The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings
Directory of Open Access Journals (Sweden)
Thomas Hagemann
2017-01-01
Full Text Available This paper presents a combination of experimental data, CFD analyses, and bearing code predictions on emergence of convective inertia fluid forces within the lube oil flow of tilting-pad journal bearings. Concordantly, experimental data and CFD analyses show a significant rise of local pressure at the transition between inlet and leading edge of tilting-pad, especially for high-speed applications with surface speeds up to 100 m/s. This effect can be related to convective inertia forces within fluid flow as cross-sections and flow character rapidly change at the pad entrance. An energy-based approach is implemented in the bearing code in order to provide enhanced boundary conditions for Reynolds equation considering this effect. As a result, predictions of bearing code achieved significant improved correlation with measured pressure distributions and CFD-data. Further, beside the local influence, a nonnegligible impact on characteristic parameters of bearing operation such as maximum temperature and stiffness and damping coefficients is observed. Finally, the results are critically analyzed and requirements to gain more distinct and reliable data are specified.
A vacuum--generated inertia reaction force
International Nuclear Information System (INIS)
Rueda, Alfonso; Haisch, Bernard
2001-01-01
A clear and succinct covariant approach shows that, in principle, there must be a contribution to the inertia reaction force on an accelerated object by the surrounding vacuum electromagnetic field in which the object is embedded. No details of the vacuum to object electromagnetic interaction need to be specified other than the fact that the object is made of electromagnetically interacting particles. Some interesting consequences of this feature are discussed. This analysis strongly supports the concept that inertia is indeed an opposition of the vacuum fields to any attempt to change the uniform state of motion of material bodies. This also definitely shows that inertia should be viewed as extrinsic to mass and that causing agents and/or mechanisms responsible for the inertia reaction force are neither intrinsic to the notion of mass nor to the entities responsible for the existence of mass in elementary particles (as, e.g., the Higgs field). In other words the mechanism that produces the inertia-reaction-force requires an explicit explanation. This explicit explanation is that inertia is an opposition of the vacuum fields to the accelerated motion of any material entities, i.e., of entities that possess mass. It is briefly commented why the existence of a Higgs field responsible for the generation of mass in elementary particles does not contradict the view presented here. It is also briefly discussed why a strict version of Mach's Principle does really contradict this view, though a broad sense version of Mach's Principle may be in agreement
Effects of additional inertia force on bubble breakup
International Nuclear Information System (INIS)
Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping
2011-01-01
Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)
Two-fluid turbulence including electron inertia
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)
2014-12-15
We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.
Independent particle Schroedinger Fluid: moments of inertia
International Nuclear Information System (INIS)
Kan, K.K.; Griffin, J.J.
1977-10-01
This philosophy of the Single Particle Schroedinger Fluid, especially as regards the velocity fields which find such a natural role therein, is applied to the study of the moments of inertia of independent Fermion system. It is shown that three simplified systems exhibit the rigid-body rotational velocity field in the limit of large A, and that the leading deviations, both on the average and fluctuating, from this large A limit can be described analytically, and verified numerically. For a single particle in a Hill-Wheeler box the moments are studied numerically, and their large fluctuations identified with the specific energy level degeneracies of its parallelepiped shape. The full assemblage of these new and old results is addressed to the question of the necessary and sufficient condition that the moment have the rigid value. Counterexamples are utilized to reject some conditions, and the conjecture is argued that Unconstrained Shape Equilibrium might be the necessary and sufficient condition. The spheroidal square well problem is identified as a promising test case
Einstein's equivalence principle instead of the inertia forces
International Nuclear Information System (INIS)
Herreros Mateos, F.
1997-01-01
In this article I intend to show that Einstein's equivalence principle substitutes advantageously the inertia forces in the study and resolution of problems in which non-inertial systems appear. (Author) 13 refs
Inertia compensated force and pressure sensors
Energy Technology Data Exchange (ETDEWEB)
Bill, B.; Engeler, P.; Gossweiler, C. [Kistler Instrumente AG, Winterthur (Switzerland)
2001-07-01
Any moving structure is affected by inertial effects. In case of force and pressure sensors, inertial effects cause measurement errors. The paper deals with novel signal conditioning methods and mechanical design features to minimize inertial effects. A novel solution for passive compensation of pressure sensors is presented. (orig.)
International Nuclear Information System (INIS)
Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark
2015-01-01
The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...
40 CFR 86.529-98 - Road load force and inertia weight determination.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
The Inertia Reaction Force and Its Vacuum Origin
Rueda, Alfonso; Haisch, Bernard
By means of a covariant approach we show that there must be a contribution to the inertial mass and to the inertial reaction force on an accelerated massive object by the zero-point electromagnetic field. This development does not require any detailed model of the accelerated object other than the knowledge that it interacts electromagnetically. It is shown that inertia can indeed be construed as an opposition of the vacuum fields to any change to the uniform state of motion of an object. Interesting insights originating from this result are discussed. It is argued why the proposed existence of a Higgs field in no way contradicts or is at odds with the above statements. The Higgs field is responsible for assigning mass to elementary particles. It is argued that still the underlying reason for the opposition to acceleration that massive objects present requires an explanation. The explanation proposed here fulfills that requirement.
Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field
International Nuclear Information System (INIS)
Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.
1984-01-01
An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)
Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes
International Nuclear Information System (INIS)
Kang, Myeong Gie
1999-01-01
Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are π, 2π, and 3π for the simply supported pipe and 2π, 8.99 and 12.57 for the clamped-clamped pipe. (author). 16 refs., 7 figs., 3 tabs
Importance of Upper-Limb Inertia in Calculating Concentric Bench Press Force
RAMBAUD, O; RAHMANI, A; MOYEN, B; BOURDIN, M
2008-01-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 6 4.1 years, 184.6 6 5.5 cm, 99.5 6 18.6 kg) ...
Debats, N.B.; Kingma, I.; Beek, P.J.; Smeets, J.B.J.
2012-01-01
How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's "angular mass") under different force conditions, using the Weber fraction to quantify
Importance of upper-limb inertia in calculating concentric bench press force.
Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel
2008-03-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.
Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.
2012-01-01
How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437
Analysis of Dynamic Inertia Forces at Main Bearing of Ship Reciprocating Engines
Directory of Open Access Journals (Sweden)
F. Louhenapessy Louhenapessy,
2010-11-01
Full Text Available During operation, a ship reciprocating engine will vibrate due to the force resulting from the cycle movement of the dynamic components. Soon or later, the vibration will cause wear of engine components. Therefore, the cause of vibration should be early identified so that the propagation of wear can be anticipated. The study modeled the ship reciprocating engine as a two stroke engine, and analyzed one of the causes of the engine vibration, i.e. the force acting on main bearing, using a numerical simulation. An experimental study was also carried out for measuring the acceleration of vibration response due to the numerical dynamic inertia force. The results showed that the dynamic inertia force acting on the main bearing is the main cause of the vibration of engine.
Directory of Open Access Journals (Sweden)
Lihang Feng
Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Enhanced inertia from lossy effective fluids using multi-scale sonic crystals
Directory of Open Access Journals (Sweden)
Matthew D. Guild
2014-12-01
Full Text Available In this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia.
The effect of inertia force in water lubricated thrust bearings of canned reactor coolant pump
International Nuclear Information System (INIS)
Deng Liping
1994-01-01
The water lubricated thrust bearings are analyzed. According to characteristic of low viscosity of water the lubricated equation for design and calculation of water lubricated thrust bearings is established. The calculation and analyses show that the effect of inertia force in water lubricated thrust bearings should not be neglected except the conditions of low speed, high angle of inclination and low radius ratio of pad
Electron inertia effects for an electron fluid model by the applied-B ion diode
Energy Technology Data Exchange (ETDEWEB)
Gordeev, A V; Levchenko, S V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute
1997-12-31
Numerical calculations within the framework of the one-dimensional vortex-like electron fluid model in applied-B ion diodes, taking account the electron inertia effects, are presented. The existence of the additional relation between the magnetic field and the electric potential offers an opportunity to reduce the ion diode problem to the system of the algebraic equations for the constants introduced. The ion current density in an ion diode is determined only by the magnetic flux cut out by the virtual cathode. As an illustration, the ion diode impedance for the KALIF device was calculated. (author). 2 figs., 6 refs.
Speetjens, M.F.M.; Demissie, E.A.; Metcalfe, G.; Clercx, H.J.H.
2014-01-01
Laminar mixing by the inline-mixing principle is key to many industrial fluids-engineering systems of size extending from microns to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains
The Use of Force Sensors and a Computer System to Introduce the Concept of Inertia at a School
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2014-01-01
A classical experiment used to introduce the concept of body inertia, breaking of a thread below and above a hanging weight, is described mathematically and presented in a new way, using force sensors and a computer system.
Swimming of a sphere in a viscous incompressible fluid with inertia
International Nuclear Information System (INIS)
Felderhof, B U; Jones, R B
2017-01-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)
Swimming of a sphere in a viscous incompressible fluid with inertia
Energy Technology Data Exchange (ETDEWEB)
Felderhof, B U [Institut für Theorie der Statistischen Physik RWTH Aachen University, Templergraben 55, D-52056 Aachen (Germany); Jones, R B, E-mail: ufelder@physik.rwth-aachen.de, E-mail: r.b.jones@qmul.ac.uk [Queen Mary University of London, The School of Physics and Astronomy, Mile End Road, London E1 4NS (United Kingdom)
2017-08-15
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)
Swimming of a sphere in a viscous incompressible fluid with inertia
Felderhof, B. U.; Jones, R. B.
2017-08-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.
Bark, David L; Dasi, Lakshmi P
2016-05-01
We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.
Directory of Open Access Journals (Sweden)
Olivier eWhite
2015-02-01
Full Text Available In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force, normal to the finger/object contact, in anticipation of the expected tangential load force, resulting from the combination of the gravitational and the inertial forces. In many contexts, grip force and load force are linearly coupled. A few studies have examined how we adjust the parameters - gain and offset - of this linear relationship. However, the question remains open as to how the brain adjusts grip force regardless of whether load force is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of load force by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust grip force, the brain is sensitive to how load forces are produced at the fingertips. This provides clear evidence that the analysis of the origin of load force is performed centrally, and not only at the periphery.
Energy Technology Data Exchange (ETDEWEB)
Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)
2012-09-20
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A
International Nuclear Information System (INIS)
Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.
2012-01-01
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer
Single particle Schroedinger fluid and moments of inertia of deformed nuclei
International Nuclear Information System (INIS)
Doma, S.B.
2002-01-01
The authors have applied the theory of the single-particle Schroedinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20 Ne, 24 Mg, 28 Si, 32 S and 36 Ar are constructed by filling the single-particle states corresponding to the possible values of the number of quanta of excitations n x , n y and n z . Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ℎω x , ℎω y and ℎω z which are given in terms of the non deformed value ℎω 0 0 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experiential values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24 Mg is the only one which is highly deformed. The rigid-body model and the equilibrium-model moments of inertia of the two nuclei 20 Ne and 24 Mg are also in good agreement with the corresponding experimental values
Experimental investigation of unsteady fluid dynamic forces acting on tube array
International Nuclear Information System (INIS)
Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi
1981-01-01
It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)
Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim
2015-11-01
Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
White, Olivier
2015-01-01
In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery. PMID:25717293
Directory of Open Access Journals (Sweden)
Jairo Vázquez-Guerrero
Full Text Available The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010 and peak force output differed between all loads for each condition (P < 0.045. Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001. There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
International Nuclear Information System (INIS)
Speetjens, M. F. M.; Demissie, E. A.; Metcalfe, G.; Clercx, H. J. H.
2014-01-01
Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zones between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its
Inertia effects in rheometrical flow systems
Waterman, H.A.
1976-01-01
The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily
Pump instability phenomena generated by fluid forces
Gopalakrishnan, S.
1985-01-01
Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.
Compressible fluid flows driven by stochastic forcing
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Maslowski, B.; Novotný, A.
2013-01-01
Roč. 254, č. 3 (2013), s. 1342-1358 ISSN 0022-0396 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Institutional support: RVO:67985840 Keywords : stochastic Navier-Stokes equations * compressible fluid * random driving force Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039612004135
Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan
2018-07-10
Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.
Treating inertia in passive microbead rheology.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina
2012-02-01
attenuated inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead. We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and the oscillation of MSD is suppressed if fluid density and bead density are comparable. © 2012 American Physical Society
van Putten, M.; Zeelenberg, M.; van Dijk, E.; Tykocinski, O.E.
2013-01-01
Inaction inertia occurs when bypassing an initial action opportunity has the effect of decreasing the likelihood that subsequent similar action opportunities will be taken. This overview of the inaction inertia literature demonstrates the impact of inaction inertia on decision making. Based on
Felderhof, B. U.
2017-09-01
Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.
de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix
2016-01-01
Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…
Inertia effects in rheometrical flow systems Part 2: The balance rheometer
Waterman, H.A.
1976-01-01
The flow field of a linear viscoelastic fluid in the balance rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian fluid is included in this solution as a special case. The forces and couples on the hemispheres are
Magnus force and inertia properties of magnetic vortices in weak ferromagnets
International Nuclear Information System (INIS)
Zvezdin, A.K.; Zvezdin, K.A.
2010-01-01
The question of the Magnus force in weak ferromagnets acting on magnetic vortices (Bloch lines), within domain boundary has been investigated and the general formula of the Magnus force has been derived. It is shown that the Magnus force is non-zero in most types domain boundaries and determined by the average sublattice magnetization, Dzyaloshinskii coupling constants and exchange interaction between the sublattices. Generalized expressions have been obtained for the effective Langrangian and Rayleigh functions in weak ferromagnets allowing for their vortex structure. The mass of a vortex was considered and the value m * ∼ 10 -14 g/cm was obtained for YFeO 3 . The dynamic bending of the domain boundary in the presence of a moving vortex has been analyzed. A formula has been obtained, which describes the dependence of the vortex velocity in a motionless domain boundary upon the magnetic-field.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...
Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.
Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik
2017-07-01
The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.
Felderhof, B. U.
2015-11-01
A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.
Flapping motion and force generation in a viscoelastic fluid
Normand, Thibaud; Lauga, Eric
2008-12-01
In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.
Accurate fluid force measurement based on control surface integration
Lentink, David
2018-01-01
Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non
Effects of nonmagnetic interparticle forces on magnetorheological fluids
International Nuclear Information System (INIS)
Klingenberg, D J; Olk, C H; Golden, M A; Ulicny, J C
2010-01-01
Effects of nonmagnetic interparticle forces on the on- and off-state behavior of magnetorheological fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.
Acoustic interaction forces between small particles in an ideal fluid
DEFF Research Database (Denmark)
Silva, Glauber T.; Bruus, Henrik
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...
Effects of nonmagnetic interparticle forces on magnetorheological fluids
International Nuclear Information System (INIS)
Klingenberg, D J; Olk, C K; Golden, M A; Ulicny, J C
2009-01-01
Effects of nonmagnetic interparticle forces on the on- and off-state behavior of MR fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.
Forced excitation and active control for the measurement of fluid-elastic forces
International Nuclear Information System (INIS)
Caillaud, Sebastien
1999-01-01
The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr
Control of weakly conductive fluids by near wall Lorentz forces
Energy Technology Data Exchange (ETDEWEB)
Hinze, M. [Technische Univ. Dresden (Germany). Inst. fuer Numerische Mathematik
2007-07-01
In this work optimal and model-predictive control approaches for control of weakly conductive fluids are developed. The flow around the circular cylinder at low Reynolds numbers serves as prototyping application. Control by near-wall Lorentz forces gains either to suppress the formation of the von Karman Vortex Street, or to reduce the drag. Besides a concise mathematical modelling numerical examples are presented which highlight the scope of the presented control approaches. (orig.)
Czech Academy of Sciences Publication Activity Database
Lukerchenko, Nikolay; Kvurt, Y.; Keita, Ibrahima; Chára, Zdeněk; Vlasák, Pavel
2012-01-01
Roč. 30, č. 1 (2012), s. 55-67 ISSN 0272-6351 R&D Projects: GA AV ČR IAA200600603; GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * Magnus force * Reynolds number * rotational Reynolds number Subject RIV: BK - Fluid Dynamics Impact factor: 0.435, year: 2012
Use of piezoelectric multicomponent force measuring devices in fluid mechanics
Richter, A.; Stefan, K.
1979-01-01
The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.
Emergence of Multiscaling in a Random-Force Stirred Fluid
Yakhot, Victor; Donzis, Diego
2017-07-01
We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different "Reynolds numbers" reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3 . The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations.
Filament stretching rheometer: inertia compensation revisited
DEFF Research Database (Denmark)
Szabo, Peter; McKinley, Gareth H.
2003-01-01
The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...
R5FORCE: a program to compute fluid induced forces using hydrodynamic output from the RELAP5 code
International Nuclear Information System (INIS)
Watkins, J.C.
1983-01-01
This paper describes the computer code R5FORCE, a postprocessor to the RELAP5/MOD1 thermal-hydraulics code. R5FORCE computes piping hydraulic force/time histories that can be input into various structural analysis computer codes. R5FORCE solves the momentum conservation equation using the pressure and wall shear force terms rather than the pressure and fluid acceleration terms; eliminating potential instabilities associated with computing the time derivative in the fluid acceleration term. The updates to REALP5 required to generate the input data to R5FORCE are also discussed
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
International Nuclear Information System (INIS)
Wertheim, M.S.
1986-01-01
The author investigates approximation methods for systems of molecules interacting by core repulsion and highly directional attraction due to several attraction sites. The force model chosen imitates a chemical bond by providing for bond saturation when binding occurs. The dense fluid is an equilibrium mixture of s-mers with mutual repulsion. The author uses a previously derived reformulation of statistical thermodynamics in which the particle species are monomeric units with a specified set of attraction sites bonded. Thermodynamic perturbation theory (TPT) and integral equations of two types are derived. The use of TPT is illustrated by explicit calculation for a molecular model with two attraction sites capable of forming chain and ring polymers. Successes and defects of TPT are discussed. The integral equations for pair correlations between particles of specified bonding include calculation of self-consistent densities of species. Methods of calculating thermodynamic properties from the solutions of integral equations are given
Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui
2016-01-01
Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
International Nuclear Information System (INIS)
Zou Jibin; Li Xuehui; Lu Yongping; Hu Jianhui
2002-01-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively
Forced fluid removal in intensive care patients with acute kidney injury
DEFF Research Database (Denmark)
Berthelsen, R E; Perner, A; Jensen, A K
2018-01-01
/or continuous renal replacement therapy aiming at net negative fluid balance > 1 mL/kg ideal body weight/hour until cumulative fluid balance calculated from ICU admission reached less than 1000 mL. RESULTS: After 20 months, we stopped the trial prematurely due to a low inclusion rate with 23 (2%) included...... patients out of the 1144 screened. Despite the reduced sample size, we observed a marked reduction in cumulative fluid balance 5 days after randomisation (mean difference -5814 mL, 95% CI -2063 to -9565, P = .003) with forced fluid removal compared to standard care. While the trial was underpowered...... for clinical endpoints, no point estimates suggested harm from forced fluid removal. CONCLUSIONS: Forced fluid removal aiming at 1 mL/kg ideal body weight/hour may be an effective treatment of fluid accumulation in ICU patients with acute kidney injury. A definitive trial using our inclusion criteria seems...
Theory of nonlinear acoustic forces acting on fluids and particles in microsystems
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias
fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro
1989-01-01
Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.
2001-01-01
This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés
2012-04-01
We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
Normal force of magnetorheological fluids with foam metal under oscillatory shear modes
Energy Technology Data Exchange (ETDEWEB)
Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)
2016-04-01
The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.
Normal force of magnetorheological fluids with foam metal under oscillatory shear modes
International Nuclear Information System (INIS)
Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan
2016-01-01
The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.
Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen
2016-01-01
power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...
The force on an object passing through a magnetic fluid seal
Morton, G
2002-01-01
Forces on solid objects passed through a magnetic liquid plug in a tube are measured. A simple one-dimensional model is developed based on hydrostatic and magnetic pressures. The results demonstrate its potential to be used to separate two fluids while allowing solids to pass from one fluid to the other.
Influence of fluiddynamic parameters upon fluid-hammer forces and spectra
International Nuclear Information System (INIS)
Meder, G.; Grams, J.
1984-01-01
For proper dynamic calculation of piping systems under fluid-hammer loading it is necessary to know the frequency content of the fluid-hammer force. Therefore, in this paper, the spectra of fluid-hammer loading will be examined. In particular, the influence of a change of fluiddynamic parameters upon the spectra will be investigated. When changes are made, the normal result is a change or shift in the frequency content of the spectra. However, for changes in certain fluiddynamic parameters, only the force amplitudes are changed. Both types of changes will be discussed. (orig.)
Growth, unemployment and wage inertia
Raurich, Xavier; Sorolla, Valeri
2014-01-01
We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without wage inertia. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show...
Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow
International Nuclear Information System (INIS)
Shen Shifang; Liu Reilan
1993-01-01
A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Bruus, Henrik
2015-01-01
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...
Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements
Liburdy, James
2017-11-01
Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Weight, gravitation, inertia, and tides
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Weight, gravitation, inertia, and tides
International Nuclear Information System (INIS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-01-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2016-10-27
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E
2007-05-01
The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump
Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids
Das, Pradipta K.; Gupta, Anoop K.; Nirmalkar, Neelkanth; Chhabra, Raj P.
2015-05-01
In this work, the momentum and heat transfer characteristics of a heated sphere in tubes filled with Bingham plastic fluids have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide ranges of conditions as: Reynolds number, 1 ≤ Re ≤ 100; Prandtl number, 1 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 100 and blockage ratio,0 ≤ λ ≤ 0.5 where λ is defined as the ratio of the sphere to tube diameter. Over this range of conditions, the flow is expected to be axisymmetric and steady. The detailed flow and temperature fields in the vicinity of the surface of the sphere are examined in terms of the streamline and isotherm contours respectively. Further insights are developed in terms of the distribution of the local Nusselt number along the surface of the sphere together with their average values in terms of mean Nusselt number. Finally, the wall effects on drag are present only when the fluid-like region intersects with the boundary wall. However, heat transfer is always influenced by the wall effects. Also, the flow domain is mapped in terms of the yielded- (fluid-like) and unyielded (solid-like) sub-regions. The fluid inertia tends to promote yielding whereas the yield stress counters it. Furthermore, the introduction of even a small degree of yield stress imparts stability to the flow and therefore, the flow remains attached to the surface of the sphere up to much higher values of the Reynolds number than that in Newtonian fluids. The paper is concluded by developing predictive correlations for drag and Nusselt number.
Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations
International Nuclear Information System (INIS)
Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar
2003-01-01
Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)
Dynamics of an inline tube array in steam-water flow. Part 2: Unsteady fluid forces
International Nuclear Information System (INIS)
Mureithi, N.W.; Nakamura, T.; Hirota, K.; Murata, M.; Utsumi, S.
1996-01-01
The existence of fluidelastic instability in two-phase flow has been confirmed by a number of investigators to date. In essentially homogeneous two-phase flow, e.g., bubbly flow, it appears that the mechanisms underlying fluidelastic instability and the instability phenomenon are the same as those observed in single phase flow. The more general case of non-homogeneous two-phase flow, e.g., slug flow, is less amenable to straight forward interpretation by direct comparison with single phase flow mechanisms. In this paper, experimental results of unsteady fluid force measurement are reported. Important deviations of the measured fluid force from their single phase flow counterparts were uncovered. Most importantly, the resulting force coefficients are not simple functions of the reduced velocity U/fD, as is the case for single phase flow. Test results at 0.5 MPa challenge the basic assumption of the existence of a time invariant linear transfer function between tube displacement and the resulting fluid forces. Time-frequency analysis using Wignerville transforms shows that the phase difference between tube displacement and the fluid force (an indicator of stabilizing or destabilizing fluid effects) undergoes significant variation under what may be considered steady flow conditions. This variation may explain the previously reported phenomenon of intermittent fluidelastic instability in two-phase flows
Fluids with highly directional attractive forces. III. Multiple attraction sites
International Nuclear Information System (INIS)
Wertheim, M.S.
1986-01-01
The authors derive a reformulation of statistical thermodynamics for fluids of molecules which interact by highly directional attraction. The molecular model consists of a repulsive core and several sites of very short-ranged attraction. The authors explore the relationship between graph cancellation in the fugacity expansion and three types of steric incompatibility between repulsive and attractive interactions involving several molecules. The steric effects are used to best advantage in a limited regrouping of bonds. This controls the density parameters which appear when articulation points are eliminated in the graphical representation. Each density parameter is a singlet density for a species consisting of molecules with a specified set of sites bonded. The densities satisfy subsidiary conditions of internal consistency. These conditions are equivalent to a minimization of the Helmholtz free energy A. Graphical expressions for A and for the pressure are derived. Analogs of the s-particle direct correlation functions and of the Ornstein-Zernike equation are found
Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J
2010-11-16
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
Polymer microfluidic device replacing fluids using only capillary force
Chung, Kwang Hyo; Lee, Dae Sik; Yang, Haesik; Kim, Sung Jin; Pyo, Hyun Bong
2005-02-01
A novel polymer microfluidic device for self-wash using only capillary force is presented. A liquid filled in a reaction chamber is replaced by another liquid with no external actuation. All the fluidic actuations in the device is pre-programmed about time and sequence, and accomplished by capillary force naturally. Careful design is necessary for exact actions. The fluidic conduits were designed by the newly derived theoretical equations about the capillary stop pressure and flow time. Simulations using CFD-ACE+ were conducted to check the validity of theory and the performance of the chip. These analytic results were consistent with experimental ones. The chip was made of polymers for the purpose of single use and low price. It was fabricated by sealing the hot-embossed PMMA substrate with a PET film. For simpler fabrication, the chip was of a single height. The embossing master was produced from a nickel-electroplating on a SU8-patterned Ni-plate followed by CMP. The contact angles of liquids on substrates were manipulated through the mixing of surfactants, and the temporal variations were monitored for a more exact design. The real actuation steps in experiment revealed the stable performance of selfwash, and coincided well with the designed ones. The presented microfluidic method can be applicable to other LOCs of special purposes through simple modification. For example, array or serial types would be possible for multiple selfwashes.
Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow
International Nuclear Information System (INIS)
Inada, Fumio; Kawamura, Koji; Yasuo, Akira
1996-01-01
Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity
Bounds on the moment of inertia of nonrotating neutron stars
International Nuclear Information System (INIS)
Sabbadini, A.G.; Hartle, J.B.
1977-01-01
Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Compensations for increased rotational inertia during human cutting turns.
Qiao, Mu; Brown, Brian; Jindrich, Devin L
2014-02-01
Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.
Precision measurement of the Casimir-Lifshitz force in a fluid
International Nuclear Information System (INIS)
Munday, J. N.; Capasso, Federico
2007-01-01
The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics
DEFF Research Database (Denmark)
Réthoré, Pierre-Elouan; Sørensen, Niels N.
2012-01-01
at the position of the wind turbine rotor to estimate correctly the power production and the rotor loading. The method proposed in this paper solves this issue by spreading the force on the direct neighbouring cells and applying an equivalent pressure jump at the cell faces. This can potentially open......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...
A high-force controllable MR fluid damper–liquid spring suspension system
International Nuclear Information System (INIS)
Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz
2014-01-01
The goal of the present research is to investigate the feasibility of incorporating a liquid spring in a semi-active suspension system for use in heavy off-road vehicles. A compact compressible magneto-rheological (MR) fluid damper–liquid spring (CMRFD–LS) with high spring rate is designed, developed and tested. Compressible MR fluids with liquid spring and variable damping characteristics are used. These fluids can offer unique functions in reducing the volume/weight of vehicle struts and improving vehicle dynamic stability and safety. The proposed device consists of a cylinder and piston–rod arrangement with an internal annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. Harmonic characterization of the CMRFD–LS is performed and the force–displacement results are presented. A fluid-mechanics based model is also developed to predict the performance of the system at different operating conditions and compared to the experimental results. Good agreement between the experimental results and theoretical predictions has been achieved. (paper)
Directory of Open Access Journals (Sweden)
Mohammad M. Maneshi
2018-03-01
Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.
Particle simulation algorithms with short-range forces in MHD and fluid flow
International Nuclear Information System (INIS)
Cable, S.; Tajima, T.; Umegaki, K.
1992-07-01
Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced
Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths
Energy Technology Data Exchange (ETDEWEB)
Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)
2004-02-01
Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.
Fluid forces enhance the performance of an aspirant leader in self-organized living groups.
Directory of Open Access Journals (Sweden)
Alessandro De Rosis
Full Text Available In this paper, the performance of an individual aiming at guiding a self-organized group is numerically investigated. A collective behavioural model is adopted, accounting for the mutual repulsion, attraction and orientation experienced by the individuals. Moreover, these represent a set of solid particles which are supposed to be immersed in a fictitious viscous fluid. In particular, the lattice Boltzmann and Immersed boundary methods are used to predict the fluid dynamics, whereas the effect of the hydrodynamic forces on particles is accounted for by solving the equation of the solid motion through the time discontinuous Galerkin scheme. Numerical simulations are carried out by involving the individuals in a dichotomous process. On the one hand, an aspirant leader (AL additional individual is added to the system. AL is forced to move along a prescribed direction which intersects the group. On the other hand, these tend to depart from an obstacle represented by a rotating lamina which is placed in the fluid domain. A numerical campaign is carried out by varying the fluid viscosity and, as a consequence, the hydrodynamic field. Moreover, scenarios characterized by different values of the size of the group are investigated. In order to estimate the AL's performance, a proper parameter is introduced, depending on the number of individuals following AL. Present findings show that the sole collective behavioural equations are insufficient to predict the AL's performance, since the motion is drastically affected by the presence of the surrounding fluid. With respect to the existing literature, the proposed numerical model is enriched by accounting for the presence of the encompassing fluid, thus computing the hydrodynamic forces arising when the individuals move.
Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
Karlsen, Jonas T; Bruus, Henrik
2015-10-01
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.
Analysis of the resistive force in fluid flow through porous media
International Nuclear Information System (INIS)
Thirriot, C.; Cohen, A.M.S.; Massarani, G.; Cohen, B.M.S.
1976-01-01
The resistive term appearing in the equation of motion for a fluid flowing through a porous medium is analyzed. This term represents the interactive force between the fluid and the solid mesh. The analysis was done starting with a simple constitutive equation with the help of large number of experimental data points, both with consolidated and non-consolidated porous media. It was found that in almost all cases the resistive term can be adequately expressed in the vetorial from of Forchheimer's quadratic equation [pt
The role of resonance in propulsion of an elastic pitching wing with or without inertia
Zhang, Yang; Zhou, Chunhua; Luo, Haoxiang; Luo Team; Zhou Team
2016-11-01
Flapping wings of insects and undulating fins of fish both experience significant elastic deformations during propulsion, and it has been shown that in both cases, the deformations are beneficial to force enhancement and power efficiency. In fish swimming, the inertia of the fin structure is negligible and the hydrodynamic force is solely responsible for the deformation. However, in insect flight, both the wing inertia and aerodynamic force can be important factors leading to wing deformation. This difference raises the question about the role of the system (fluid-structure) resonance in the performance of propulsion. In this study, we use a 2D pitching foil as a model wing and vary its bending rigidity, pitching frequency, and mass ratio to investigate the fluid-structure interaction near resonance. The results show that at low mass ratios, i.e., a scenario of swimming, the system resonance greatly enhances thrust production and power efficiency, which is consistent with previous experimental results. However, at high mass ratios, i.e., a scenario of flying, the system resonance leads to overly large deformation that actually does not bring benefit any more. This conclusion thus suggests that resonance plays different roles in flying and in swimming. Supported by the NNSF of China and the NSF of US.
Properties of forced convection experimental with silicon carbide based nano-fluids
Soanker, Abhinay
. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
Microscopic derivation of the force on a dielectric fluid in an electromagnetic field
International Nuclear Information System (INIS)
Lai, H.M.; Suen, W.M.; Young, K.
1982-01-01
The force acting on a Clausius-Mossotti fluid in an electromagnetic field is evaluated microscopically. Owing to the modification of the two-particle density by the electric field, an additional mechanical force Δf/sup( M/) is found. When this is added to the electrical force f/sup( E/), the total force in the static case becomes identical to that deduced macroscopically by Helmholtz. The analysis is extended to various time-dependent cases, and it is pointed out that Δf/sup( M/) essentially assumes its static value on time scales longer than T/sub c/, the relaxation time of the two-particle density, but is otherwise negligibly small. Thus Peierls's theory of the momentum of light is valid only for pulses much shorter than T/sub c/; the necessary correction due to Δf/sup( M/) in other cases is given and discussed
Energy Technology Data Exchange (ETDEWEB)
Iwata, Koji; Wada, Yusaku; Morishita, Masaki; Yamaguchi, Akira; Ichimiya, Masakazu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1997-01-01
This is a report of summarized results of investigation and analysis on fracture of thermometer which is direct reason of sodium leakage incident at the second main cooling system of fast breeder reactor `Monju`. Various surveys such as on various damage factors, on flowing power vibrational features containing flowing power vibrational test of thermometer, on evaluation of high cycle fatigue due to flowing power vibration and details on propagation of and fracture due to fatigue crack, on why only said thermometer damaged, and so forth were executed. As results of these examinations, a decision was arrived that high cycle fatigue due to vibration formed by fluid force (fluid force vibration) was a direct cause of the thermometer damage. (G.K.)
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow
International Nuclear Information System (INIS)
Divaret, Lise
2014-01-01
This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the
Calculation of the force acting on a drop in a nonuniform flow of a current-supporting fluid
International Nuclear Information System (INIS)
Korovin, V.M.
1993-01-01
In the context of wide use of intense electric currents in various technological process, it is of practical interest to investigate the characteristics of the force action of electromagnetic fields on a variety of inclusions - solid particles, drops, gas bubbles - suspended in current-supporting fluids. In the available studies one treats the simplest case, in which the vortical component of the electromagnetic forces, generated by the interaction of the current with the internal magnetic field, is nonvanishing only in small vicinities near these inclusions, and therefore these electromagnetic forces do not generate global motion of the homogeneous current-supporting fluid. In practice, in most cases the vortical component of electromagnetic forces plays a substantial role in the whole operating region of the technological device, and the motion of the current-supporting fluid is created specifically by electromagnetic forces. In the case of a varying electromagnetic field the forces acting on particles are located in the conducting fluid, moving under the field action, were calculated by Korovim (Korovim, V. M., open-quotes The calculation of forces acting on suspended particles during the flow of a conducting fluid in a varying electromagnetic field,close quotes Magn. Gidrodin, No. 1 95-102 (1991)). In the present study the authors generalize the method suggested by Korovin for calculating forces applied to both drops and particles and gas bubbles suspended in the gradient flow of a fluid moving under the action of a constant electromagnetic field. 6 refs
Selective effects of weight and inertia on maximum lifting.
Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S
2013-03-01
A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.
Lee, Jong-Chul; Lee, Sangyoup
2013-09-01
Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.
Free piston inertia compressor
Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.
A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.
International Nuclear Information System (INIS)
Kan, K.K.
1983-01-01
The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)
Analysis of anisotropic shells containing flowing fluid
International Nuclear Information System (INIS)
Lakis, A.A.
1983-01-01
A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt
Rewetting phenomena and their relation to intermolecular forces between a hot wall and the fluid
International Nuclear Information System (INIS)
Gerweck, V.
1989-12-01
The rewetting phenomena and the different physical concepts which are used in their modelisation are reviewed. The present work studies the effect of the intermolecular forces between the hot wall and the fluid on this phase transition. Using suitable approximations, a local equation of state is obtained by the treatment of the fluid-fluid and fluid-wall intermolecular interactions. This local equation of state depends on the distance from the wall, and the critical pressure and temperature become a function of the distance from the wall, whereas the critical density is left constant throughout the fluid. At the wall, the critical pressure and temperature are half their bulk values and increase towards the bulk value as the distance from the wall increases. The penetration of a temperature profile in this fluid is studied by assuming that the liquid density is not strongly affected by this temperature profile as long as there is no phase transition. It is shown that the phase transition will occur extremely rapidly when the interfacial temperature upon contact is higher than the minimum of the local spinodal temperature, which varies with the distance from the wall. The result ist cast in the form of an interfacial rewetting temperature fT c above which rewetting of the surface by liquid-wall contacts is not expected because these contacts will be terminated in extremely short times. Comparing the theory with available data shows that in the usual rewetting situations the theory reduces to the use of the bulk spinodal temperature. For surfaces coated with poorly wetted materials the correction factor due to surface effects applies, reducing the rewetting temperature, in agreement with the experimental data. For liquid metals it appears that the theory is applied in a region where the basic theoretical approximations are very coarse; but even in that case the experimental trend is qualitatively predicted by the theory. (author) 43 figs., 11 tabs., 105 refs
A direct force model for Galilean invariant lattice Boltzmann simulation of fluid-particle flows
Tao, Shi; He, Qing; Chen, Baiman; Yang, Xiaoping; Huang, Simin
The lattice Boltzmann method (LBM) has been widely used in the simulation of particulate flows involving complex moving boundaries. Due to the kinetic background of LBM, the bounce-back (BB) rule and the momentum exchange (ME) method can be easily applied to the solid boundary treatment and the evaluation of fluid-solid interaction force, respectively. However, recently it has been found that both the BB and ME schemes may violate the principle of Galilean invariance (GI). Some modified BB and ME methods have been proposed to reduce the GI error. But these remedies have been recognized subsequently to be inconsistent with Newton’s Third Law. Therefore, contrary to those corrections based on the BB and ME methods, a unified iterative approach is adopted to handle the solid boundary in the present study. Furthermore, a direct force (DF) scheme is proposed to evaluate the fluid-particle interaction force. The methods preserve the efficiency of the BB and ME schemes, and the performance on the accuracy and GI is verified and validated in the test cases of particulate flows with freely moving particles.
A two-fluid study of oblique tearing modes in a force-free current sheet
Energy Technology Data Exchange (ETDEWEB)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
A universal fluid cell for the imaging of biological specimens in the atomic force microscope.
Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles
2013-04-01
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen
2015-01-01
In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...
A Comparative Study on Evaluation Methods of Fluid Forces on Cartesian Grids
Directory of Open Access Journals (Sweden)
Taku Nonomura
2017-01-01
Full Text Available We investigate the accuracy and the computational efficiency of the numerical schemes for evaluating fluid forces in Cartesian grid systems. A comparison is made between two different types of schemes, namely, polygon-based methods and mesh-based methods, which differ in the discretization of the surface of the object. The present assessment is intended to investigate the effects of the Reynolds number, the object motion, and the complexity of the object surface. The results show that the mesh-based methods work as well as the polygon-based methods, even if the object surface is discretized in a staircase manner. In addition, the results also show that the accuracy of the mesh-based methods is strongly dependent on the evaluation of shear stresses, and thus they must be evaluated by using a reliable method, such as the ghost-cell or ghost-fluid method.
International Nuclear Information System (INIS)
Tokura, S.; Hara, M.; Kawaguchi, N.; Amemiya, N.
2014-01-01
In this study, the contactless grasp of a magnetic particle suspended in a fluid at rest or in motion by coil current control, and a method for estimating these forces quantitatively were developed. Four electromagnets were used to apply magnetic fields to magnetic ferrite particles (diameter, 300 nm–300 µm) in a fluid in a vessel. Particle-tracking velocimetry with high-speed image processing was used to visualize the behavior of the magnetic particles in the fluid. In addition, contactless grasp of a magnetic particle using the feedback control was accomplished. Furthermore, by making the magnetic force and the resultant force of the other forces affecting a magnetic particle be in balance, the vertical and horizontal forces affecting the minute magnetic particle, such as the viscous force or the magnetic force between magnetized particles, could be estimated quantitatively from the current in the coil of each electromagnet, without any physical contact with the particle itself. These results constitute useful information for studies on the issues in the handling of micro- or nano-particles. - Highlights: • Four electromagnets are used to apply magnetic field to magnetic ferrite particles. • Motion of magnetic particles suspended in a resting or flowing fluid is visualized. • Contactless grasp of a magnetic particle using feedback control was accomplished. • Vertical and horizontal forces affecting a particle can be estimated quantitatively. • Force between magnetized particles which approach to each other was measured
Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid
Antanovskii, L. K.
1991-12-01
An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.
Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation.
Pesavento, Umberto; Wang, Z Jane
2004-10-01
We investigate the problem of falling paper by solving the two dimensional Navier-Stokes equations subject to the motion of a free-falling body at Reynolds numbers around 10(3). The aerodynamic lift on a tumbling plate is found to be dominated by the product of linear and angular velocities rather than velocity squared, as appropriate for an airfoil. This coupling between translation and rotation provides a mechanism for a brief elevation of center of mass near the cusplike turning points. The Navier-Stokes solutions further provide the missing quantity in the classical theory of lift, the instantaneous circulation, and suggest a revised model for the fluid forces.
Moments of inertia of neutron stars
Energy Technology Data Exchange (ETDEWEB)
Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)
2016-07-01
Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.
International Nuclear Information System (INIS)
Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu
2014-01-01
Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on
Therapeutic Inertia and Treatment Intensification.
Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D
2018-01-29
This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.
Collective inertia in paired systems
International Nuclear Information System (INIS)
Arve, P.O.; Bertsch, G.F.; Michigan State Univ., East Lansing
1988-01-01
Two definitions of the collective inertia are examined. One of them was recently proposed and applied in a calculation of exotic radioactivity. The other expression is the Inglis cranking formula. It is shown that the new formula corresponds to rapid collective motion while the cranking corresponds to slow collective motion. It is also seen that the two forms of the inertia differ only in the choice of the collective momentum. (orig.)
Thermal Inertia of Rocks and Rock Populations
Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.
2001-01-01
The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.
Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations
International Nuclear Information System (INIS)
Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.
1979-01-01
The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)
Simulation of forced convection in non-Newtonian fluid through sandstones
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Energy Technology Data Exchange (ETDEWEB)
Chôné, L. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Beyer, P.; Fuhr, G.; Benkadda, S. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); Sarazin, Y.; Bourdelle, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)
2014-07-15
Spontaneous transport barrier generation at the edge of a magnetically confined plasma is reproduced in flux-driven three-dimensional fluid simulations of electrostatic turbulence. Here, the role on the radial electric field of collisional friction between trapped and passing particles is shown to be the key ingredient. Especially, accounting for the self-consistent and precise dependence of the friction term on the actual plasma temperature allows for the triggering of a transport barrier, provided that the input power exceeds some threshold. In addition, the barrier is found to experience quasi-periodic relaxation events, reminiscent of edge localised modes. These results put forward a possible key player, namely, neoclassical physics via radial force balance, for the low- to high-confinement regime transition observed in most of controlled fusion devices.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Scaling of rotational inertia of primate mandibles.
Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B
2017-05-01
The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion
Two-fluid model of the pulsar magnetosphere represented as an axisymmetric force-free dipole
Energy Technology Data Exchange (ETDEWEB)
Petrova, S.A., E-mail: petrova@rian.kharkov.ua [Institute of Radio Astronomy of the NAS of Ukraine, Mystetstv Str., 4, Kharkiv 61002 (Ukraine)
2017-05-01
Based on the exact dipolar solution of the pulsar equation the self-consistent two-fluid model of the pulsar magnetosphere is developed. We concentrate on the low-mass limit of the model, taking into account the radiation damping. As a result, we obtain the particle distributions sustaining the dipolar force-free configuration of the pulsar magnetosphere in case of a slight velocity shear of the electron and positron components. Over most part of the force-free region, the particles follow the poloidal magnetic field lines, with the azimuthal velocities being small. Close to the Y-point, however, the particle motion is chiefly azimuthal and the Lorentz-factor grows unrestrictedly. This may result in the very-high-energy emission from the vicinity of the Y-point and may also imply the magnetocentrifugal formation of a jet. As for the first-order quantities, the longitudinal accelerating electric field is found to change the sign, hinting at coexistence of the polar and outer gaps. Besides that, the components of the plasma conductivity tensor are derived and the low-mass analogue of the pulsar equation is formulated as well.
Neutron star moments of inertia
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
From resistance to relational inertia
DEFF Research Database (Denmark)
Scheuer, John Damm
-network-theory as a point of departure a new concept – relational inertia – is developed. In this view change agents are theorized as translators who interacts with humans as well as non-humans (objects) in order to construct different types of socio-technical systems which are constructed to perform certain “wished...... inertia that had to be handled in order to succeed with constructing a performative socio-technical risk-management system in practice. Finally it is discussed how this view supplements the resistance to change view and other views with a focus on barriers to change....
Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine
2006-03-01
In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.
DEFF Research Database (Denmark)
Enz, Stephanie; Thomsen, Jon Juel
2011-01-01
to improve accuracy, precision, and robustness of CFMs. A simple mathematical model of a fluid-conveying pipe is formulated and the effect of pulsating fluid flow is analyzed using a multiple time scaling perturbation analysis. The results are simple analytical predictions for the transverse pipe...... and uncontrolled during CFM operation by feedback control. The analytical predictions offer an immediate insight into how fluid pulsation affects phase shift, which is a quantity measured by CFMs to estimate the mass flow, and lead to hypotheses for more complex geometries, i.e. industrial CFMs. The validity...... displacement and approximate axial shift in vibration phase. The analytical predictions are tested against pure numerical solution using representative examples, showing good agreement. Fluid pulsations are predicted not to influence CFM accuracy, since proper signal filtering is seen to allow...
Moment of Inertia by Differentiation
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
International Nuclear Information System (INIS)
Imon, Toshiharu; Nakamura, Norio; Oomura, Hiroshi.
1983-01-01
Purpose: To eliminate the requirement of power for controlling the flow velocity of coolants flowing through a porous structure blanket, as well as establish a uniform and stable coolant layer. Constitution: Breeding blanket is made with mesh-like or fiberous porous body, and liquid lithium is introduced into the porous body. The porous body functions as a resistive member to inhibit the free fall of the liquid lithium, so the coolant flowing velocity can be determined to a desired value by appropriately selecting the porosity therein. Further, since liquid lithium flows downwardly at a uniform speed under the effect of the gravitational force, the layer thickness is made uniform to effectively recover neutron energy. Also, while waves are formed at the boundary surface of the liquid lithium layer other than for the porous body due to the collision of fine balls or the likes, they are instantly eliminated by the porous body and the flow can be stabilized. (Yoshino, Y.)
Energy Technology Data Exchange (ETDEWEB)
Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)
2017-04-15
It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.
International Nuclear Information System (INIS)
Mitri, F.G.
2014-01-01
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F.G., E-mail: mitri@chevron.com
2014-03-15
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.
Study and modeling of fluctuating fluid forces exerted on fuel rods in pressurized water reactors
International Nuclear Information System (INIS)
Bhattacharjee, Saptarshi
2016-01-01
Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in the fuel rods. Due to friction, wear occurs at the contact locations between the spacer grid and the fuel rod. This could compromise the first safety barrier of the nuclear reactor by damaging the fuel rod cladding. In order to ensure the integrity of the cladding, it is necessary to know the random fluctuating forces acting on the rods. However, the spectra for these fluid forces are not well known. The goal of this PhD thesis was to use simple geometrical elements to check the reproducibility of realistic pressurized water reactor spacer grids. As a first step, large eddy simulations were performed on a concentric annular pipe for different mesh refinements using the CFD code Trio CFD (previously Trio U) developed by CEA. A mesh sensitivity study was performed to obtain an acceptable mesh for reproducing standard literature results. This information on mesh resolution was used when carrying out simulations using various geometric obstacles inside the pipe, namely, mixing vanes, circular spacer grid and a combination of square spacer grid with mixing vanes. The last of the three configurations is the closest to a realistic PWR fuel assembly. Structured mesh was generated for the annular pipe case and circular grid case. An innovative hybrid mesh was used for the two remaining cases of the mixing vanes and the square grid: keeping unstructured mesh around the obstacles and structured mesh in the rest of the domain. The inner wall of the domain was representative of the fuel rod cladding. Both hydraulic and wall pressure characteristics were analyzed for each case. The results for the square grid case were found to be an approximate combination of the mixing vane case and circular grid case. Simulation results were compared with experiments performed at CEA Cadarache. Some preliminary comparisons were also made with classical semi-empirical models. (author) [fr
International Nuclear Information System (INIS)
Madarame, Haruki; Nakamura, Norio; Oomura, Hiroshi.
1983-01-01
Purpose: To enable effective recovery of the thermonuclear reaction energy and effective protection of a cylinder metal against thermal destruction by forming a uniform and stable liquid metal wall to the inside of a cylindrical member. Constitution: Cylindrical body having a lateral axis is rotatably supported so that a liquid metal wall for use in the wet wall type thermonuclear device is formed centrifugally. A liquid metal injection port for injecting the liquid metal to the cylindrical member is disposed to the lateral axis and a liquid metal exit for flowing out the injected liquid metal is disposed to the body of the cylindrical member, so as to form a moving liquid metal layer flowing from the injection port through the inner circumferential surface of the cylindrical member to the liquid metal exit port. Then, the liquid metal is centrifugally forced to the inner surface of the cylindrical body to form a uniform and stable liquid metal wall at the inner surface of the cylindrical body, whereby the reaction energy can effectively be recovered and the cylinder metal can effectively be protected against thermal destruction. (Yoshihara, H.)
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.
2008-09-01
We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.
Phylogenetic inertia and Darwin's higher law.
Shanahan, Timothy
2011-03-01
The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Culetu, H.
1990-09-01
A dynamical origin to the Minkowski geometry is suggested in this paper. The Minkowski internal (-x α x α ) 1/2 plays the role of the fifth dimension. We found the energy-momentum vector p μ (associated to a ''motion in scale'') of a ''free'' relativistic particle in position-dependent. When x i and ''t'' are not independent, we are naturally led to the law of inertia. (author). 10 refs
Karlsen, Jonas; Bruus, Henrik
2015-11-01
We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.
Casado-Pascual, Jesús
2018-03-01
The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
A method for measuring the inertia properties of rigid bodies
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Directory of Open Access Journals (Sweden)
Zhang Sheng
2015-01-01
Full Text Available In this paper, Painleve analysis is used to test the Painleve integrability of a forced variable-coefficient extended Korteveg-de Vries equation which can describe the weakly-non-linear long internal solitary waves in the fluid with continuous stratification on density. The obtained results show that the equation is integrable under certain conditions. By virtue of the truncated Painleve expansion, a pair of new exact solutions to the equation is obtained.
Nakashima, Motomu; Satou, Ken; Miura, Yasufumi
The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.
Directory of Open Access Journals (Sweden)
Honey Gurbaxani
2017-01-01
Full Text Available Background: Orthodontic movements promote remodeling of the alveolar bone, which is mediated by inflammatory reactions such as characterized by vascular changes and infiltration of leukocytes. Changes in the periodontium occur, depending on the magnitude, duration, and direction of applied force. These changes are often seen in the saliva and gingival fluids through the various substances secreted in them. Aim: The present study aimed to assess myeloperoxidase (MPO activity at different force levels in gingival crevicular fluid (GCF during the initial phase of orthodontic tooth movement by varying the effective force levels to 50, 75, 100, and 150 g. Materials and Methods: A total of thirty participants between the age groups of 18–25 years requiring upper first premolar extractions were included in the study. They were divided into three groups (I, II, and III of ten individuals each, again subdivided into two Subgroups A and B depending on the amount of force applied to the canine. Subgroup A of all the three groups used 150 g, whereas Subgroup B used 50, 75, and 100 g of force, respectively. GCF was collected at 2 h, 7 days, and 14 days of force application. Statistical Analysis: Paired t-test and ANOVA test were used to provide the descriptive statistics of mean optical density to detect the presence of MPO in GCF. Results and Conclusion: There was a highly significant increase in the MPO levels in the GCF at 14th day after force application which can be correlated to the onset of inflammatory reactions in the periodontium.
Energy Technology Data Exchange (ETDEWEB)
Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)
1997-01-01
Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.
Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo
2018-01-01
In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.
Primary uterine inertia in four labrador bitches.
Davidson, Autumn P
2011-01-01
Uterine inertia is a common cause of dystocia in the bitch and is designated as primary (i.e., uterine contractions fail to ever be initiated) or secondary (i.e., uterine contractions cease after a period of time but before labor is completed). The etiology of primary uterine inertia is not well understood. The accurate diagnosis of primary uterine inertia requires the use of tocodynamometry (uterine monitoring). Primary uterine inertia has been postulated to result from a failure of luteolysis resulting in persistently elevated progesterone concentrations. In this study, primary uterine inertia was diagnosed in a series of four bitches in which luteolysis was documented suggesting some other etiopathogenesis for primary uterine inertia.
WAYS TO MANAGE HEATING INERTIA
Directory of Open Access Journals (Sweden)
E. V. Biloshytskyi
2017-08-01
Full Text Available Purpose. The research paper proposes to estimate the effect of heat inertia of the water heating system, in transient operation modes, on the temperature condition in the passenger car, as well as to offer technical solutions intended to reduce the heating system inertia effect and to maintain a stable temperature condition in the passenger car premises in transitional modes of the heating system. Methodology. The author developed the method for controlling the heat transfer of heating system pipes with the help of regulating casing. To control the heating system and the heat transfer of heating pipes, two types of temperature control sensors were used in the passenger car: certain sensors interacted with regulatory casings, while the others interacted with high-voltage tubular heating element control devices. To assess the efficiency of heat interchange regulation of heating pipes and the heating system control, with installed regulating casings, the operation of the heating system with regulating casings and two types of sensors was mathematically modelled. Mathematical modelling used the experimental test data. The results of experimental tests and mathematical modelling were compared. Findings. Currently in operated passenger cars, control of heating appliances is not constructively provided. Automatic maintenance of the set temperature in a passenger car is limited to switching on and off of high-voltage tubular heating elements. The use of regulating casings on heating pipes allows reducing the effects of heat inertia and maintaining stable thermal conditions in a passenger car, using the heating system as a heat accumulator, and also provides the opportunity to realize an individual control of air temperature in the compartment. Originality. For the first time, the paper studied the alternative ways of regulating the temperature condition in a passenger car. Using of the heating system as a heat accumulator. Practical value. The
Effects of electron inertia in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)
2014-07-15
We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.
The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.
Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F
2005-12-01
During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.
Gross shell structure of moments of inertia
International Nuclear Information System (INIS)
Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.
2002-01-01
Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits
Clinical Inertia and Outpatient Medical Errors
National Research Council Canada - National Science Library
O'Connor, Patrick J; Sperl-Hillen, JoAnn M; Johnson, Paul E; Rush, William A; Biltz, George
2005-01-01
.... Clinical inertia is a major factor that contributes to inadequate chronic disease care in patients with diabetes mellitus, hypertension, dyslipidemias, depression, coronary heart disease, and other conditions...
Numerical study of magnetic field effect on nano-fluid forced convection in a channel
Energy Technology Data Exchange (ETDEWEB)
Heidary, H., E-mail: Heidary_ha@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Pirmohammadi, M., E-mail: Pirmohamadi@pardisiau.ac.ir [Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City, Tehran (Iran, Islamic Republic of); Kermani, M.J. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)
2015-01-15
In this study heat transfer and fluid flow analysis in a straight channel utilizing nano-fluid is numerically studied, while flow field is under magnetic field. Usage of nano-particles in base fluid and also applying magnetic field transverse to fluid velocity are two ways recommended in this paper to enhance heat exchange in straight duct. The fluid temperature at the channel inlet (T{sub in}) is taken less than that of the walls (T{sub w}). With assuming thermal equilibrium state of both the fluid phase and nano-particles and ignoring the slip velocity between the phases, single phase approach is used for modeling of nano-fluid. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique. Numerical studies are performed over a range of Reynolds number, nano-fluid volume fraction and Hartmann number. The influence of these parameters is investigated on the local and average Nusselt numbers. Computations show excellent agreement with the literature. From this study, it is concluded that heat transfer in channels can enhance up to 75% due to the presence of nano-particles and magnetic field in channels. In industrial applications for cooling or heating purposes, the recommended ways in this paper, can provide helpful guidelines to the manufacturers to enhance efficiencies without heat exchanger area increase. - Highlights: • Addition of 10% nano-particles (copper here) can enhance the heat exchange by 26%. • Presence of magnetic field with Ha=30 in pure fluid can enhance the heat exchange by 50%. • Presence of magnetic field and nanofluid with Ha=30 and ϕ=0.1, can enhance the heat exchange by 76%. • Increasing Re{sub H} from 50 to 1000, the average Nu number can increase by a factor of ≈3.
Analysis on the influence of the pump start transient performance with different inertia impeller
International Nuclear Information System (INIS)
Tang, Y; Cheng, J; Liu, E H; Tang, L D
2012-01-01
Centrifugal pump start-up time is very short, in the boot process, the instantaneous head and flow will have an impact role to the pipeline, and however the moment of inertia is one of the main factors affecting centrifugal pump boot acceleration. We analyzed the pump start-up transient characteristics with the different moment of inertia of the impeller corresponding to the different materials, there are three different moment of inertia of the impeller have been selected. At first, we use the 'Flowmaster' fluid system simulation software do the outer characteristics simulation to the selected-model, get the time - flow and the time - speed curve. Then, do the experiments research in the process when pump start-up, and compare with the simulation result. At last use the outer characteristics simulation result as the boundary, using the ANASYS CFX software do the transient simulation to the three groups with different inertia pump impeller, and draw the pressure distribution picture. In according to the analysis, we can confirm that the impact of inertia is one of the factors in the stability during the pump star, and we can get that the greater moment of inertia, the longer the boot stable. We also can get that combined Flowmaster with ANSYS can solved engineering practice problem in fluid system conveniently, and take it easy to solve the similar problem.
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
Fluid elastic vibration of nuclear fuel assemblies
International Nuclear Information System (INIS)
Kim, S. N.; Jung, S. Y.
1998-01-01
Since utilities and fuel venders have adopted the fuel design of high burn-up and improved thermal margin flow mixing vane, several PWR nuclear power plants have in recent years experienced fretting wear fuel rod failure due to flow induced vibration. Flow induced vibration can be resulted from fluidelastic instability, periodic shedding, turbulence-induced excitation, and acoustic resonance (1). Among these mechanisms found in the core of nuclear power plant, the governing mechanism that is fluidelastic instability, could be inferred from the analysis of fuel failure patterns. Therefore, to simulate the fuel failure in nuclear power plants, Tanaka's model (2) was chosen as most suitable one, which is well explaining the damage pattern, in particular it's second row damage characteristics. In the model, unsteady fluid dynamic forces acting on the vibrating cyclinders were included which consists of the inertia forces due to the added mass of fluid, damping forces of fluid in phase to the cylinder vibrating velocity, and stiffness forces proportional to cylinder displacements. However, the model did not account for radiation effect-spring forces deflection. So, the model was modified to account for the spring force relaxation due to radiation exposure. The stiffness of spring was fitted with experimental data. Finally the critical velocities were calculated with the modified spring force at beginning and end of cycle
Energy Technology Data Exchange (ETDEWEB)
Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com
2010-07-01
As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)
Effect of Retarding Force on Mass Flow Rates of Fluid at Different ...
African Journals Online (AJOL)
... mathematical model and software visualization to view the effect of retarding forces on the mass flow rate in term of visualization. C-sharp (C#) is the chosen program and this enable compares and us to determine the mass flow rates patterns in relation to retarding force in form of graphical tables at different temperature.
International Nuclear Information System (INIS)
Amirante, R.; Moscatelli, P.G.; Catalano, L.A.
2007-01-01
The aim of this paper is to investigate the fluid dynamic behaviour of a commercial hydraulic proportional valve in order to evaluate and justify its global performances and, in particular, to analyze the effects of some additional design features on the reduction of the force required to maintain the valve open. The proposed analysis has been performed by applying the commercial computational fluid dynamics (CFD) code, Fluent, to the solution of the three dimensional turbulent flow field through a circumferential sector of the entire valve for different spool strokes. The reliability of the employed modelization is demonstrated by the comparison between the computed flow rate curve and the corresponding experimental data provided by the manufacturer. With regard to the metering edge design, it is shown that the cylindrical hole provided on the top of the hemi-spherical notch to improve metering at small valve openings has no influence on the flow force balance. The presented results also demonstrate that compensation techniques based on an adequate spool profiling are effective in balancing the flow forces mainly at medium and large valve openings, thanks to the pressure difference on the compensation profile; which also results in an increased axial momentum at the inlet of the high pressure chamber. The benefits of its presence are amplified by the adoption of two grooves machined on the valve body, which modify the flow field so as both to increase the axial momentum at the inlet of the high pressure chamber and to reduce it at the outlet
D-dimensional moments of inertia
International Nuclear Information System (INIS)
Bender, C.M.; Mead, L.R.
1995-01-01
We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers
Dynamical moments of inertia for superdeformed nuclei
International Nuclear Information System (INIS)
Obikhod, T.V.
1995-01-01
The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd
Fluid-structure coupling for an oscillating hydrofoil
Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.
2010-08-01
Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.
Directory of Open Access Journals (Sweden)
François de Kock
2009-04-01
Full Text Available Pilot selection is a form of high-stakes selection due to the massive costs of training, high trainee ability requirements and costly repercussions of poor selection decisions. This criterion-related validation study investigated the predictive ability of fluid intelligence and spatial reasoning in predicting three criteria of pilot training performance, using an accumulated sample of South African Air Force pilots (N = 108. Hierarchical multiple regression analyses with training grade achieved as criterion were performed for each of the phases of training, namely practical flight training, ground school training, and officers’ formative training. Multiple correlations of 0.35 (p 0.05 and 0.23 (p > 0.05 were obtained for flight, ground school and formative training results, respectively. Spatial ability had incremental validity over fluid intelligence for predicting flight training performance.
Directory of Open Access Journals (Sweden)
Patrick Grahn
2018-03-01
Full Text Available A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism share the similar functional form because both are carried by the vacuum photons as paired and unpaired.
Directory of Open Access Journals (Sweden)
Yonghui Xie
2013-01-01
Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.
Jonker, Jan B.; van Essen, T.G.; van Essen, T.G.
1997-01-01
A finite element based method has been developed for computing time-averaged fluid-induced radial excitation forces and rotor dynamic forces on a two-dimensional centrifugal impeller rotating and whirling in a volute casing. In this method potential flow theory is used, which implies the assumption
Massive Submucosal Ganglia in Colonic Inertia.
Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng
2018-02-01
- Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.
Flapping inertia for selected rotor blades
Berry, John D.; May, Matthew J.
1991-01-01
Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.
Fluid forces on a very low Reynolds number airfoil and their prediction
Energy Technology Data Exchange (ETDEWEB)
Zhou, Y., E-mail: mmyzhou@polyu.edu.h [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Alam, Md. Mahbub [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Yang, H.X. [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, H. [School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Xue Yuan Road No. 37, HaiDian District, Beijing (China); Wood, D.H. [School of Engineering, University of Newcastle, Callaghan NSW 2308 (Australia)
2011-02-15
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle ({alpha}) of attack (0-90{sup o}) and low to small chord Reynolds numbers (Re{sub c}), 5.3 x 10{sup 3}-5.1 x 10{sup 4}, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both {alpha} and Re{sub c} is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Re{sub c} {>=} 1.05 x 10{sup 4} but is absent at Re{sub c} = 5.3 x 10{sup 3}. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on {alpha}.
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng
2013-10-28
A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.
Directory of Open Access Journals (Sweden)
Valchev Galin
2018-01-01
Full Text Available Here we study the interplay between the van der Waals (vdWF and critical Casimir forces (CCF, as well as the total force (TF between a conical colloid particle and a thick planar slab. We do that using general scaling arguments and mean-field type calculations utilizing the so-called “surface integration approach”, a generalization of the well known Derjaguin approximation. Its usage in the present research, requires knowledge on the forces between two parallel slabs, confining in between some fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particle and the slab are assumed coated by thin layers exerting strong preference to the liquid phase of a simple fluid, or one of the components of a binary mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+ boundary conditions. On the other hand, the core region of the slab and the particle, influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloid-fluid, slab-fluid, and fluid-fluid coupling parameters the competition between the effects due to the coatings and the core regions of the objects, result, when one changes T or μ, in sign change of the Casimir force (CF and the TF acting between the colloid and the slab. Such an effect can provide a strategy for solving problems with handling, feeding, trapping and fixing of microparts in nanotechnology.
Development of 3 DOF manipulator using ER fluid clutches for reduction of collision force
International Nuclear Information System (INIS)
Boku, Kazuhiko; Nakamura, Taro
2009-01-01
Abstract.With robots and users more commonly sharing space such as in the fields of medicine and home automation, the possibility of a physical collision has increased, even though many robots use actuators with high-ratio gear trains to minimize the effects of impact. We developed a 3-DOF manipulator having a smart flexible joint using an ER fluid and a sensor-equipped pneumatic cushion. Results of position control and collision experiments using the manipulator demonstrated its effectiveness.
Development of 3 DOF manipulator using ER fluid clutches for reduction of collision force
Boku, Kazuhiko; Nakamura, Taro
2009-02-01
.With robots and users more commonly sharing space such as in the fields of medicine and home automation, the possibility of a physical collision has increased, even though many robots use actuators with high-ratio gear trains to minimize the effects of impact. We developed a 3-DOF manipulator having a smart flexible joint using an ER fluid and a sensor-equipped pneumatic cushion. Results of position control and collision experiments using the manipulator demonstrated its effectiveness.
Compressible fluids driven by stochastic forcing: The relative energy inequality and applications
Czech Academy of Sciences Publication Activity Database
Breit, D.; Feireisl, Eduard; Hofmanová, M.
2017-01-01
Roč. 350, č. 2 (2017), s. 443-473 ISSN 0010-3616 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible fluids * Navier-Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.500, year: 2016 http://link.springer.com/article/10.1007%2Fs00220-017-2833-x
Development of 3 DOF manipulator using ER fluid clutches for reduction of collision force
Energy Technology Data Exchange (ETDEWEB)
Boku, Kazuhiko; Nakamura, Taro [Chuo University, Faculty of Science and Engineering, Department of Precision Mechanics, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)], E-mail: k_boku@bio.mech.chuo-u.ac.jp
2009-02-01
Abstract.With robots and users more commonly sharing space such as in the fields of medicine and home automation, the possibility of a physical collision has increased, even though many robots use actuators with high-ratio gear trains to minimize the effects of impact. We developed a 3-DOF manipulator having a smart flexible joint using an ER fluid and a sensor-equipped pneumatic cushion. Results of position control and collision experiments using the manipulator demonstrated its effectiveness.
Computational Analysis of Effect of Transient Fluid Force on Composite Structures
2013-12-01
as they well represent an E-glass fiber reinforced composite frequently used in research and industrial applications. The fluid domain was sized...provide unique perspectives on peak stress ratios . The two models both share increased structural rigidity. The cylinder is reinforced by... Poisson ratio of 0.3 and Young’s modulus of 20 GPa were added to the transient structural engineering data cell (Figure 69). 78 Figure 69. E-Glass
International Nuclear Information System (INIS)
Amirante, R.; Del Vescovo, G.; Lippolis, A.
2006-01-01
The aim of the present paper is the evaluation of the driving forces acting on a 4/3 hydraulic open center directional control valve spool by means of a complete numerical analysis. In a previous paper by the same authors, the valve was inserted in a closed hydraulic circuit and was tested with different pump flow rate values to obtain experimental results about the driving forces. The experimental results are used in this paper to evaluate and validate the numerical analysis of the valve. The obtained numerical results show important differences between an open center valve and a closed center one, the latter being extensively analyzed in the literature. The numerical analysis is performed by using the commercial code 'Fluent', and the numerical results show the complete flow field inside the valve. The aim of this analysis is to evaluate the valve fluid dynamic performance, exploiting computational fluid dynamics (CFD) techniques, in order to give the reliable indications needed to define the valve design criteria and avoid expensive experimental tests
Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes
International Nuclear Information System (INIS)
Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.
2016-01-01
To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)
Experimental Validation of Modelled Fluid Forces in Fast Switching Hydraulic On/Off Valves
DEFF Research Database (Denmark)
Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck
2015-01-01
A prototype of a fast switching valve for a digital hydraulic machine has been designed and manufactured. The valve is composed of an annular seat plunger connected with a moving coil actuator as the force producing element. The valve prototype is designed for flow rates of 600 l/min with less th...
Effect of particle inertia and gravity on the turbulence in a suspension
Ooms, G.; Poesio, P.
2005-01-01
A theoretical model is presented for the effect of particle inertia and gravity on the turbulence in a homogeneous suspension. It is an extension of the one-fluid model developed by L’vov, Ooms, and Pomyalov [Phys. Rev. E 67, 046314 (2003)] , in which the effect of gravity was not considered. In the
Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics
Herring, A. R.; Henderson, J. R.
2007-01-01
Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry
Virtual inertia for variable speed wind turbines
DEFF Research Database (Denmark)
Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus
2013-01-01
electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system......’s inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...
A Reevaluation of the Attentional Inertia Concept
W.J.M.I. Verbeke (Willem)
1992-01-01
textabstractAnderson's (1983) theory about children's attention behavior during television viewing hypothesizes that attention behavior is affected by positive feedback (the inertia hypothesis) and the degree to which a child understands the television program. During an experiment, neither
Moments of inertia in a semiclassical approach
International Nuclear Information System (INIS)
Benchein, K.
1993-01-01
Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found
Social inertia and diversity in collaboration networks
Ramasco, J. J.
2007-04-01
Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.
Energy Technology Data Exchange (ETDEWEB)
Bahaadini, Reza [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Hosseini, Mohammad, E-mail: hosseini@sirjantech.ac.ir [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Jamalpoor, Ali [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)
2017-03-15
On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton’s principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.
Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force
DEFF Research Database (Denmark)
Deisenhammer, F; Bartos, A; Egg, R
2006-01-01
total protein, albumin, immunoglobulins, glucose, lactate, cell count, cytological staining, and investigation of infectious CSF. The methods included a Systematic Medline search for the above-mentioned variables and review of appropriate publications by one or more of the task force members. Grading...... of the CSF/serum glucose ratio or increased lactate concentration indicates bacterial or fungal meningitis or leptomeningeal metastases. Intrathecal immunoglobulin G synthesis is best demonstrated by isoelectric focusing followed by specific staining. Cellular morphology (cytological staining) should...... of evidence and recommendations was based on consensus by all task force members. It is recommended that CSF should be analysed immediately after collection. If storage is needed 12 ml of CSF should be partitioned into three to four sterile tubes. Albumin CSF/serum ratio (Qalb) should be preferred to total...
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
International Nuclear Information System (INIS)
Ruspini, L.C.
2012-01-01
Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.
Testing quantised inertia on emdrives with dielectrics
McCulloch, M. E.
2017-05-01
Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.
On the origin of the inertia: The modified Newtonian dynamics theory
International Nuclear Information System (INIS)
Gine, Jaume
2009-01-01
It is shown that the identity between inertial mass and gravitational mass is an assumption to establish the equivalence principle. In the context of Sciama's inertia theory, the identity between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from Assis' inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [Gine J. On the origin of the anomalous precession of Mercury's perihelion. . Gine J. On the origin of deflection of the light. Chaos, Solitons and Fractals 2008;35(1):1-6]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder whether the theory of inertia of Assis is included in the framework the General Relativity. In the context of the inertia developed in the present paper, we establish the relation between the constant acceleration a 0 , that appears in the classical modified Newtonian dynamics (MOND) theory, with the Hubble constant H 0 , i.e. a 0 ∼ cH 0 .
The Problem of Inertia in a Friedmann Universe
Kazanas, Demosthenes
2012-01-01
In this talk I will discuss the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass $m$ by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form $F = -kma$ where the constant $k < 1 $ depends on the choice of the cosmological parameters such as $\\Omega_{M},\\ \\Omega_{\\Lambda}, $ and $\\Omega_{R}$. The values of $k$ obtained suggest that inertial contribution from dark matter can be the source for the missing part of the inertial force.
International Nuclear Information System (INIS)
Helmi, Abbas; Keshavarzi, Ezat
2014-01-01
Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
International Nuclear Information System (INIS)
Balakin, Alexander B.; Bochkarev, Vladimir V.
2011-01-01
We establish a new self-consistent model in order to explain from a unified viewpoint two key features of the cosmological evolution: the inflation in the early Universe and the late-time accelerated expansion. The key element of this new model is the Archimedean-type coupling of the dark matter with dark energy, which form the so-called cosmic dark fluid. We suppose that dark matter particles immersed into the dark energy reservoir are affected by the force proportional to the four-gradient of the dark energy pressure. The Archimedean-type coupling is shown to play a role of effective energy-momentum redistributor between the dark matter and the dark energy components of the dark fluid, thus providing the Universe evolution to be a quasiperiodic and/or multistage process. In the first part of the work we discuss a theoretical base and new exact solutions of the model master equations. Special attention is focused on the exact solutions, for which the scale factor is presented by the anti-Gaussian function: these solutions describe the late-time acceleration and are characterized by a nonsingular behavior in the early Universe. The second part contains qualitative and numerical analysis of the master equations; we focus there on the solutions describing a multi-inflationary Universe.
Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.
Shih, Hua-Ju; Shih, Po-Jen
2015-07-28
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
Energy Technology Data Exchange (ETDEWEB)
Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering
2003-07-01
The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.
On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia
Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.
2018-03-01
Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.
Christoffel symbols and inertia in flat space-time theory. [Curvilinear coordinate systems
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-11-01
A necessary and sufficient criterion of inertia is presented, for the flat space-time theory of general frames of reference, in terms of the vanishing of some typical components of the affine connection pertaining to curvilinear coordinate systems. The physical identification of inertial forces thus arises in the context of the special theory of relativity.
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
Virtual Inertia: Current Trends and Future Directions
Directory of Open Access Journals (Sweden)
Ujjwol Tamrakar
2017-06-01
Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.
On the non-intrusive evaluation of fluid forces with the momentum equation approach
International Nuclear Information System (INIS)
David, L; Jardin, T; Farcy, A
2009-01-01
The aim of this paper is to discuss the advantages and difficulties linked with the experimental application of the momentum equation approach as a non-intrusive way to predict the unsteady loads experienced by an airfoil in motion. First, in order to evaluate the influence of the varying parameters relative to the calculation of the corresponding drag and lift coefficients, numerical flow fields obtained by means of DNS are used. The comprehension of the impact of the spatial and temporal resolutions, velocity accuracy or third velocity component on the estimation of forces allows us to quantify the accuracy of the approach and helps in specifying the parameters setting which could lead to a consistent experimental application. In a second step, the approach is applied to experimental flow fields measured through the use of time resolved particle image velocimetry (TR-PIV). A low Reynolds number flow around an impulsively started airfoil is considered. The loads and vorticity flow fields are correlated and compared with those obtained by DNS
Directory of Open Access Journals (Sweden)
Ivo Stachiv
2015-11-01
Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.
Kπ=0+ band moment of inertia anomaly
International Nuclear Information System (INIS)
Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology
1990-01-01
The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory
Thermal inertia and surface heterogeneity on Mars
Putzig, Nathaniel E.
Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer
Effects of Roughness and Inertia on Precursors to Frictional Sliding
Robbins, Mark O.; Salerno, K. Michael
2012-02-01
Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)
Acquisition of Inertia by a Moving Crack
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
Nuclear moments of inertia at high spin
International Nuclear Information System (INIS)
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei
Measurement of whole-body human centers of gravity and moments of inertia.
Albery, C B; Schultz, R B; Bjorn, V S
1998-06-01
With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.
Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia
International Nuclear Information System (INIS)
Ahedo, Eduardo; Merino, Mario
2012-01-01
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness.
Trotti, Lynn M
2017-10-01
The transition from sleep to wake is marked by sleep inertia, a distinct state that is measurably different from wakefulness and manifests as performance impairments and sleepiness. Although the precise substrate of sleep inertia is unknown, electroencephalographic, evoked potential, and neuroimaging studies suggest the persistence of some features of sleep beyond the point of awakening. Forced desynchrony studies have demonstrated that sleep inertia impacts cognition differently than do homeostatic and circadian drives and that sleep inertia is most intense during awakenings from the biological night. Recovery sleep after sleep deprivation also amplifies sleep inertia, although the effects of deep sleep vary based on task and timing. In patients with hypersomnolence disorders, especially but not exclusively idiopathic hypersomnia, a more pronounced period of confusion and sleepiness upon awakening, known as "sleep drunkenness", is common and problematic. Optimal treatment of sleep drunkenness is unknown, although several medications have been used with benefit in small case series. Difficulty with awakening is also commonly endorsed by individuals with mood disorders, disproportionately to the general population. This may represent an important treatment target, but evidence-based treatment guidance is not yet available. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Vogelsang, R.; Hoheisel, C.
1987-01-01
For a large region of dense fluid states of a Lennard-Jones system, they have calculated the friction coefficient by the force autocorrelation function of a Brownian-type particle by molecular dynamics (MD). The time integral over the force autocorrelation function showed an interesting behavior and the expected plateau value when the mass of the Brownian particle was chosen to be about a factor of 100 larger than the mass of the fluid particle. Sufficient agreement was found for the friction coefficient calculated by this way and that obtained by calculations of the self-diffusion coefficient using the common relation between these coefficients. Furthermore, a modified friction coefficient was determined by integration of the force autocorrelation function up to the first maximum. This coefficient can successfully be used to derive a reasonable soft part of the friction coefficient necessary for the Rice-Allnatt approximation for the shear velocity and simple liquids
International Nuclear Information System (INIS)
Shankar, B.M.; Rudraiah, N.
2013-01-01
The linear stability of electrohydrodynamic poorly conducting couple stress viscous parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric field and Coriolis force using energy method and supplemented with Galerkin Technique. The sufficient condition for stability is obtained for sufficiently small values of the Reynolds number, R e . From this condition we show that strengthening or weakening of the stability criterion is dictated by the values of the strength of electric field, the coefficient of couple stress fluid and independent of Taylor number. In particular, it is shown that the interaction of electric field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid compared to that in an ordinary Newtonian viscous fluid. (author)
Nonlinear Inertia Classification Model and Application
Directory of Open Access Journals (Sweden)
Mei Wang
2014-01-01
Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.
Topology optimization of inertia driven dosing units
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe
2017-01-01
This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...
Tormey, William P; O'Hagan, Christopher
2015-01-01
Cerebrospinal fluid (CSF) protein and glucose examinations are usually performed in chemical pathology departments on autoanalysers. Tuberculosis (TB) is a group 3 biological agent under Directive 2000/54/EC of the European Parliament but in the biochemistry laboratory, no extra precautions are taken in its analysis in possible TB cases. The issue of laboratory practice and safety in the biochemical analyses of CSF specimens, when tuberculosis infection is in question is addressed in the context of ambiguity in the implementation of current national and international health and safety regulations. Additional protective measures for laboratory staff during the analysis of CSF TB samples should force a change in current laboratory practice and become a regulatory issue under ISO 15189. Annual Mantoux skin test or an interferon-γ release assay for TB should be mandatory for relevant staff. This manuscript addresses the issue of biochemistry laboratory practice and safety in the biochemical analyses of CSF specimens when tuberculosis infection is in question in the context of the ambiguity of statutory health and safety regulations.
Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B
2016-06-07
Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.
Energy Technology Data Exchange (ETDEWEB)
Asiaee, Alireza; Benjamin, Kenneth M., E-mail: kenneth.benjamin@sdsmt.edu [Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E. Saint Joseph St., Rapid City, South Dakota 57701 (United States)
2016-08-28
For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0–1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.
International Nuclear Information System (INIS)
Nafari, F.; Yazdani, E.; Malekynia, B.; Ghoranneviss, M.
2010-01-01
Complete text of publication follows. Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic self-focusing if prepulses are cut-off by a contrast ratio higher than 10 8 . Resulting non-linear ponderomotive forces induced at the skin-layer interaction of a short laser-pulse with a proper preplasma layer produced by the laser prepulse in front of a solid target accelerate two thin (a few μm) quasi-neutral plasma blocks, propagating in forward and backward directions, backward moving against the laser light (ablation) and forward moving into the target. This compressed block produces an ion current density of above 10 11 A/cm 2 . This may support the requirement to produce a fast ignition deuterium tritium fusion at densities not much higher than the solid state by a single shot pw-ps laser pulse. With studying skin-layer subrelativistic interaction of a short (≤ 1 ps) laser pulse with an initial Rayleigh density profile in genuine two-fluid hydrodynamic model, time and spatial distributions of ion block temperature are presented.
Effects of Inertia on Evolutionary Prisoner's Dilemma Game
Du, Wen-Bo; Cao, Xian-Bin; Liu, Run-Ran; Wang, Zhen
2012-09-01
Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.
Effects of Inertia on Evolutionary Prisoner's Dilemma Game
International Nuclear Information System (INIS)
Du Wenbo; Cao Xianbin; Liu Runran; Wang Zhen
2012-01-01
Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society. (interdisciplinary physics and related areas of science and technology)
Valchev, Galin; Dantchev, Daniel
2017-08-01
We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T, μ, or L, in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding
Valchev, Galin; Dantchev, Daniel
2017-08-01
We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ . The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T , μ , or L , in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding
Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid
International Nuclear Information System (INIS)
Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A
2007-01-01
In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized
International Nuclear Information System (INIS)
Shankar, B.M.; Rudraiah, N.
2013-01-01
The effective functioning of microfluidic devices in chemical, electrical and mechanical engineering involving fluidics particularly those having vibrations and petroleum products containing organic, inorganic and other microfluidics require understanding and control of stability of poorly conducting parallel fluid flows. The electrical conductivity, σ, of a poorly conducting fluidics, increases with the temperature and the concentration of freely suspended particles like RBC, WBC and so on in the blood, the hylauronic acid (HA) and nutrients of synovial fluid in synovial joints will spin producing microrotation, forming micropolar fluid of Eringen. The presence of Deuterium - Tritium (DT) in inertial fusion target (IFT) may also be modeled using micropolar fluid theory of Eringen. A particular case of micropolar fluid theory when microrotation balances with the natural vorticity of a poorly conducting fluidics in the presence of an electric field is called ‘electrohydrodynamic couple stress fluid’ (EHDCF). These EHDCFs exhibit a variation of electrical conductivity, ∇ σ, increasing with temperature and concentration of freely suspended particles, releases the charges from the nuclei forming distribution of charge density, ρ e . These charges induce an electric field, 1 E i . If need be, we can apply an electric field, 1 E a , by embedding electrodes of different potentials at the boundaries. The total electric field, 1 E = 1 E i + 1 E a , produces a current density, 1 J = ρ σ 1 E, according to Ohm’s law and also produces an electric force, 1 F σ = σ 1 E. This current 1 J acts as sensing and the force, 1 F σ acts as actuation. These two properties make the poorly conducting couple stress fluid to act as a smart material. The objective of this paper is to show that EHDCV in presence of coriolis force plays a significant role in controlling the stability of parallel flows which is essential for an effective functioning of machineries that occur in
Dependence of nuclear moments of inertia on the triaxial parameter
International Nuclear Information System (INIS)
Helgesson, J.; Hamamoto, Ikuko
1989-01-01
The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)
The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics
Directory of Open Access Journals (Sweden)
Esmail Pishbin
2016-12-01
Full Text Available The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions. Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s and also efficient mixing in centrifugal microfluidic platforms.
Effect of liquid inertia on bubble growth in the presence of a magnetic field
International Nuclear Information System (INIS)
Wagner, L.Y.; Lykoudis, P.S.
1977-01-01
Liquid metal bubble growth in the presence of a magnetic field has previously been examined by Lykoudis under the assumption that the process is heat transfer controlled. In the present work, the growth of a bubble under the influence of a magnetic field is considered when the effect of the liquid inertia is included. This yields a better description of the phenomena for liquid metals, due to the greater portion of the growth cycle that is dominated by the liquid inertia forces. The results indicate that liquid inertia can significantly affect the growth of a liquid metal bubble when compared with the heat transfer-controlled case. The overall effect of the magnetic field forces the heat transfer-controlled growth to occur earlier in the life of the bubble. Hence, heat transfer effects dominate the growth stage more as the magnetic field is increased. The inertia effects are damped and, in the limit of high magnetic fields, growth is only heat transfer controlled. The heat transfer estimates made in the fashion of Forster and Zuber indicate that the magnetic field reduces the energy transport in nucleate boiling. 5 figures
Energy Technology Data Exchange (ETDEWEB)
Legendre, S
1999-06-30
A precise dimensioning of the tubes inside a steam generator requires a better knowledge of the fluid-elastic coupling phenomena. The direct method for the determination of fluid-elastic coupling coefficients allows to explore only a reduced range of flow velocities and is unsuitable for the low velocities and for velocities close to the critical instability velocity. The active damping control method has been validated both with air and water and offers the possibility to extend the range of flow velocities using an artificial supply of damping: 50% of increase in single-phase flow conditions with measurements performed beyond the critical instability velocity, a doubling of the explored range of velocities in two-phase flow conditions. For a 25% two-phase flow, a stabilization of the damping of the coupled fluid-structure system is observed beyond the critical instability velocity. Finally, the calculation of fluid-elastic dimensionless coefficients has permitted to show the influence of the reduced velocity on the fluid-elastic coupling in two-phase flow conditions. (J.S.)
Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading
Yu, M.; Wang, S. Q.; Fu, J.; Peng, Y. X.
2013-02-01
So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.
Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading
International Nuclear Information System (INIS)
Yu, M; Fu, J; Wang, S Q; Peng, Y X
2013-01-01
So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
International Nuclear Information System (INIS)
Inada, Fumio; Yoneda, Kimitoshi; Yasuo, Akira; Nishihara, Takashi
2000-01-01
In the circular tube bundle immersed in the crossflow, the exciting force induced by the turbulence and periodically discharged vortices becomes large, and it is necessary to confirm a long-term integrity to the flow induced vibration. In this report, the local fluid exciting force and the correlation length in the direction of tube axis were measured. The exciting force acting on the first row was smaller than that inside the tube bundle, and the exciting force was almost saturated at the third row. As for vortex induced vibration, there could be an influence when a dimensionless frequency was 0.4 or less. When vortex induced vibration did not affect the vibration, a correlation composed of a correlation length and power spectrum density of the local fluid exciting force were proposed, with which we could estimate the amplitude of the vibration. A computer program to estimate the vibration amplitude and maximum stress was made using the flow velocity distribution and the mode of vibration. (author)
The latent effect of inertia in the modal choice
DEFF Research Database (Denmark)
Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios
2014-01-01
The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...... approaches. We assume that inertia is revealed by past behaviour and affects also the initial condition, but we recognise that past behaviour is only an indicator of habitual behaviour, the true process behind the formation of habitual behaviour being latent. We estimate a hybrid choice model using a set...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency...
Nuclear moments of inertia at high spins
International Nuclear Information System (INIS)
Deleplanque, M.A.
1984-01-01
For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies
Bechert, M.; Scheid, B.
2017-11-01
The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.
Bounds on the mass and the moment of inertia of nonrotating neutron stars
International Nuclear Information System (INIS)
Sabbadini, A.G.
1976-01-01
Bounds are placed on the mass and the moment of inertia of relativistic, spherical, perfect fluid neutron stars, under minimal assumptions on the equation of state of neutron star matter above nuclear densities. The assumptions are: the pressure p, the density rho, and the derivative dp/d rho are positive. The equation of state is assumed to be known below the density rho 0 = 5 x 10 14 g/cm 3 . The upper bound on the mass of a nonrotating neutron star, under these assumptions, is found to be 5 M/sub solar mass/. Upper and lower bounds on the moment of inertia are derived: for a spherical star of given mass and radius (without assuming a specific equation of state in any density region); for a spherical neutron star of arbitrary mass and radius; for a spherical neutron star of given mass. These bounds are optimum ones, in the sense that there always exists a configuration consistent with the assumptions, having a moment of inertia equal to the bound. Using these results for the moment of inertia, the correction to the upper bound on the mass due to slow rotation is discussed
Mass and Inertia Parameters for Nuclear Fission
International Nuclear Information System (INIS)
Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.
1969-01-01
The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)
Exploring inertia in a typical state organisation
Directory of Open Access Journals (Sweden)
G. J. Louw
2004-10-01
Full Text Available Those organisations which do not change according to environmental pressures, suffer from organisational inertia. The purpose of this study is to explore the manifestation of organisational inertia in the target organisation. The target population for this study was a group of trainees, representing the geographic and demographic levels of a particular state department. In South Africa, surveys of this nature were only executed in the corporate sector. The results indicate that organisational inertia is a phenomenon that affects both corporate and governmental organisations. Opsomming Organisasies wat nie ooreenkomstig omgewingsdruk verander nie, ly aan organisasietraagheid. Die doel van die studie is om organisasietraagheid te konseptualiseer en die manifestasie daarvan in die teikenorganisasie te ondersoek. Die teikenpopulasie bestaan uit ’n groep kursusgangers wat die demografiese en geografiese samestelling van ‘n tipiese staatsdepartement verteenwoordig. In Suid -Afrika is navorsing van hierdie aard nog net in die korporatiewe sektor uitgevoer. Die resultate toon aan dat organisasietraagheid ‘n faktor is wat beide die korporatiewe omgewing en staatsorganisasies beïnvloed.
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2013-01-01
Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331
Reduced viscosity interpreted for fluid/gas mixtures
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Transient filament stretching rheometer I: force balance analysis
DEFF Research Database (Denmark)
Szabo, Peter
1997-01-01
The filament stretching device which is used increasingly as an apparatus for measuring extensional properties of polymeric liquids isanalysed. A force balance that includes the effects of inertia and surface tension is derived.The force balance may be used to correct for the effects of inertia...
Inertia in strategy switching transforms the strategy evolution.
Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long
2011-12-01
A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.
Cantilever Beam Natural Frequencies in Centrifugal Inertia Field
Jivkov, V. S.; Zahariev, E. V.
2018-03-01
In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.
Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power
DEFF Research Database (Denmark)
Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde
2017-01-01
stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......-based system using-real time digital simulator (RTDS) to propose the best one for the synthetic inertia controller. From the comparative simulation results, it can be concluded that the method using a combination of both the frequency deviation and derivative as input signals, and the under-frequency trigger...
Zhang, Han-Wei; Zheng, Yong; Du, Lan; Pan, Guan-Song
The tidal variation in Earth's rotation rate is a periodical response to solar-lunar tide generating potential (TGP). In this article, the factor of the fluid core, which is related with the variation in the polar moment of inertia of the Earth, is considered and introduced distinctly into the theoretical formula of the variation in the Earth's rotational rate caused by lunar-solar tide-producing force based on the dynamics principle of the fluid core Earth. Different from previously work, some Doodson developments are given including the variation formulae of the Earth's rotational rate, LOD and UT1. The reasons are pointed why the moment of inertia for the scale should be the effective polar rotational moment of inertia of the mantle and the Love number should be the effective Love number of the mantle. It is also indicated that the factor of the fluid core is consistent with the effect of the effective Love number of the mantle due to fluid core.
Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment
Directory of Open Access Journals (Sweden)
Yongle Mao
2016-12-01
Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.
International Nuclear Information System (INIS)
Rohaya Megat Abdul Wahab; Albira Sintian; Zaidah Zainal Arifin; Zaidah Zainal Ariffin; Shahrul Hisham Zainal Ariffin
2015-01-01
Alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and aspartate aminotransferase (AST) activities were studied as bio markers of canine movement. Root resorption was also evaluated in canines subjected to the orthodontic forces. Nineteen subjects randomly received 100 and 150 g force using self-ligating brackets (SLB) either on the right or left site of maxillary arch. Gingival crevicular fluid samples were collected at distal sites of canines for five consecutive weeks. The activities of ALP, TRAP and AST were assayed and measured spectrophotometrically. Canine movement was measured for five consecutive weeks while root resorption was monitored at baseline, week 0 and week 5 using periapical radiographs. In 100 g group, TRAP activity significantly increased in week 3-5 when compared to TRAP baseline activity. However, ALP and AST activities slightly increased. In 150 g group, ALP and TRAP activities slightly increased when compared with their baseline activities. However, AST significantly increased in week 5. Canine movement and root resorption were not significantly different (p<0.05) in both groups. A force of 100 and 150 g slightly increased the bone modeling process and resulted in similar canine movement and root resorption. Therefore, 100 g force could be an optimum force for canine retraction and is preferable (compared with 150 g force) in canine retraction using SLB. (author)
National Research Council Canada - National Science Library
Jones, D
2003-01-01
..., spheres, flat plates, and wing profiles. The degree to which FIDAP accurately reproduces known experimental data on these shapes is described and the applicability of other Computational Fluid Dynamics packages is discussed. (13 tables, 2 figures, 38 refs.)
Inertia-confining thermonuclear molten salt reactors
International Nuclear Information System (INIS)
Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.
1984-01-01
Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)
On the moment of inertia of a quantum harmonic oscillator
International Nuclear Information System (INIS)
Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-01-01
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value
Moment of inertia and the interacting boson model
International Nuclear Information System (INIS)
Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.
1989-01-01
Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)
Nuclear moment of inertia and spin distribution of nuclear levels
International Nuclear Information System (INIS)
Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.
2005-01-01
We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region
Delamination detection in reinforced concrete using thermal inertia
International Nuclear Information System (INIS)
Del Grande, N K; Durbin, P F.
1998-01-01
We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations
Banerjee, S.; Mulder, P.; Kleijn, J.M.; Cohen Stuart, M.A.
2012-01-01
Surface forces between a soft cellulose surface and a hard silica particle were measured in wet hexane with or without the addition of a surfactant. In the absence of a surfactant, the adhesion force was enhanced as a result of capillary condensation of water. The effect of the surfactant in
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
Energy Technology Data Exchange (ETDEWEB)
Periyadurai, K. [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Muthtamilselvan, M., E-mail: muthtamill@yahoo.co.in [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Doh, Deog-Hee [Division of Mechanical Engineering, College of Engineering,Korea Maritime Ocean University, Busan 606781 (Korea, Republic of)
2016-12-15
In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid. - Highlights: • We investigate the effect of inclined magnetic field on micropolar fluid in a cavity. • The effects of uniform and non-uniform heated plate are studied. • The present numerical results are compared with the experimental results. • The addition of vortex viscosity parameter declines the heat transfer performance. • The high heat transfer rate occurs in the vertical plate compared to the horizontal one.
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.
Zero-G experimental validation of a robotics-based inertia identification algorithm
Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou
2010-04-01
The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.
Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team
2015-11-01
The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.
International Nuclear Information System (INIS)
Moh, Jeong Hah; Cho, Y. I.
2014-01-01
This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady
Directory of Open Access Journals (Sweden)
Kevin R Hinson
Full Text Available We observed that teneral adults (72 h, and sclerotized group 2 (S2 bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt. When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed differed significantly (P< 0.01 from recently sclerotized (82 cm climbed and sclerotized (group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed bed bugs. These findings suggested that the external surface of teneral bed bug exoskeletons possess an adhesive property. Using atomic force microscopy (AFM, we found that adhesion force of an exoskeletal (presumably molting fluid decreased almost five-fold from 88 to 17 nN within an hour of molting. Our findings may have implications for laboratory safety and the effectiveness of bed bug traps, barriers, and biomimetic-based adhesives.
Progress in establishing a connection between the electromagnetic zero-point field and inertia
International Nuclear Information System (INIS)
Haisch, Bernhard; Rueda, Alfonso
1999-01-01
We report on the progress of a NASA-funded study being carried out at the Lockheed Martin Advanced Technology Center in Palo Alto and the California State University in Long Beach to investigate the proposed link between the zero-point field of the quantum vacuum and inertia. It is well known that an accelerating observer will experience a bath of radiation resulting from the quantum vacuum which mimics that of a heat bath, the so-called Davies-Unruh effect. We have further analyzed this problem of an accelerated object moving through the vacuum and have shown that the zero-point field will yield a non-zero Poynting vector to an accelerating observer. Scattering of this radiation by the quarks and electrons constituting matter would result in an acceleration-dependent reaction force that would appear to be the origin of inertia of matter (Rueda and Haisch 1998a, 1998b). In the subrelativistic case this inertia reaction force is exactly newtonian and in the relativistic case it exactly reproduces the well known relativistic extension of Newton's Law. This analysis demonstrates then that both the ordinary, F-vector=ma-vector, and the relativistic forms of Newton's equation of motion may be derived from Maxwell's equations as applied to the electromagnetic zero-point field. We expect to be able to extend this analysis in the future to more general versions of the quantum vacuum than just the electromagnetic one discussed herein
Inertia effects on the rigid displacement approximation of tokamak plasma vertical motion
International Nuclear Information System (INIS)
Carrera, R.; Khayrutdinov, R.R.; Azizov, E.A.; Montalvo, E.; Dong, J.Q.
1991-01-01
Elongated plasmas in tokamaks are unstable to axisymmetric vertical displacements. The vacuum vessel and passive conductors can stabilize the plasma motion in the short time scale. For stabilization of the plasma movement in the long time scale an active feedback control system is required. A widely used method of plasma stability analysis uses the Rigid Displacement Model (RDM) of plasma behavior. In the RDM it is assumed that the plasma displacement is small and usually plasma inertia effects are neglected. In addition, it is considered that no changes in plasma shape, plasma current, and plasma current profile take place throughout the plasma motion. It has been demonstrated that the massless-filament approximation (instantaneous force-balance) accurately reproduces the unstable root of the passive stabilization problem. Then, on the basis that the instantaneous force-balance approximation is correct in the passive stabilization analysis, the massless approximation is utilized also in the study of the plasma vertical stabilization by active feedback. The authors show here that the RDM (without mass effects included) does not provide correct stability results for a tokamak configuration (plasma column, passive conductors, and feedback control coils). Therefore, it is concluded that inertia effects have to be retained in the RDM system of equations. It is shown analytically and numerically that stability diagrams with and without plasma-mass corrections differ significantly. When inertia effects are included, the stability region is more restricted than obtained in the massless approximation
Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia
Putzig, N. E.; Mellon, M. T.
2005-12-01
Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.
Coupling diffusion and maximum entropy models to estimate thermal inertia
Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...
Moments of Inertia of Disks and Spheres without Integration
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Moments of inertia in 162Yb at very high spins
International Nuclear Information System (INIS)
Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.
1976-01-01
Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate
Graphical analysis of electron inertia induced acoustic instability
International Nuclear Information System (INIS)
Karmakar, P.K.; Deka, U.; Dwivedi, C.B.
2005-01-01
Recently, the practical significance of the asymptotic limit of m e /m i →0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative energy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wiederhold, Andreas; Ebert, Reschad; Resagk, Christian; Research Training Group: "Lorentz Force Velocimetry; Lorentz Force Eddy Current Testing" Team
2016-11-01
We report about the feasibility of Lorentz force velocimetry (LFV) for various flow profiles. LFV is a contactless non-invasive technique to measure flow velocity and has been developed in the last years in our institute. This method is advantageous if the fluid is hot, aggressive or opaque like glass melts or liquid metal flows. The conducted experiments shall prove an increased versatility for industrial applications of this method. For the force measurement we use an electromagnetic force compensation balance. As electrolyte salty water is used with an electrical conductivity in the range of 0.035 which corresponds to tap water up to 20 Sm-1. Because the conductivity is six orders less than that of liquid metals, here the challenging bottleneck is the resolution of the measurement system. The results show only a slight influence in the force signal at symmetric and strongly asymmetric flow profiles. Furthermore we report about the application of LFV to stratified two-phase flows. We show that it is possible to detect interface instabilities, which is important for the dimensioning of liquid metal batteries. Deutsche Forschungsgemeinschaft DFG.
Development of inertia-increased reactor internal pump
International Nuclear Information System (INIS)
Tanaka, Masaaki; Matsumura, Seiichi; Kikushima, Jun; Kawamura, Shinichi; Yamashita, Norimichi; Kurosaki, Toshikazu; Kondo, Takahisa
2000-01-01
The Reactor Internal Pump (RIP) was adopted for the Reactor Recirculation System (RRS) of Advanced Boiling Water Reactor (ABWR) plants, and ten RIPs are located at the bottom of the reactor pressure vessel. In order to simplify the power supply system for the RIPs, a new inertia-increased RIP was developed, which allows to eliminate the Motor-Generator (M-G) sets. The rotating inertia was increased approximately 2.5 times of current RIP inertia by addition of flywheel on its main shaft. A full scale proving test of the inertia-increased RIP under actual plant operating conditions using full scale test loop was performed to evaluate vibration characteristics and coast down characteristics. From the results of this proving test, the validity of the new inertia-increased RIP and its power supply system (without M-G sets) was confirmed. (author)
Clinical inertia, uncertainty and individualized guidelines.
Reach, G
2014-09-01
Doctors often do not follow the guidelines of good practice based on evidence-based medicine, and this "clinical inertia" may represent an impediment to efficient care. The aims of this article are as follows: 1) to demonstrate that this phenomenon is often the consequence of a discrepancy between the technical rationality of evidence-based medicine and the modes of reasoning of physicians practiced in "real-life", which is marked by uncertainty and risk; 2) to investigate in this context the meaning of the recent, somewhat paradoxical, concept of "individualized guidelines"; and 3) to revisit the real, essentially pedagogical, place of guidelines in medical practice. Copyright © 2014. Published by Elsevier Masson SAS.
Directory of Open Access Journals (Sweden)
Mostapha Marzban
2017-10-01
Full Text Available Measuring of fluid properties such as dynamic viscosity and density has tremendous potential for various applications from physical to biological to chemical sensing. However, it is almost impossible to affect only one of these properties, as dynamic viscosity and density are coupled. Hence, this paper proposes kinematic viscosity as a comprehensive parameter which can be used to study the effect of fluid properties applicable to various fluids from Newtonian fluids, such as water, to non-Newtonian fluids, such as blood. This paper also proposes an ideal microplatform, namely polymeric suspended microfluidics (SPMF3, with flow plane orthogonal to the bending plane of the structure, along with tested results of various fluids covering a wide range of engineering applications. Kinematic viscosity, also called momentum diffusivity, considers changes in both fluid intermolecular forces and molecular inertia that define dynamic viscosity and fluid density, respectively. In this study a 3D suspended polymeric microfluidic system (SPMF3 was employed to detect changes in fluid parameters such as dynamic viscosity and density during fluid processes. Using this innovative design along with theoretical and experimental results, it is shown that, in fluids, the variations of fluid density and dynamic viscosity are not easily comprehensible due to their interconnectivity. Since any change in a fluid will affect both density and dynamic viscosity, measuring both of them is necessary to identify the fluid or process status. Finally, changes in fluid properties were analyzed using simulation and experiments. The experimental results with salt-DI water solution and milk with different fat concentrations as a colloidal fluid show that kinematic viscosity is a comprehensive parameter that can identify the fluids in a unique way using the proposed microplatform.
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Dahl, Jonas
2010-01-01
-shift measuring devices such as Coriolis mass flowmeters in particular. Small imperfections related to elastic and dissipative support conditions are specifically addressed, but the suggested approach is readily applicable to other kinds of imperfection, e.g. non-uniform stiffness or mass, non......-proportional damping, weak nonlinearity, and flow pulsation. A multiple time scaling perturbation analysis is employed for a simple model of an imperfect fluid-conveying pipe. This leads to simple analytical expressions for the approximate prediction of phase shift, providing direct insight into which imperfections...... the symmetric part of damping as well as non-uniformity in mass or stiffness do not affect phase shift. The validity of such hypotheses can be tested using detailed fluid-structure interaction computer models or laboratory experiments....
Energy Technology Data Exchange (ETDEWEB)
Yukawa, K; Kijima, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-10-01
With types of general cargo vessel and VLCC vessel as the object of discussion, a method was discussed to estimate fluid force acting theoretically on a hull during maneuvering movement, taking frame line shape into consideration. A vortex model was improved by giving consideration of time-based decay on intensity of discrete vortex lines based on the Rankine vortex. Modeling of flow fields around a hull was attempted to deal with movements in which width and draft are small as compared with the ship length, and turning angle speed and deviation angle are small. It was assumed that the ship speed is slow and effects of waves can be disregarded. Specular images of the hull were taken with regard to free surface, and handled as a double body model. Speed potential to express flow fields around a hull is required to satisfy the following five boundary conditions of Laplace, substance surface, free vortex layers, infinity and exfoliation. The potential may be handled as a two-dimensional problem in a field near the hull by using assumption of a slender and long body and conformal mapping. It was found possible to estimate hull fluid force with relatively good accuracy. Fine linear coefficients derived from the estimation were used to have performed highly accurate determination on course stabilization. 5 refs., 6 figs., 2 tabs.
International Nuclear Information System (INIS)
Beaud, F.
1997-01-01
A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)
Kanady, Jennifer C; Harvey, Allison G
2015-10-01
Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.
Czech Academy of Sciences Publication Activity Database
Lukerchenko, Nikolay; Kvurt, Y.; Kharlamov, Alexander; Chára, Zdeněk; Vlasák, Pavel
2008-01-01
Roč. 56, č. 2 (2008), s. 88-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600603 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * spherical particle * rotational movement * translational movement Subject RIV: DA - Hydrology ; Limnology
Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn
2008-01-01
in terms of particle size fractions larger than 425 mu m determined by sieve analysis. Results indicated that the particle size distribution may be reproduced across scale with statistical valid precision by keeping the drying force and the relative droplet size constant across scale. It is also shown...
Winzen, A; Roidl, B; Schröder, W
2016-04-01
Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.
Dynamic analysis of multibody system immersed in a fluid medium
International Nuclear Information System (INIS)
Wu, R.W.; Liu, L.K.; Levy, S.
1977-01-01
This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)
Vibration analysis of partially cracked plate submerged in fluid
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Therapeutic inertia amongst general practitioners with interest in diabetes.
Seidu, Samuel; Than, Tun; Kar, Deb; Lamba, Amrit; Brown, Pam; Zafar, Azhar; Hussain, Rizwan; Amjad, Ahmed; Capehorn, Mathew; Martin, Elizabeth; Fernando, Kevin; McMoran, Jim; Millar-Jones, David; Kahn, Shahzada; Campbell, Nigel; Brice, Richard; Mohan, Rahul; Mistry, Mukesh; Kanumilli, Naresh; St John, Joan; Quigley, Richard; Kenny, Colin; Khunti, Kamlesh
2018-02-01
As the therapeutic options in the management of type 2 diabetes increase, there is an increase confusion among health care professionals, thus leading to the phenomenon of therapeutic inertia. This is the failure to escalate or de-escalate treatment when the clinical need for this is required. It has been studied extensively in various settings, however, it has never been reported in any studies focusing solely on primary care physicians with an interest in diabetes. This group is increasingly becoming the focus of managing complex diabetes care in the community, albeit with the support from specialists. In this retrospective audit, we assessed the prevalence of the phenomenon of therapeutic inertia amongst primary care physicians with an interest in diabetes in UK. We also assessed the predictive abilities of various patient level characteristics on therapeutic inertia amongst this group of clinicians. Out of the 240 patients reported on, therapeutic inertia was judged to have occurred in 53 (22.1%) of patients. The full model containing all the selected variables was not statistically significant, p=0.59. So the model was not able to distinguish between situations in which therapeutic inertia occurred and when it did not occur. None of the patient level characteristics on its own was predictive of therapeutic inertia. Therapeutic inertia was present only in about a fifth of patient patients with diabetes being managed by primary care physicians with an interest in diabetes. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Emotional inertia contributes to depressive symptoms beyond perseverative thinking.
Brose, Annette; Schmiedek, Florian; Koval, Peter; Kuppens, Peter
2015-01-01
The autocorrelation or inertia of negative affect reflects how much negative emotions carry over from moment to moment and has been associated with increased depressive symptoms. In this study, we posed three challenges to this association by examining: (1) whether emotional inertia is relevant for depressive symptoms when assessed on a longer timescale than usual; (2) whether inertia is uniquely related to depressive symptoms after controlling for perseverative thoughts; and (3) whether inertia is related to depressive symptoms over and above the within-person association between affect and perseverative thoughts. Participants (N = 101) provided ratings of affect and perseverative thoughts for 100 days; depressive symptoms were reported before and after the study, and again after 2.5 years. Day-to-day emotional inertia was related to depressive symptoms over and above trait and state perseverative thoughts. Moreover, inertia predicted depressive symptoms when adjusting for its association with perseverative thoughts. These findings establish the relevance of emotional inertia in depressive symptoms independent of perseverative thoughts.
Dieguez Salgado, Uxia; Weiß, Christian; Michelic, Susanne K.; Bernhard, Christian
2018-05-01
Since nonmetallic inclusions (NMIs) in steel cannot be completely avoided, a greater understanding of their development and evolution during the steelmaking process is required. In particular, this includes the adhesion of microinclusions to the refractory/steel interface in the flow control system between the tundish and the mold. This phenomenon, commonly referred to as clogging, causes losses in productivity and product quality. Inclusions transported from the bulk melt to the boundary layer may adhere to the refractory/steel interface due to formation of a fluid cavity. A detailed model was derived for the detachment of NMIs adhering to a nozzle wall and is based on the local hydrodynamic conditions combined with the specific interfacial properties in the system consisting of the inclusions, the refractories, and the steel. The model is evaluated for three different application-oriented cases. This study has been focused on providing a better understanding of fluid flow in the near-wall region in order to reduce clogging during steelmaking.
A cyber-physical approach to experimental fluid mechanics
Mackowski, Andrew Williams
This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate
The cranking moment of inertia in a static potential
International Nuclear Information System (INIS)
Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.
1978-01-01
Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)
Moments of inertia for solids of revolution and variational methods
International Nuclear Information System (INIS)
Diaz, Rodolfo A; Herrera, William J; Martinez, R
2006-01-01
We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods
Directory of Open Access Journals (Sweden)
Song Yidan
2017-01-01
Full Text Available The flow over four square cylinders in an in-line, square arrangement was numerically investigated by using the finite volume method with CFD techniques. The working fluid is an incompressible ideal gas. The length of the sides of the array, L, is equal. The analysis is carried out for a Reynolds number of 300, with center-to-center distance ratios, L/D, ranging from 1.5 to 8.0. To fully understand the flow mechanism, details in terms of lift and drag coefficients and Strouhal numbers of the unsteady wake frequencies are analyzed, and the vortex shedding patterns around the four square cylinders are described. It is concluded that L/D has important effects on the drag and lift coefficients, vortex shedding frequencies, and flow field characteristics.
Medicaid program choice, inertia and adverse selection.
Marton, James; Yelowitz, Aaron; Talbert, Jeffery C
2017-12-01
In 2012, Kentucky implemented Medicaid managed care statewide, auto-assigned enrollees to three plans, and allowed switching. Using administrative data, we find that the state's auto-assignment algorithm most heavily weighted cost-minimization and plan balancing, and placed little weight on the quality of the enrollee-plan match. Immobility - apparently driven by health plan inertia - contributed to the success of the cost-minimization strategy, as more than half of enrollees auto-assigned to even the lowest quality plans did not opt-out. High-cost enrollees were more likely to opt-out of their auto-assigned plan, creating adverse selection. The plan with arguably the highest quality incurred the largest initial profit margin reduction due to adverse selection prior to risk adjustment, as it attracted a disproportionate share of high-cost enrollees. The presence of such selection, caused by differential degrees of mobility, raises concerns about the long run viability of the Medicaid managed care market without such risk adjustment. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.
2015-01-01
-stroke displacement simulations are used as basis for the parametric analysis. From the parametric analysis a change, in the minimum film thickness as function of piston and cylinder density, is shown for certain operating modes of the digital fluid power displacement motor. This indicate a need for careful....... In this paper the influence of the inertia term on the lubrication gaps of a radial piston motor are studied by a parametric analysis of the piston and cylinder density in a multibody tribodynamic simulation model. The motor is modeled as a digital fluid power displacement machine and a series of full...... assessment of the applicability, of the force balance condition, if it is used in multibody tribodynamic simulations of radial piston digital fluid power displacement motors....
The effect of inertia, viscous damping, temperature and normal ...
Indian Academy of Sciences (India)
Nitish Sinha
2018-04-16
Apr 16, 2018 ... physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic ... However, the present study has shown the appearance of chaos for the specific .... Although chaos is a general man-.
On the moment of inertia of a proto neutron star
International Nuclear Information System (INIS)
Zhao Xianfeng; Zhang Hua; Jia Huanyu
2010-01-01
The influences of σ * and Φ mesons,temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, Λ , Σ - , Σ 0 , Σ + , Ξ - , Ξ 0 } system. It is found that, compared with that without considering σ * and Φ mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ * and Φ mesons. (authors)
De Vries, Dan; Wahr, John M.
1991-01-01
This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
A new inertia weight control strategy for particle swarm optimization
Zhu, Xianming; Wang, Hongbo
2018-04-01
Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.
Pairing field and moments of inertia of superdeformed nuclei
International Nuclear Information System (INIS)
Chen Yongjing; Chen Yongshou; Xu Fuxin
2002-01-01
The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model
International Nuclear Information System (INIS)
Ito, Tomohiro; Fujiwara, Yoshihiro; Shintani, Atsuhiko; Nakagaw, Chihiro; Furuta, Kazuhisa
2012-01-01
The cask-canister system is a coaxial circular cylindrical structure in which several spent fuels are installed. This system is a free-standing structure thus, it is very important to reduce sliding motion for very large seismic excitations. In this study, we propose a mitigation method for sliding motion. Water is installed in an annular region between a cask and a canister. The equations of motion are derived taking fluid-structure interaction into consideration for nonlinear sliding motion analyses. Based on these equations, mitigation effects of sliding motions are studied analytically. Furthermore, a fundamental test model of a cask-canister system is fabricated and shaking table tests are conducted. From the analytical and test results, sliding motion mitigation effects are investigated. In this paper, the sliding motion of the cask-canister system subjected to a horizontal base excitation is studied and the effectiveness of water filled in the annular region between the cask and the canister is evaluated. This water brings inertia force coupling effect which is proportional to acceleration of the cask and the canister. Therefore, due to this fluid coupling, the cask and canister system couples through 3 types of forces, i.e., spring force, damping force and inertia force of the liquid. Equations of motion for the sliding motion are derived based on the fluid-structure coupling effects formulated by Fritz. Based on these equations of motion, nonlinear sliding motion of the cask-canister system is analyzed and the sliding suppression effects are investigated numerically. Furthermore, a fundamental test model of a cask-canister system is fabricated and the shaking table tests are conducted. From these analytical and test results, the sliding motion suppression effects due to fluid-structure coupling effects are investigated. As a result, it is confirmed that the inertia coupling effects due to water filled in the annular region are relatively large, and the
Athavale, Mahesh; Przekwas, Andrzej
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
Effects of microscale inertia on dynamic ductile crack growth
Jacques, N.; Mercier, S.; Molinari, A.
2012-04-01
The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.
Effects of moment of inertia on restricted motion swing speed.
Schorah, David; Choppin, Simon; James, David
2015-06-01
In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.
Development of an Inertia-Increased ABWR Internal Pump
International Nuclear Information System (INIS)
Shirou Takahashi; Kousei Umemori; Kooji Shiina; Tetsuya Totani; Akihiro Sakashita; Norimichi Yamashita; Takahisa Kondo
2002-01-01
It is possible to simplify the reactor internal pump power supply system in the ABWR without affecting the core flow supply when a trip of all RIPs event occurs by eliminating the motor-generator sets and increasing the rotating inertia of the RIPs. This inertia increase due to an additional flywheel, which leads to a gain in weight and length, requires a larger diameter nozzle with a thicker sleeve. However, a thicker sleeve nozzle and a longer and heavier motor casing may change the RIP performance. In the present study, the inertia-increased RIP was verified through full-scale tests. The rotating inertia time constant for coast-down characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP was doubled compared with the current RIP. The inertia-increased RIP with the thicker sleeve nozzle maintained good performance and its power supply system without motor-generator sets was judged appropriate for the ABWR. (authors)
Neural predictors of emotional inertia in daily life.
Waugh, Christian E; Shing, Elaine Z; Avery, Bradley M; Jung, Youngkyoo; Whitlow, Christopher T; Maldjian, Joseph A
2017-09-01
Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia-the influence of one's emotional state at one time point on one's emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. © The Author (2017). Published by Oxford University Press.
Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.
2011-01-01
Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive
Raju, Muralikrishna
The interaction of dense fluids (water, polar organic solvents, room temperature ionic liquids, etc.) with solid substrates controls many chemical processes encountered in nature and industry. The key features of fluid-solid interfaces (FSIs) are the high mobility and often reactivity of the fluid phase, and the structural control provided by the solid phase. In this dissertation we apply molecular modeling methods to study FSIs in the following systems: 1. Dissociation of water on titania surfaces. We studied the adsorption and dissociation of water at 300 K on the following TiO2 surfaces: anatase (101), (100), (112), (001) and rutile (110) at various water coverages, using a recently developed ReaxFF reactive force field. The molecular and dissociative adsorption configurations predicted by ReaxFF for various water coverages agree with previous theoretical studies and experiment. 2. Mechanisms of Oriented Attachment in TiO2 nanocrystals. Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. Using the same ReaxFF Ti/O/H reactive force field employed in the previous study, we perform molecular dynamics simulations to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. 3. Li interactions in carbon based materials. Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length/time-scales and Li-ion concentrations. In this study we describe development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon based materials using atomistic simulations. We develop force-field parameters for Li-C systems using van
Rheology of granular flows immersed in a viscous fluid
International Nuclear Information System (INIS)
Amarsid, Lhassan
2015-01-01
We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)
Directory of Open Access Journals (Sweden)
Foroutani Saeed
2017-01-01
Full Text Available This research investigates the laminar steady-forced convection heat transfer of a Cu-water nanofluid in a 2-D horizontal channel with different block geometries attached to the bottom wall. The block geometries assumed in this research are triangular and curve blocks. The governing equations associated with the required boundary conditions are solved using finite volume method based on the SIMPLE technique and the effects of Reynolds number, nanofluid volume fraction, block geometry, and the numbers of blocks on the local and average Nusselt numbers are explored. The obtained results show that nanoparticles can effectively enhance the heat transfer in a channel. Furthermore, the local and average Nusselt number distribution is strongly dependent on the block geometry. As observed, the heat transfer augments with the increase in the Reynolds number and nanofluid volume fraction for both block geometries. It is also concluded that the average Nusselt number of the curve block is higher than that of the triangular block for different Reynolds numbers which declares the importance of the block geometry in the heat transfer enhancement.
Lázaro, Pablo; Murga, Nekane; Aguilar, Dolores; Hernández-Presa, Miguel A
2010-12-01
Studies indicate that dyslipidemia is undertreated. Numerous systematic reviews have shown that, even when therapeutic targets set by clinical practice guidelines have not been met, treatment remains unchanged despite the availability of alternatives approaches. The result is increased morbidity and mortality. Our aims were to investigate this phenomenon, known as therapeutic inertia, in patients with dyslipidemia and ischemic heart disease, and to determine its possible causes. national, multicenter, observational study of data obtained from physicians by questionnaire and from the clinical records of patients with ischemic heart disease. Main variable: therapeutic inertia during a consultation, defined as treatment remaining the same despite a change being indicated (e.g. low-density lipoprotein cholesterol >100 mg/dl or >70 mg/dl in diabetics). Covariates: physician, patient and consultation characteristics. multivariate logistic regression analysis of factors associated with therapeutic inertia during a consultation. Overall, 43% of consultations involved therapeutic inertia, and an association with coronary risk factors, including diabetes, did not result in a change in treatment. Therapeutic inertia occurred more frequently when there was a long time between the diagnosis and treatment of dyslipidemia and that of ischemic heart disease. Undertreatment was particularly common in women despite a greater overall risk. The more experienced physicians treated younger patients more appropriately. Clinical practice was improved by educational sessions at conferences. Therapeutic inertia was common in patients with chronic ischemic heart disease and dyslipidemia, irrespective of overall cardiovascular risk. Factors associated with the patient, disease and physician had an influence.
Trumble, Troy N; Billinghurst, R Clark; McIlwraith, C Wayne
2004-09-01
To evaluate the temporal pattern of prostaglandin (PG) E2 concentrations in synovial fluid after transection of the cranial cruciate ligament (CCL) in dogs and to correlate PGE2 concentrations with ground reaction forces and subjective clinical variables for lameness or pain. 19 purpose-bred adult male Walker Hounds. Force plate measurements, subjective clinical analysis of pain or lameness, and samples of synovial fluid were obtained before (baseline) and at various time points after arthroscopic transection of the right CCL. Concentrations of PGE2 were measured in synovial fluid samples, and the PGE2 concentrations were correlated with ground reaction forces and clinical variables. The PGE2 concentration increased significantly above the baseline value throughout the entire study, peaking 14 days after transection. Peak vertical force and vertical impulse significantly decreased by day 14 after transection, followed by an increase over time without returning to baseline values. All clinical variables (eg, lameness, degree of weight bearing, joint extension, cumulative pain score, effusion score, and total protein content of synovial fluid, except for WBC count in synovial fluid) increased significantly above baseline values. Significant negative correlations were detected between PGE2 concentrations and peak vertical force (r, -0.5720) and vertical impulse (r, -0.4618), and significant positive correlations were detected between PGE2 concentrations and the subjective lameness score (r, 0.5016) and effusion score (r, 0.6817). Assessment of the acute inflammatory process by measurement of PGE2 concentrations in synovial fluid may be correlated with the amount of pain or lameness in dogs.
Apparent thermal inertia and the surface heterogeneity of Mars
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945
Observing the variation of asteroid thermal inertia with heliocentric distance
Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.
2018-06-01
Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.
Inertia in nursing care of hospitalised patients with urinary incontinence.
Artero-López, Consuelo; Márquez-Hernández, Verónica V; Estevez-Morales, María Teresa; Granados-Gámez, Genoveva
2018-04-01
To assess the existence of therapeutic inertia in the nursing care of patients with urinary incontinence during the patient's time in hospital, together with the sociodemographic and professional variables involved. Inertia in care is a problem which appears in the nursing care process. Actions related to inertia can be attributed to not adhering to protocols, clinical guidelines and the lack of prevention measures which have undesirable effects on the efficiency of care. This was a prospective observational study. A total of 132 nursing professionals participated over two consecutive months. Data were collected randomly through the method of systematic, nonparticipative observation of medical practice units and patients' medical records. The results showed a pattern of severely compromised action in the assessment of the pattern of urinary elimination, in actions related to urinary continence, in therapeutic behaviour and in patient satisfaction and were found to be consistent with professional experience (p inertia exists in nursing care in the hospital environment while the patient is hospitalised, in prevention care, in the treatment of urinary incontinence and in the management of records. Contributing to the understanding of the existence of inertia in nursing care raises questions regarding its causes and interventions to predict or monitor it. © 2018 John Wiley & Sons Ltd.
Inertia and Double Bending of Light from Equivalence
Shuler, Robert L., Jr.
2010-01-01
Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.
Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Gyeong Joong Lee
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Inertia of rough and vicinal surfaces of helium-4 crystals
International Nuclear Information System (INIS)
Amrit, J.; Legros, P.; Poitrenaud, J.
1995-01-01
This paper reports a study of the inertia of rough and vicinal of 4 He crystals. We have measured the transmission coefficient of ultrasonic waves at frequencies 10, 30, 50 and 70 MHz, across the liquid-solid interface. The experiments are carried out at temperatures ranging between 0.4 and 1.0 K for four crystallographic orientations. Two important phenomena are put to evidence for the first time. We have found the first experimental evidence that the inertia of rough surfaces depends on temperature. For vicinal surfaces, we have shown the strong increase of the inertia as the tilt angle decreases. Our experimental results agree very well with the theoretical predictions
Temperature-dependent particle-number projected moment of inertia
International Nuclear Information System (INIS)
Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.
2008-01-01
Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy
Factors associated with clinical inertia: an integrative review
Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P
2014-01-01
Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181
Reduction of nuclear moment of inertia due to pairing interaction
International Nuclear Information System (INIS)
Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.
1994-01-01
The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found
Electron inertia effects on the planar plasma sheath problem
International Nuclear Information System (INIS)
Duarte, V. N.; Clemente, R. A.
2011-01-01
The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.
Particle number fluctuations in the moment of inertia
International Nuclear Information System (INIS)
Allal, N.H.; Fellah, M.
1991-01-01
The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%
Inertia Wheel on Low-Noise Active Magnetic Suspension
Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.
2002-01-01
precision in force measuring or vibration isolation which are required. Note that the stiffness of a magnetic suspension usually increases when it must compensate for a large static force and the increase of stiffness changes drastically the vibration isolation characteristics. It is also possible to support the rotor using a separate controlled electromagnet, but the latter will introduce disturbances which make impossible to evaluate the performances of the magnetic levitation system. Moreover, the sensitivity of the device to the operating conditions makes testing in conditions so different from the actual ones of very little significance. This is particularly true when accurate force measuring or vibration isolation is required or when low power consumption is one of the design specifications. Finally, if an external electromagnetic device is used for compensating for weight, its presence changes the stiffness of the system, to the point of altering drastically its stability characteristics. Parabolic flight is not a solution for this problem: the duration of low gravity conditions during parabolic flights is too short to perform significant experiments on magnetic suspension systems, particularly if the natural frequency of the suspension is very low as is typical of devices aimed at the isolation from low frequency vibrations. The environment in which parabolic flight testing is performed is also too rough for accurate testing. The availability of the space station changes deeply this situation: magnetic levitation systems built for space application can be tested in conditions which are very close to the operating ones. Although the space station environment is not vibrationally so clean as it would be necessary for some application, it is nevertheless far better than any simulated environment on the ground. The present paper deals with the design and construction of an engineering model of an inertia wheel on AMB. The aim of the project is to test the performance of
Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.
2016-03-01
Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.
Hysteretic transitions in the Kuramoto model with inertia.
Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro
2014-10-01
We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.
GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels
DEFF Research Database (Denmark)
Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar
2016-01-01
We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio
2017-01-01
The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....
Moments of inertia and the shapes of Brownian paths
International Nuclear Information System (INIS)
Fougere, F.; Desbois, J.
1993-01-01
The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs
Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers
DEFF Research Database (Denmark)
Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde
2016-01-01
of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...
Crustal fraction of moment of inertia in pulsars
International Nuclear Information System (INIS)
Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.
2015-01-01
In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Bogolubov, J.R.
2016-01-01
The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived in the framework of the Feynman proper time paradigm and the related vacuum field theory approach. The classical Ampere law origin is rederived, and its relationship with the Feynman proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation principle of stochastic electrodynamics. The modified Abraham-Lorentz damping radiation force is derived and the electromagnetic electron mass origin is argued
Energy Technology Data Exchange (ETDEWEB)
Labbio, G Di; Keshavarz-Motamed, Z; Kadem, L, E-mail: lcfd@encs.concordia.ca [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8 (Canada)
2017-06-15
Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation. (paper)
Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.
2017-06-01
Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.
Isolated colonic inertia is not usually the cause of chronic constipation.
Ragg, J; McDonald, R; Hompes, R; Jones, O M; Cunningham, C; Lindsey, I
2011-11-01
Chronic constipation is classified as outlet obstruction, colonic inertia or both. We aimed to determine the incidence of isolated colonic inertia in chronic constipation and to study symptom pattern in those with prolonged colonic transit time. Chronic constipation patients were classified radiologically by surgeon-reported defaecating proctography and transit study into four groups: isolated outlet obstruction, isolated colonic inertia, outlet obstruction plus colonic inertia, or normal. Symptom patterns were defined as stool infrequency (twice weekly or less) or frequent unsuccessful evacuations (more than twice weekly). Of 541 patients with chronic constipation, 289 (53%) were classified as isolated outlet obstruction, 26 (5%) as isolated colonic inertia, 159 (29%) as outlet obstruction plus colonic inertia and 67 (12%) as normal. Of 448 patients (83%) with outlet obstruction, 35% had additional colonic inertia. Only 14% of those with prolonged colonic transit time had isolated colonic inertia. Frequent unsuccessful evacuations rather than stool infrequency was the commonest symptom pattern in all three disease groups (isolated outlet obstruction 86%, isolated colonic inertia 54% and outlet obstruction plus colonic inertia 63%). Isolated colonic inertia is an unusual cause of chronic constipation. Most patients with colonic inertia have associated outlet obstruction. These data question the clinical significance of isolated colonic inertia. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
Directory of Open Access Journals (Sweden)
Junhui ZHANG
2018-01-01
Full Text Available Electro-hydrostatic actuator (EHA pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.
Li, Zhaorui; Livescu, Daniel
2017-11-01
The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.
System Inertia in the Changing Paradigm for Biodiversity ...
African Journals Online (AJOL)
The aim of this paper is to show that while there has been a change, at a policy level, from the old “conservation without a human face” to the new development for sustainable development, inertia in the policy implementation agencies has meant that the provisions of these new policy frameworks have not been translated ...
Organic food consumption in China: the moderating role of inertia
Directory of Open Access Journals (Sweden)
Yen Tsai-Fa
2018-01-01
Full Text Available Despite the progressive development of the organic food sector across Taiwan Strait, little is known about how consumers’ self congruity will influence organic food decision through various degrees of attitude and whether or not consumers with various degrees of inertia will vary in their intention to buy organic foods. The current study aims to examine the effect of consumption self congruity on behavioral intention related to organic food consumption under the mediating role of attitude as well as the moderating role of inertia. Research data were collected from organic food consumers across Taiwan Strait via a questionnaire survey, eventually obtaining 500 valid questionnaires for analysis. This study tested the overall model fit and hypotheses through structural equation modeling method (SEM. The results show that consumer attitude significantly mediates the effects of self congruity on organic food purchase intention. Moreover, the moderating effect of inertia is statistical significance, indicating that the relationship between attitude and purchase intention becomes weaker in the condition of consumers with higher degree of inertia. Several implications and suggestions are also discussed for organic food providers and marketers.
Role of inertia in the fracture of rock
International Nuclear Information System (INIS)
Passman, S.L.; Grady, D.E.; Rundle, J.B.
1980-01-01
A theory for the accumulation of damage in one dimension in fast deformation of a brittle material is developed. The theory is consistent with thermodynamics and takes crack inertia into account. The problem of damage accumulation due to a step pulse in strain is solved, and shows good agreement with experimental results
The inertia system coordinate transformation based on the Lobachevsky function
International Nuclear Information System (INIS)
Fadeev, N.G.
2001-01-01
Based on the interpretation of the Lobachevsky function cosΠ(ρ/k) = thρ/k as the function which expresses the constant light velocity principle at k = c (k is the Lobachevsky constant, c is the light velocity), the inertia system coordinate transformation of two kinds (one of them known as Lorentz transformation) have been obtained
Chimera states in coupled Kuramoto oscillators with inertia
International Nuclear Information System (INIS)
Olmi, Simona
2015-01-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry
Chimera states in coupled Kuramoto oscillators with inertia
Energy Technology Data Exchange (ETDEWEB)
Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)
2015-12-15
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
Time to wake up: reactive countermeasures to sleep inertia.
Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan
2016-12-07
Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.
Chimera states in coupled Kuramoto oscillators with inertia.
Olmi, Simona
2015-12-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
Moment of Inertia of a Ping-Pong Ball
Cao, Xian-Sheng
2012-01-01
This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.
Inaction inertia, regret, and valuation : A closer look
Zeelenberg, Marcel; Nijstad, Bernard A.; van Putten, Marijke; van Dijk, Eric
Inaction inertia is the phenomenon that one is not likely to act on an attractive opportunity after having bypassed an even more attractive opportunity. So far, all published work has assumed a causal role for the emotion regret in this effect. In a series of 5 experiments we found no support for
Determinacy, stock market dynamics and monetary policy inertia
DEFF Research Database (Denmark)
Pfajfar, Damjan; Santoro, Emiliano
2011-01-01
We study equilibrium determinacy in a New-Keynesian model where the Central Bank responds to asset prices growth. Unlike Taylor-type rules that react to asset prices, the proposed alternative does not harm dynamic stability and in certain cases promotes determinacy by inducing interest-rate inertia....
The Zone of Inertia: Absorptive Capacity and Organizational Change
Godkin, Lynn
2010-01-01
Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…
Obstacles to Reasoning about Inertia in Different Contexts
Yerdelen-Damar, Sevda
2015-01-01
The present study investigated the underlying reasons for difficulties faced by students when they applied the concept of inertia across varying contexts. The participants of the study included five high school students. Data obtained from interviews were interpreted from the perspectives of the coordination class and epistemological framing…
Effects of electron inertia in capacitively coupled radio frequency discharges
International Nuclear Information System (INIS)
Xiang Nong
2004-01-01
The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant
Forces on Centrifugal Pump Impellers
Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan
1985-01-01
Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...
Directory of Open Access Journals (Sweden)
L. O’connor Montero
2001-07-01
Full Text Available Se describen cálculos clásicos para determinar ejes y momentos principales de inercia de un cuerpo, y se demuestra que sepueden realizar cálculos con el mismo propósito mediante la aplicación del Cálculo Tensorial, la Teoría Espectral y elAlgebra Lineal. Esto permite justificar los términos del título del trabajo constituye una extensión del modelo tensorial a laestática, que en correspondencia con los elementos que lo definen y según analogías con otras aplicaciones a la mecánicadan lugar a introducir la noción de tensor de inercia de un cuerpo. Bien interpretado, el modelo puede contribuir a cambiosimportantes en la enseñanza del álgebra en la Ingeniería.Palabras claves: Tensor, cálculo tensorial, ejes y momentos principales de inercia, tensor de inercia.________________________________________________________________________________Abstract.The tensors calculation and the spectral theory are applied to modelling the inertia state (main axes and momentum ofinertia of a body. This makes possible to enrich static engineering calculations and to generalise tensorial models beyondthe materials resistance, fluids mechanic and the plastic deformation theory. Well interpretated, the model can lead toimportant changes in algebra teaching for mechanical engineers.Key words: Tension member, tension calculation, inertia main axes , principals inertia momentum, inertiatension member.
Effectiveness and clinical inertia in patients with antidiabetic therapy.
Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique
2017-06-01
To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; Pinertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.
Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.
Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H
2018-01-01
Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.
Smoothelin expression in the gastrointestinal tract: implication in colonic inertia.
Chan, Owen T M; Chiles, Lauren; Levy, Mary; Zhai, Jing; Yerian, Lisa M; Xu, Haodong; Xiao, Shu-Yuan; Soffer, Edy E; Conklin, Jeffrey L; Dhall, Deepti; Kahn, Melissa E; Balzer, Bonnie L; Amin, Mahul B; Wang, Hanlin L
2013-10-01
Colonic inertia is a frustrating motility disorder to patients, clinicians, and pathologists. The pathogenesis is largely unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific contractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in patients with colonic inertia. A total of 57 resections of the normal GI tract (distal esophagus to left colon) were obtained from patients without GI motor dysfunction. Sixty-one colon resections were obtained from patients with a clinical diagnosis of colonic inertia. Smoothelin immunostaining was conducted on full-thickness tissue sections. In the nondysmotile controls, strong and diffuse cytoplasmic staining for smoothelin was observed in both the inner circular and outer longitudinal layers of the muscularis propria (MP) throughout the entire GI tract. The muscularis mucosae (MM) and muscular vessel walls were either completely negative or only patchily and weakly stained. The 1 exception to this pattern was observed in the distal esophagus, in which the MM was also diffusely and strongly stained. In cases with colonic inertia, a moderate to marked reduction of smoothelin immunoreactivity was observed in 15 of 61 (24.6%) colon resections, selectively seen in the outer layer of the MP. The data demonstrate that smoothelin is differentially expressed in the MP and MM of the normal GI tract and suggest that defective smoothelin expression may play a role in the pathogenesis of colonic inertia in a subset of patients.
Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state
International Nuclear Information System (INIS)
Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao
1998-01-01
We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding
Michelin, Sebastien Honore Roland
The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of
40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.129-00 Section 86.129-00 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. Applicability. Section 86.129-94 (a) applies... testing using paragraphs (e)(1) and (e)(2) of this section. (f)(1) Required test dynamometer inertia...
40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) Flywheels, electrical or other means of... weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up to 1,062 1,000 1,000 1...
Zhong, J-Q; Patterson, M D; Wettlaufer, J S
2010-07-23
We observe the transient formation of a ringed pattern state during spin up of an evaporating fluid on a time scale of order a few Ekman spin up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two-dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous.
Nonlinear evolution of magnetic islands in a two fluid torus
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1996-01-01
A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress
On the influence of microscale inertia on dynamic ductile crack extension
Jacques, N.; Mercier, S.; Molinari, A.
2012-08-01
The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.
International Nuclear Information System (INIS)
Vertut, Jean.
1976-01-01
In a previous work the author proposed a time efficiency quotient based on time to perform a task for a man controlling a manipulator (RO MAN SY 73). This quotient is also a global evaluation of a man-manipulator system, and can be extended to teaching programmed manipulators. Classification based on this quotient emphasizes the importance of force feed-back to the operator, and enables to project the same concept to computer control. This paper concentrates on characteristics reflecting directly to the mechanics of the arm, to the actuators and to the control. They need delicate trade off: reversibility is key to force feed-back, deflection reflects on arm dynamics (oscillation) and precision, backlash allows lower friction but limits servo performances, inertia is high when limited deflection is required, friction is limiting the man in the loop performances, force transducers can compensate irreversibility and/or friction but lead to control sophistication. These trade offs are developed, and some proposed constants are given for force feed-back manipulators
The inertial effect of acceleration fields on a self-decoupled wheel force transducer
Directory of Open Access Journals (Sweden)
Lihang Feng
Full Text Available AbstractWheel force transducer (WFT is a tool which can measure the three-axis forces and three-axis torques applied to the wheel in vehicle testing applications. However, the transducer is generally mounted on the wheel of a moving vehicle, when abruptly accelerating or braking, the mass/inertia of the transducer itself has extra effects on the sensor response so that inertia/mass loads will be detected and coupled into the signal outputs. This is the inertia coupling effect that decreases the sensor accuracy and should be avoided. In this paper, the inertia coupling problem induced by six dimensional accelerations is investigated for a universal WFT. Inertia load distribution of the WFT is solved based on the principle of equivalent mass and rotary inertia firstly, thus then its impact can be identified with the theoretical derivation. FEM simulation and experimental verification are performed as well. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear respectively. The relative errors are acceptable within less than 5% and the maximum impact of inertia loads on the signal output is about 1.5% in the measuring range.
Dynamic moments of inertia in Xe, Cs and Ba nuclei
International Nuclear Information System (INIS)
El-Samman, H.; Barci, V.; Gizon, A.
1984-01-01
The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references
Calculations of mass and moment of inertia for neutron stars
International Nuclear Information System (INIS)
Moelnvik, T.; Oestgaard, E.
1985-01-01
Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)
More about the moment of inertia of Mars
International Nuclear Information System (INIS)
Kaula, W.M.; Sleep, N.H.; Phillips, R.J.
1989-01-01
The maximum allowable mean moment-of-inertia I of Mars is 0.3650 ·MR 2 because the rate-of-adjustment of the rotation axis is much faster than the rate-of-generation of density heterogeneities, as with any planet. But Mars differs from the other terrestrial planets in that its gravity field is rougher, in the sense of stress-difference implication, and its global tectonics is dominated by one feature, centered on the Tharsis Plateau. Plausible tectonic models of Mars require generation and support that are almost axially symmetric about Tharsis. Hence, unlike other terrestrial planets, Mars likely has two non-hydrostatic components of moments-of-inertia that are nearly equal, and the most probable value of I/MR 2 is slightly less than 0.3650
Motion, inertia and special relativity-a novel perspective
International Nuclear Information System (INIS)
Masreliez, C Johan
2007-01-01
A recent paper by the author proposes that the phenomenon of inertia may be explained if the four metrical coefficients in the Minkowskian line element were to change as a consequence of acceleration. A certain scale factor multiplying the four metrical coefficients was found, which depends solely on velocity. This dynamic scale factor, which is [1-(v/c) 2 )], models inertia as a gravitational-type phenomenon. With this metric the geodesic of general relativity is an identity, and all accelerating trajectories are geodesics. This paper shows that the same scale factor also agrees with special relativity, but offers a new perspective. A new kind of dynamic process involving four-dimensional scale transition is proposed
Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
Directory of Open Access Journals (Sweden)
Attila J Bergou
Full Text Available The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.
Effects of training with a dynamic moment of inertia bat on swing performance.
Liu, Chiang; Liu, Ya-Chen; Kao, Ying-Chieh; Shiang, Tzyy-Yuang
2011-11-01
The purpose of this study was to investigate the effects of the 8-week dynamic moment of inertia (DMOI) bat training on swing velocity, batted-ball speed, hitting distance, muscle power, and grip force. The DMOI bat is characterized in that the bat could be swung more easily by reducing the moment of inertia at the initial stage of swing without decreasing the bat weight and has a faster swing velocity and lower muscle activity. Seventeen varsity baseball players were randomly assigned to the DMOI bat training group (n = 9) and the normal bat training group (n = 8). The training protocol was 7 swings each set, 5-8 sets each time, 3 times each week, and 8 weeks' training period. The results showed that the swing training with the DMOI bat for 8 weeks significantly increased swing velocity by about 6.20% (96.86 ± 8.48 vs. 102.82 ± 9.93 km·h(-1)), hitting distance by about 6.69% (80.06 ± 9.16 vs. 84.99 ± 7.26 m), muscle power of the right arm by about 12.04% (3.34 ± 0.41 vs. 3.74 ± 0.61 m), and muscle power of the left arm by about 8.23% (3.36 ± 0.46 vs. 3.61 ± 0.39 m) (p bat training group had a significantly better change percentage in swing velocity, hitting distance, and grip force of the left hand than did the normal bat training group (p bat has a positive benefit on swing performance and that the DMOI bat could be used as a new training tool in baseball.
Electron-inertia effects on driven magnetic field reconnection
International Nuclear Information System (INIS)
Al-Salti, N.; Shivamoggi, B.K.
2003-01-01
Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place
Testing for clinical inertia in medication treatment of bipolar disorder.
Hodgkin, Dominic; Merrick, Elizabeth L; O'Brien, Peggy L; McGuire, Thomas G; Lee, Sue; Deckersbach, Thilo; Nierenberg, Andrew A
2016-11-15
Clinical inertia has been defined as lack of change in medication treatment at visits where a medication adjustment appears to be indicated. This paper seeks to identify the extent of clinical inertia in medication treatment of bipolar disorder. A second goal is to identify patient characteristics that predict this treatment pattern. Data describe 23,406 visits made by 1815 patients treated for bipolar disorder during the STEP-BD practical clinical trial. Visits were classified in terms of whether a medication adjustment appears to be indicated, and also whether or not one occurred. Multivariable regression analyses were conducted to find which patient characteristics were predictive of whether adjustment occurred. 36% of visits showed at least 1 indication for adjustment. The most common indications were non-response to medication, side effects, and start of a new illness episode. Among visits with an indication for adjustment, no adjustment occurred 19% of the time, which may be suggestive of clinical inertia. In multivariable models, presence of any indication for medication adjustment was a predictor of receiving one (OR=1.125, 95% CI =1.015, 1.246), although not as strong as clinical status measures. The associations observed are not necessarily causal, given the study design. The data also lack information about physician-patient communication. Many patients remained on the same medication regimen despite indications of side effects or non-response to treatment. Although lack of adjustment does not necessarily reflect clinical inertia in all cases, the reasons for this treatment pattern merit further examination. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of neoclassical edge plasma transport with gyroviscosity and inertia
International Nuclear Information System (INIS)
Rogister, A.; Antonov, N.
1996-01-01
It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Acoustic concentration of particles in fluid flow
Ward, Michael W.; Kaduchak, Gregory
2017-08-15
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
On the Inertia Term of Projectile's Penetration Resistance
Directory of Open Access Journals (Sweden)
Yu Shan
2013-01-01
Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Lee Gyeong Joong
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Explicit expression for effective moment of inertia of RC beams
Directory of Open Access Journals (Sweden)
K.A. Patel
Full Text Available AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entire practical range of reinforcement. Three significant structural parameters have been identified that govern the change in effective moment of inertia and therefore deflection. These three parameters are chosen as inputs to train neural network. The training data sets for neural network are generated using finite element software ABAQUS. The explicit expression has been validated for a number of simply supported and continuous beams and it is shown that the predicted deflections have reasonable accuracy for practical purpose. A sensitivity analysis has been performed, which indicates substantial dependence of effective moment of inertia on the selected input parameters.
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
The Inglis cranking model has been widely used to calculate the nuclear inertia associated with collective degrees of freedom. After the inclusion of pairing correlations, theoretical results obtained with the cranking model for nuclear rotations and γ-vibrations were in relatively good agreement with experimental data. Calculations of β-vibrational inertias were also performed in the cranking model for fission deformations. Theoretical results were several times the irrotational values and gave reasonable agreement with experimental spontaneous-fission lifetimes, although in one study a renormalization factor of 0.8 was required. However, as pointed out by many authors, the Inglis cranking model possesses two serious deficiencies. First, problems arise when the single-particle potential contains momentum-dependence terms. Second, in the limit of large pairing strength the inertia approaches zero instead of a finite (irrotational) limit. Alternative approaches to the cranking model which did not lead to such unacceptable results were developed by Migdal, Belyaev and Thouless and Valatin. They showed that these deficiencies of the cranking model are due to a lack of self-consistency, since the reaction of the mean field to the collective motion is neglected in the Inglis model. Previously we used their arguments and developed a generalized cranking model for stationary collective motion. Here it is shown how to develop a time-dependent formalism appropriate to β-vibrations and fission. 10 references
Testing and Validation of the Dynamic Inertia Measurement Method
Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David
2015-01-01
The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions.
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....
Effect of particle velocity fluctuations on the inertia coupling in two-phase flow
International Nuclear Information System (INIS)
Drew, D.A.
1989-01-01
Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed
International Nuclear Information System (INIS)
Mulcahy, T.M.
1982-05-01
A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related
Inertial effects on the stress generation of active fluids
Takatori, S. C.; Brady, J. F.
2017-09-01
Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.
The role of inertia in modeling decisions from experience with instance-based learning.
Dutt, Varun; Gonzalez, Cleotilde
2012-01-01
One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
International Nuclear Information System (INIS)
Haisch, Bernhard; Rueda, Alfonso
1998-01-01
The basis of most modern technology is the manipulation of electromagnetic phenomena. Haisch, Rueda and Puthoff (1994a) published a controversial but substantive formulation of a concept proposing an explanation of inertia of matter as an electromagnetic phenomenon originating in the zero-point field (ZPF) of the quantum vacuum. This suggests that Newton's equation of motion can be derived from Maxwell's equations of electrodynamics, in that inertial mass is postulated to be not an intrinsic property of matter but rather a kind of electromagnetic drag force (which temporarily is a place holder for a more general quantum vacuum reaction effect) that proves to be acceleration dependent by virtue of the spectral characteristics of the ZPF. Moreover the principle of equivalence implies that in this view gravitation would also be electromagnetic in origin along the lines proposed by Sakharov (1968). A NASA-funded research effort has been underway at the Lockheed Martin Advanced Technology Center in Palo Alto and at California State University in Long Beach to develop and test these ideas. An effort to generalize the 1994 ZPF-inertia concept into a proper relativistic formulation has been successful. With regard to the goals of the NASA Breakthrough Propulsion Physics Program we can, on the basis of the ZPF-inertia concept, definitively rule out one speculatively hypothesized propulsion mechanism: matter possessing negative inertial mass, a concept originated by Bondi (1957). The existence of this is shown to be logically impossible. On the other hand, the linked ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of manipulation of inertia and gravitation, since both are postulated to be electromagnetic phenomena. Whether this will translate into actual technological potential, especially with respect to spacecraft propulsion and future interstellar travel capability, is an open question. The (possibly comparable) time scale for translation of Einstein
Accounting for inertia in modal choices: some new evidence using a RP/SP dataset
DEFF Research Database (Denmark)
Cherchi, Elisabetta; Manca, Francesco
2011-01-01
effect is stable along the SP experiments. Inertia has been studied more extensively with panel datasets, but few investigations have used RP/SP datasets. In this paper we extend previous work in several ways. We test and compare several ways of measuring inertia, including measures that have been...... proposed for both short and long RP panel datasets. We also explore new measures of inertia to test for the effect of “learning” (in the sense of acquiring experience or getting more familiar with) along the SP experiment and we disentangle this effect from the pure inertia effect. A mixed logit model...... is used that allows us to account for both systematic and random taste variations in the inertia effect and for correlations among RP and SP observations. Finally we explore the relation between the utility specification (especially in the SP dataset) and the role of inertia in explaining current choices....
International Nuclear Information System (INIS)
Wen, Li; Lauder, George
2013-01-01
Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a ‘critically-oscillated’ amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that ‘critically-oscillated’ peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the ‘non-oscillated’ and ‘critically-oscillated’ states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes. (paper)
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.
Test of neural inertia in humans during general anaesthesia.
Kuizenga, M H; Colin, P J; Reyntjens, K M E M; Touw, D J; Nalbat, H; Knotnerus, F H; Vereecke, H E M; Struys, M M R F
2018-03-01
Neural inertia is defined as the tendency of the central nervous system to resist transitions between arousal states. This phenomenon has been observed in mice and Drosophila anaesthetized with volatile anaesthetics: the effect-site concentration required to induce anaesthesia in 50% of the population (C 50 ) was significantly higher than the effect-site concentration for 50% of the population to recover from anaesthesia. We evaluated this phenomenon in humans using propofol or sevoflurane (both with or without remifentanil) as anaesthetic agents. Thirty-six healthy volunteers received four sessions of anaesthesia with different drug combinations in a step-up/step-down design. Propofol or sevoflurane was administered with or without remifentanil. Serum concentrations of propofol and remifentanil were measured from arterial blood samples. Loss and return of responsiveness (LOR-ROR), response to pain (PAIN), Patient State Index (PSI) and spectral edge frequency (SEF) were modeled with NONMEM®. For propofol, the C 50 for induction and recovery of anaesthesia was not significantly different across the different endpoints. For sevoflurane, for all endpoints except SEF, significant differences were found. For some endpoints (LOR and PAIN) the difference was significant only when sevoflurane was combined with remifentanil. Our results nuance earlier findings with volatile anaesthetics in mice and Drosophila. Methodological aspects of the study, such as the measured endpoint, influence the detection of neural inertia. A more thorough definition of neural inertia, with a robust methodological framework for clinical studies is required to advance our knowledge of this phenomenon. NCT 02043938. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
High-inertia drive motors and their starting characteristics
International Nuclear Information System (INIS)
Anon.
1980-01-01
The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref
A dynamic marketing model with best reply and inertia
International Nuclear Information System (INIS)
Bischi, Gian Italo; Cerboni Baiardi, Lorenzo
2015-01-01
In this paper we consider a nonlinear discrete-time dynamic model proposed by Farris et al. (2005) as a market share attraction model with two firms that decide marketing efforts over time according to best reply strategies with naïve expectations. The model also considers an adaptive adjustment toward best reply, a form of inertia or anchoring attitude, and we investigate the effects of heterogeneities among firms. A rich scenario of local and global bifurcations is obtained even with just two competing firms, and a comparison is proposed with apparently similar duopoly models based on repeated best reply dynamics with naïve expectations and adaptive adjustment.
A dynamic inertia weight particle swarm optimization algorithm
International Nuclear Information System (INIS)
Jiao Bin; Lian Zhigang; Gu Xingsheng
2008-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly
An object oriented implementation of the Yeadon human inertia model.
Dembia, Christopher; Moore, Jason K; Hubbard, Mont
2014-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.
An object oriented implementation of the Yeadon human inertia model
Dembia, Christopher; Moore, Jason K.; Hubbard, Mont
2015-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365
Bewley, Lee W
2010-01-01
Structural inertia is the overall capacity of an organization to adapt within a market environment. This paper reviews the impact of healthcare investments in information management/information technology (IM/IT) on the strategic management concept of structural inertia. Research indicates that healthcare executives should consider the relative state of structural inertia for their firms and match them with potential IM/IT solutions. Additionally, organizations should favorably consider IM/IT solutions that are comparatively less complex.
Changes in inertia and effect on turning effort across different wheelchair configurations.
Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen
2013-01-01
When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.
Physician and patient characteristics associated with clinical inertia in blood pressure control.
Harle, Christopher A; Harman, Jeffrey S; Yang, Shuo
2013-11-01
Clinical inertia, the failure to adjust antihypertensive medications during patient visits with uncontrolled hypertension, is thought to be a common problem. This retrospective study used 5 years of electronic medical records from a multispecialty group practice to examine the association between physician and patient characteristics and clinical inertia. Hierarchical linear models (HLMs) were used to examine (1) differences in physician and patient characteristics among patients with and without clinical inertia, and (2) the association between clinical inertia and future uncontrolled hypertension. Overall, 66% of patients experienced clinical inertia. Clinical inertia was associated with one physician characteristic, patient volume (odds ratio [OR]=0.998). However, clinical inertia was associated with multiple patient characteristics, including patient age (OR=1.021), commercial insurance (OR=0.804), and obesity (OR=1.805). Finally, patients with clinical inertia had 2.9 times the odds of uncontrolled hypertension at their final visit in the study period. These findings may aid the design of interventions to reduce clinical inertia. ©2013 Wiley Periodicals, Inc.
Kalogirou, Anna
2018-03-01
We consider a two-fluid shear flow where the interface between the two fluids is coated with an insoluble surfactant. An asymptotic model is derived in the thin-layer approximation, consisting of a set of nonlinear partial differential equations describing the evolution of the film and surfactant disturbances at the interface. The model includes important physical effects such as Marangoni forces (caused by the presence of surfactant), inertial forces arising in the thick fluid layer, as well as gravitational forces. The aim of this study is to investigate the effect of density stratification or gravity—represented through the Bond number Bo—on the flow stability and the interplay between the different (de)stabilisation mechanisms. It is found that gravity can either stabilise or destabilise the interface (depending on fluid properties) but not always as intuitively anticipated. Different traveling-wave branches are presented for varying Bo, and the destabilising mechanism associated with the Marangoni forces is discussed.
Optical Forces Near Microfabricated Devices
2013-08-01
gravitational, buoyant, brownian , electrostatic and those forces that develop from the interaction 4 15 between an external electromagnetic field and a...average Brownian force can be shown to be ∼ 1× 10−4 pN. For this system the Reynolds number is ∼ 1 × 10−7. At a low Reynolds number, the inertia plays no...modulator or any movement of the beam or sample, it can be easily adapted for a variety of integrated, lab-on-a-chip applications. Finally, by tuning
International Nuclear Information System (INIS)
Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar
2009-01-01
A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length
Independent effects of adding weight and inertia on balance during quiet standing.
Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence
2012-04-16
Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.
A magneto-rheological fluid mount featuring squeeze mode: analysis and testing
International Nuclear Information System (INIS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2016-01-01
This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled. (paper)
Sulfates on Mars: TES Observations and Thermal Inertia Data
Cooper, C. D.; Mustard, J. F.
2001-05-01
The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the
Forces. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
2000
Forces are all around. Without them, there would be no movement. In fact, Sir Isaac Newton theorized that a force called inertia actually works to keep things exactly as they are at any given moment! Students will learn about Newton's laws and about how forces affect many aspects of life. With clear demonstrations and a unique hands-on activity,…
Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms
van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens
2012-01-01
Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic
Inertia in travel choice : The role of risk aversion and learning
Chorus, C.; Dellaert, B.
2009-01-01
This paper contributes to literature by showing how travellers that make normatively rational choices exhibit inertia during a series of risky choices. Our analyses complement other studies that conceive inertia as the result of boundedly rational or even non-deliberate, habitual decision-making. We
40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Road load power, test weight, and inertia weight class determination. 86.1772-99 Section 86.1772-99 Protection of Environment ENVIRONMENTAL... for Light-Duty Vehicles and Light-Duty Trucks § 86.1772-99 Road load power, test weight, and inertia...
Inertia and advance in the organic sector: food education in Denmark
DEFF Research Database (Denmark)
Dahl, Astrid; Kristensen, Niels Heine
2005-01-01
Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK......Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK...
Thermal inertia of eclipsing binary asteroids : the role of component shape
Mueller, Michael; van de Weijgaert, Marlies
2015-01-01
Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way
Calculation of nuclear moment of inertia with proper treatment of pairing interaction
International Nuclear Information System (INIS)
Tazaki, S.; Ando, Y.; Hasegawa, M.
1997-01-01
An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)
Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei
International Nuclear Information System (INIS)
Hamamoto, I.; Nazarewicz, W.
1994-01-01
The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes
Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip
2016-02-01
Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
On the moment of inertia and surface redshift of neutron star
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result
Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters
DEFF Research Database (Denmark)
Fang, Jingyang; Li, Hongchang; Tang, Yi
2018-01-01
Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...
Semiclassical shell structure of moments of inertia in deformed Fermi systems
International Nuclear Information System (INIS)
Magner, A.G.; Gzhebinsky, A.M.; Sitdikov, A.S.; Khamzin, A.A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures. (author)
Kidney organ donation: developing family practice initiatives to reverse inertia
2010-01-01
Background Kidney transplantation is associated with greater long term survival rates and improved quality of life compared with dialysis. Continuous growth in the number of patients with kidney failure has not been matched by an increase in the availability of kidneys for transplantation. This leads to long waiting lists, higher treatment costs and negative health outcomes. Discussion Misunderstandings, public uncertainty and issues of trust in the medical system, that limit willingness to be registered as a potential donor, could be addressed by community dissemination of information and new family practice initiatives that respond to individuals' personal beliefs and concerns regarding organ donation and transplantation. Summary Tackling both personal and public inertia on organ donation is important for any community oriented kidney donation campaign. PMID:20478042
Therapeutic Inertia in the New Landscape of Multiple Sclerosis Care
Directory of Open Access Journals (Sweden)
Gustavo Saposnik
2018-03-01
Full Text Available The landscape of multiple sclerosis (MS treatment is constantly changing. Significant heterogeneity exists in the efficacy and risks associated with these therapies. Therefore, clinicians have the challenge to tailor treatment based on several factors (disease activity level, risk of progression, individual patient preferences and characteristics, personal expertise, etc., to identify the optimal balance between safety and efficacy. However, most clinicians have limited education in decision-making and formal training in risk management. Together, these factors may lead to therapeutic inertia (TI; defined as the absence of treatment initiation or intensification when therapeutic goals are unmet. TI may lead to suboptimal treatments choices, worse clinical outcomes, and more disability. This article provides a succinct overview on factors influencing TI in MS care.
The Dynamics of Online Purchase Visits: Inertia or Switching?
Institute of Scientific and Technical Information of China (English)
Zelin Zhang; Xia Wang; Peter T.L.Popkowski Leszczyc; Xiao Zuo
2016-01-01
This paper studies the dynamics of online purchase patterns,focusing on the impact of the channel used on conversion probability,as well as the transition of channel use over time.A novel data set from a major Chinese online travel agency is used for analysis,consisting of four months of data with 24,337 store visits through three types of channels:direct visit,search advertising and referral.Results of a Bayesian multinomial logit model show that the search channel significantly affects consumers' conversion probability,and show a high degree of inertia in channel use.This finding contrasts sharply with suggestions of previous research that most future purchases will converge to the direct-visit channel.
The Early Lunar Orbit and Principal Moments of Inertia
Garrick-Bethell, I.; Zuber, M. T.
2007-12-01
If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a
Parallel algorithms for computation of the manipulator inertia matrix
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Waste canister closure welding using the inertia friction welding process
International Nuclear Information System (INIS)
Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.
1986-02-01
Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs
The earth's equatorial principal axes and moments of inertia
Liu, H. S.; Chao, B. F.
1991-01-01
The earth's equatorial principal moments of inertia are given as A and B, where A is less than B, and the corresponding principal axes are given as a and b. Explicit formulas are derived for determining the orientation of a and b axes and the difference B - A using C(22) and S(22), the two gravitational harmonic coefficients of degree 2 and order 2. For the earth, the a axis lies along the (14.93 deg W, 165.07 deg E) diameter, and the b axis lies perpendicular to it along the (75.07 deg E, 104.93 deg W) diameter. The difference B - A is 7.260 x 10 to the -6th MR2. These quantities for other planets are contrasted, and geophysical implications are discussed.
Czech Academy of Sciences Publication Activity Database
Stachiv, Ivo; Fang, T.-H.; Chen, T.-H.
2015-01-01
Roč. 5, č. 11 (2015), s. 1-14, č. článku 117140. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : nanomechanical resonators * carbon nanotubes * tensile force * real-time * frequency * spectrometry * liquid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.444, year: 2015
Family physician clinical inertia in glycemic control among patients with type 2 diabetes.
Bralić Lang, Valerija; Bergman Marković, Biserka; Kranjčević, Ksenija
2015-02-05
Many patients with diabetes do not achieve target values. One of the reasons for this is clinical inertia. The correct explanation of clinical inertia requires a conjunction of patient with physician and health care system factors. Our aim was to determine the rate of clinical inertia in treating diabetes in primary care and association of patient, physician, and health care setting factors with clinical inertia. This was a national, multicenter, observational, cross-sectional study in primary care in Croatia. Each family physician (FP) provided professional data and collected clinical data on 15-25 type 2 diabetes (T2DM) patients. Clinical inertia was defined as a consultation in which treatment change based on glycated hemoglobin (HbA1c) levels was indicated but did not occur. A total of 449 FPs (response rate 89.8%) collected data on 10275 patients. Mean clinical inertia per FP was 55.6% (SD ±26.17) of consultations. All of the FPs were clinically inert with some patients, and 9% of the FPs were clinically inert with all patients. The main factors associated with clinical inertia were: higher percentage of HbA1c, oral anti-diabetic drug initiated by diabetologist, increased postprandial glycemia and total cholesterol, physical inactivity of patient, and administration of drugs other than oral antidiabetics. Clinical inertia in treating patients with T2DM is a serious problem. Patients with worse glycemic control and those whose therapy was initiated by a diabetologist experience more clinical inertia. More research on causes of clinical inertia in treating patients with T2DM should be conducted to help achieve more effective diabetes control.
Factors associated with therapeutic inertia in hypertension: validation of a predictive model.
Redón, Josep; Coca, Antonio; Lázaro, Pablo; Aguilar, Ma Dolores; Cabañas, Mercedes; Gil, Natividad; Sánchez-Zamorano, Miguel Angel; Aranda, Pedro
2010-08-01
To study factors associated with therapeutic inertia in treating hypertension and to develop a predictive model to estimate the probability of therapeutic inertia in a given medical consultation, based on variables related to the consultation, patient, physician, clinical characteristics, and level of care. National, multicentre, observational, cross-sectional study in primary care and specialist (hospital) physicians who each completed a questionnaire on therapeutic inertia, provided professional data and collected clinical data on four patients. Therapeutic inertia was defined as a consultation in which treatment change was indicated (i.e., SBP >or= 140 or DBP >or= 90 mmHg in all patients; SBP >or= 130 or DBP >or= 80 in patients with diabetes or stroke), but did not occur. A predictive model was constructed and validated according to the factors associated with therapeutic inertia. Data were collected on 2595 patients and 13,792 visits. Therapeutic inertia occurred in 7546 (75%) of the 10,041 consultations in which treatment change was indicated. Factors associated with therapeutic inertia were primary care setting, male sex, older age, SPB and/or DBP values close to normal, treatment with more than one antihypertensive drug, treatment with an ARB II, and more than six visits/year. Physician characteristics did not weigh heavily in the association. The predictive model was valid internally and externally, with acceptable calibration, discrimination and reproducibility, and explained one-third of the variability in therapeutic inertia. Although therapeutic inertia is frequent in the management of hypertension, the factors explaining it are not completely clear. Whereas some aspects of the consultations were associated with therapeutic inertia, physician characteristics were not a decisive factor.
Mahabaleshwarkar, Rohan; Gohs, Frank; Mulder, Holly; Wilkins, Nick; DeSantis, Andrea; Anderson, William E; Ejzykowicz, Flavia; Rajpathak, Swapnil; Norton, H James
2017-08-01
Our aim was to determine the extent of clinical inertia and the associated patient and provider factors in patients with type 2 diabetes on metformin monotherapy (MM) at a large integrated health care system in the United States. The study cohort included patients with type 2 diabetes aged 18 to 85 years, on MM between January 2009 and September 2013, who experienced MM failure (had an uncontrolled glycosylated hemoglobin [HbA 1c ] reading (≥8.0% [64 mmol/mol]) after at least 90 days of MM). Clinical inertia was defined as absence of treatment intensification with an add-on therapy within 180 days after the MM failure (index date). The impact of patient and provider factors on clinical inertia was determined using generalized estimating equations. The study cohort consisted of 996 patients; 58% were men and 59% were white, with a mean age of 53 (11.8) years. Of these, 49.8% experienced clinical inertia. Lower HbA 1c at index date, absence of liver diseases, absence of renal diseases, and greater provider age were associated with clinical inertia. The clinical inertia rate in a secondary analysis considering HbA 1c inertia. Considerable clinical inertia rates were observed in our real-world patient population, suggesting the need of interventions to reduce clinical inertia in clinical practice. Information about patient and provider factors affecting clinical inertia provided by this study could help healthcare policymakers plan and implement such interventions. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
Ahuja, Rajiv; Almuzian, Moahmmed; Khan, Alamgir; Pascovici, Dana; Dalci, Oyku; Darendeliler, M Ali
2017-12-01
Orthodontically induced iatrogenic root resorption (OIIRR) is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1) to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF) secondary to heavy orthodontic forces and (2) to compare the cytokine expression between participants showing high and low root resorption. Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS) received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS). GCF was collected from both TS and CS teeth at 0 h (prior to application of force) and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α) at 3 h and 28 days (p = 0.01). Interleukin 7 (IL-7) significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and root resorption cases (p root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p resorptive cytokine) increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine) were detected in mild root resorption cases secondary to high-level orthodontic force application. A future long-term randomised clinical trial with larger sample taking in consideration gender, age and growth pattern distribution would be recommended.
Directory of Open Access Journals (Sweden)
Rajiv Ahuja
2017-08-01
Full Text Available Abstract Background Orthodontically induced iatrogenic root resorption (OIIRR is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1 to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF secondary to heavy orthodontic forces and (2 to compare the cytokine expression between participants showing high and low root resorption. Methods Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS. GCF was collected from both TS and CS teeth at 0 h (prior to application of force and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Results Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α at 3 h and 28 days (p = 0.01. Interleukin 7 (IL-7 significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and <0.15 mm3, respectively, the levels of GM-CSF was significantly greater in low root resorption cases (p < 0.05. The amounts of root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p < 0.05. Conclusions IL-7 and TNF-α (pro-resorptive cytokine increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine were detected in mild root resorption cases secondary to high
Seismic analysis of a large LMFBR with fluid-structure interactions
International Nuclear Information System (INIS)
Ma, D.C.
1985-01-01
The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs
Ludwig Prandtl and Boundary Layers in Fluid Flow
Indian Academy of Sciences (India)
His research is ... research in fluid mechan- ... For common fluids the viscous force is proportional to .... that the analogy is only a very crude, qualitative one. ..... separation is turbulent and the fluid in the wake is nearly stagnant. Method of.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, inertia... Procedures § 86.129-94 Road load power, test weight, inertia weight class determination, and fuel temperature... duty trucks 1,2,3 Test weightbasis 4,5 Test equivalent test weight(pounds) Inertia weight class(pounds...
Nir Kshetri; Ralf Bebenroth
2012-01-01
We use an institutional perspective to develop a framework for understanding the contexts, mechanisms and processes associated with institutions and institutional changes related to foreign investment in Japan. We examine power dynamics and relational boundaries between diverse actors and analyze why and how some components of institutions have changed and others have not. Also explored in this paper are the conflicting discourses that have been raised in regards to the participation of forei...
The importance of mechano-electrical feedback and inertia in cardiac electromechanics.
Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen
2017-06-15
In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.
Directory of Open Access Journals (Sweden)
Peter eKoval
2016-01-01
Full Text Available Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 & 202 examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE and negative emotions (NE are related to both positive (e.g., life satisfaction and negative (e.g., depressive symptoms indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that a NE inertia was more strongly associated with lower well-being than PE inertia; b emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms than positive indicators (e.g., life satisfaction of well-being; and c these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may indicate increased vulnerability to depression.
Koval, Peter; Sütterlin, Stefan; Kuppens, Peter
2015-01-01
Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions) with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 and 202) examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE) and negative emotions (NE) relates to positive (e.g., life satisfaction) and negative (e.g., depressive symptoms) indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that (a) NE inertia was more strongly associated with lower well-being than PE inertia; (b) emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms) than positive indicators (e.g., life satisfaction) of well-being; and (c) these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may be an indicator of increased vulnerability to depression.
Thermal inertia mapping of Mars from 60°S to 60°N
Palluconi, Frank Don; Kieffer, Hugh H.
1981-01-01
Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.
Impact of clinical inertia on cardiovascular risk factors in patients with diabetes.
Whitford, David L; Al-Anjawi, Hussam A; Al-Baharna, Marwa M
2014-07-01
To determine whether clinical inertia is associated with simpler interventions occurring more often than complex changes and the association between clinical inertia and outcomes. Prevalence of clinical inertia over a 30 month period for hyperglycaemia, hypertension and dyslipidaemia was calculated in a random sample (n=334) of patients attending a diabetes clinic. Comparisons between prevalence of clinical inertia and outcomes for each condition were examined using parametric tests of association. There was less clinical inertia in hyperglycaemia (29% of consultations) compared with LDL (80% of consultations) and systolic BP (68% of consultations). Consultations where therapy was intensified had a greater reduction in risk factor levels than when no change was made. No association was found between treatment intensity scores and changes in HbA1c, LDL or blood pressure over 30 months. Physicians are no more likely to intervene in conditions where simple therapeutic changes are necessary as opposed to complex changes. Greater clinical inertia leads to poorer outcomes. There continues to be substantial clinical inertia in routine clinical practice. Physicians should adopt a holistic approach to cardiovascular risk reduction in patients with diabetes, adhere more closely to established management guidelines and emphasize personal individualized target setting. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Development of ABWR inertia-increased reactor internal pump and thicker sleeve nozzle
International Nuclear Information System (INIS)
Takahashi, Shirou; Shiina, Kouji; Matsumura, Seiichi
2002-01-01
The conventional reactor internal pumps (RIPs) in the ABWR have an inertia moment coming from the shafts and Motor-Generator sets, enabling the RIPs to continue running for a few seconds, when a trip of all RIPs event occurs. It is possible to simplify the RIPs' power supply system without affecting the core flow supply when the above event occurs by eliminating M-G sets, if the rotating inertia is increased. This inertia increase due to an additional flywheel, which leads to gains in weight and length, requires the larger diameter nozzle with the thicker sleeve. However, too large a nozzle diameter may change the hydraulic performance. In authors' previous study, the optimum nozzle diameter (492 mm) was selected through 1/5-scale test. In this study, the 492 mm nozzle and the inertia-increased RIP were verified through the full-scale tests. The rotating inertia time constant on coastdown characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP doubled compared with the current RIP. The casing and the shaft vibration were also confirmed to satisfy the design criteria. Moreover, hydraulic performance and heat increase in the motor casing due to the flywheel were evaluated. The inertia increased RIP with the 492 mm nozzle maintained good performance. (author)
Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain.
Palazón-Bru, Antonio; Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco
2015-01-01
Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2-52.7]); associated factors were TC ≥ 6.20 mmol/L, high or "not measured" BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1-52.7]); associated factors were REGICOR high and high or "not measured" BMI. In the SCORE sample the rate of diagnostic inertia was 51.7% (95% CI [50.9-52.5]); associated factors were SCORE high and high or "not measured" BMI. Diagnostic inertia existed in over half the patients and was associated with a greater cardiovascular risk.
Directory of Open Access Journals (Sweden)
Nathan J. Sniadecki
2011-12-01
Full Text Available Coagulation involves a complex set of events that are important in maintaining hemostasis. Biochemical interactions are classically known to regulate the hemostatic process, but recent evidence has revealed that mechanical interactions between platelets and their surroundings can also play a substantial role. Investigations into platelet mechanobiology have been challenging however, due to the small dimensions of platelets and their glycoprotein receptors. Platelet researchers have recently turned to microfabricated devices to control these physical, nanometer-scale interactions with a higher degree of precision. These approaches have enabled exciting, new insights into the molecular and biomechanical factors that affect platelets in clot formation. In this review, we highlight the new tools used to understand platelet mechanobiology and the roles of adhesion, shear flow, and retraction forces in clot formation.
The Inertia Weight Updating Strategies in Particle Swarm Optimisation Based on the Beta Distribution
Directory of Open Access Journals (Sweden)
Petr Maca
2015-01-01
Full Text Available The presented paper deals with the comparison of selected random updating strategies of inertia weight in particle swarm optimisation. Six versions of particle swarm optimization were analysed on 28 benchmark functions, prepared for the Special Session on Real-Parameter Single Objective Optimisation at CEC2013. The random components of tested inertia weight were generated from Beta distribution with different values of shape parameters. The best analysed PSO version is the multiswarm PSO, which combines two strategies of updating the inertia weight. The first is driven by the temporally varying shape parameters, while the second is based on random control of shape parameters of Beta distribution.
A class of parallel algorithms for computation of the manipulator inertia matrix
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
The influence of electron inertia on the modulational instability of ion-acoustic waves
International Nuclear Information System (INIS)
Parkes, E.J.
1993-01-01
The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System
Dziubanek, Adam J.
2012-01-01
The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.
Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel
International Nuclear Information System (INIS)
Perkins, M.A.
1979-01-01
The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism
Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts.
Handel, Benjamin R
2013-12-01
This paper investigates consumer inertia in health insurance markets, where adverse selection is a potential concern. We leverage a major change to insurance provision that occurred at a large firm to identify substantial inertia, and develop and estimate a choice model that also quantifies risk preferences and ex ante health risk. We use these estimates to study the impact of policies that nudge consumers toward better decisions by reducing inertia. When aggregated, these improved individual-level choices substantially exacerbate adverse selection in our setting, leading to an overall reduction in welfare that doubles the existing welfare loss from adverse selection.
Conceptual design of light ion beam inertia nuclear fusion reactors
International Nuclear Information System (INIS)
1983-07-01
Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)
Geometrodynamic steering principle reveals the determiners of inertia
International Nuclear Information System (INIS)
Wheeler, J.A.
1988-01-01
What shall the authors need to grasp the essence of quantum gravity? One requirement, at least, is essential: to understand the steering principle of classical geometrodynamics. The authors outline here the physical content of that steering principle - heat of the so-called initial value problem - in its J.W. York, Jr. formulation. The central idea epitomizes itself in a single simple sentence: Mass-energy there determines inertia here. They spell out this steering principle both in its precise form and in its poor man's version. At both levels of analysis considerations of physics and mathematics alike require that the effective mass-energy of gravity waves must make itself felt on the spacetime geometry - and therefore on the gyro-defined local inertial frame of reference - on the same level as matter itself. Additional to the (mass)/(distance) Newtonian potential so familiar as measure of the effect of a nearby mass on the local frame is the Thirring and Lense gravitomagnetic potential, proportional to (angular momentum) x (distance vector)/(distance). The recent proposal of Ciufolini for a dual laser-ranged LAGEOS satellite to detect the thus-predicted gravitomagnetism of the earth is briefly described
Koval, Peter; Butler, Emily A; Hollenstein, Tom; Lanteigne, Dianna; Kuppens, Peter
2015-01-01
The tendency for emotions to be predictable over time, labelled emotional inertia, has been linked to low well-being and is thought to reflect impaired emotion regulation. However, almost no studies have examined how emotion regulation relates to emotional inertia. We examined the effects of cognitive reappraisal and expressive suppression on the inertia of behavioural, subjective and physiological measures of emotion. In Study 1 (N = 111), trait suppression was associated with higher inertia of negative behaviours. We replicated this finding experimentally in Study 2 (N = 186). Furthermore, in Study 2, instructed suppressors and reappraisers both showed higher inertia of positive behaviours, and reappraisers displayed higher inertia of heart rate. Neither suppression nor reappraisal were associated with the inertia of subjective feelings in either study. Thus, the effects of suppression and reappraisal on the temporal dynamics of emotions depend on the valence and emotional response component in question.
Brenner, Howard
2011-12-01
This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.
Fluid transport due to nonlinear fluid-structure interaction
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
1997-01-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...
Energy Technology Data Exchange (ETDEWEB)
Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL
2017-04-01
In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.
Semiclassical moment of inertia shell-structure within the phase-space approach
International Nuclear Information System (INIS)
Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P
2015-01-01
The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)
Don't just do something, stand there! The value and art of deliberate clinical inertia.
Keijzers, Gerben; Cullen, Louise; Egerton-Warburton, Diana; Fatovich, Daniel M
2018-04-01
It can be difficult to avoid unnecessary investigations and treatments, which are a form of low-value care. Yet every intervention in medicine has potential harms, which may outweigh the potential benefits. Deliberate clinical inertia is the art of doing nothing as a positive response. This paper provides suggestions on how to incorporate deliberate clinical inertia into our daily clinical practice, and gives an overview of current initiatives such as 'Choosing Wisely' and the 'Right Care Alliance'. The decision to 'do nothing' can be complex due to competing factors, and barriers to implementation are highlighted. Several strategies to promote deliberate clinical inertia are outlined, with an emphasis on shared decision-making. Preventing medical harm must become one of the pillars of modern health care and the art of not intervening, that is, deliberate clinical inertia, can be a novel patient-centred quality indicator to promote harm reduction. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Patient inertia and the status quo bias: when an inferior option is preferred.
Suri, Gaurav; Sheppes, Gal; Schwartz, Carey; Gross, James J
2013-09-01
Medical noncompliance is a major public-health problem. One potential source of this noncompliance is patient inertia. It has been hypothesized that one cause of patient inertia might be the status quo bias-which is the tendency to select the default choice among a set of options. To test this hypothesis, we created a laboratory analogue of the decision context that frequently occurs in situations involving patient inertia, and we examined whether participants would stay with a default option even when it was clearly inferior to other available options. Specifically, in Studies 1 and 2, participants were given the option to reduce their anxiety while waiting for an electric shock. When doing nothing was the status quo option, participants frequently did not select the option that would reduce their anxiety. In Study 3, we demonstrated a simple way to overcome status quo bias in a context relevant to patient inertia.
Characterizing Center of Mass and Moment of Inertia of Soldiers' Loads Packed for Combat
National Research Council Canada - National Science Library
Hasselquist, Leif; Bensel, Carolyn K; Norton, Karen; Piscitelle, Louis; Schiffman, Jeffrey M
2004-01-01
...) location and moment of inertia (MOI) may be influenced in combat load packing. In addition, the physical properties of the combat loads were compared to the properties of a laboratory fabricated backpack...
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Zecchino, Antonio; Pertl, Michael
2016-01-01
The displacement of conventional generation by converter connected resources reduces the available rotational inertia in the power system, which leads to faster frequency dynamics and consequently a less stable frequency behavior. Virtual inertia, employing energy storage systems, could be used...... of adjusting the battery charging process (i.e., power flow) according to pre-defined algorithms. On the other hand, in case of islanded operation (i.e., low inertia), some of the EV's technical constraints might cause oscillations. This study presents two control algorithms which show that the EVs are capable...... of providing virtual inertia support. The first controller employs a traditional droop control, while the second one is equipped with an innovative control algorithm to eliminate likely oscillations. It is shown that, the proposed innovative control algorithm compared to the traditional droop control, assures...
Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game
Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya
2018-01-01
Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.
Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks
International Nuclear Information System (INIS)
Bondeson, A.; Chu, M.S.
1996-01-01
The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics
An inertia-free filter line-search algorithm for large-scale nonlinear programming
Energy Technology Data Exchange (ETDEWEB)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-02-15
We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
International Nuclear Information System (INIS)
Yu, S.-O.; Kim, M.; Kim, H.-J.
2002-01-01
A CANDU reactor has the unique features and the intrinsic safety related characteristics that distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident (LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy water moderator is continuously cooled, providing a heat sink for decay heat produced in the fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside the calandria vessel under postulated accident in CANDU safety analyses. The Canadian Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of moderator as a generic safety issue and recommended that a series of experimental works be performed to verify the safety evaluation codes for individual simulated condition of nuclear power plant, comparing with the results of three-dimensional experimental data. In this study, three-dimensional analyses of fluid flow and heat transfer have been performed to assess thermal-hydraulic characteristics for moderator simulation conducted by SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has also carried out to investigate the effect of major parameters such as flowrate, temperature, and heat load generated from the heaters on the temperature and flow distribution inside the moderator. Three flow patterns have been identified in the moderator with flowrate, heat generation, or both. As the transition of fluid flow is progressed, it is found that the dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. (author)
[The concentration of ionized and total calcium in the blood of female dogs with uterine inertia].
Kraus, A; Schwab, A
1990-12-01
Blood values of calcium, inorganic phosphate and magnesium were estimated in 26 bitches one day before parturition, on the day of parturition and daily for 6 days post partum. In 17 of these 26 animals the diagnosis was dystocia because of uterine inertia. A comparison of calcium levels between those bitches giving birth spontaneously and those requiring assistance gave no indication that blood calcium deficiency was the cause of uterine inertia.
Effect on the variation of the moment of inertia in band K=1/2
International Nuclear Information System (INIS)
Liu Yanxin; Yu Shaoying; Inner Mongolia Univ. for Nationalities, Tongliao; Chinese Academy of Sciences, Beijing
2004-01-01
The effect on the variation of the moment of inertia in band 171 Yb[521]1/2 is investigated using the particle number conserving (PNC) method for treating the cranked shell model with monopole and Y 20 quadrupole pairing interactions. The experimental moments of inertia of 171 Yb[521]1/2 (signature α=±1/2) and the blocking effect of proton are reproduced well by the PNC calculation, in which no free parameter is involved. (authors)
Nuclear moments of inertia inferred from wobbling motion in the triaxial superdeformed nuclei
International Nuclear Information System (INIS)
Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi
2003-01-01
The three moments of inertia associated with the wobbling mode built on the triaxial superdeformed states in Lu-Hf region are investigated by means of the cranked shell model plus random-phase approximation to the configurations with aligned quasiparticle(s). The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle(s)so as to realize T x > T y in positive-γ shapes. (author)
Spin alignment and collective moment of inertia of the basic rotational band in the cranking model
International Nuclear Information System (INIS)
Tanaka, Yoshihide
1982-01-01
By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)