while the N-ethylthiazolium salt shows a melting event at higher temperature (57 degrees C). Among the three RT ionic liquids with ethyl-containing cations, RT ionic conductivity follows the order EMI > PY(12) > EMP, which does not coincide with the order of fluidity at RT (EMI > EMP > PY(12)). Such a discrepancy is originated from a high degree of ion dissociation in the PY(12) salt, which was manifested in the Walden rule deviation and solvatochromic effects. A series of N(CN)2/C(CN)3 binary mixtures of the EMI salts were also prepared. RT ionic conductivity decreases linearly with increasing the molar fraction of C(CN)3 anion.

  4. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  5. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    Science.gov (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-09-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  6. Solid state ionics: a Japan perspective.

    Science.gov (United States)

    Yamamoto, Osamu

    2017-01-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-x Y x O3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm(-1) at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm(-1) at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  7. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  8. Diffusiophoretic mobility of charge-regulating porous particles.

    Science.gov (United States)

    Li, Wei C; Keh, Huan J

    2016-08-01

    The diffusiophoresis of a charge-regulating porous sphere, such as polyelectrolyte coil, with an arbitrary thickness of the electric double layer in an electrolyte solution prescribed with a concentration gradient is analytically studied for the first time. The ionogenic functional groups and hydrodynamic frictional segments distribute uniformly within the permeable particle, and a charge regulation model for the association and dissociation reactions of the functional groups relates the fixed charge density to the local electric potential. The electrokinetic equations governing the electric potential, ionic electrochemical potential, and fluid velocity distributions are solved as power-series expansions in the basic fixed charge density. An explicit formula for the diffusiophoretic mobility of the particle, which vanishes at the isoelectric point, is derived from a force balance. The effects of charge regulation on the diffusiophoretic mobility, which depend on various particle and electrolyte characteristics such as the reaction equilibrium constants of the ionogenic functional groups, are significant and interesting. The variation in the bulk concentration of the charge-determining ions can produce more than one reversal in the direction of the diffusiophoretic velocity. The obtained results differ conspicuously from those of impermeable particles and provide valuable information for the interpretation of experimental data.

  9. Controlled differential pressure system for an enhanced fluid blending apparatus

    Science.gov (United States)

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  10. Influence of ionic temperature on the acoustic dressed soliton in plasma with Maxwellian positrons

    Science.gov (United States)

    El-Shewy, E. K.; Abdo, N. F.; Yousef, M. Saleh

    2016-08-01

    The dressed solitary ion waves in a collisionless unmagnetized plasma composed warm fluid of ion and Boltzmann distributed electrons and positrons are studied. For nonlinear ion acoustic waves, a reductive perturbation method is applied to deduce the KdV equation in terms of first order potential. When soliton amplitude is enlarged, the shape of the wave sidetracks from KdV equation. To improve the soliton shape, the perturbed KdV equation is obtained. The effects of ionic temperature on the electrostatic dressed soliton structures are also discussed.

  11. The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point

    Science.gov (United States)

    Zhang, Kai C.; Briggs, Matthew E.; Gammon, Robert W.; Levelt Sengers, J. M. H.

    1992-01-01

    We report turbidity measurements of a nonaqueous ionic solution of triethyl n-hexylammonium triethyl n-hexylboride in diphenyl ether. A classical susceptibility critical exponent gamma = 1.01 +/- 0.01 is obtained over the reduced temperature range t between values of 0.1 and 0.0001. The best fits of the sample transmission had a standard deviation of 0.39 percent over this range. Ising and spherical model critical exponents are firmly excluded. The correlation length amplitude xi sub 0 from fitting is 1.0 +/- 0.2 nm which is much larger than values found in neutral fluids and some aqueous binary mixtures.

  12. Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays

    Science.gov (United States)

    Gu, Wei; Chen, Hao; Tung, Yi-Chung; Meiners, Jens-Christian; Takayama, Shuichi

    2007-01-01

    Pneumatic actuation with multilayer soft lithography enables operation of up to thousands of valves in parallel using far fewer control lines. However, it is dependent on macroscopic switches and external pressure sources that require interconnects and limit portability. The authors present a more portable and multiplexed valve actuation strategy that uses a grid of mechanically actuated Braille pins to hydraulically, rather than pneumatically, deform elastic actuation channels that act as valves. Experimental and theoretical analyses show that the key to reliable operation of the hydraulic system is the use of nonvolatile ionic liquids as the hydraulic fluid.

  13. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents,which promises widespread applications in industry and other areas. However,the ionic liq-uids with surface activity are rarely reported. In this work,a series of novel ionic liquids was synthe-sized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized,which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  14. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  15. Biocatalysis in ionic liquids - advantages beyond green technology.

    Science.gov (United States)

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.

  16. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    . The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic......A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water...

  17. Synovial fluid analysis

    Science.gov (United States)

    ... bursae (fluid-filled sacs in the joints), and tendon sheaths. After the joint area is cleaned, the ... HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes ...

  18. Amniotic fluid (image)

    Science.gov (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  19. Pericardial Fluid Analysis

    Science.gov (United States)

    ... help diagnose the cause of inflammation of the pericardium (pericarditis) and/or fluid accumulation around the heart ( ... pressure within blood vessels or inflammation of the pericardium. An initial set of tests, including fluid protein ...

  20. Pericardial fluid Gram stain

    Science.gov (United States)

    ... staining a sample of fluid taken from the pericardium. This is the sac surrounding the heart to ... sample of fluid will be taken from the pericardium. This is done through a procedure called pericardiocentesis . ...

  1. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  2. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  3. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  4. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  5. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    Science.gov (United States)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  6. Hydrogen-bond acidity of ionic liquids: an extended scale†

    Science.gov (United States)

    Kurnia, Kiki A.; Lima, Filipa; Cláudio, Ana Filipa M.; Coutinho, João A. P.; Freire, Mara G.

    2015-01-01

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet–Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2]−)-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation–anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation–anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  7. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  8. Periodicity and map for discovery of new ionic liquids

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There is virtually no limit in the number of ionic liquids. How to select proper ones or discover new ones with desirable properties in such a large pool of ionic liquids? It has become a bottleneck in the researches and applications of ionic liquids. Mendeleev's periodic law states that the properties of the elements vary periodically. Whether the similar regularity exists among ionic or molecular fragments of compounds is an interesting topic. In this work, we attempted to establish a periodicity and draw a "map" of ionic liquids for providing definite guidance to discover, design, and select the proper ionic liquids rather than trial-and-error. If a complete regularity of the system of ionic liquids can be finally established in the future, we are near an epoch in understanding the existing differences and the reasons for the similarity of the ions or molecular fragments.

  9. Fluid force transducer

    Science.gov (United States)

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  10. 某矿山酸性水调节库重力坝流固耦合分析%Fluid-structure Interaction Analysis of the Gravity Dam of the Acidic Water Regulating Reservoir of a Mine

    Institute of Scientific and Technical Information of China (English)

    张程; 张强; 刘斌

    2015-01-01

    根据某矿山酸性水调节库安全稳定运行的需要,建立调节库重力坝有限元分析模型,运用间接流固耦合分析方法,首先分析了重力坝在洪水水位的最危险状态下,加入相关坝体排水系统进入有限元分析,重力坝坝体和坝基的渗流状态和酸性水渗透量;然后将渗流计算耦合到应力变形中,分析了整个坝体的应力状态和变形行为,详细分析了斜缝(施工缝)附近的应力集中状态。结果表明:排水设施加入后,有效降低了坝体的浸润线位置,减少了渗水对坝体的不利影响,耦合作用下,重力坝各项指标符合相关要求。斜缝对坝体变形影响有限,但改变了坝体的应力分布情况,需要在斜缝位置加强保护。%According to the requirements of safe and stable operation of the acidic water regulating reservoir of a mine,the finite element analysis model of the gravity dam of the regulating reservoir is es-tablished.The fluid-structure interaction analysis method is adopted to analyze the seepage state and a-cidic water osmotic quantity of the gravity dam with the dangerous water level.Based on the above analy-sis results,the seepage calculation method is coupled to analyze the stress state and deformation behavior of the whole gravity dam,besides that,the stress concentration state near the inclined seam(construction seam)is also analyzed in depth.The results show that the addition of drainage facilities reduce the gravity dame saturation line position and the negative impact of water seepage to gravity dam body effectively,the indicators of gravity meet the relevant requirements by coupling,the impact of incline seam to gravity dam body is limited,but it changed the stress distribution of gravity dam body,therefore,it is necessary to take related measures to strengthen protection in the position of inclined seam.

  11. Renewable feedstocks in green solvents: thermodynamic study on phase diagrams of D-sorbitol and xylitol with dicyanamide based ionic liquids.

    Science.gov (United States)

    Paduszyński, Kamil; Okuniewski, Marcin; Domańska, Urszula

    2013-06-13

    Experimental and theoretical studies on thermodynamic properties of three ionic liquids based on dicyanamide anion (namely, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-1-methylpyrrolidinium dicyanamide, and 1-butyl-1-methylpiperidinium dicyanamide) and their binary mixtures with sugar alcohols (D-sorbitol and xylitol) were conducted in order to assess the applicability of the salts ionic liquids for dissolution of those biomass-related materials. Density and dynamic viscosity (at ambient pressure) of pure ionic liquids are reported in the temperature range from T = 293.15 to 363.15 K. Solid-liquid equilibrium phase diagrams in binary systems {sugar alcohol + ionic liquid} were measured with dynamic method up to the fusion temperature of sugar alcohol. The impact of the chemical structure of both the ionic liquid and sugar alcohol were established and discussed. For the very first time, the experimental solubility data were reproduced and analyzed in terms of equation of state rooted in statistical mechanics. For this purpose, perturbed-chain statistical associating fluid theory (PC-SAFT) was employed. In particular, new molecular schemes for the ionic liquids, D-sorbitol, and xylitol were proposed, and then the pure chemicals were parametrized by using available density and vapor pressure data. The model allowed accurate correlation of pure fluid properties for both ionic liquids and sugar alcohols, when the association term is taken into account. The results of solid-liquid equilibria modeling were also satisfactory. However, one or two adjustable binary corrections to the adopted combining rules were required to be adjusted in order to accurately capture the phase behavior. It was shown that a consistent thermodynamic description of extremely complex systems can be achieved by using relatively simple (but physically grounded) theoretical tools and molecular schemes.

  12. Ultrasonication-assisted extraction and preconcentration of medicinal products from herb by ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2011-07-15

    Ionic liquid-based extraction of medicinal or useful compounds from plants was investigated as an alternative to supercritical fluid, cloud point and conventional organic solvent extractions. The method integrated extraction and preconcentration. Medicinal products were first extracted by an ionic liquid solution, part of which was then converted to a hydrophobic form by anion metathesis for preconcentration. The remaining soluble ionic liquid acted as a dispersive agent to enhance the efficiency of preconcentration. Protein in the extract was precipitated spontaneously without addition of further solvents. Ultrasonication assisted this method for extraction and preconcentration of cryptotanshinone, tanshinone I and tanshinone II A from Salvia Miltiorrhiza Bunge. 0.233 mg g(-1), 0.695 mg g(-1) and 0.682 mg g(-1) of each, respectively, were extracted using [OMIM][Cl], and preconcentrated in a [OMIM][PF(6)] phase at respective concentrations of 148.1, 507.1 and 486.1 μg mL(-1). The method exhibited potential applicability with other medicinal products. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model.

    Science.gov (United States)

    Moon, Gi Jong; Ahn, Myung Mo; Kang, In Seok

    2015-12-01

    An analysis has been performed for the osmotic pressure of ionic liquids in the electric double layer (EDL). By using the electromechanical approach, we first derive a differential equation that is valid for computing the osmotic pressure in the continuum limit of any incompressible fluid in EDL. Then a specific model for ionic liquids proposed by Bazant et al. [M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011)] is adopted for more detailed computation of the osmotic pressure. Ionic liquids are characterized by the correlation and the steric effects of ions and their effects are analyzed. In the low voltage cases, the correlation effect is dominant and the problem becomes linear. For this low voltage limit, a closed form formula is derived for predicting the osmotic pressure in EDL with no overlapping. It is found that the osmotic pressure decreases as the correlation effect increases. The osmotic pressures at the nanoslit surface and nanoslit centerline are also obtained for the low voltage limit. For the cases of moderately high voltage with high correlation factor, approximate formulas are derived for estimating osmotic pressure values based on the concept of a condensed layer near the electrode. In order to corroborate the results predicted by analytical studies, the full nonlinear model has been solved numerically.

  14. A Group Contribution Method for the Correlation of Static Dielectric Constant of Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    周颖; 林真; 吴可君; 徐国华; 何潮洪

    2014-01-01

    Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers. A group contribution method based on 27 groups is developed for the correlation of static dielec-tric constant of ionic liquids in this paper. The ionic liquids considered include imidazolium, pyridinium, pyrrolid-inium, alkylammonium, alkylsulfonium, morpholinium and piperidinium cations and various anions. The data col-lected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6. The re-sults of the method show a satisfactory agreement with the literature data with an average absolute relative devia-tion of 7.41%, which is generally of the same order of the experimental data accuracy. The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at dif-ferent temperatures.

  15. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  16. Structure of room temperature ionic liquids

    Science.gov (United States)

    Yethiraj, Arun

    2016-10-01

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains.

  17. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    P Padma Kumar; S Yashonath

    2006-01-01

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simulations on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed.

  18. Dissolution enthalpies of cellulose in ionic liquids.

    Science.gov (United States)

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  19. Oxidative depolymerization of lignin in ionic liquids.

    Science.gov (United States)

    Stärk, Kerstin; Taccardi, Nicola; Bösmann, Andreas; Wasserscheid, Peter

    2010-06-21

    Beech lignin was oxidatively cleaved in ionic liquids to give phenols, unsaturated propylaromatics, and aromatic aldehydes. A multiparallel batch reactor system was used to screen different ionic liquids and metal catalysts. Mn(NO(3))(2) in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][CF(3)SO(3)] proved to be the most effective reaction system. A larger scale batch reaction with this system in a 300 mL autoclave (11 g lignin starting material) resulted in a maximum conversion of 66.3 % (24 h at 100 degrees C, 84x10(5) Pa air). By adjusting the reaction conditions and catalyst loading, the selectivity of the process could be shifted from syringaldehyde as the predominant product to 2,6-dimethoxy-1,4-benzoquinone (DMBQ). Surprisingly, the latter could be isolated as a pure substance in 11.5 wt % overall yield by a simple extraction/crystallization process.

  20. Chitosan drug binding by ionic interaction.

    Science.gov (United States)

    Boonsongrit, Yaowalak; Mitrevej, Ampol; Mueller, Bernd W

    2006-04-01

    Three model drugs (insulin, diclofenac sodium, and salicylic acid) with different pI or pKa were used to prepare drug-chitosan micro/nanoparticles by ionic interaction. Physicochemical properties and entrapment efficiencies were determined. The amount of drug entrapped in the formulation influences zeta potential and surface charge of the micro/nanoparticles. A high entrapment efficiency of the micro/nanoparticles could be obtained by careful control of formulation pH. The maximum entrapment efficiency did not occur in the highest ionization range of the model drugs. The high burst release of drugs from chitosan micro/nanoparticles was observed regardless of the pH of dissolution media. It can be concluded that the ionic interaction between drug and chitosan is low and too weak to control the drug release.

  1. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  2. Polarization effects in ionic solids and melts

    OpenAIRE

    Salanne, Mathieu; Madden, Paul A.

    2015-01-01

    Ionic solids and melts are compounds in which the interactions are dominated by electrostatic effects. However, the polarization of the ions also plays an important role in many respects as has been clarified in recent years thanks to the development of realistic polarizable interaction potentials. After detailing these models, we illustrate the importance of polarization effects on a series of examples concerning the structural properties, such as the stabilization of particular crystal stru...

  3. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  4. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  5. Interatomic Potential Models for Ionic Materials

    Science.gov (United States)

    Gale, Julian D.

    Ionic materials are present in many key technological applications of the modern era, from solid state batteries and fuel cells, nuclear waste immobiliza tion, through to industrial heterogeneous catalysis, such as that found in automotive exhaust systems. With the boundless possibilities for their utilization, it is natural that there has been a long history of computer simulation of their structure and properties in order to understand the materials science of these systems at the atomic level.

  6. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  7. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  8. Self-propelled chemotactic ionic liquid droplets

    OpenAIRE

    Francis, Wayne; Fay, Cormac; Florea, Larisa; Diamond, Dermot

    2015-01-01

    Herein we report the chemotactic behaviour of self-propelled droplets composed solely of the ionic liquid trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]). These droplets spontaneously move along an aqueous-air boundary in the direction of chloride gradients to specific destinations due to asymmetric release of [P6,6,6,14]+ cationic surfactant from the droplet into the aqueous phase.

  9. INTERACTION OF IONIC LIQUIDS WITH POLYSACCHARIDES

    OpenAIRE

    2008-01-01

    The use of ionic liquids (ILs) in the field of cellulose chemistry opens up a broad variety of new opportunities. Besides the regeneration of the biopolymer to fibers, films, and beads, this new class of cellulose solvents is particularly useful for the homogeneous chemical modification of the polysaccharide. In this review, the potential of ILs as a reaction medium for the homogeneous cellulose functionalization is discussed. It is shown that numerous conversions proceed very efficiently and...

  10. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  11. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  12. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    Science.gov (United States)

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins.

  13. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  14. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  15. Clinical trial of non-ionic contrast media -comparison of efficacy and safety between non-ionic iopromide (Ultravist) and ionic contrast media-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ghi Jai; Kim, Seung Hyup; Park, Jae Hyung; Chang, Kee Hyun; Han, Man Chung; Kim, Chu Wan [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1988-06-15

    Non-ionic contrast media, iopromide (Ultravist) was compared with ioxitalamate (Telebrix) and/or ioxaglate (Hexabrix) for efficacy and safety in 203 patients undergoing cardiac angiography, neurovascular angiography, peripheral and visceral angiography and intravenous pyelography. In all patients, adverse symptoms and signs including heat sense, pain, nausea, vomiting, etc. were checked during and after the injection. In addition, EKG and LV pressure were monitored during the cardiac angiography. And also CBC, UA, BUN and creatinine were checked before and 24 hours after the cardiac angiography. Serious adverse effect did not occur in any case. Minor effects, such as nausea and abdominal pain, were less frequently caused by non-ionic contrast media than by ionic contrast media, especially in cardiac angiography and intravenous pyelography. There was no significant difference between ionic and non-ionic contrast media in regard to electrophysiologic parameters such as EKG and LV pressure. In case of intravenous pyelography, nonionic contrast media seemed to be superior to ionic contrast media in image quality. It is suggested that, in spite of higher cost, non-ionic contrast media be needed for the safety and image quality, particularly in those patients at high risk of adverse effects by ionic contrast media.

  16. Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt

    Science.gov (United States)

    Morita, Masayuki; Shirai, Takahiro; Yoshimoto, Nobuko; Ishikawa, Masashi

    A new polymeric gel electrolyte system conducting magnesium ion has been proposed. The gel electrolytes consisted of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) dissolving ionic liquid mixed with magnesium salt, Mg[(CF 3SO 2) 2N] 2. The polymeric gel films were self-standing, transparent and flexible with enough mechanical strength. The ionic conductance and the electrochemical properties of the gel films were investigated. Thermal analysis results showed that the polymeric gel is homogeneous and amorphous over a wide temperature range. The highest conductivity, 1.1 × 10 -4 S cm -1 at room temperature (20 °C), was obtained for the polymeric gel containing 50 wt.% of the ionic liquid in which the content of the magnesium salt was 20 mol%. The dc polarization of a Pt/Mg cell using the polymeric gel electrolyte proved that the magnesium ion (Mg 2+) is mobile in the present polymeric system.

  17. Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Junxia; Xu, Yimin; Shaw, Wendy J.

    2013-04-02

    The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(-P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studies for the surface immobilized proteins showed restricted motion, with more mobility under all conditions for L15(+P) and K24(-P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(+P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(-P) and LRAP(+P) as a function of pH or ionic strength. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V19L23 becomes more extended at high ionic

  18. Spatial and Temporal Dynamics in the Ionic Driving Force for GABAA Receptors

    Directory of Open Access Journals (Sweden)

    R. Wright

    2011-01-01

    Full Text Available It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABAA receptor (GABAAR. Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABAARs is subject to tight spatial control, with the distribution of Cl− transporter proteins and channels generating regional variation in the strength of GABAAR signalling across a single neuron. GABAAR dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl−. In addition, activity-dependent changes in the expression and function of Cl− regulating proteins can result in long-term shifts in the driving force for GABAARs. The multifaceted regulation of the ionic driving force for GABAARs has wide ranging implications for mature brain function, neural circuit development, and disease.

  19. Sensors for Fluid Leak Detection

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares Martinsanz

    2015-02-01

    Full Text Available Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.[...

  20. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  1. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  2. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  3. Employing ionic liquids to deposit cellulose on PET fibers.

    Science.gov (United States)

    Textor, Torsten; Derksen, Leonie; Gutmann, Jochen S

    2016-08-01

    Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl-3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids, concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure, simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with water have been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chloride iodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance, wear-resistance or washing stability are presented.

  4. Ionic site imaging in polymer membranes for water filtration applications

    Science.gov (United States)

    Rothe, Deborah Ruth

    The morphologies of ionic domains within poly(styrene-co-acrylic acid) (SAA) copolymers and sulfonated biphenyl sulfone (BPS) copolymers neutralized with Cu(II) were investigated using scanning transmission electron microscopy (STEM) and X-ray scattering. The ionic domain size for the SAA copolymers was independent of acid content while the BPS copolymers revealed an increase in ionic aggregate diameter with increasing sulfonate content. STEM imaging revealed large ionic groups in the higher sulfonate-containing polymer. It was the higher sulfonate material which had high water flux but poorer salt rejection properties. Additional analysis of the BPS copolymers with differential scanning calorimetry (DSC) did not show a detectable glass transition temperature (Tg), suggesting a distribution of ionic interactions which tethered polymer chains, restricting their mobility and governed thermal behavior. These results suggest the heterogeneous distribution of large ionic domains within the BPS polymer that may facilitate salt transport through the membrane via overlapping ion rich regions.

  5. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis.

    Science.gov (United States)

    Bachin, Dmitry; Nazarenko, Lyudmila V; Mironov, Kirill S; Pisareva, Tatiana; Allakhverdiev, Suleyman I; Los, Dmitry A

    2015-06-01

    Calcium plays an essential role in a variety of stress responses of eukaryotic cells; however, its function in prokaryotes is obscure. Bacterial ion channels that transport Ca(2+) are barely known. We investigated temperature-induced changes in intracellular concentration of Ca(2+), Na(+) and K(+) in the cyanobacterium Synechocystis sp. strain PCC 6803 and its mutant that is defective in mechanosensitive ion channel MscL. Concentration of cations rapidly and transiently increased in wild-type cells in response to cold and heat treatments. These changes in ionic concentrations correlated with the changes in cytoplasmic volume that transiently decreased in response to temperature treatments. However, no increase in ionic concentrations was observed in the MscL-mutant cells. It implies that MscL functions as a non-specific ion channel, and it participates in regulation of cell volume under temperature-stress conditions.

  6. Effects of pituitary beta-endorphin secretagogues on the concentration of beta-endorphin in rat cerebrospinal fluid : evidence for a role of vasopressin in the regulation of brain beta-endorphin release

    NARCIS (Netherlands)

    Barna, I; Sweep, C G; Veldhuis, H D; Wiegant, V M; De Wied, D

    1990-01-01

    The concentration of beta-endorphin-immunoreactivity (beta E-IR) in cerebrospinal fluid (CSF) and plasma of rats was determined following intracerebroventricular (ICV) treatment of conscious animals with substances known to stimulate the release of beta E and other pro-opiomelanocortin (POMC)-derive

  7. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for...2016 Final Report: Ionic Liquids in Polymer Design: From Energy to Health The views, opinions and/or findings contained in this report are those of

  8. Basicity of pyridine and some substituted pyridines in ionic liquids.

    Science.gov (United States)

    Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella

    2010-06-04

    The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.

  9. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  10. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  11. Quantum mechanical method for estimating ionicity of spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ji, D.H. [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, Z.Z.; Hou, X.; Han, Q.J.; Qi, W.H.; Liu, S.R.; Bian, R.R. [Hebei Advanced Thin Films Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2013-01-15

    The ionicity (0.879) of cubic spinel ferrite Fe{sub 3}O{sub 4} has been determined, using both experimental magnetization and density of state calculations from the density functional theory. Furthermore, a quantum mechanical estimation method for the ionicity of spinel ferrites is proposed by comparing the results from Phillips' ionicity. On the basis of this, ionicities of the spinel ferrites MFe{sub 2}O{sub 4} (M=Mn, Fe, Co, Ni, Cu) are calculated. As an application, the ion distribution at (A) and [B] sites of (A)[B]{sub 2}O{sub 4} spinel ferrites MFe{sub 2}O{sub 4} (M=Fe, Co, Ni, Cu) are calculated using current ionicity values. - Highlights: Black-Right-Pointing-Pointer The ionicity of Fe{sub 3}O{sub 4} was determined as 0.879 by the density functional theory. Black-Right-Pointing-Pointer The ionicities of spinel ferrites were estimated by a quantum mechanical method. Black-Right-Pointing-Pointer A quantum mechanical method estimating ionicity is suitable for II-VI compounds. Black-Right-Pointing-Pointer The ion distributions of MFe{sub 2}O{sub 4} are calculated by current ionicities values.

  12. Different roles of ionic liquids in lithium batteries

    Science.gov (United States)

    Eftekhari, Ali; Liu, Yang; Chen, Pu

    2016-12-01

    Ionic liquids are often named solvents of the future because of flexibility in design. This statement has given credence that ionic liquids should simply replace the problematic electrolytes of lithium batteries. As a result, the promising potentials of ionic liquids in electrochemical systems are somehow obscured by inappropriate expectations. We summarize recent advancements in this field, especially, ionic liquids as standalone electrolytes, additives, plasticizers in gel polymer electrolytes, and binders; and attempt to shed light on the future pathway of this area of research. Ionic liquids are not dilute media to serve as pure solvents in electrochemical systems where mobility of ions is the priority; instead, they can contribute to the ionic conductivity of various components in a battery system. Owing to the enormous possibilities of ionic liquids, it is not merely a matter of choice. Ionic liquids can be used to design novel types of electrolytes for a new generation of lithium batteries. A promising possibility, which is still at a very early stage, is supercooled ionic liquid crystals for fast ion diffusion through the guided channels of a liquid-like medium. This, of course, will be a breakthrough in the realm of electrochemistry, far beyond lithium battery field, when materialized.

  13. The dynamics of Bax channel formation: influence of ionic strength.

    Science.gov (United States)

    Ganesan, Vidyaramanan; Walsh, Timothy; Chang, Kai-Ti; Colombini, Marco

    2012-08-08

    Mitochondrial outer membrane permeabilization (MOMP) is a complex multistep process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP between cells and rapid completion of IMS protein release within single cells. In vitro models have provided useful insights into MOMP. We have investigated the dynamics of Bax-mediated MOMP in isolated mitochondria using ionic strength as a tool to control the rate of MOMP. We find that Bax can induce both transient permeabilization, detected by protein release, and more substantial long-lasting permeabilization, measured by the rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax to form small channels quickly but the expansion of these early channels is impeded. This inhibitory effect of ionic strength is independent of tBid. Channels formed under low ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength also increases the ability of Bcl-xL to inhibit Bax-mediated MOMP. Ionic strength does not affect Bax insertion into mitochondria. Thus, ionic strength influences the assembly of Bax molecules already in membrane into channels. Ionic strength can be used as an effective biophysical tool to study Bax-mediated channel formation.

  14. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Improving Stability of Gasoline by Using Ionic Liquid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Gao Zhirong; Liu Daosheng; Liao Kejian; Jian Heng

    2003-01-01

    The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to improve the stability of gasoline by using ionic liquid catalyst is developed. The contents of olefin, basic nitrogen and sulfur in gasoline are determined and the optimal experimental conditions for improving gasoline stability are established.The ionic liquid catalyst, which is environmentally friendly, can reduce the olefin content in gasoline, and such process is noted for mild reaction conditions, simple operation, short reaction time, easy recycling of the ionic liquid catalyst and ready separation of products and catalyst.

  16. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  17. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  18. Electrorheological fluids and methods

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  19. The Fluids RAP

    Science.gov (United States)

    Nedyalkov, Ivaylo

    2016-11-01

    After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.

  20. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  1. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  2. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert [National Energy Technology Laboratory; Damodaran, Krishnan [Department of Chemistry, University of Pittsburgh; Luebke, David [National Energy Technology Laboratory; Nulwala, Hunaid [National Energy Technology Laboratory

    2013-04-18

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  3. Electrolytes and fluid management in hemodialysis and peritoneal dialysis.

    Science.gov (United States)

    Nanovic, Lisa

    2005-04-01

    The kidney is a complex and vital organ, regulating the electrolyte and fluid status of the human body. As hemodialysis (HD) and peritoneal dialysis (PD) are forms of renal replacement therapy and not an actual kidney, they do not possess the same physiologic regulation of both fluid and electrolytes. Precise regulation of fluid and electrolytes in the HD and PD population remains a constant challenge. In this review, fluid status of both HD and PD will be examined, as well as sodium, potassium, phosphorous, and calcium. Each electrolyte will be analyzed by its physiological significance, the complications that arise when a proper balance cannot be maintained, and methods to correct these imbalances. An overview of the fluid compartments and volume of distribution within the body will be discussed. Ultrafiltration, a modality used in both forms of renal replacement therapy, will be defined, along with its impact on fluid status. Fluid assessment will be addressed, along with proper maintenance of fluid homeostasis. By having an understanding of the pathophysiology behind the fluid and electrolyte abnormalities that occur in end-stage renal disease, one can direct proper management with medications, diet, and alterations in dialysis to provide patients with the most optimal form of renal replacement therapy available.

  4. 7 CFR 1001.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1001.16 Section 1001.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1001.16 Fluid cream product. See § 1000.16....

  5. 7 CFR 1126.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1126.16 Section 1126.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1126.16 Fluid cream product. See § 1000.16....

  6. 7 CFR 1033.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1033.16 Section 1033.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1033.16 Fluid cream product. See § 1000.16....

  7. 7 CFR 1007.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1007.16 Section 1007.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1007.16 Fluid cream product. See § 1000.16....

  8. 7 CFR 1131.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1131.16 Section 1131.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1131.16 Fluid cream product. See § 1000.16....

  9. 7 CFR 1006.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1006.16 Section 1006.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1006.16 Fluid cream product. See § 1000.16....

  10. 7 CFR 1032.16 - Fluid cream product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid cream product. 1032.16 Section 1032.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1032.16 Fluid cream product. See § 1000.16....

  11. 7 CFR 1001.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1001.15 Section 1001.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order Regulating Handling Definitions § 1001.15 Fluid milk product. See § 1000.15....

  12. 7 CFR 1131.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1131.15 Section 1131.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE ARIZONA MARKETING AREA Order Regulating Handling Definitions § 1131.15 Fluid milk product. See § 1000.15....

  13. 7 CFR 1005.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1005.15 Section 1005.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE APPALACHIAN MARKETING AREA Order Regulating Handling Definitions § 1005.15 Fluid milk product. See § 1000.15....

  14. 7 CFR 1030.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1030.15 Section 1030.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE UPPER MIDWEST MARKETING AREA Order Regulating Handling Definitions § 1030.15 Fluid milk product. See § 1000.15....

  15. 7 CFR 1124.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1124.15 Section 1124.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE PACIFIC NORTHWEST MARKETING AREA Order Regulating Handling Definitions § 1124.15 Fluid milk product. See § 1000.15....

  16. 7 CFR 1033.15 - Fluid milk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk products. 1033.15 Section 1033.15... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE MIDEAST MARKETING AREA Order Regulating Handling Definitions § 1033.15 Fluid milk products. See § 1000.15....

  17. 7 CFR 1006.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1006.15 Section 1006.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE FLORIDA MARKETING AREA Order Regulating Handling Definitions § 1006.15 Fluid milk product. See § 1000.15....

  18. 7 CFR 1126.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1126.15 Section 1126.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE SOUTHWEST MARKETING AREA Order Regulating Handling Definitions § 1126.15 Fluid milk product. See § 1000.15....

  19. 7 CFR 1007.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1007.15 Section 1007.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE SOUTHEAST MARKETING AREA Order Regulating Handling Definitions § 1007.15 Fluid milk product. See § 1000.15....

  20. 7 CFR 1032.15 - Fluid milk product.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk product. 1032.15 Section 1032.15 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE CENTRAL MARKETING AREA Order Regulating Handling Definitions § 1032.15 Fluid milk product. See § 1000.15....

  1. Predictive thermodynamics for ionic solids and liquids.

    Science.gov (United States)

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  2. Comparative extraction of erythrocyte EDTA-membrane proteins by some ionic and non-ionic detergents.

    Science.gov (United States)

    Ballestrin, G; Covaz, L; Scutari, G

    1980-06-15

    In order to examine whether it would be possible to obtain, by a simple extraction procedure from EDTA-erythrocyte-membranes, a partially purified preparation of the "band 3 zone" proteins, we have tested four solubilizing agents of common use. Detergents, both ionic (DOC and SDS) and non ionic (Tween 80 and Triton X-100), were not able, in our experimental conditions, to completely solubilize erythrocyte fragmented membranes which had previously been washed in EDTA-buffers. However, they were able to solubilize some of the membrane proteins, which could then be separated by SDS-PGE. The PGE densitometric profiles reported in this communication indicate that the protein mixture extracted by the ionic detergents DOC and SDS qualitatively reflects the protein composition of the membranes. Among the non ionic detergents, on the other hand, Triton X-100 appeared to be able to extract mainly one band (most probably the band 3 zone), while Tween 80 did not apparently extract any of the membrane proteins. Detergent concentrations, medium composition and experimental procedures are described in detail.

  3. ZnO-ionic liquid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sanes, Jose; Carrion, Francisco-Jose [Grupo de Ciencia de Materiales e Ingenieria Metalurgica, Departamento de Ingenieria de Materiales y Fabricacion, Universidad Politecnica de Cartagena, Campus de la Muralla del Mar, C/ Doctor Fleming s/n, 30202 Cartagena (Spain); Bermudez, Maria-Dolores, E-mail: mdolores.bermudez@upct.es [Grupo de Ciencia de Materiales e Ingenieria Metalurgica, Departamento de Ingenieria de Materiales y Fabricacion, Universidad Politecnica de Cartagena, Campus de la Muralla del Mar, C/ Doctor Fleming s/n, 30202 Cartagena (Spain)

    2009-02-15

    The mixture of nanostructures derived from the surface interactions and reactivity of ZnO nanoparticles with the room-temperature ionic liquid (IL1) 1-hexyl, 3-methylimidazolium hexafluorophosphate has been studied. Results are discussed on the basis of transmission electron microscopy (TEM) observations, energy dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) determinations. Size and morphology changes in ZnO nanoparticles by surface modification with IL1 are observed. ZnF{sub 2} crystalline needles due to reaction with the hexafluorophosphate anion are also formed.

  4. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    Energy Technology Data Exchange (ETDEWEB)

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  5. Nonextensive statistical mechanics of ionic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Varela, L.M. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail: fmluis@usc.es; Carrete, J. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Munoz-Sola, R. [Departamento de Matematica Aplicada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Rodriguez, J.R.; Gallego, J. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2007-10-29

    Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q.

  6. Polar interface phonons in ionic toroidal systems.

    Science.gov (United States)

    Nguyen, N D; Evrard, R; Stroscio, Michael A

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.

  7. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  8. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  9. INTERACTION OF IONIC LIQUIDS WITH POLYSACCHARIDES

    Directory of Open Access Journals (Sweden)

    Tim Liebert

    2008-05-01

    Full Text Available The use of ionic liquids (ILs in the field of cellulose chemistry opens up a broad variety of new opportunities. Besides the regeneration of the biopolymer to fibers, films, and beads, this new class of cellulose solvents is particularly useful for the homogeneous chemical modification of the polysaccharide. In this review, the potential of ILs as a reaction medium for the homogeneous cellulose functionalization is discussed. It is shown that numerous conversions proceed very efficiently and the ILs may be recycled. But it is also demonstrated that some side reactions have to be considered.

  10. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  11. Structure and ionic conductivity of ionic liquid embedded PEO- LiCF3SO3 polymer electrolyte

    Directory of Open Access Journals (Sweden)

    A. Karmakar

    2014-08-01

    Full Text Available In this paper we have reported electrical and other physical properties of polyethylene oxide (PEO - LiCF3SO3 polymer electrolytes embedded with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. The addition of the ionic liquid to PEO- LiCF3SO3 electrolyte increases the amorphous phase content considerably and decreases the glass transition temperature. The relative amounts of different ionic species present in these electrolytes have been determined. It is observed that the fraction of free anions increase with the increase of ionic liquid concentration, whereas the fraction for ion pairs and aggregates show a decreasing trend under the same condition. The ionic conductivity of the PEO- LiCF3SO3 polymer electrolyte embedded with ionic liquid is higher than that of the PEO- LiCF3SO3 electrolyte. The ionic conductivity shows a transition around 323 K. The ionic conductivity above 323 K exhibits Arrhenius behavior with an activation energy, which decreases with the increase of ionic liquid concentration. However, below 323 K the conductivity shows Vogel–Tamman–Fulcher (VTF type behavior.

  12. Dynamics of Complex Fluid-Fluid Interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2016-01-01

    This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables

  13. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    Science.gov (United States)

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in

  14. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary

  15. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  16. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  17. Applications of fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.R.; Garg, V.K.

    1986-01-01

    This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.

  18. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  19. Preparation of Ionic Liquid-based Vilsmier Reagent from Novel Multi-purpose Dimethyl Formamide-like Ionic Liquid and Its Application

    Institute of Scientific and Technical Information of China (English)

    Hullio, Ahmed Ali; Mastoi, G. M.

    2012-01-01

    In continuation of research to explore the applied potential of DMF-like ionic liquid, the ionic liquid version of N,N-dimethyliminiumchloride (Vilsmier reagent) has been synthesized from DMF-like ionic liquid and tested effectively for its capacity to achieve more useful organic transformations. The results show that DMF-like ionic liquid is world's first task specific ionic liquid which has catalyzed numerous diverse type of reaction and is multipurpose in its application. Thus a new term for this DMF-like ionic liquid has been coined that is DMF-like "multipurpose" ionic liquid.

  20. Fluid blade disablement tool

    Energy Technology Data Exchange (ETDEWEB)

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  1. Toxicity of ionic liquids prepared from biomaterials.

    Science.gov (United States)

    Gouveia, W; Jorge, T F; Martins, S; Meireles, M; Carolino, M; Cruz, C; Almeida, T V; Araújo, M E M

    2014-06-01

    In search of environmentally-friendly ionic liquids (ILs), 14 were prepared based on the imidazolium, pyridinium and choline cations, with bromide and several amino acids as anions. Good yields were obtained in the synthesis of pyridinium ILs and those prepared from choline and amino acids. Four of the ILs synthesized from choline and the amino acids arginine, glutamine, glutamic acid and cystine are described here for the first time. The toxicity of the synthesized ILs was checked against organisms of various levels of organization: the crustacean Artemia salina; Human cell HeLa (cervical carcinoma); and bacteria with different types of cell wall, Bacillus subtilis and Escherichia coli. The toxicity was observed to depend on both the cation and anion. Choline-amino acid ILs showed a remarkable low toxicity to A. salina and HeLa cell culture, ten times less than imidazolium and pyridinium ILs. None of ionic liquids exhibited marked toxicity to bacteria, and the effect was 2-3 orders of magnitude smaller than that of the antibiotic chloramphenicol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. On the free energy of ionic hydration

    CERN Document Server

    Hummer, G; García, A E; Hummer, Gerhard; Pratt, Lawrence R.; Garcia, Angel E.

    1995-01-01

    The hydration free energies of ions exhibit an approximately quadratic dependence on the ionic charge, as predicted by the Born model. We analyze this behavior using second-order perturbation theory. This provides effective methods to calculating free energies from equilibrium computer simulations. The average and the fluctuation of the electrostatic potential at charge sites appear as the first coefficients in a Taylor expansion of the free energy of charging. Combining the data from different charge states allows calculation of free-energy profiles as a function of the ionic charge. The first two Taylor coefficients of the free-energy profiles can be computed accurately from equi- librium simulations; but they are affected by a strong system-size dependence. We apply corrections for these finite-size effects by using Ewald lattice sum- mation and adding the self-interactions consistently. Results are presented for a model ion with methane-like Lennard-Jones parameters in SPC water. We find two very closely ...

  3. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  4. Hydrolysis of ionic cellulose to glucose.

    Science.gov (United States)

    Vo, Huyen Thanh; Widyaya, Vania Tanda; Jae, Jungho; Kim, Hoon Sik; Lee, Hyunjoo

    2014-09-01

    Hydrolysis of ionic cellulose (IC), 1,3-dimethylimidazolium cellulose phosphite, which could be synthesized from cellulose and dimethylimidazolium methylphosphite ([Dmim][(OCH3)(H)PO2]) ionic liquid, was conducted for the synthesis of glucose. The reaction without catalysts at 150°C for 12h produced glucose with 14.6% yield. To increase the hydrolysis yield, various acid catalysts were used, in which the sulfonated active carbon (AC-SO3H) performed the best catalytic activity in the IC hydrolysis. In the presence of AC-SO3H, the yields of glucose reached 42.4% and 53.9% at the reaction condition of 150°C for 12h and 180°C for 1.5h, respectively; however the yield decreased with longer reaction time due to the degradation of glucose. Consecutive catalyst reuse experiments on the IC hydrolysis demonstrated the catalytic activity of AC-SO3H persisted at least through four successive uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Anodic dissolution of metals in ionic liquids

    Directory of Open Access Journals (Sweden)

    Andrew P. Abbott

    2015-12-01

    Full Text Available The anodic dissolution of metals is an important topic for battery design, material finishing and metal digestion. Ionic liquids are being used in all of these areas but the research on the anodic dissolution is relatively few in these media. This study investigates the behaviour of 9 metals in an ionic liquid [C4mim][Cl] and a deep eutectic solvent, Ethaline, which is a 1:2 mol ratio mixture of choline chloride and ethylene glycol. It is shown that for the majority of metals studied a quasi-passivation of the metal surface occurs, primarily due to the formation of insoluble films on the electrode surface. The behaviour of most metals is different in [C4mim][Cl] to that in Ethaline due in part to the differences in viscosity. The formation of passivating salt films can be decreased with stirring or by increasing the electrolyte temperature, thereby increasing ligand transport to the electrode surface.

  6. Shape memory rubber bands & supramolecular ionic copolymers

    Science.gov (United States)

    Brostowitz, Nicole

    subject covered in this dissertation is supra-molecular ionic copolymers. Supramolecular interactions are non-covalent; e.g. hydrogen bonding, ionic interactions, van der Waals forces. Supramolecular interactions in polymers can be used to tailor the thermo-mechanical properties by controlling bond association and dissociation. Recent research has focused on hydrogen bonded systems due to established synthesis mechanisms. Reversibility of the supramolecular interactions can be triggered by environmental changes. Ionic interactions would provide greater bond strength and more control over operating conditions. Research has been limited on ionic copolymers due to complicated synthesis methods needed to include functionalization. Low molecular weight polymers were synthesized by atom transfer radical polymerization with post polymerization conversion to phosphonium end-groups. Both polystyrene and poly(methyl acrylate) were investigated with similar reaction conditions. Chromatography measured the molecular weight and indicated a low polydispersity consistent with controlled reactions. Copolymers were formed by interfacial mixing of the cationic polymers with multifunctional, anionic oligomers. Oligomers containing sulfonate groups were used to create linear or three-dimensional polymer networks. NMR and rheology was used to characterize the presence and effect of ionic groups when compared to the neat polymer.

  7. Polarity of the interface in ionic liquid in oil microemulsions.

    Science.gov (United States)

    Andújar-Matalobos, María; García-Río, Luis; López-García, Susana; Rodríguez-Dafonte, Pedro

    2011-11-01

    Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems.

  8. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  9. Brownian dynamics determine universality of charge transport in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sangoro, Joshua R [ORNL; Iacob, Ciprian [University of Leipzig; Mierzwa, Michal [University of Silesia, Uniwersytecka, Katowice, Poland; Paluch, Marian [University of Silesia, Uniwersytecka, Katowice, Poland; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  10. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling f

  11. Synthesis and Characterization of Dual Acidic Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Xiao Hua WANG; Guo Hong TAO; Zi Yan ZHANG; Yuan KOU

    2005-01-01

    Novel ionic liquids with dual acidity, of which the cation contains Bronsted acidity and anions contain Lewis acidity were synthesized. These ionic liquids obtained were identified by NMR,FT-IR, SDT and FAB-MS. Their acidities were determined by pyridine probe on IR spectrography.

  12. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  13. Method for enhancing the thermal stability of ionic compounds

    OpenAIRE

    Riisager, Anders; Fehrmann, Rasmus; Robin, Roger; Gabriela, Gurau

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.

  14. The Origin of the Ionic-Radius Ratio Rules

    Science.gov (United States)

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the origins of the ionic-radius ratio rules and their incorrect attribution to Linus Pauling in the chemical literature and to Victor Goldschmidt in the geochemical literature. In actual fact, the ionic-radius ratio rules were first proposed within the context of the coordination chemistry…

  15. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  16. Viscoelasticity and microstructure of non-ionic microemulsions

    NARCIS (Netherlands)

    Eshuis, A.; Mellema, J.

    1984-01-01

    Non-ionic microemulsions were investigated by viscoelastic measurements in the kHz region. We found that in some parts of the phase diagram our systems consisted of a dispersion of spherical oil doplets, stabilized by a non-ionic surfactant, in a continuous phase of almost pure water. Because of the

  17. Absorption and oxidation of no in ionic liquids

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature.......The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature....

  18. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2011-06-01

    Full Text Available The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  19. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  20. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…