WorldWideScience

Sample records for fluid electrolyte metabolism

  1. Fluid and Electrolyte Nutrition

    Science.gov (United States)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  2. Electrolyte & water metabolism in sports activities.

    Science.gov (United States)

    Whang, R

    1998-01-01

    Few studies in water and electrolyte metabolism during sports activities have directed attention to magnesium. Addition of magnesium to sports beverages in appropriate concentrations appears to be safe. This article considers the potential role and availability of magnesium in fluid repletion during sports activities.

  3. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism.

    Science.gov (United States)

    Wang, Y; Heigenhauser, G J; Wood, C M

    1994-10-01

    White muscle and arterial blood plasma were sampled at rest and during 4 h of recovery from exhaustive exercise in rainbow trout. A compound respiratory and metabolic acidosis in the blood was accompanied by increases in plasma lactate (in excess of the metabolic acid load), pyruvate, glucose, ammonia and inorganic phosphate levels, large elevations in haemoglobin concentration and haematocrit, red cell swelling, increases in the levels of most plasma electrolytes, but no shift of fluid out of the extracellular fluid (ECF) into the intracellular fluid (ICF) of white muscle. The decrease in white muscle pHi was comparable to that in pHe; both recovered by 4 h. Creatine phosphate and ATP levels were both reduced by 40% after exercise, the former recovering within 0.25 h, whereas the latter remained depressed until 4 h. Changes in creatine concentration mirrored those in creatine phosphate, whereas changes in IMP and ammonia concentration mirrored those in ATP. White muscle glycogen concentration was reduced 90% primarily by conversion to lactate; recovery was slow, to only 40% of resting glycogen levels by 4 h. During this period, most of the lactate and metabolic acid were retained in white muscle and there was excellent conservation of carbohydrate, suggesting that in situ glycogenesis rather than oxidation was the major fate of lactate. The redox state ([NAD+]/[NADH]) of the muscle cytoplasm, estimated from ICF lactate and pyruvate levels and pHi, remained unchanged from resting levels, challenging the traditional view of the 'anaerobic' production of lactate. Furthermore, the membrane potential, estimated from levels of ICF and ECF electrolytes using the Goldman equation, remained unchanged throughout, challenging the view that white muscle becomes depolarized after exhaustive exercise. Indeed, ICF K+ concentration was elevated. Lactate was distributed well out of electrochemical equilibrium with either the membrane potential (Em) or the pHe-pHi difference

  4. Electrolytes and fluid management in hemodialysis and peritoneal dialysis.

    Science.gov (United States)

    Nanovic, Lisa

    2005-04-01

    The kidney is a complex and vital organ, regulating the electrolyte and fluid status of the human body. As hemodialysis (HD) and peritoneal dialysis (PD) are forms of renal replacement therapy and not an actual kidney, they do not possess the same physiologic regulation of both fluid and electrolytes. Precise regulation of fluid and electrolytes in the HD and PD population remains a constant challenge. In this review, fluid status of both HD and PD will be examined, as well as sodium, potassium, phosphorous, and calcium. Each electrolyte will be analyzed by its physiological significance, the complications that arise when a proper balance cannot be maintained, and methods to correct these imbalances. An overview of the fluid compartments and volume of distribution within the body will be discussed. Ultrafiltration, a modality used in both forms of renal replacement therapy, will be defined, along with its impact on fluid status. Fluid assessment will be addressed, along with proper maintenance of fluid homeostasis. By having an understanding of the pathophysiology behind the fluid and electrolyte abnormalities that occur in end-stage renal disease, one can direct proper management with medications, diet, and alterations in dialysis to provide patients with the most optimal form of renal replacement therapy available.

  5. Fluid and Electrolyte Balance and Kidney Function Research in Space

    Science.gov (United States)

    Norsk, P.; Juel, N.; Kramer, H. J.; de Santo, N. G.; Regnard, J.; Heer, M.

    2005-06-01

    Fluid and electrolyte regulation in humans is modulated by gravitational stress through a complex interaction of cardiovascular reflexes, neuroendocrine variables, physical factors and renal function.Weightlessness is a unique tool to obtain more information on integrated fluid volume control. Results from space, however, have been unexpected and unpredictable from the results of ground- based simulations.The concept of how weightlesness and gravity modulate the regulation of body fluids and associated blood components must therefore be revised and a new simulation model developed. There are several main questions to be asked. Does weightlessness induce diuresis and natriuresis during the initial hours of spaceflight, leading to an extracellular and intravascular fluid volume deficit? Why are fluid- and sodium-retaining systems activated by spaceflight, and why are the renal responses to saline and water stimuli attenuated? Can excess sodium be stored in an hitherto unknown way, in particular during spaceflight? How can the effects of weightlessness on fluid and electrolyte regulation be correctly simulated on the ground? The information obtained from space might help us to understand how gravity degrades the fluid and electrolyte balance in sodium-retaining and oedema- forming states, such as in heart failure.

  6. Premiminary tests on modified clays for electrolyte contaminated drilling fluids

    OpenAIRE

    den Hamer, Davina; Di Emidio, Gemmina; Bezuijen, Adam; Verastegui Flores, Daniel

    2015-01-01

    The quality of a bentonite suspension declines in aggressive systems like brackish or saline pore water. An engineered clay (HYPER clay) was developed for sealing materials with enhanced resistance to aggressive conditions. The modified clay is produced by treating a sodium activated bentonite with a cellulose polymer following the HYPER clay process method. This study investigates the suitability of the modified clay for electrolyte contaminated drilling fluids. Drilling fluids become contam...

  7. Understanding metabolic alterations in space flight using quantitative models: fluid and energy balance

    Science.gov (United States)

    Leonard, J. I.

    1986-01-01

    This report summarizes many of the results obtained during the Skylab program, on metabolic changes during weightlessness. The examination of the data was conducted following an integrated multi-disciplinary and multi-experimental approach. Emphasis is given on several major aspects of metabolic adaptation to space flight: fluid-electrolyte regulation, mechanisms of hormone disturbances, energy balance and etiology of weight loss. The aim is to obtain a composite picture of the fluid, electrolyte and energy response to weightlessness.

  8. Understanding metabolic alterations in space flight using quantitative models. Fluid and energy balance

    Science.gov (United States)

    Leonard, Joel I.

    This report summarizes many of the results obtained during the Skylab program, on metabolic changes during weightlessness. The examination of the data was conducted following an integrated multi-disciplinary and multi-experimental approach. Emphasis is given on several major aspects of metabolic adaptation to space flight: fluid-electrolyte regulation, mechanisms of hormone disturbances, energy balance and etiology of weight loss. The aim is to obtain a composite picture of the fluid, electrolyte and energy response to weightlessness.

  9. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    Science.gov (United States)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  10. Effects of weightlessness on human fluid and electrolyte physiology

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    Skylab and Spacelab data on changes occurring in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. The combined results for all three Spacelab studies show that hyponatremia developed within 20 h after the onset of weightlessness and continued throughout the flights, and hypokalemia developed by 40 h. Antidiuretic hormone was increased in plasma throughout the flights. Aldosterone decreased by 40 h, but after 7 days it had reached preflight levels.

  11. Habits of fluid and electrolytes intake in elite athletes

    Directory of Open Access Journals (Sweden)

    Arzija Pašalić

    2015-04-01

    Full Text Available Introduction: Dehydration develops when the body fluid losses exceed fluid intake. It may occur during exercise, heat stress, restricted fluid intake, or any combination of these. Marginal dehydration (loss of > 2% body weight can compromise aerobic exercise performance, particularly in hot weather conditions, and may disturb fluid and electrolyte balance. The aim of the study was to determine the quantity, type and dynamic of fluid intake during athletic performance in endurance sports (football and basketball in two age categories: juniors (under the age of 18 and seniors (over the age of 18.Methods: Research included 100 athletes playing in Premier League in Bosnia-Herzegovina. We formed groups by sport type (football and basketball and age (<18 and ≥18 years. Questionnaire with questions about the fluid intake habits was used for data collection.    Results: There were 53 football players and 47 basketball players. All the participants were male. Average age of the participants was 19.3 ± 4.58. Habit of weighing before and after training was present in less than 44% of players among all the groups. Seniors were more frequently measuring their weight compared to junior players (p=0.01. Basketball players and players younger than 18 years were most frequently taking more than 2L of water per day. Most of the players, regardless of sport type or age group were not taking at least ½ L of isotonic fluid before the training. Signs of dehydration were more frequently observed in players under 18 years old, with most frequent sign being dry throat and sudden fatigue.Conclusion: Water and electrolytes intake before, during and after training of the athletes were inadequate regardless of type of sports and the age of athletes.

  12. Understanding metabolic alterations in space flight using quantitative models - Fluid and energy balance

    Science.gov (United States)

    Leonard, J. I.

    1985-01-01

    The results of an integrated multidisciplinary and multiexperimental investigation, using data from the Skylab program, of metabolic adaptation to space flight are summarized and discussed. The effects of space flight on fluid-electrolyte regulation, mechanisms of hormone disturbances, energy balance, and the etiology of weight loss are emphasized. A composite picture of the fluid, electrolyte, and energy response to weightlessness, based primarily on data gathered from the nine Skylab crewmen, is presented.

  13. The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bum Jun [Kyung Hee University, Youngin (Korea, Republic of)

    2013-08-15

    I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.

  14. Fluid, electrolyte, and acid-base balances in three-day, combined-training horses.

    Science.gov (United States)

    White, S L

    1998-04-01

    Horses competing in 3-day, combined-training events develop a metabolic acidosis that is partially compensated for by a respiratory alkalosis immediately after phases B and D. By the end of phase C and 30 minutes to 2 hours after phase D, the acidosis is resolved by the oxidation of lactate, and a metabolic alkalosis prevails. A reduction in TBW and cation content occurs, which often is not replenished 12 to 24 hours after the event, even though the serum or plasma concentration of various constituents may be within normal limits. Hypochloremia and hypocalcemia, however, may persist 12 or more hours after the speed and endurance test. All of the data cited in this article are from horses that successfully completed their respective tests. Nevertheless, some horses developed substantial fluid and cation losses. In horses that are not well conditioned or in competitions in which terrain, footing, or hot environments increase the thermal load or decrease heat loss, greater losses of fluids and electrolytes can be expected. Body weight losses exceeding 5% and cation losses exceeding 4000 mEq/L occur in endurance horses suffering from exhaustion and synchronous diaphragmatic flutter. In one study, two thirds of the Na+ lost during exercise-induced sweating in cool, dry conditions was replenished from salt supplements added to a balanced forage and concentrated diet. Consequently, horses in regular training and competition may benefit from salt supplementation. The composition of the salt supplement and the amount fed should be based on the composition of the horse's diet, degree of work, and environmental conditions. Horses competing in a 3-day, combined-training event may be expected to have persistent losses of weight and cations, particularly if conditions result in heavy sweating. Many horses in the field studies had minimal changes in weight and cation balance compared with pre-event values. The diet and electrolyte supplementation of the horses in the majority of

  15. Fluids and Electrolytes Made Incredibly Easy! - First UK edition William N Scott Fluids and Electrolytes Made Incredibly Easy! - First UK edition Lippincott Williams Wilkins 384pp £23.95 978 1 9018 3115 3 9781901831153 [Formula: see text].

    Science.gov (United States)

    2012-05-23

    Everyone working in health care needs a basic understanding of fluids and electrolytes. Health and wellbeing can be affected profoundly by even minor imbalances in fluid and electrolytes, while major disturbances can result in serious and life-threatening conditions.

  16. Fluid/electrolyte and endocrine changes in space flight

    Science.gov (United States)

    Huntoon, Carolyn Leach

    1989-01-01

    The primary effects of space flight that influence the endocrine system and fluid and electrolyte regulation are the reduction of hydrostatic gradients, reduction in use and gravitational loading of bone and muscle, and stress. Each of these sets into motion a series of responses that culminates in alteration of some homeostatic set points for the environment of space. Set point alterations are believed to include decreases in venous pressure; red blood cell mass; total body water; plasma volume; and serum sodium, chloride, potassium, and osmolality. Serum calcium and phosphate increase. Hormones such as erythropoietin, atrial natriuretic peptide, aldosterone, cortisol, antidiuretic hormone, and growth hormone are involved in the dynamic processes that bring about the new set points. The inappropriateness of microgravity set points for 1-G conditions contributes to astronaut postflight responses.

  17. Multiple Electrolyte and Metabolic Emergencies in a Single Patient

    Science.gov (United States)

    Cadacio, Caprice; Pham, Phuong-Thu; Bhasin, Ruchika; Kamarzarian, Anita

    2017-01-01

    While some electrolyte disturbances are immediately life-threatening and must be emergently treated, others may be delayed without immediate adverse consequences. We discuss a patient with alcoholism and diabetes mellitus type 2 who presented with volume depletion and multiple life-threatening electrolyte and metabolic derangements including severe hyponatremia (serum sodium concentration [SNa] 107 mEq/L), hypophosphatemia (“undetectable,” hypokalemia (2.2 mEq/L), moderate diabetic ketoacidosis ([DKA], pH 7.21, serum anion gap [SAG] 37) and hypocalcemia (ionized calcium 4.0 mg/dL), mild hypomagnesemia (1.6 mg/dL), and electrocardiogram with prolonged QTc. Following two liters of normal saline and associated increase in SNa by 4 mEq/L and serum osmolality by 2.4 mosm/Kg, renal service was consulted. We were challenged with minimizing the correction of SNa (or effective serum osmolality) to avoid the osmotic demyelinating syndrome while replacing volume, potassium, phosphorus, calcium, and magnesium and concurrently treating DKA. Our management plan was further complicated by an episode of significant aquaresis. A stepwise approach was strategized to prioritize and correct all disturbances with considerations that the treatment of one condition could affect or directly worsen another. The current case demonstrates that a thorough understanding of electrolyte physiology is required in managing complex electrolyte disturbances to avoid disastrous outcomes. PMID:28255480

  18. Female alcoholics: electrocardiographic changes and associated metabolic and electrolytic disorders

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    2003-01-01

    Full Text Available OBJECTIVE: To identify the electrocardiographic changes and their associations with metabolic and electrolytic changes in female alcoholics. METHODS: The study comprised 44 female alcoholics with no apparent physical disorder. They underwent the following examinations: conventional electrocardiography; serologic tests for syphilis, Chagas' disease, and hepatitis B and C viruses; urinary pregnancy testing; hematimetric analysis; biochemical measurements of albumin, fibrinogen, fasting and postprandial glycemias, lipids, hepatic enzymes, and markers for tissue necrosis and inflammation. RESULTS: Some type of electrocardiographic change was identified in 33 (75% patients. In 17 (38.6% patients, more than one of the following changes were present: prolonged QTc interval in 24 (54.5%, change in ventricular repolarization in 11(25%, left ventricular hypertrophy in 6 (13.6%, sinus bradycardia in 4 (9.1%, sinus tachycardia in 3 (6.8%, and conduction disorder in 3 (6.8%. The patients had elevated mean serum levels of creatine phosphokinase, aspartate aminotransferases, and gamma glutamyl transferase, as well as hypocalcemia and low levels of total cholesterol and LDL-cholesterol. The patients with altered electrocardiograms had a more elevated age, a lower alcohol consumption, hypopotassemia, and significantly elevated levels of triglycerides, postprandial glucose, sodium and gamma glutamyl transferase than those with normal electrocardiograms. The opposite occurred with fasting glycemia, magnesium, and alanine aminotransferase. CONCLUSION: The electrocardiographic changes found were prolonged QTc interval, change in ventricular repolarization, and left ventricular hypertrophy. Patients with normal and abnormal electrocardiograms had different metabolic and electrolytic changes.

  19. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics.

    Science.gov (United States)

    Adewale, Adebayo; Ifudu, Onyekachi

    2014-03-01

    In the 21(st) century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion) or obesity (US$133 billion). Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol.

  20. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia

    Science.gov (United States)

    Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.

    the urinary excretion of potassium was elevated. In rats exposed to hypokinesia for 7 and 60 days an increase of urine osmolality was observed. The results of hormone and electrolyte determination in plasma of cosmonauts after space flight and in experimental animals after hypokinesia suggested that in evaluation of relations between the changes of hormone levels and electrolyte in plasma and urine other factors like emotional stress working load; altered diurnal cycles should be considered in interpretation of homeostatic response of fluid and electrolyte metabolism to space flight conditions.

  1. Fluid-electrolyte changes in physically conditioned subjects after hypokinesia and chronic hyperhydration

    Science.gov (United States)

    Zorbas, Yan G.; Verentsov, Grigori E.; Federenko, Youri F.

    1995-09-01

    The aim of this study was to determine whether fluid-electrolyte changes, which are developed during prolonged hypokinesia (decreased number of km per day), can be prevented or minimized with the use of a daily intake of fluid and salt supplementation (FSS). The experiments on hypokinesia (HK) were performed for 364 days on 18 endurance-trained male volunteers in the age range of 21-23 years, with an average maximum oxygen uptake of 67 ml kg -1. All volunteers were divided into three equal groups: six volunteers were placed on a continuous regime of exercise of 14.0 km day -1 and served as control subjects. Six volunteers were subjected to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS). The remaining volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km day -1 for the duration of the experiment. Prior to exposure to HK, all volunteers were on the same exercise regime as the controls. During the pre-experimental period of 60 days and during the post-experimental period, urinary excretion of electrolytes and concentrations of sodium, potassium, calcium and magnesium in serum as well as serum osmolality were determined. An increased renal excretion of fluid and electrolytes and a decreased serum electrolyte concentration were observed in the SHS, while a decreased renal excretion of fluid and electrolytes and an increased serum electrolyte concentration were observed in the UHS, during the initial stages of the post-hypokinetic period. By day 30 of the post-hypokinetic period these changes were reverted back to the control levels. We concluded that chronic hyperhydration may be used to attenuate urinary and serum electrolyte changes in endurance-trained volunteers after exposure to prolonged HK.

  2. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    Science.gov (United States)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  3. Fluid and electrolyte control systems in the human body: A study report

    Science.gov (United States)

    White, R. J.

    1973-01-01

    Research in the area of modeling of the fluid and electrolyte system is briefly reviewed and a model of this system, which is adequate for a basic description of the requisite physiological processes, is presented. The use of this model as an individual subsystem model and as a component of a more complete human model is discussed.

  4. Fluid electrolyte changes in physically healthy subjects during prolonged restriction of motor activity and daily hyperhydration.

    Science.gov (United States)

    Zorbas, Y G; Ichinose, M N; Sakagamis, M B

    1993-01-01

    The aim of this report was to present some of our results, in a compressed form, obtained from our previous studies on the effect of 364-d hypokinesia (decreased number of steps taken per day by the volunteers) on the following: (1) regulation of fluid volume and osmosis, (2) regulation of electrolytes, and (3) functional condition of the kidneys and its role in the fluid-electrolyte homeostasis on 30 physically healthy male volunteers aged 22-26 years. Prior to their exposure to hypokinesia all subjects were on 13.8 km/day (10,000 running steps/day) and were all well conditioned, with (oxygen uptake capacities (VO2 max 68 ml/kg-min). During the hypokinetic period of 364 days, the 1st group was subjected to pure hypokinesia (HK), that is without the use of physical exercise (PE), the 2nd group was subjected to a set of intensive PE (energy expenditure of 700 kcal/h) and the 3rd group submitted to a set of moderate PE (energy expenditure of 400 kcal/h). All volunteers consumed daily fluid and salt supplementation (FSS) aimed at increasing body hydration level during the hypokinetic period. For the simulation of the hypokinetic effect all volunteers were kept on 2.7 km/day (3000 walking steps per day). All volunteers were on a diet of freshly prepared food, with a daily intake of 2500-2700 kcal, 3340 ml water, 1500 mgs calcium, 500 mgs magnesium, 1200 mgs potassium, 1500 mgs phosphorus, 8.5 gms sodium and 9.8 gms chloride. The amount of fluid and electrolytes consumed and eliminated in urine, as well as their concentrations in the urine and blood plasma were determined. There were also measured urinary volume, osmolality, creatine, and urea changes in urine. During HK the amount of fluid and electrolytes consumed daily decreased while the rate of excretion increased significantly. During post HK the fluid and electrolytes concentrations in urine decreased significantly. The urinary urea, osmolality and creatinine increased significantly during HK. It was concluded

  5. Electrophoresis of small particles and fluid globules in weak electrolytes

    Science.gov (United States)

    Baygents, J. C.; Saville, D. A.

    1991-01-01

    An examination is conducted of the influence of partial ionization on the electrophoresis of small particles and fluid globules, with a view to the nature of conditions under which dissociation-association (D-A) alters electrokinetics. It is found that, since D-A processes are important in cases where double-layer polarization and relaxation would otherwise prevail, the predicted effect on electrophoretic mobility is greatest for the drops and bubbles whose surfaces are fluid and convection within the interface is significant. While the computation scheme used applies only to situations where forcing-field magnitude is small, the results obtained indicate that D-A processes involving ionogenic solutes may be significant in apolar liquids where electrokinetic phenomena are driven by strong forcing fields.

  6. Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat.

    Science.gov (United States)

    Maughan, R J; Leiper, J B; Shirreffs, S M

    1997-09-01

    Maintenance of fluid balance is a major concern for all athletes competing in events held in hot climates. This paper reviews recent work relating to optimisation of fluid replacement after sweat loss induced by exercising in the heat. Data are taken from studies undertaken in our laboratory. Issues investigated were drink composition, volume consumed, effects of consuming food with a drink, effects of alcohol in rehydration effectiveness, voluntary intake of fluid, and considerations for women related to the menstrual cycle. The results are presented as a series of summaries of experiments, followed by a discussion of the implications. The focus of this review is urine output after ingestion of a drink; fluid excreted in urine counteracts rehydration. Also included are data on the restoration of plasma volume losses. Ingestion of large volumes of plain water will inhibit thirst and will also promote a diuretic response. If effective rehydration is to be maintained for some hours after fluid ingestion, drinks should contain moderately high levels of sodium (perhaps as much as 50-60 mmol/l) and possibly also some potassium to replace losses in the sweat. To surmount ongoing obligatory urine losses, the volume consumed should be greater than the volume of sweat lost. Palatability of drinks is important in stimulating intake and ensuring adequate volume replacement. Where opportunities allow, the electrolytes required may be ingested as solid food consumed with a drink. There are no special concerns for women related to changes in hormone levels associated with the menstrual cycle. Ingestion of carbohydrate-electrolyte drinks in the post-exercise period restores exercise capacity more effectively than plain water. The effects on performance of an uncorrected fluid deficit should persuade all athletes to attempt to remain fully hydrated at all times, and the aim should be to start each bout of exercise in a fluid replete state. This will only be achieved if a volume of

  7. Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory

    DEFF Research Database (Denmark)

    Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen

    2005-01-01

    The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...

  8. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    Science.gov (United States)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  9. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    OpenAIRE

    Mauricio Castro-Sepulveda; Neil Johannsen; Sebastián Astudillo; Carlos Jorquera; Cristian Álvarez; Hermann Zbinden-Foncea; Rodrigo Ramírez-Campillo

    2016-01-01

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45...

  10. Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid

    Science.gov (United States)

    Vinod, Sithara; John, Reji; Philip, John

    2017-02-01

    Magnetorheological fluids have numerous engineering applications due to their interesting field assisted rheological behavior. Most commonly used dispersed phase in MR fluids is carbonyl iron (CI). The relatively high cost of CI warrants the need to develop cheaper alternatives to CI, without compromising rheological properties. With the above goal in mind, we have synthesized sodium sulphonate capped electrolytic iron based MR fluid and studied their magnetorheological properties. The results are compared with that of CI based MR fluid. EI and CI particles of average particle size of ∼10 μm with fumed silica particles additives are used in the present study. The dynamic yield stress for EI and CI based MR fluid were found to vary with field strength with an exponent of roughly 1.2 and 1.24, respectively. The slightly lower static and dynamic yield stress values of EI based MR fluid is attributed to the lower magnetization and polydispersity values. The dynamic yield stress showed a decrease of 18.73% and 61.8% for field strengths of 177 mT and 531 mT, respectively as the temperature was increased from 293 to 323 K. The optorheological studies showed a peak in the loss moduli, close to the crossover point of the storage and loss moduli, due to freely moving large sized aggregates along the shear direction that are dislodged from the rheometer plates at higher strains. Our results suggests that EI based MR fluids have magnetorheological behavior comparable to that of CI based MR fluids. As EI is much cheaper than CI, our findings will have important commercial implications in producing cost effective EI based MR fluids.

  11. Modeling of CO2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory

    Science.gov (United States)

    Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2016-03-01

    Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.

  12. Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius)

    NARCIS (Netherlands)

    Magnoni, Leonardo J.; Salas-Leiton, Emilio; Peixoto, Maria João; Pereira, Luis; Silva-Brito, Francisca; Fontinha, Filipa; Gonçalves, José F.M.; Wilson, Jonathan M.; Schrama, Johan W.; Ozório, Rodrigo O.A.

    2017-01-01

    Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish

  13. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W.B.; Jungst, Rudolph G.; Nagasubramanian, Ganesan; Wang, C.Y.; Weidner, John.

    1999-06-11

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. The model accounts for not only transport of species and charge, but also the electrode porosity variations and the electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures are compared to the experimental data with excellent agreement. Moreover, the simulation results. in conjunction with computer visualization and animation techniques, confirm that cell utilization in the temperature and current range of interest is limited by pore plugging or clogging of the front side of the cathode as a result of LiCl precipitation. The detailed two-dimensional flow simulation also shows that the electrolyte is replenished from the cell header predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  14. Computational fluid dynamics modeling of a lithium/thionyl chloride battery with electrolyte flow

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W.B.; Wang, C.Y.; Weidner, J.W.; Jungst, R.G.; Nagasubramanian, G.

    2000-02-01

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. As in earlier one-dimensional models, the model accounts for transport of species and charge, and electrode porosity variations and electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures show good agreement with published experimental data, and are essentially identical to results published for one-dimensional models. The detailed two-dimensional flow simulations show that the electrolyte is replenished from the cell head space predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  15. Corrosion behavior of plasma electrolytically oxidized gamma titanium aluminide alloy in simulated body fluid.

    Science.gov (United States)

    Lara Rodriguez, L; Sundaram, P A

    2016-09-15

    Plasma electrolytic oxidized (PEO) γTiAl alloy samples were electrochemically characterized by open circuit potential (OCP), cyclic polarization and electrochemical impedance spectroscopy (EIS) to evaluate their corrosion resistance in simulated body fluid (SBF) in order to gauge their potential for biomedical applications. Experimental results through OCP and cyclic polarization studies demonstrated the protective nature and the beneficial effect of the PEO coatings on γTiAl. The PEO surface increased corrosion resistance of these surface modified alloys. EIS data indicated the presence of an underlying compact oxide layer with surface pores represented by two domes in the Nyquist plots. Electrical equivalent circuits to describe the EIS results are proposed.

  16. Chloramphenicol with fluid and electrolyte therapy cures terminally ill green tree frogs (Litoria caerulea) with chytridiomycosis.

    Science.gov (United States)

    Young, Sam; Speare, Rick; Berger, Lee; Skerratt, Lee F

    2012-06-01

    Terminal changes in frogs infected with the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) include epidermal degeneration leading to inhibited epidermal electrolyte transport, systemic electrolyte disturbances, and asystolic cardiac arrest. There are few reports of successful treatment of chytridiomycosis and none that include curing amphibians with severe disease. Three terminally ill green tree frogs (Litoria caerulea) with heavy Bd infections were cured using a combination of continuous shallow immersion in 20 mg/L chloramphenicol solution for 14 days, parenteral isotonic electrolyte fluid therapy for 6 days, and increased ambient temperature to 28 degrees C for 14 days. All terminally ill frogs recovered rapidly to normal activity levels and appetite within 5 days of commencing treatment. In contrast, five untreated terminally ill L. caerulea with heavy Bd infections died within 24-48 hr of becoming moribund. Subclinical infections in 15 experimentally infected L. caerulea were cured within 28 days by continuous shallow immersion in 20 mg/L chloramphenicol solution without adverse effects. This is the first known report of a clinical treatment protocol for curing terminally ill Bd-infected frogs.

  17. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    Science.gov (United States)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  18. Standardized parenteral nutrition in preterm infants: early impact on fluid and electrolyte balance.

    Science.gov (United States)

    Iacobelli, Silvia; Bonsante, Francesco; Vintéjoux, Amélie; Gouyon, Jean-Bernard

    2010-06-01

    Parenteral nutrition is commonly given to premature infants. It has previously been suggested that standardized parenteral nutrition (SPN) may offer nutritional advantages compared to individualized parenteral nutrition (IPN). However, whether the same level of biochemical control is assured with SPN and with IPN remains uncertain. To compare fluid and electrolyte balance in preterm infants receiving IPN versus SPN in the first week of life. 107 infants born at birth weight) at day 7 was significantly higher in IPN than in SPN (7.7 +/- 5.8 vs. 4.2 +/- 6.5) without differences in urine output/input fluid intake ratio and glomerular renal function between the two groups. There were no significant differences in water and sodium balance in preterm infants who received IPN versus SPN. The risk of NOHK was higher in IPN. Also, SPN significantly increased amino acid and caloric intakes, and it reduced early weight loss.

  19. Prolonged exercise following diuretic-induced hypohydration effects on fluid and electrolyte hormones.

    Science.gov (United States)

    Roy, B D; Green, H J; Burnett, M

    2001-09-01

    To investigate the hypothesis that a reduction in plasma volume (PV) induced by diuretic administration would result in an increase in the fluid and electrolyte hormonal response to exercise, ten untrained males (VO(2) peak = 3.96 +/- 0.14 l/min) performed 60 min of cycle ergometry at 61 % VO(2) peak twice. The test was carried out once under control conditions (CON) (placebo) and once after 4 days of diuretic administration (DIU) (Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). Calculated resting PV decreased by 14.6 +/- 3.3 % (p DIU. No difference in plasma osmolality was observed between conditions. For the hormones measured, differences (p DIU led to higher levels of PRA, ANG I, and ALD (p DIU compared to CON (p DIU could be explained both by higher resting levels and a greater increase during exercise itself. For ANG I and NE, the effect of DIU only manifested itself during exercise. In contrast, the lower alpha-ANP observed during exercise with DIU was due to the lower resting levels. These results support the hypotheses that hypohydration leads to alterations in the secretion of all of the fluid and electrolyte hormones with the exception of AVP. The specific mechanisms of these alterations remain unclear, but appear to be related directly to the decrease in PV.

  20. Spatial control of the energy metabolism of yeast cells through electrolytic generation of oxygen.

    Science.gov (United States)

    Warnke, Christian; Mair, Thomas; Witte, Hartmut; Reiher, Antje; Hauser, Marcus J B; Krost, Alois

    2009-11-03

    The metabolic dynamics of yeast cells is controlled by electric pulses delivered through a spatially extended yeast cell/Au electrode interface. Concomitant with voltage pulses, oxygen is generated electrolytically at the electrode surface and delivered to the cells. The generation of oxygen was investigated in dependence of the applied voltage, width of the voltage pulses and temperature of the electrolytic solution. The local oxygen pulses at the electrodes lead to a transient activation of the aerobic energy metabolism of the yeast cells causing a perturbation in their energy balance. The effect of these local perturbations on the temporal dynamics of glycolysis in yeast cells is quantified in dependence of the energy state of cells.

  1. Description, validation, and modification of the Guyton model for space-flight applications. Part A. Guyton model of circulatory, fluid and electrolyte control. Part B. Modification of the Guyton model for circulatory, fluid and electrolyte control

    Science.gov (United States)

    Leonard, J. I.

    1985-01-01

    The mathematical model that has been a cornerstone for the systems analysis of space-flight physiological studies is the Guyton model describing circulatory, fluid and electrolyte regulation. The model and the modifications that are made to permit simulation and analysis of the stress of weightlessness are described.

  2. Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) posterior intestine.

    Science.gov (United States)

    Ruhr, Ilan M; Bodinier, Charlotte; Mager, Edward M; Esbaugh, Andrew J; Williams, Cameron; Takei, Yoshio; Grosell, Martin

    2014-11-01

    The physiological effects of guanylin (GN) and uroguanylin (UGN) on fluid and electrolyte transport in the teleost fish intestine have yet to be thoroughly investigated. In the present study, the effects of GN, UGN, and renoguanylin (RGN; a GN and UGN homolog) on short-circuit current (Isc) and the transport of Cl-, Na+, bicarbonate (HCO3-), and fluid in the Gulf toadfish (Opsanus beta) intestine were determined using Ussing chambers, pH-stat titration, and intestinal sac experiments. GN, UGN, and RGN reversed the Isc of the posterior intestine (absorptive-to-secretory), but not of the anterior intestine. RGN decreased baseline HCO3- secretion, but increased Cl- and fluid secretion in the posterior intestine. The secretory response of the posterior intestine coincides with the presence of basolateral NKCC1 and apical cystic fibrosis transmembrane conductance regulator (CFTR), the latter of which is lacking in the anterior intestine and is not permeable to HCO3- in the posterior intestine. However, the response to RGN by the posterior intestine is counterintuitive given the known role of the marine teleost intestine as a salt- and water-absorbing organ. These data demonstrate that marine teleosts possess a tissue-specific secretory response, apparently associated with seawater adaptation, the exact role of which remains to be determined.

  3. Compliance with a pediatric clinical practice guideline for intravenous fluid and electrolyte administration.

    Science.gov (United States)

    Hurdowar, Amanda; Urmson, Lynn; Bohn, Desmond; Geary, Denis; Laxer, Ronald; Stevens, Polly

    2009-01-01

    The occurrence of acute hyponatremia associated with cerebral edema in hospitalized children has been increasingly recognized, with over 50 cases of neurological morbidity and mortality reported in the past decade. This condition most commonly occurs in previously healthy children where maintenance intravenous (IV) fluids have been prescribed in the form of hypotonic saline (e.g., 0.2 or 0.3 NaCl). In response to similar problems at The Hospital for Sick Children (six identified through hospital morbidity and mortality reviews and safety reports prior to fall 2007), an interdisciplinary clinician group from our institution developed a clinical practice guideline (CPG) to guide fluid and electrolyte administration for pediatric patients. This article reviews the evaluation of one patient safety improvement to change the prescribing practice for IV fluids in an acute care pediatric hospital, including the removal of the ability to prescribe hypotonic IV solutions with a sodium concentration of team engagement and support from the hospital leadership. A key learning was that a project leader with considerable dedicated time is required during the implementation to develop change concepts, organize and liaise with stakeholders and measure changes in practice. This project highlights the importance of active implementation for policy and guideline documents.

  4. Effect of electrolyte addition to rehydration drinks consumed after severe fluid and energy restriction.

    Science.gov (United States)

    James, Lewis J; Shirreffs, Susan M

    2015-02-01

    This study examined the effect of electrolyte addition to drinks ingested after severe fluid and energy restriction (FER). Twelve subjects (6 male and 6 female) completed 3 trials consisting of 24-hour FER (energy intake: 21 kJ·kg body mass; water intake: 5 ml·kg body mass), followed by a 2-hour rehydration period and a 4-hour monitoring period. During rehydration, subjects ingested a volume of drink equal to 125% of the body mass lost during FER in 6 aliquots, once every 20 minutes. Drinks were a sugar-free lemon squash (P) or the P drink with the addition of 50 mmol·L sodium chloride (Na) or 30 mmol·L potassium chloride (K). Total void urine samples were given before and after FER and every hour during rehydration and monitoring. Over all trials, FER produced a 2.1% reduction in body mass and negative sodium (-67 mmol), potassium (-48 mmol), and chloride (-84 mmol) balances. Urine output after drinking was 1627 (540) ml (P), 1391 (388) ml (K), and 1150 (438) ml (Na), with a greater postdrinking urine output during P than Na (p ≤ 0.05). Ingestion of drink Na resulted in a more positive sodium balance compared with P or K (p drink K resulted in a more positive potassium balance compared with P or Na (p drink results in an increased sodium balance that augments greater drink retention compared with a low electrolyte placebo drink.

  5. Orthostatic fluid-electrolyte and endocrine responses in fainters and nonfainters

    Science.gov (United States)

    Shvartz, E.; Convertino, V. A.; Keil, L. C.; Haines, R. F.

    1981-01-01

    The responses to orthostasis of fluid-electrolyte and endocrine indicators in persons subject and not subject to fainting during tilting are investigated, along with the effects of heat acclimatization and physical training on those responses. Plasma volume and electrolytes and plasma vasopressin and renin activity were determined in tilt-table tests conducted before and after an eight-day period of daily heat acclimation during exercise at 50% maximal oxygen uptake at 40 C, or a control period of exercise at 24 C. Half of the 10 subjects in the study, regardless of exercise regime, showed improved orthostatic reactions in the second tilting test, related to increases in post-tilt plasma volume and potassium concentration, particularly in the nonfainters. In the first test, plasma renin activity is observed to increase fivefold and plasma vasopressin 50 times after the transition from the supine to the orthostatic positions; the respective increases were reduced by 50 and 75% in the second test. The fainters also exhibit a greater increase in vasopressin and a lower increase in renin activity upon tilting than the nonfainters. Results indicate the orthostatic-induced vasopressin increase to be related to volume control independent of renin activity.

  6. Electrolyte-free milk protein solution influences sodium and fluid retention in rats.

    Science.gov (United States)

    Ishihara, Kengo; Kato, Yoshiho; Usami, Ayako; Yamada, Mari; Yamamura, Asuka; Fushiki, Tohru; Seyama, Yousuke

    2013-01-01

    Milk is an effective post-exercise rehydration drink that maintains the net positive fluid balance. However, it is unclear which components are responsible for this effect. We assessed the effect of milk protein solution (MPS) obtained by dialysis on body fluid retention. Milk, MPS, milk electrolyte solution (MES), sports drink and water were administered to male Wistar rats at a dose of 6 ml/rat after treadmill exercise. Total body fluid retention was assessed by urine volume 4 h after administration of hydrating liquids. The rate of gastric emptying was evaluated by a tracer method using (13)C-labelled acetate. Plasma osmolality, Na and K levels, and urinary Na and K were measured by HPLC and osmometry, respectively. The gastric emptying rate was not delayed by MPS. During 4 h of rehydration, cumulative urine volumes differed significantly between treatment groups (P milk- and MPS-fed rats, respectively. Thus, MPS elicited 50 % of the total body fluid retention of milk. Plasma aldosterone levels were significantly higher in MPS- and milk-fed rats compared with water-fed rats. Plasma osmolality was maintained at higher levels in MPS-fed rats than in water- and MES-fed rats (P milk- and MPS-fed groups compared with the MES-fed group. Our results demonstrate that MPS obtained by dialysis clearly affects net body water balance without affecting gastric emptying after exercise. This effect was attributed to retention of Na and water, and maintenance of plasma osmolality.

  7. Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius).

    Science.gov (United States)

    Magnoni, Leonardo J; Salas-Leiton, Emilio; Peixoto, Maria-João; Pereira, Luis; Silva-Brito, Francisca; Fontinha, Filipa; Gonçalves, José F M; Wilson, Jonathan M; Schrama, Johan W; Ozório, Rodrigo O A

    2017-09-01

    Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na(+) and K(+) concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 代谢性疾病与电解质紊乱%Metabolic diseases and electrolyte disturbance

    Institute of Scientific and Technical Information of China (English)

    张春花

    2016-01-01

    代谢性疾病引起的电解质紊乱多见于肾小管功能异常性代谢疾病。这类疾病既有其原发代谢障碍引起的代谢紊乱,同时伴有特殊的临床特点和不同程度的电解质紊乱。代表性的电解质紊乱为特征的代谢性疾病有Fanconi综合征、胱氨酸贮积症、Lowe综合征、原发性果糖不耐受症、酪氨酸血症、肝豆状核变性等。正确理解其原发病特点和电解质紊乱表象是临床纠正电解质紊乱和解除生命危象的关键。%Electrolyte disturbance caused from metabolic diseases usually occurs with disorder of kid-ney tubules. These series diseases show congenital metabolic diseases special clinical features with characters of metabolic abnormal,also complicated varies electrolyte disturbance. Typical metabolic disease with electro-lyte disturbance include Fanconi syndrome, cystinosis, Lowe syndrome, hereditary fructose intolerance, ty-rosinemia,Wilson disease,etc. The key point for correcting electrolyte disturbance and critical emergency is right understanding of the real cause of electrolyte disturbance.

  9. Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA

    Directory of Open Access Journals (Sweden)

    Leila Heidari

    2016-10-01

    Full Text Available Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED visits were collected in Atlanta, Georgia, USA during 1993–2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research.

  10. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    Science.gov (United States)

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  11. Electrolyte changes: An indirect method to assess irrigation fluid absorption complications during transurethral resection of prostate: A prospective study

    Directory of Open Access Journals (Sweden)

    Gupta Kumkum

    2010-01-01

    Full Text Available Context: Fluid absorption is inevitable complication of transuretheral resection of prostate and serum electrolytes changes can indirectly assess the irrigation fluid absorption. Aims: To monitor the extent of 1.5% glycineirrigation fluid absorption during transurethral resection of prostate (TURP, by measuring the changes of serum sodium and potassium levels peri-operatively. Settings and Design: This is a randomized prospective cohort observational study. Materials and Methods: The 86 male patients of ASA grades I to III in the age group of 50 to 80 years, scheduled for elective TURP surgery under central neuraxial block, were studied. Their preoperative and post-operative serum sodium, potassium and calcium levels were measured. When duration of surgery exceeds 60 min, serum sodium and potassium levels were done intra-operatively with venous blood samples by using blood gas analyser. The height of irrigation fluid column was kept constant at 60 cm. These changes were correlated with the volume of irrigating fluid used, duration of procedure and the volume of prostate gland resected. Statistical Analysis Used: The values of pre and postoperative sodium, potassium and calcium serum levels were compared and statistical significance of the difference in values was assessed using Student′s paired t test. Results: Statistically significant reduction of serum sodium levels (hyponatremia and elevation of serum potassium levels (hyperkalemia were observed post-operatively, which was directly proportional to volume of irrigating fluid used, duration of procedure and volume of prostate gland resected. No significant changes in serum calcium level were observed. Conclusions: To measure serum electrolytes changes during TURP surgery, it is simple and economical method for indirect assessment of fluid absorption for early identification of TURP syndrome.

  12. [Postoperative metabolic acidosis: use of three different fluid therapy models].

    Science.gov (United States)

    Tellan, Guglielmo; Antonucci, Adriana; Marandola, Maurizio; Naclerio, Michele; Fiengo, Leslie; Molinari, Stefania; Delogu, Giovanna

    2008-01-01

    Intraoperative fluid administration is considered an important factor in the management of metabolic acidosis following surgical procedures. The aim of this study was to compare three types of intraoperative infusional models in order to evaluate their effect on acid-base changes in the immediate postoperative period as calculated by both the Henderson-Hasselbach equation and the Stewart approach. Forty-seven patients undergoing left hemicolectomy were enrolled in the study and assigned randomly to receiving 0.9% saline alone (Group A, n=16), lactated Ringer's solution alone (Group B, n=16) or 0.9% saline and Ringer's solution, 1:1 ratio (Group C, n=15). Arterial blood samples were taken before operation (t0) and 30 min after extubation (t1) in order to measure the acid-base balance. The results showed a metabolic acidosis status in Group A patients, whereas Group B exhibited metabolic alkalosis only by means of the Stewart method. No difference was found in Group C between the time points t0 and t1 when using either the Henderson-Hasselbach equation or using the Stewart model. We conclude that saline solution in association with Ringer's solution (1:1 ratio) appears to be the most suitable form of intraoperative fluid management in order to guarantee a stable acid-base balance in selected surgical patients during the immediate postoperative period.

  13. Metabolic acidosis and changes in water and electrolyte balance after maximal exercise.

    Science.gov (United States)

    Sejersted, O M; Medbø, J I; Hermansen, L

    1982-01-01

    The purpose of this investigation was to study lactate production and the consequent changes in acid-base status, and in water and electrolyte balance, in response to 1 min of maximal exercise in sprint- and endurance-trained subjects. So far, the results from only two subjects (one sprinter and one marathon runner) have been analysed. The rate of lactate production was higher in the sprinter than in the marathon runner, as shown by peak blood lactate concentrations of 20.8 and 13.3 mM for the two subjects, respectively. Arterial blood pH fell from 7.43 to 7.14 in the sprinter and from 7.44 to 7.23 for the marathon runner. The metabolic acidosis was partly compensated for by a lowering of arterial CO2 tension by 0.0775 kPa per 1 mM drop in base excess. In each subject large changes in water and electrolyte balance occurred. Haematocrit increased dramatically in both subjects, and the calculated decrease in plasma volume was 20% for the marathon runner and 30% for the sprinter. In each subject sodium was removed from the circulation in amounts sufficient to keep the plasma sodium concentration constant. Plasma potassium concentration was unrelated to the state of acidosis, being 2.5 mM above the resting concentration immediately after maximal exercise, and dropping by 3 mM in the subsequent 2-3 min of recovery during prevailing acidosis. The degree of lactic acidosis was large in both subjects, although more severe in the sprinter than in the endurance runner. However, buffer capacity and compensatory mechanisms were largely similar in both subjects.

  14. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Directory of Open Access Journals (Sweden)

    Mauricio Castro-Sepulveda

    2016-06-01

    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  15. Pathophysiology, treatment, and prevention of fluid and electrolyte abnormalities during refeeding syndrome.

    Science.gov (United States)

    Parli, Sara E; Ruf, Kathryn M; Magnuson, Barbara

    2014-01-01

    Refeeding syndrome may occur after the reintroduction of carbohydrates in chronically malnourished or acutely hypermetabolic patients as a result of a rapid shift to glucose utilization as an energy source. Electrolyte abnormalities of phosphorus, potassium, and magnesium occur, leading to complications of various organ systems, and may result in death. Patients should be screened for risk factors of malnutrition to prevent refeeding syndrome. For those at risk, nutrition should be initiated and slowly advanced toward the patient's goal over several days. Electrolyte disturbances should be aggressively corrected.

  16. Metabolic profiling of body fluids and multivariate data analysis.

    Science.gov (United States)

    Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten

    2017-01-01

    Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.

  17. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  18. Citrate metabolism and its complications in non-massive blood transfusions: association with decompensated metabolic alkalosis+respiratory acidosis and serum electrolyte levels.

    Science.gov (United States)

    Bıçakçı, Zafer; Olcay, Lale

    2014-06-01

    Metabolic alkalosis, which is a non-massive blood transfusion complication, is not reported in the literature although metabolic alkalosis dependent on citrate metabolism is reported to be a massive blood transfusion complication. The aim of this study was to investigate the effect of elevated carbon dioxide production due to citrate metabolism and serum electrolyte imbalance in patients who received frequent non-massive blood transfusions. Fifteen inpatients who were diagnosed with different conditions and who received frequent blood transfusions (10-30 ml/kg/day) were prospectively evaluated. Patients who had initial metabolic alkalosis (bicarbonate>26 mmol/l), who needed at least one intensive blood transfusion in one-to-three days for a period of at least 15 days, and whose total transfusion amount did not fit the massive blood transfusion definition (acidosis developed as a result of citrate metabolism. There was a positive correlation between cumulative amount of citrate and the use of fresh frozen plasma, venous blood pH, ionized calcium, serum-blood gas sodium and mortality, whereas there was a negative correlation between cumulative amount of citrate and serum calcium levels, serum phosphorus levels and amount of urine chloride. In non-massive, but frequent blood transfusions, elevated carbon dioxide production due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis+respiratory acidosis and electrolyte imbalance may develop. This situation may contribute to the increase in mortality. In conclusion, it should be noted that non-massive, but frequent blood transfusions may result in certain complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The fluid and electrolyte balance of New Zealand European and Māori/Pacific Island athletes: An observational study.

    Science.gov (United States)

    McLean, Andrew; Brown, Rachel Clare; Black, Katherine Elizabeth

    2016-01-01

    Observational research on professional athletes from the USA suggests differences may exist in sweat sodium loss based on ethnic differences. The New Zealand (NZ) sporting population is mainly of European or Māori/Pacific Island origin. Therefore, this study aimed to describe the fluid-electrolyte balance of athletes by ethnicity. A total of 20 Māori/Pacific Islanders (MP; body mass 100.97 ± 13.05 kg) and 29 NZ European (NZE; body mass 89.11 ± 11.56 kg) elite male athletes were recruited. Sweat rates were determined by body mass change during a 1-h spin cycle exercise session, during which fluid intakes and heart rate were recorded. Sweat samples were analysed for sodium concentration. Mean ± SD sweat sodium concentrations were 73.4 ± 27.2 mmol·L(-1) and 55.5 ± 26.8 mmol·L(-1) for the MP and NZE groups, respectively (p = 0.070). Sweat rate was 0.93 ± 0.26 L·h(-1) for the MP group and 0.89 ± 0.33 L·h(-1) for the NZE group (p = 0.357). Fluid intake was 1.05 ± 0.48 L and 0.93 ± 0.49 L for MP and NZE, respectively (p = 0.395). Half of the MP group gained weight during the exercise session compared to 37% of the NZE group. Pre-exercise urine specific gravity was significantly lower amongst the NZE group (1.016 ± 0.009 g mL(-1)) than the MP group (1.024 ± 0.008 g mL(-1)) p = 0.001. There was no significant difference in heart rate between the groups, p = 0.082. Hydration practices of athletes in NZ may differ by ethnicity, and this may highlight the need for more targeted education by ethnicity.

  20. Profiling of ARDS Pulmonary Edema Fluid Identifies a Metabolically Distinct Subset.

    Science.gov (United States)

    Rogers, Angela J; Contrepois, Kevin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B; Matthay, Michael A

    2017-03-03

    There is considerable biologic and physiologic heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a sub-group of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Non-targeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal components analysis (PCA) and partial least squares discriminant analysis (PLSDA) were conducted to find discriminant metabolites. 760 unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared to edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This "high metabolite" endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus, metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biologic heterogeneity among ARDS patients who meet standard clinical and physiologic criteria for ARDS.

  1. The development of electrolyte grinding fluid on grinding with electrolyte in-process dressing%在线电解修整磨削的电解磨削液研制

    Institute of Scientific and Technical Information of China (English)

    朴承镐; 乔宏; 李杰; 李建军

    2001-01-01

    为了对金属结合剂砂轮电解修整,研究并配制了电解磨削液。根据电解磨削液的性能要求, 分析确定了电解磨削液中具有电解、钝化、防锈和润滑等性能的各组元,并通过静态实验确认了各组元对电解磨削液性能的影响。确定最佳电解磨削液在实际系统中对金属结合剂砂轮进行电解修整得到了较为满意的修整结果。所研制的电解磨削液具有实用价值,可用于生产。%In order to electrolyze dressing grinding wheel of metal binding agent, the elec trolytic grinding fluid is developed. According to the requirements of the elec trolytic grinding fluid, each constituent with properties such as the el ectrolysis, the inactivation, the rust prevention and the lubrication are analyz ed and determined and their effects to the electrolytic grinding fluid is obtain ed through the static experiments. In the actual system, the grinding wheel of metal binding agent is electrolytically dressed with the determined optimum elec trolytic grinding fluid and the satisfied dressing result is obtained. So the d eveloped electrolytic grinding fluid possesses the practical value which can be used in the manufacturing.

  2. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various hum...

  3. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various...... humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out...... of the anode and flooding at the cathode while the average membrane water content is only weakly affected. The results also indicate that in contrast to common presumption membrane dehydration may occur at either anode or cathode side, entirely depending on the direction of the net water transport because...

  4. Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

    Science.gov (United States)

    Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo

    2014-09-01

    An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

  5. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    Science.gov (United States)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  6. Bioassay of body fluids, experiment M073. [biochemical changes caused by space flight conditions

    Science.gov (United States)

    Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Body fluids were assayed in this experiment to demonstrate changes which might have occurred during the 56-day chamber study in fluid and electrolyte balance, in regulation of calcium metabolism, in overall physiological and emotional adaptation to the environment, and in regulation of metabolic processes.

  7. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  8. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid.

    Science.gov (United States)

    Koczula, Anna; Jarek, Michael; Visscher, Christian; Valentin-Weigand, Peter; Goethe, Ralph; Willenborg, Jörg

    2017-02-15

    Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF) revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq). In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism). In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  9. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Anna Koczula

    2017-02-01

    Full Text Available Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq. In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism. In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  10. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients.

    Science.gov (United States)

    Paniagua, Ramón; Ventura, María-de-Jesús; Avila-Díaz, Marcela; Cisneros, Alejandra; Vicenté-Martínez, Marlén; Furlong, María-Del-Carmen; García-González, Zuzel; Villanueva, Diana; Orihuela, Oscar; Prado-Uribe, María-Del-Carmen; Alcántara, Guadalupe; Amato, Dante

    2009-01-01

    Icodextrin-based solutions (ICO) have clinical and theoretical advantages over glucose-based solutions (GLU) in fluid and metabolic management of diabetic peritoneal dialysis (PD) patients; however, these advantages have not yet been tested in a randomized fashion. To analyze the effects of ICO on metabolic and fluid control in high and high-average transport diabetic patients on continuous ambulatory PD (CAPD). A 12-month, multicenter, open-label, randomized controlled trial was conducted to compare ICO (n = 30) versus GLU (n = 29) in diabetic CAPD patients with high-average and high peritoneal transport characteristics. The basic daily schedule was 3 x 2 L GLU (1.5%) and either 1 x 2 L ICO (7.5%) or 1 x 2 L GLU (2.5%) for the long-dwell exchange, with substitution of 2.5% or 4.25% for 1.5% GLU being allowed when clinically necessary. Variables related to metabolic and fluid control were measured each month. Groups were similar at baseline in all measured variables. More than 66% of the patients using GLU, but only 9% using ICO, needed prescriptions of higher glucose concentration solutions. Ultrafiltration (UF) was higher (198 +/- 101 mL/day, p ICO group than in the GLU group over time. Changes from baseline were more pronounced in the ICO group than in the GLU group for extracellular fluid volume (0.23 +/- 1.38 vs -1.0 +/- 1.48 L, p ICO group had better metabolic control than those in the GLU group: glucose absorption was more reduced (-17 +/- 44 vs -64 +/- 35 g/day) as were insulin needs (3.6 +/- 3.4 vs - 9.1 +/- 4.7 U/day, p ICO group had fewer adverse events related to fluid and glucose control than patients in the GLU group. Icodextrin represents a significant advantage in the management of high transport diabetic patients on PD, improving peritoneal UF and fluid control and reducing the burden of glucose overexposure, thereby facilitating metabolic control.

  11. Effects of dietary protein and energy levels on digestive enzyme activities and electrolyte composition in the small intestinal fluid of geese.

    Science.gov (United States)

    Yang, Jing; Yang, Lin; Wang, Yongchang; Zhai, Shuangshuang; Wang, Shenshen; Yang, Zhipeng; Wang, Wence

    2017-02-01

    The present study was conducted to evaluate the effects of dietary protein and energy levels on digestive enzymes and electrolyte composition in jejunum of geese. A 3×3 factorial and completely randomized design was adopted with three protein levels and three energy levels. The experiment included four replicates for each treatment, and three geese for each replicate. Isovolumetric supernate from centrifugal jejuna fluid were mixed in each replicate. Activities of digestive enzymes and ions were analyzed. The results showed trypsin and chymotrypsin activities were significantly increased with increasing of dietary protein and energy levels (Penergy levels. However, no significant differences were found for the activities of amylase and cellulase, as well as the concentration of Na(+) among groups with different protein and energy levels. In conclusion, digesta enzymes and electrolytes in the small intestine adapted to the protein and energy levels. The activities of protease, rather than amylase and cellulase were induced with increasing of protein and energy levels. The imbalance of positive and negative ions was possibly adjusted by the fluctuant concentrations of K(+) , Cl(-) and Ca(2+) for maintaining normal physiological function.

  12. Effects of exercise-heat acclimation on fluid, electrolyte, and endocrine responses during tilt and +Gz acceleration in women and men.

    Science.gov (United States)

    Greenleaf, J E; Brock, P J; Sciaraffa, D; Polese, A; Elizondo, R

    1985-07-01

    Plasma fluid, electrolyte, protein, renin, and vasoactive hormone (epinephrine, norepinephrine, vasopressin) responses were measured in six women (21-23 yr) and four men (21-38 yr) before and immediately following an orthostatic tolerance test (70 degrees head-up tilt) and a +Gz (head-to-foot) acceleration tolerance test (0.5 G X min-1 linear ramp to grayout). These tests were conducted before and after 12 consecutive days of exercise-heat acclimation when the subjects exercised on a cycle ergometer at a relative oxygen uptake of 44% to 49% peak oxygen uptake in a hot environment (Ta = 40 degrees C, 42% rh). During acclimation plasma volume increased by 10.6% (p less than 0.05) in the women and by 11.9% (p less than 0.05) in the men; in both groups exercise heart rate decreased significantly. After acclimation, acceleration tolerance was unchanged in both groups (range 3.1 to 3.4 G); the women's tilt tolerance was unchanged (range 33.6 to 39.5 min), but the men's tilt tolerance increased from 30.4 min before to 58.3 min (delta = 91%, p less than 0.05) after acclimation. Since the pattern of fluid, electrolyte, and protein shifts and acceleration tolerances in the women and men were virtually the same, the hormone responses were highly variable, and the men's tilt tolerance increased significantly after acclimation, it is clear that responses to tilting cannot be used to predict responses to acceleration. Analysis of data from the present study and the literature suggests that current exercise training regimes should be unrestricted for astronauts who have not previously been highly endurance trained.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. On-ice sweat rate, voluntary fluid intake, and sodium balance during practice in male junior ice hockey players drinking water or a carbohydrate-electrolyte solution.

    Science.gov (United States)

    Palmer, Matthew S; Logan, Heather M; Spriet, Lawrence L

    2010-06-01

    This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate-electrolyte solution (CES) to drink during practices decreased fluid intake or affected other hydration and (or) sweat measures. All testing was conducted on elite players of an Ontario Hockey League team (+/-SE; mean age, 17.6 +/- 0.3 years; mean height, 182.9 +/- 1.4 cm; mean body mass, 83.0 +/- 1.7 kg). Players were studied 3 times over the course of 6 weekly on-ice practices (+/-SE; mean playing time, 1.58 +/- 0.07 h; mean temperature, 11.4 +/- 0.8 degrees C; mean relative humidity, 52% +/- 3%). There was strong repeatability of the measured hydration and sweat parameters between 2 similar on-ice practices when players drank only water. Limiting the players to drinking only a CES (as opposed to water) did not decrease fluid intake during practice (+/-SE; mean CES intake, 0.72 +/- 0.07 L.h-1 vs. mean water intake, 0.82 +/- 0.08 L.h-1) or affect sweat rate (1.5 +/- 0.1 L.h-1 vs. 1.5 +/- 0.1 L.h-1), sweat sodium concentration (72.4 +/- 5.6 mmol.L-1 vs. 73.0 +/- 4.4 mmol.L-1), or percent body mass loss (1.1% +/- 0.2% vs. 0.9% +/- 0.2%). Drinking a CES also improved sodium balance (-2.1 +/- 0.2 g.h-1 vs. -2.6 +/- 0.3 g.h-1) and provided the players with a significant carbohydrate (43 +/- 4 g.h-1 vs. 0 +/- 0 g.h-1) during practice. In summary, a single field sweat test during similar on-ice hockey practices in male junior hockey players is sufficient to evaluate fluid and electrolyte balance. Also, a CES does not affect voluntary fluid intake during practice, compared with water, in these players. The CES provided some salt to offset the salt lost in sweat, and carbohydrate, which may help maintain physical and mental performance in the later stages of practice.

  14. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  15. Inhibiting Glutathione Metabolism in Lung Lining Fluid as a Strategy to Augment Antioxidant Defense.

    Science.gov (United States)

    Joyce-Brady, Martin; Hiratake, Jun

    2011-07-01

    Glutathione is abundant in the lining fluid that bathes the gas exchange surface of the lung. On the one hand glutathione in this extracellular pool functions in antioxidant defense to protect cells and proteins in the alveolar space from oxidant injury; on the other hand, it functions as a source of cysteine to maintain cellular glutathione and protein synthesis. These seemingly opposing functions are regulated through metabolism by gamma-glutamyl transferase (GGT, EC 2.3.2.2). Even under normal physiologic conditions, lung lining fluid (LLF) contains a concentrated pool of GGT activity exceeding that of whole lung by about 7-fold and indicating increased turnover of glutathione at the epithelial surface of the lung. With oxidant stress LLF GGT activity is amplified even further as glutathione turnover is accelerated to meet the increased demands of cells for cysteine. Mouse models of GGT deficiency confirmed this biological role of LLF GGT activity and revealed the robust expansiveness and antioxidant capacity of the LLF glutathione pool in the absence of metabolism. Acivicin, an irreversible inhibitor of GGT, can be utilized to augment LLF fluid glutathione content in normal mice and novel GGT inhibitors have now been defined that provide advantages over acivicin. Inhibiting LLF GGT activity is a novel strategy to selectively augment the extracellular LLF glutathione pool. The enhanced antioxidant capacity can maintain lung epithelial cell integrity and barrier function under oxidant stress.

  16. Water Metabolism and Fluid Compartment Volumes in Humans at Altitude. A Compendium of Research (1914 - 1996)

    Science.gov (United States)

    Chou, J. L.; Stad, N. J.; Gay, E.; West, G. I.; Barnes, P. R.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of water metabolism and fluid compartment volumes in humans during altitude exposure. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed synopsis of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and subject indices are provided, plus an additional selected bibliography of related work of those papers received after the volume was being prepared for publication. This volume includes material published from 1914 through 1995.

  17. Ingestion of an Amino Acid Electrolyte Beverage during Resistance Exercise Does Not Impact Fluid Shifts into Muscle or Performance

    Directory of Open Access Journals (Sweden)

    JohnEric W. Smith

    2017-06-01

    Full Text Available The purpose of this study was to investigate the impact of ingesting an amino acid-electrolyte (AAE beverage during upper body resistance exercise on transient muscle hypertrophy, exercise performance, markers of muscle damage, and recovery. Participants (n = 15 performed three sets of six repetitions—bench press, lat pull down, incline press, and seated row—followed by three sets of eight repetitions at 75% of the estimated 1 repetition maximum—triceps kickback, hammer curl, triceps push down, and preacher curl—with 90 s of rest between sets. The final set of the push down/preacher curl was performed to failure. Prior to and immediately post-exercise, as well as 24, 48, and 72 h post exercise, cross-sectional muscle thickness was measured. Blood samples were collected prior to exercise, as well as 24, 48, and 72 h post-exercise for serum creatine kinase (CK analysis. No treatment effect was found for muscle cross-sectional area, repetitions to failure, or serum CK. A main effect (p < 0.001 was observed in the change in serum CK levels in the days following the resistance exercise session. The findings of this study suggest that the acute ingestion of a AAE beverage does not alter acute muscle thickness, performance, perceived soreness and weakness, or markers of muscle damage.

  18. Electrocardiographic abnormalities in acute cerebro-vascular accidents and their correlation with cerebro-spinal fluid pressure and serum electrolytes

    Directory of Open Access Journals (Sweden)

    Gambhir M

    1978-01-01

    Full Text Available Electrocardiographic studies have been carried out in 50 patients with acute cerebrovascular accidents. These cases included 31 cases from non-haemorrhagic group and 19 cases from haemor-rhagic group. `T′ or T-U wave abnormalities were seen in 63.1% of cases in haemorrhagic group and in 35.4% of cases from non-hae-morrhagic group. Abnormal prolongation of QTc interval (105% of normal i.e. 0.45 Secs. was observed in 73.6% cases from haemorrhagic group and in 35.4% of cases from non-haemorrhagic group. On comparing these two groups it was found that QTc was signi-ficantly more prolonged in patiens of haemorrhagic group than non--haemorrhagic group. The CSF pressure was found to be signi-ficantly more in patients with ECG abnormalities. However, there teas no correlation between serum electrolyte levels and ECG abnormalities. After 2 weeks, the ECG abnormalities disappeared, except in two cases from haemorrhagic group. There was no signi-ficant difference in the incidence of mortality between patient having ECG abnormalities and the patients without ECG abnormalities. In the light of these findings the probable mechanism of production of ECG changes in acute cerebrovascular accidents is discussed.

  19. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  20. A NEW CLASS OF IONIC SOLVENTS, ELECTROLYTES AND ENGINEERING FLUIDS BASED ON 1,3-ALKYLMETHYL-1,2,3-BENZOTRIAZOLIUM SALTS

    Directory of Open Access Journals (Sweden)

    Ahmad Mudzakir

    2010-06-01

    Full Text Available A new series of ionic liquids based on 1,3-alkylmethyl-1,2,3-benzotriazolium cation has been prepared. The spectroscopic, physical and electrochemical characteristics of this family of salts have been investigated with respect to potential usage as ionic solvents, electrolytes and engineering fluids. Incorporation of diverse anions including weak coordinating anion and pseudohalide with this benzotriazolium cation produces ionic liquids with advantageously low melting points and good thermal stability. Thermal analyses of these very stable salts included the determination of melting points (-65 to 164 oC and decomposition temperatures (up to 291 oC. The electrochemical windows of representative benzotriazolium species has been investigated by cyclic voltammetry and determined to be ~ 3 V. The X-ray single crystal and spectroscopic studies revealed that weak hydrogen-bonding interactions between the benzotriazolium ring protons and the anions are present both in the solid state as well as in solution.   Keywords: ionic liquids, X-ray single crystal, thermal analysis, electrochemical analysis, benzotriazolium salt

  1. Electrolyte low concentrations effects on the the rheology of water and bentonitic clays basis drilling fluids; Efeito de baixas concentracoes de eletrolitos na reologia de fluidos de perfuracao a base de agua e argilas bentoniticas

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Luciana Viana [Universidade Federal, Campina Grande, PB (Brazil). Engenharia de Processos]. E-mail: lucianaa@labdes.ufpb.br; Viana, Josiane Dantas; Farias, Kassie Vieira; Lira, Helio de Lucena; Ferreira, Heber Carlos [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais]. E-mail: josianedantas@bol.com.br; kassievieira@bol.com.br; helio@dema.ufpb.br; heber@dema.ufpb.br; Franca, Kepler Borges [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia Quimica]. E-mail: kepler@labdes.ufpb.br

    2003-07-01

    The aim of this work is to study the effect of low electrolytes concentration on the rheology of the water based oil well drilling fluids and bentonite clays from Boa Vista, PB. It were selected seven samples of bentonite clays (four from industry and three from natural polycationic clay treated with concentrated Na{sub 2}CO{sub 3} solution). The drilling fluids were prepared with a concentration of 4.86 % w/w, according to PETROBRAS norms and treated with different CaCl{sub 2} + MgCl{sub 2} concentration. After, the drilling fluids were submitted to a cure for 24 hours and measured apparent viscosity (AV), plastic viscosity (PV) and water loss (WL). To study the effect of the electrolyte on the rheology of the dispersions it was developed a factorial design 2{sup 2} + 3 test in the central point. The results showed that the addition of CaCl{sub 2} + MgCl{sub 2} caused a degradation of the drilling fluids prepared with industrialized clays, as showed by the decrease in AV and PV and great increase in WL. Also, it was observed an increase in AV and a decrease in PV in the drilling fluids prepared with natural clays treated with Na{sub 2}CO{sub 3}, conducting a flocculated-gel state. (author)

  2. Metabolic and Physiological Characteristics of Novel Cultivars from Serpentinite Seep Fluids

    Science.gov (United States)

    Nelson, B.; Chowdhury, S.; Brazelton, W. J.; Schrenk, M. O.

    2011-12-01

    Subsurface waters associated with the alteration of ultramafic rocks become highly reducing and alkaline through a process known as serpentinization. As habitat, these fluids are in many ways metabolically constraining but can provide sufficient energy for chemolithotrophy. As part of an ongoing effort to characterize these communities, heterotrophic enrichment cultures and anaerobic microcosms were initiated with alkaline waters found at three geographically and geochemically distinct sites of active serpentinization. These include the Northern Apennine ophiolite in the Ligurian region of Italy, the Tablelands ophiolite at Gros Morne National Park, Canada and the Coast Range ophiolite at McLaughlin Natural Reserve, California. Enrichment cultures at pH 11 yielded numerous isolates related to Proteobacteria and Firmicutes, some of which are closely related to other cultivars from high pH and subsurface environments. Anaerobic water samples were amended with combinations of electron donors (hydrogen, complex organics, acetate) and acceptors (ferric iron, sulfate) in a block design. After several weeks of incubation, DNA was extracted from cell concentrations and community differences were compared by TRFLP. Of particular interest is the isolation of a putative iron reducing Firmicute from samples enriched with complex organic compounds and ferric citrate. Ongoing studies are aimed at characterizing the physiology of these isolates. These data provide important insights into the metabolic potential of serpentinite subsurface ecosystems, and are a complement to culture-independent genomic analyses.

  3. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS.

    Science.gov (United States)

    Gika, Helen G; Zisi, Chrysostomi; Theodoridis, Georgios; Wilson, Ian D

    2016-01-01

    The process of untargeted metabolic profiling/phenotyping of complex biological matrices, i.e., biological fluids such as blood plasma/serum, saliva, bile, and tissue extracts, provides the analyst with a wide range of challenges. Not the least of these challenges is demonstrating that the acquired data are of "good" quality and provide the basis for more detailed multivariate, and other, statistical analysis necessary to detect, and identify, potential biomarkers that might provide insight into the process under study. Here straightforward and pragmatic "quality control (QC)" procedures are described that allow investigators to monitor the analytical processes employed for global, untargeted, metabolic profiling. The use of this methodology is illustrated with an example from the analysis of human urine where an excel spreadsheet of the preprocessed LC-MS output is provided with embedded macros, calculations and visualization plots that can be used to explore the data. Whilst the use of these procedures is exemplified on human urine samples, this protocol is generally applicable to metabonomic/metabolomic profiling of biofluids, tissue and cell extracts from many sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Arterial Blood Gases, Electrolytes and Metabolic Indices Associated with Hemorrhagic Shock: Inter-and Intrainbred Rat Strain Variation

    Science.gov (United States)

    2013-03-07

    cellular changes and compensatory responses. Such ABM include arterial blood gases ( PaO2 , PaCO2, oxygen content); electrolytes (potassium, sodium, cal...1.34 SaO2) (0.003 PaO2 ) where PaO2 arterial oxygen pressure, and SaO2 arterial oxygen saturation. Oxygen content reflects the total volume...TCO2, 2.4%, 2.3%; pH, 0.02%, 0.08%; BE, 10.8%, 21.6%; Na, 0.0%, 0.4%; K, 2.0%, 0.9%; glucose, 1.4%, 2.3%; Ca, 0.8%, 1.2%; PaO2 , 3.4%, 1.3%; oxygen

  5. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism.

    Directory of Open Access Journals (Sweden)

    Reiner Jumpertz

    Full Text Available Rodent experiments have emphasized a role of central fatty acid (FA species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT followed by measurements of 24 hour (24EE and sleep energy expenditure (SLEEP as well as respiratory quotient (RQ in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16:1, C18:1 and very-long-chain saturated (C24:0, C26:0 FAs.Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.

  6. Follicular fluid cerebellin and betatrophin regulate the metabolic functions of growing follicles in polycystic ovary syndrome.

    Science.gov (United States)

    Ersahin, Aynur Adeviye; Acet, Mustafa; Ersahin, Suat Suphan; Acet, Tuba; Yardim, Meltem; Kenanoglu, Omer; Aydin, Suleyman

    2017-03-01

    The aim of this study was to assess the changes of follicular fluid (FF) and serum levels of cerebellin precursor protein 1 (cbln1) and betatrophin in patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) with a gonadotropin-releasing hormone (GnRH) antagonist protocol. Twenty infertile women with PCOS and 20 control women diagnosed as poor responders undergoing ovarian stimulation with a GnRH antagonist were included. Blood samples were obtained during ovum pick-up. Follicular fluid from a dominant follicle was collected from the subjects. Using enzyme-linked immunosorbent assays, FF and serum levels of cbln1 and betatrophin were measured in both groups of participants. Metabolic and hormonal parameters were also determined and correlated with each other. Both groups of women had similar serum and FF betatrophin levels (55.0±8.9 ng/mL vs. 53.1±10.3 ng/mL, p=0.11). The serum and FF betatrophin levels of poor responders were found to be similar (49.9±5.9 ng/mL vs. 48.9±10.7 ng/mL, p=0.22). Conversely, the FF cbln1 levels of PCOS women were found to be significantly higher than the serum cbln1 levels (589.1±147.6 ng/L vs. 531.7±74.3 ng/L, p<0.02). The FF cbln1 levels of control participants without PCOS were significantly higher than their serum cbln1 levels (599.3±211.5 ng/L vs. 525.3±87.0 ng/L, p=0.01). Positive correlations were detected among body mass index, insulin resistance, serum insulin, total testosterone, and betatrophin levels in the PCOS group. Follicular fluid betatrophin and cbln1 concentrations may play a pivotal role on follicular growth in PCOS subjects undergoing IVF/ICSI with an antagonist protocol.

  7. On-ice sweat rate, voluntary fluid intake, and sodium balance during practice in male junior ice hockey players drinking water or a carbohydrate-electrolyte solution

    National Research Council Canada - National Science Library

    Logan, Heather M; Spriet, Lawrence L; Palmer, Matthew S

    2010-01-01

    This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate-electrolyte solution (CES...

  8. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    Science.gov (United States)

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  9. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory.

    Science.gov (United States)

    Neves, Catarina M S S; Held, Christoph; Mohammad, Sultan; Schleinitz, Miko; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg(-1)). At salt molalities higher than 0.2 mol kg(-1), all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.2 mol kg(-1). To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K(+) and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K(+)/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid-liquid phase behaviour.

  10. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  11. Inhibiting Lung Lining Fluid Glutathione Metabolism with GGsTop as a Novel Treatment for Asthma

    Directory of Open Access Journals (Sweden)

    Marina eTuzova

    2014-07-01

    Full Text Available Asthma is characterized by airway inflammation. Inflammation is associated with oxidant stress. Airway epithelial cells are shielded from this stress by a thin layer of lung lining fluid (LLF which contains an abundance of the antioxidant glutathione. LLF glutathione metabolism is regulated by γ-glutamyl transferase (GGT. Loss of LLF GGT activity in the mutant GGTenu1 mouse causes an increase in baseline LLF glutathione content which is magnified in an IL-13 model of allergic airway inflammation and protective against asthma. Normal mice are susceptible to asthma in this model but can be protected with acivicin, a GGT inhibitor. GGT is a target to treat asthma but acivicin toxicity limits clinical use. GGsTop is a novel GGT inhibitor. GGsTop inhibits LLF GGT activity only when delivered through the airway. In the IL-13 model, mice treated with IL-13 and GGsTop exhibit a lung inflammatory response similar to that of mice treated with IL-13 alone. But mice treated with IL-13 and GGsTop show attenuation of methacholine-stimulated airway hyper-reactivity, inhibition of Muc5ac and Muc5b gene induction, decreased airway epithelial cell mucous accumulation and a 4-fold increase in LLF glutathione content compared to mice treated with IL-13 alone. Mice treated with GGsTop alone are no different from that of mice treated with saline alone, and show no signs of toxicity. GGsTop could represent a valuable pharmacological tool to inhibit LLF GGT activity in pulmonary disease models. The associated increase in LLF glutathione can protect lung airway epithelial cells against oxidant injury associated with inflammation in asthma.

  12. Metabolism and biochemistry in hypogravity

    Science.gov (United States)

    Leach, Carolyn S.

    The headward shift of body fluid and increase in stress-related hormones that occur in hypogravity bring about a number of changes in metabolism and biochemistry of the human body. Such alterations may have important effects on health during flight and during a recovery period after return to Earth. Body fluid and electrolytes are lost, and blood levels of several hormones that control metabolism are altered during space flight. Increased serum calcium may lead to an increased risk of renal stone formation during flight, and altered drug metabolism could influence the efficacy of therapeutic agents. Orthostatic intolerance and an increased risk of fracturing weakened bones are concerns at landing. It is important to understand biochemistry and metabolism in hypogravity so that clinically important developments can be anticipated and prevented or ameliorated.

  13. Metabolism and biochemistry in hypogravity

    Science.gov (United States)

    Leach, Carolyn S.

    1991-01-01

    The headward shift of body fluid and increase in stress-related hormones that occur in hypogravity bring about a number of changes in metabolism and biochemistry of the human body. Such alterations may have important effects on health during flight and during a recovery period after return to earth. Body fluid and electrolytes are lost, and blood levels of several hormones that control metabolism are altered during space flight. Increased serum calcium may lead to an increased risk of renal stone formation during flight, and altered drug metabolism could influence the efficacy of therapeutic agents. Orthostatic intolerance and an increased risk of fracturing weakened bones are concerns at landing. It is important to understand biochemistry and metabolism in hypogravity so that clinically important developments can be anticipated and prevented or ameliorated.

  14. Influence of aqueous electrolytes on the wetting behavior of hydrophobic solid polymers-low-rate dynamic liquid/fluid contact angle measurements using axisymmetric drop shape analysis.

    Science.gov (United States)

    Welzel, Petra B; Rauwolf, Cordula; Yudin, Olexandr; Grundke, Karina

    2002-07-01

    The interaction of inorganic ions with low-energy hydrophobic surfaces was examined using model systems of solid polymers without ionizable functional surface groups in aqueous electrolyte solutions. Low-rate dynamic contact angle measurements with captive bubbles in conjunction with axisymmetric drop shape analysis (ADSA) were performed to study the influence of electrolyte ions (in the aqueous test solutions) on the wettability of the polymers. When various types of ions were used, no significant change in advancing and receding contact angles was observed. The contact angle hysteresis was small. The zeta potential of the model polymers in aqueous electrolyte solutions was determined from streaming potential measurements. The variation of the zeta potential at different pH levels indicates preferential adsorption of hydroxyl ions at this interface. However, the presence of electrolytes at the interface between water and the different model polymers did not influence the macroscopic contact angle. The results may suggest the absence of any specific interaction between the ions and the solid polymer, as this should result in changes of hydrophobicity. Similar to the air/water interface, the composition and the potential of the polymer/water interface are obviously determined predominantly by the aqueous phase with only slight influence from the solid phase.

  15. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jun [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Yang, Yongtao [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing (China); Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Xie, Peng, E-mail: xiepeng@cqmu.edu.cn [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing (China)

    2015-10-30

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives

  16. Electrolytes Test

    Science.gov (United States)

    ... mean? High or low electrolyte levels can be caused by several conditions and diseases. Generally, they are affected by how much is consumed in the diet and absorbed by the body, the amount of water in a person's body, and the amount eliminated ...

  17. Effect of Glycerol-Induced Hyperhydration on Body Fluid and Electrolyte Balance in Endurance Athletes during The Course of Treadmill Exercise Performed at 30 °C for 90 minute

    Directory of Open Access Journals (Sweden)

    Mehmet Pense

    Full Text Available The purpose of this study was to determine the effects of glycerol-induced hyperhydration on body fluid and electrolyte balancein endurance athletes during the course of treadmill exercise performed at 30C for 90min. 9 elit level male long-distance runnerwere participated to this study (age: x = 18,7 ±1,3 years, height: x = 170,7±5,2 cm, body weight: x = 58,8±6,6 kg, VO2max:63,94±3,04 ml.kg-1. First, VO2max of the subjects were determined with an incremental treadmill running protocol. In a randomized,double-blind cross over experimental design subjects were tested three times with 3 days intervals (wash out following ingestion of20 ml.kg-1BW of three different mixture of solutions: 1 diluted sports drink with 1.2 gr.kg-1BW glycerol (GS 2 diluted sports drink(SP and 3 aspartame flavored distilled water (WS. Exercise trials were conducted at an exercise intensity of 65% maximal oxygenconsumption (VO2max for 90 min at 30±1.8C and 25-35% relative humidity. Blood and urin samples were collected pre and postfluid ingestion, at the 30th, 60th and 90th min of exercise trials to determine body fluid and electrolyte balance. Data were analyzedusing two-way (treatmentxtime analyses of variance (ANOVA. Significance level was defined as p0.05. Inconclusion, glycerol-induced hyperhydration has no advantage compared to the other solutions ingested on body fluid andelectrolyte balance in endurance athletes during 90 min of treadmill run.

  18. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children

    Directory of Open Access Journals (Sweden)

    Nahid KHOSROSHAHI

    2015-01-01

    Full Text Available How to Cite This Article: Khosroshahi N, Alizadeh P, Khosravi M, Salamati P, Kamrani K. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children. Iran J Child Neurol. 2015 Winter;9(1:31-36.AbstractObjectiveAltered mental status is a common cause of intensive care unit admission inchildren. Differentiating structural causes of altered mental status from metabolic etiologies is of utmost importance in diagnostic approach and management of the patients. Among many biomarkers proposed to help stratifying patients with altered mental status, spinal fluid lactate dehydrogenase appears to be the most promising biomarker to predict cellular necrosis.Materials & MethodsIn this cross sectional study we measured spinal fluid level of lactatedehydrogenase in children 2 months to 12 years of age admitted to a single center intensive care unit over one year. Spinal fluid level of lactate dehydrogenase in 40 pediatric cases of febrile seizure was also determined as the control group.ResultsThe study group included 35 boys (58.3% and 25 girls (41.7%. Their meanage was 2.7+/-3 years and their mean spinal fluid lactate dehydrogenase levelwas 613.8+/-190.4 units/liter. The control group included 24 boys (55.8% and19 girls (44.2%. Their mean age was 1.3+/-1.2 years and their mean spinalfluid lactate dehydrogenase level was 18.9+/-7.5 units/liter. The mean spinalfluid lactate dehydrogenase level in children with abnormal head CT scan was246.3+/-351.5 units/liter compared to 164.5+/-705.7 in those with normal CTscan of the head (p=0.001.ConclusionSpinal fluid lactate dehydrogenase level is useful in differentiating structural andmetabolic causes of altered mental status in children. ReferencesFesk SK. Coma and confusional states: emergency diagnosis and management. Neurol Clin 1998; 16: 237- 56.Cucchiara BL, Kanser SE, Wolk DA, et al. Early impairment in consciousness Predicts

  19. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen...... reduction rate. Among useful additives we found potassium perfluorohexanesulfonate (C6F13SO3K), potassium nonafluorobutanesulfonate (C4F9SO3K), perfluorotributylamine [(C4F9)3N], and polymethylsiloxanes [(-Si(CH3)2O-)n]. The wettability of the electrodes by the modified electrolytes also is discussed......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...

  20. Identifying the dominant metabolic strategies used by microorganisms within basalt-hosted, anoxic deep subsurface basement fluids via environmental genomics

    Science.gov (United States)

    Rappe, M. S.; Jungbluth, S.; Carr, S. A.; Lin, H. T.; Hsieh, C. C.; Nigro, O. D.; Steward, G. F.; Orcutt, B.

    2014-12-01

    A microbial ecosystem distinct from both overlying sediments and bottom seawater lies within the basaltic crust of the Juan de Fuca Ridge flank. The metabolic potential and genomic characteristics of microbes residing in fluids of this remote, anoxic region of the subsurface ocean were investigated using environmental DNA extracted from large-volume fluid samples obtained from advanced borehole observatories installed at two recently drilled IODP Boreholes, U1362A and U1362B. Fluids were collected from the deep (204 meters sub-basement) horizon of Borehole U1362A and shallow (40 meters sub-basement) horizon of Borehole U1362B and used to generate 503 and 705 million base-pairs of genomic DNA sequence data, respectively. Phylogenetically informative genes revealed that the community structure recovered via metagenomics was generally consistent with that obtained previously by 16S rRNA gene sequencing and was dominated by uncultivated bacterial lineages of Proteobacteria, Nitrospirae, Candidate Division OP8 (Aminicenantes), Thermotoga and archaeal groups THSCG, MCG (Bathyarchaeota), MBGE, and Archaeoglobus. Genes involved in phage integration, chemotaxis, nitrate reduction, methanogenesis, and amino acid degradation were all detected, revealing potentially dynamic microbial communities. Putative sulfate reduction genes were discovered within previously identified Firmicutes lineage Candidatus Desulforudis, along with other groups (e.g. Archaeoglobus). Significant metagenome assembly resulted in 72 and 105 contigs of >100 Kbp from U1362B and U1362A, respectively, including 1137, 977 and 356 Kbp-long contigs from Candidate Division OP8 residing in U1362B. These assemblies have revealed novel metabolic potential within abundant members of the deep subsurface microbial community, which can be directly related to their survival in the deep oceanic crust.

  1. Extended daily dialysis in acute kidney injury patients: metabolic and fluid control and risk factors for death.

    Directory of Open Access Journals (Sweden)

    Daniela Ponce

    Full Text Available Intermittent hemodialysis (IHD and continuous renal replacement therapies (CRRT are used as Acute Kidney Injury (AKI therapy and have certain advantages and disadvantages. Extended daily dialysis (EDD has emerged as an alternative to CRRT in the management of hemodynamically unstable AKI patients, mainly in developed countries.We hypothesized that EDD is a safe option for AKI treatment and aimed to describe metabolic and fluid control of AKI patients undergoing EDD and identify complications and risk factors associated with death.This is an observational and retrospective study describing introduction of EDD at our institution. A total of 231 hemodynamically unstable AKI patients (noradrenalin dose between 0.3 and 1.0 ucg/kg/min were assigned to 1367 EDD session. EDD consisted of 6-8 h of HD 6 days a week, with blood flow of 200 ml/min, dialysate flows of 300 ml/min.Mean age was 60.6±15.8 years, 97.4% of patients were in the intensive care unit, and sepsis was the main etiology of AKI (76.2. BUN and creatinine levels stabilized after four sessions at around 38 and 2.4 mg/dl, respectively. Fluid balance decreased progressively and stabilized around zero after five sessions. Weekly delivered Kt/V was 5.94±0.7. Hypotension and filter clotting occurred in 47.5 and 12.4% of treatment session, respectively. Regarding AKI outcome, 22.5% of patients presented renal function recovery, 5.6% of patients remained on dialysis after 30 days, and 71.9% of patients died. Age and focus abdominal sepsis were identified as risk factors for death. Urine output and negative fluid balance were identified as protective factors.EDD is effective for AKI patients, allowing adequate metabolic and fluid control. Age, focus abdominal sepsis, and lower urine output as well as positive fluid balance after two EDD sessions were associated significantly with death.

  2. Electrolytic fixer.

    Science.gov (United States)

    Stevens

    1982-12-01

    Interest in the recovery of silver from radiographic film generates a need to understand the operating procedures of recovery units utilizing the electrolytic fixer principle. Tailing or terminal units and recirculation units using electrolysis are evaluated. Difficulties encountered in the number of Coulombs applied to a specific amount of fixer are discussed. Reduction of sulfiding as a result of electrolysis and variations in film volumes are noted. The quantity and quality of silver collected can be improved by being aware of alterations in chemical activity used in a silver recovery program.

  3. Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-well Chain Fluids with Variable Interaction Range

    Institute of Scientific and Technical Information of China (English)

    LI Jinlong; HE Changchun; MA Jun; PENG Changjun; LIU Honglai; HU Ying

    2011-01-01

    The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.

  4. The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine.

    Science.gov (United States)

    Xia, Weiliang; Yu, Qin; Riederer, Brigitte; Singh, Anurag Kumar; Engelhardt, Regina; Yeruva, Sunil; Song, Penghong; Tian, De-An; Soleiman, Manoocher; Seidler, Ursula

    2014-08-01

    The mixing of gastric and pancreatic juice subjects the jejunum to unique ionic conditions with high luminal CO2 tension and HCO3 − concentration. We investigated the role of the small intestinal apical anion exchangers PAT-1 (Slc26a6) and DRA (Slc26a3) in basal and CO2/HCO3 −-stimulated jejunal fluid absorption. Single pass perfusion of jejunal segments was performed in anaesthetised wild type (WT) as well as in mice deficient in DRA, PAT-1, Na+/H+ exchanger 3 (NHE3) or NHE2, and in carbonic anhydrase II (CAII). Unbuffered saline (pH 7.4) perfusion of WT jejunum resulted in fluid absorption and acidification of the effluent. DRA-deficient jejunum absorbed less fluid than WT, and acidified the effluent more strongly, consistent with its action as a Cl−/HCO3 − exchanger. PAT-1-deficient jejunum also absorbed less fluid but resulted in less effluent acidification. Switching the luminal solution to a 5 % CO2/HCO3 − buffered solution (pH 7.4), resulted in a decrease in jejunal enterocyte pHi in all genotypes, an increase in luminal surface pH and a strong increase in fluid absorption in a PAT-1- and NHE3- but not DRA-, CAII, or NHE2-dependent fashion. Even in the absence of luminal Cl−, luminal CO2/HCO3 − augmented fluid absorption in WT, CAII, NHE2- or DRA-deficient, but not in PAT-1- or NHE3-deficient mice, indicating the likelihood that PAT-1 serves to import HCO3 − and NHE3 serves to import Na+ under these circumstances. The results suggest that PAT-1 plays an important role in jejunal Na+HCO3 – reabsorption, while DRA absorbs Cl− and exports HCO3 − in a partly CAII-dependent fashion. Both PAT-1 and DRA significantly contribute to intestinal fluid absorption and enterocyte acid/base balance but are activated by different ion gradients.

  5. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  6. Fluid replacement requirements in soccer.

    Science.gov (United States)

    Maughan, R J; Leiper, J B

    1994-01-01

    Soccer is an endurance sport that consists of moderate activity levels interspersed with intermittent high-intensity bursts, leading to high rates of metabolic heat production. Even when the weather is cold, significant sweat loss will occur, leading to a degree of dehydration which impairs exercise performance. Fluid intake before and during the game will provide water to reduce the degree of dehydration and can also supply carbohydrate to supplement the body's limited carbohydrate stores. Dilute carbohydrate-electrolyte drinks are most effective for rehydration. The optimum formulation will vary between individuals and will also depend on climatic conditions. Players should be encouraged to experiment with fluid intake during training to identify the type of drink and the amount and frequency of drinks that best meet their needs.

  7. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  8. Metabolic stability of new anticonvulsants in body fluids and organ homogenates.

    Science.gov (United States)

    Marszałek, Dorota; Goldnik, Anna; Pluciński, Franciszek; Mazurek, Aleksander P; Jakubiak, Anna; Lis, Ewa; Tazbir, Piotr; Koziorowska, Agnieszka

    2012-01-01

    The stability as a function of time of compounds with established anticonvulsant activity: picolinic acid benzylamide (Pic-BZA), picolinic acid 2-fluorobenzylamide (Pic-2-F-BZA), picolinic acid 3-fluorobenzylamide (Pic-3-F-BZA), picolinic acid 4-fluorobenzylamide (Pic-4-F-BZA) and picolinic acid 2-methylbenzylamide (Pic-2-Me-BZA) in body fluids and homogenates of body organs were determined after incubation. It was found that they decompose relatively rapidly in liver and kidney and are stable against enzymes present in body fluids and some organs. These results are consistent with the bond strength expressed as total energy of amide bonds (calculated by quantum chemical methods) in the studied anticonvulsants. The calculated values of the amide bond energy are: 199.4 kcal/mol, 200.2 kcal/mol, 207.5 kcal/mol, 208.4 kcal/mol and 198.2 kcal/mol, respectively. The strength of the amide bonds in the studied anticonvulsants correctly reflects their stability in liver or kidney.

  9. Delayed recovery due to exaggerated acid, base and electrolyte imbalance in prolonged laparoscopic repair of diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2011-01-01

    Full Text Available The acid, base and electrolyte changes are usually observed in the perioperative settings. We report a case of prolonged laparoscopic repair of left-sided diaphragmatic hernia which involved a lot of tissue handling and fluid replacement leading to acid, base and electrolyte imbalance. A 42-year-old male underwent prolonged laparoscopic repair under general anesthesia. Intraoperatively, surgeon reported that contents of hernia includes bowel along with mesentery, spleen and lot of fatty tissue The blood loss was about 2 L which was replaced with 1 L of colloid and 7.5 L of lactated ringer. Near the end of surgery arterial blood gas analysis revealed metabolic acidosis, hyperkalemia, and hypocalcemia leading to delayed recovery. We conclude prolonged laparoscopic surgery involving lot of tissue handling including gut and fat should be monitored for acid, base, electrolyte imbalance and corrected timely to have uneventful rapid recovery.

  10. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  11. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385

    Science.gov (United States)

    Turchyn, Alexandra V.; Antler, Gilad; Byrne, David; Miller, Madeline; Hodell, David A.

    2016-06-01

    At Site U1385, drilled during IODP Expedition 339 off the coast of Portugal on the continental slope, high-resolution sulfate concentration measurements in the pore fluids display non-steady-state behavior. At this site there is a zone of sulfate reduction in the uppermost seven meters of sediment, followed by a 38-meter interval where sulfate concentrations do not change, and finally sulfate concentrations are depleted to zero between 45 and 55 meters below seafloor. Below the sulfate minimum zone, there is abundant methane, suggesting that the lower sulfate consumption zone is coupled to anaerobic methane oxidation. We analyze pore water samples from IODP Site U1385 for sulfur and oxygen isotope ratios of dissolved sulfate, as well as the sulfur isotope composition of sedimentary pyrite. The sulfur isotopes in pore fluid sulfate display similar non-steady-state behavior similar to that of the sulfate concentrations, increasing over the uppermost zone of sulfate reduction and again over the lower zone of sulfate-driven anaerobic methane oxidation. The oxygen isotopes in sulfate increase to the 'apparent equilibrium' value in the uppermost zone of sulfate reduction and do not change further. Our calculations support the idea that sulfite to sulfide reduction is the limiting step in microbial sulfate reduction, and that the isotope fractionation expressed in the residual pore water sulfate pool is inversely proportional to the net sulfate reduction rate. The sulfur isotope composition of pyrite acquires one value in the uppermost sediments, which may be overprinted by a second value in the deeper sediments, possibly due to iron release during anaerobic methane oxidation or iron diffusion from a higher zone of bacterial iron reduction. Our results have implications for modeling the sulfur isotope composition of the pyrite burial flux in the global biogeochemical sulfur cycle.

  12. Fluid Dynamic Modeling to Support the Development of Flow-based Hepatocyte Culture Systems for Metabolism Studies

    Directory of Open Access Journals (Sweden)

    Jenny M Pedersen

    2016-09-01

    Full Text Available Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics (CFD to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were 1 minimization of shear stress experienced by the cells to maximize viability, 2 rapid establishment of a uniform distribution of test compound in the chamber, and 3 delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices — RealBio® (RB and QuasiVivo® (QV — and a custom developed fluidized bed (FB bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results.Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able

  13. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    Science.gov (United States)

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental

  14. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men.

    Science.gov (United States)

    Seery, Suzanne; Jakeman, Philip

    2016-09-01

    Appropriate rehydration and nutrient intake in recovery is a key component of exercise performance. This study investigated whether the recovery of body net fluid balance (NFB) following exercise and thermal dehydration to -2 % of body mass (BM) was enhanced by a metered rate of ingestion of milk (M) compared with a carbohydrate-electrolyte solution (CE) or water (W). In randomised order, seven active men (aged 26·2 (sd 6·1) years) undertook exercise and thermal dehydration to -2 % of BM on three occasions. A metered replacement volume of M, CE or W equivalent to 150 % of the BM loss was then consumed within 2-3 h. NFB was subsequently measured for 5 h from commencement of rehydration. A higher overall NFB in M than CE (P=0·001) and W (P=0·006) was observed, with no difference between CE and W (P=0·69). After 5 h, NFB in M remained positive (+117 (sd 122) ml) compared with basal, and it was greater than W (-539 (sd 390) ml, P=0·011) but not CE (-381 (sd 460) ml, P=0·077, d=1·6). Plasma osmolality (Posm) and K remained elevated above basal in M compared with CE and W. The change in Posm was associated with circulating pre-provasopressin (r s 0·348, Pdehydration.

  15. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates.

    Directory of Open Access Journals (Sweden)

    Carlos O Mendivil

    Full Text Available Our current understanding of hormone regulation in lung parenchyma is quite limited. We aimed to quantify a diverse array of biologically relevant protein mediators in alveolar lining fluid (ALF, compared to serum concentrations, and explore factors associated with protein compartmentalization on either side of the air-blood barrier.Participants were 24 healthy adult non-smoker volunteers without respiratory symptoms or significant medical conditions, with normal lung exams and office spirometry. Cell-free bronchoalveolar lavage fluid and serum were analyzed for 24 proteins (including enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines using a highly sensitive multiplex ELISA. Measurements were normalized to ALF concentrations. The ALF:serum concentration ratios were examined in relation to measures of protein size, hydrophobicity, charge, and to participant clinical and spirometric values.ALF measurements from 24 individuals detected 19 proteins, including adiponectin, adipsin, apoA-I, apoA-II, apoB, apoC-II, apoC-III, apoE, C-reactive protein, ghrelin, glucose-dependent insulinotropic peptide (GIP, glucagon-like peptide-1 (GLP-1, glucagon, insulin, leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, resistin, and visfatin. C-peptide and serpin E1 were not detected in ALF for any individual, and IL-6, IL-10, and TNF-alpha were not detected in either ALF or serum for any individual. In general, ALF levels were similar or lower in concentration for most proteins compared to serum. However, ghrelin, resistin, insulin, visfatin and GLP-1 had ALF concentrations significantly higher compared to serum. Importantly, elevated ALF:serum ratios of ghrelin, visfatin and resistin correlated with protein net charge and isoelectric point, but not with molecular weight or hydrophobicity.Biologically relevant enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines can be detected in the ALF of

  16. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  17. A Comparative Study of Electrolyte Flow and Slime Particle Transport in a Newly Designed Copper Electrolytic Cell and a Laboratory-Scale Conventional Electrolytic Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-08-01

    An innovative copper electrolytic cell was designed with its inlet at the cell top and its outlet near the cell bottom, in opposite to conventional electrolytic cells. It was modeled in COMSOL Multiphysics to simulate copper electrorefining process. Unlike conventional electrorefining cells, downward electrolyte flows are more dominant in the fluid flow field in this cell, which leads to faster settlement of slime particles and less contamination to the cathode. Copper concentration profiles, electrolyte flow velocity field, slime particle movements, and slime particle distributions were obtained as simulation results, which were compared with those in a laboratory-scale conventional electrolytic cell. Advantages of the newly designed electrolytic cell were found: copper ions are distributed more uniformly in the cell with a thinner diffusion layer near the cathode; stronger convection exists in the inter-electrode domain with dominant downward flows; and slime particles have larger possibilities to settle down and are less likely to reach the cathode.

  18. Impact resistant electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.; Dudney, Nancy J.

    2017-03-07

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  19. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  20. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  1. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  2. Exploring the Deep Biosphere in Ophiolite-hosted Systems: What Can Metabolic Processes in Surface Seeps Tell Us About Subsurface Ecosystems in Serpentinizing Fluids?

    Science.gov (United States)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Casar, C.; Simon, A.; Arcilla, C. A.

    2016-12-01

    Serpentinization in the subsurface produces highly reduced, high pH fluids that provide microbial habitats. It is assumed that these deep subsurface fluids contain copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. As serpentinized fluids reach the oxygenated surface environment, microbial biomes shift and organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). However, the relationship of microbial communities found in surface expressions of serpentinizing fluids to the subsurface biosphere is still a target of exploration. Our work in the Zambales ophiolite (Philippines) defines surface microbial habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Springs range from pH 9-11.5, and contain 0.06-2 ppm DO, 0-3.7 ppm sulfide, 30-800 ppm silica. Gases include H2 and CH4 > 10uM, CO2 > 1 mM, and trace amounts of CO. These surface data allow prediction of the subsurface metabolic landscape. For example, Cardace et al., (2015) predicted that metabolism of iron is important in both biospheres. Growth media were designed to target iron reduction yielding heterotrophic and autotrophic iron reducers at high pH. Reduced iron minerals were produced in several cultures (Casar et al., sub.), and isolation efforts are underway. Shotgun metagenomic analysis shows the metabolic capacity for methanogenesis, suggesting microbial origins for some CH4 present. The enzymes methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. The metagenomes indicate carbon cycling at these sites is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. In this tropical climate, cellulose is also a likely carbon source; cellulose degrading isolates have been obtained. These results indicate a metabolically flexible community at the surface where serpentinizing

  3. The Application of PBL Teaching Method in Water-electrolyte Metabolism and Acid-base Balance Teaching%PBL教学法在水、电解质和酸碱平衡教学中的应用

    Institute of Scientific and Technical Information of China (English)

    叶俊; 章宏伟; 黄华兴

    2015-01-01

    Objective: To investigate the advantage of PBL teaching method in water-electrolyte metabolism and acid-base balance teaching. Method:Choose 6 classes of students from Nanjing medical university and randomly divided into experimental group (n=79) and control group (n=78), the experimental group using PBL teaching method and the control group using traditional LBL teaching method, evaluating these two methods by analyze the average scores of the test and the survey. Results:The average scores of experimental group were higher than that in the control group (p=0.026). The survey showed that the experimental group was better in autonomous learning, case analysis, teamwork and using the theoretical knowledge and clinical cases than control group. Conclusion:PBL teaching method was much better than LBL in water-electrolyte metabolism and acid-base balance teaching.%目的::探讨PBL(problem-based learning)教学法在水、电解质和酸碱平衡教学中的应用优势。方法:选取南京医科大学2011级临床医学七年制6个班级的学生,按自然班随机分为实验组(n=79)和对照组(n=78),实验组采用PBL教学模式,对照组采用传统教学模式(LBL),通过调查问卷及课后测试对两种教学模式进行综合评价。结果:实验组理论测试成绩明显优于对照组(p=0.026),调查问卷显示:PBL组在自主学习能力、病例分析能力、团队协作能力以及在掌握理论知识与临床疾病的联系方面均优于LBL组。结论:与LBL教学法相比,PBL教学法在水、电解质和酸碱平衡教学中应用效果更好,优势更明显。

  4. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  5. Force criterion of different electrolytes in microchannel

    Institute of Scientific and Technical Information of China (English)

    Ren Yu-Kun; Yan Hui; Jiang Hong-Yuan; Gu Jian-Zhong; Antonio Ramos

    2009-01-01

    The control and handling of fluids is central to many applications of the lab-on-chip. This paper analyzes the basic theory of manipulating different electrolytes and finds the two-dimensional model. Coulomb force and dielectric force belonging to the body force of different electrolytes in the microchannel were analyzed. The force criterion at the interface was concluded, and testified by the specific example. Three basic equations were analyzed and applied to simulate the phenomenon. The force criterion was proved to be correct based on the simulation results.

  6. Seasonal-dependent variations in metabolic status of spermatozoa and antioxidant enzyme activity in the reproductive tract fluids of wild boar/domestic pig hybrids.

    Science.gov (United States)

    Dziekońska, A; Fraser, L; Koziorowska-Gilun, M; Strzezek, J; Koziorowski, M; Kordan, W

    2014-01-01

    This study investigated seasonal changes in the metabolic performance of spermatozoa and activity of the antioxidant enzymes in the seminal plasma of three wild boar/domestic pigs (aged 1.5 to 2.5 years) and the activity of the antioxidant enzymes in fluids of the cauda epididymidis and vesicular glands from 16 wild boar/domestic pig hybrids (aged 1 to 3 years). Parameters of the sperm metabolic activity, such as total motility, mitochondrial functions, and measurements of oxygen uptake, ATP content and L-lactate production, were analyzed during the spring-summer and autumn-winter periods. Besides these sperm metabolic parameters, the sperm membrane integrity was also assessed. Total protein content and activity of the antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were measured in the reproductive tract fluids. There were no marked significant differences (P > 0.05) between the seasonal periods in terms of sperm motility, mitochondrial function and oxygen uptake; however, spermatozoa collected during the autumn-winter period exhibited higher (P pig hybrids.

  7. Effect of periodontal therapy on metabolic control and levels of IL-6 in the gingival crevicular fluid in type 2 diabetes mellitus.

    Science.gov (United States)

    Camargo, Gabriela Alessandra da Cruz Galhardo; Lima, Meyriane de Andrade; Fortes, Tânia Vieira; de Souza, Cristiane Salgado; de Jesus, Amelia Maria; de Almeida, Roque Pacheco

    2013-01-01

    The aim of this study was to compare the efficacy of metabolic control and levels of interleukin 6 (IL-6) in gingival crevicular fluid after periodontal therapy in type 2 diabetes mellitus (DM) and nondiabetic (NDM) patients. This study was performed in 20 subjects (10 type 2 DM and 10 NDM patients with generalized chronic periodontal disease. Both groups were recorded for clinical parameters (plaque index (PI), gingival index (GI), probing depth (PD), gingival recession (GR) and clinical attachment level (CAL)), metabolic control (fasting glucose levels, glycated a-hemoglobin (HbA1c), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TR)), and IL-6 levels at baseline and 3 months after periodontal treatment. DM and NDM patients revealed significant statistical reductions for clinical parameters (P periodontal therapy. However, TRG levels increased after 3 months, which suggest more confirmatory studies to investigate if these results will be repeated in other studies.

  8. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  9. A retrospective analysis of the haemodynamic and metabolic effects of fluid resuscitation in Vietnamese adults with severe falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Hoan Phu Nguyen

    Full Text Available BACKGROUND: Optimising the fluid resuscitation of patients with severe malaria is a simple and potentially cost-effective intervention. Current WHO guidelines recommend central venous pressure (CVP guided, crystalloid based, resuscitation in adults. METHODS: Prospectively collected haemodynamic data from intervention trials in Vietnamese adults with severe malaria were analysed retrospectively to assess the responses to fluid resuscitation. RESULTS: 43 patients were studied of whom 24 received a fluid load. The fluid load resulted in an increase in cardiac index (mean increase: 0.75 L/min/m(2 (95% Confidence interval (CI: 0.41 to 1.1, but no significant change in acid-base status post resuscitation (mean increase base deficit 0.6 mmol/L (95% CI: -0.1 to 1.3. The CVP and PAoP (pulmonary artery occlusion pressure were highly inter-correlated (r(s = 0.7, p<0.0001, but neither were correlated with acid-base status (arterial pH, serum bicarbonate, base deficit or respiratory status (PaO(2/FiO(2 ratio. There was no correlation between the oxygen delivery (DO(2 and base deficit at the 63 time-points where they were assessed simultaneously (r(s = -0.09, p = 0.46. CONCLUSIONS: In adults with severe falciparum malaria there was no observed improvement in patient outcomes or acid-base status with fluid loading. Neither CVP nor PAoP correlated with markers of end-organ perfusion or respiratory status, suggesting these measures are poor predictors of their fluid resuscitation needs.

  10. Electrolyte for batteries with regenerative solid electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  11. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    Science.gov (United States)

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  12. Acute starvation in pregnancy: a cause of severe metabolic acidosis.

    Science.gov (United States)

    Patel, A; Felstead, D; Doraiswami, M; Stocks, G M; Waheed, U

    2011-07-01

    We report a case of starvation-induced metabolic ketoacidosis in a previously healthy 29-year-old, nulliparous woman at 32 weeks of gestation. She was admitted to hospital with mild preeclampsia associated with persistent nausea and vomiting that progressed to severe preeclampsia requiring urgent control of hypertension before caesarean delivery. Prolonged and severe vomiting limited oral caloric intake and led to starvation ketoacidosis, characterised by ketonuria and a raised anion gap metabolic acidosis that required intensive care support. Despite significant metabolic derangement the patient appeared clinically well. Intravascular volume was replenished. Fluid restriction used as part of our preeclampsia treatment regimen delayed the therapeutic administration of sufficient dextrose, which rapidly corrected her metabolic derangement when commenced after delivery. Electrolyte supplementation was given to prevent re-feeding syndrome. Both mother and baby were discharged without sequelae.

  13. Wedge wetting by electrolyte solutions

    Science.gov (United States)

    Mußotter, Maximilian; Bier, Markus

    2017-09-01

    The wetting of a charged wedgelike wall by an electrolyte solution is investigated by means of classical density functional theory. As in other studies on wedge wetting, this geometry is considered as the most simple deviation from a planar substrate, and it serves as a first step toward more complex confinements of fluids. By focusing on fluids containing ions and surface charges, features of real systems are covered that are not accessible within the vast majority of previous theoretical studies concentrating on simple fluids in contact with uncharged wedges. In particular, the filling transition of charged wedges is necessarily of first order, because wetting transitions of charged substrates are of first order and the barrier in the effective interface potential persists below the wetting transition of a planar wall; hence, critical filling transitions are not expected to occur for ionic systems. The dependence of the critical opening angle on the surface charge, as well as the dependence of the filling height, of the wedge adsorption, and of the line tension on the opening angle and on the surface charge are analyzed in detail.

  14. Electrolytic oxidation of anthracite

    Science.gov (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  15. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  16. Polymer electrolyte reviews. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, J.R.; Vincent, C.A.

    1987-01-01

    The development of polymer electrolytes which have potential applications in battery technology has resulted in an escalation of research into the synthesis of new macromolecular supports and the mechanisms of ionic transport within the solid matrix. Investigation of the properties of polymer electrolytes has brought together polymer chemists and electrochemists, and the understanding of the solubility and transport of electrolytes in organic polymers is now developing from this pooled experience. This book deals with experimental, theoretical and applied aspects of solid solutions of electrolytes used in coordinating polymer matrices. Attention is focused on the synthesis and properties of these new materials, the mechanisms of conduction processes and practical applications, especially with regard to battery technology.

  17. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Water and electrolytes. [in human bodies

    Science.gov (United States)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  19. The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids.

    Science.gov (United States)

    Selby, Nicholas M; Fialova, Jana; Burton, James O; McIntyre, Christopher W

    2007-03-01

    Continuous ambulatory peritoneal dialysis (CAPD) may exert significant effects on systemic haemodynamics. We have previously demonstrated that hypertonic glucose solutions are associated with higher blood pressure (BP) due to a rise in stroke volume (SV) and cardiac output (CO). However, the mechanisms underlying these changes have not been established. Ten non-diabetic CAPD patients entered a randomized crossover study (eight completed) to compare conventional glucose-based fluid, biocompatible pH-neutral glucose-based fluid and 1.1% amino acid solution (lactate-buffered but completely free of glucose degradation products). BP and haemodynamic variables were measured using continuous arterial pulse wave analysis, and serial plasma glucose and insulin concentrations were collected. Left ventricular (LV) diameters were measured at the start and end of each dwell period using M-mode echocardiography. BP was similar during 1.36% glucose and 1.1% amino acid dwells, but was significantly higher during 3.86% glucose dwells with both conventional and biocompatible fluids (P insulin levels did not differ from baseline during 1.36% and amino acid dwells, but increased significantly during 3.86% glucose dwells. Despite a significantly higher ultrafiltration volume with 3.86% glucose, LV diameters were similar throughout. In conclusion, we have confirmed our previous findings demonstrating higher BP and adverse haemodynamics during 3.86% glucose dwells. These changes are associated with hyperglycaemia and hyperinsulinaemia, but are not related to differences in cardiac filling.

  20. Metabolic and adverse effects of diuretics.

    Science.gov (United States)

    Wilcox, C S

    1999-11-01

    Diuretics are among the most frequently prescribed drugs. They enjoy a very high clinical reputation for safety and efficacy. However, more than 3 decades of clinical investigation have disclosed a number of abnormalities in fluid electrolyte handling, metabolism, and other adverse effects that can complicate therapy with diuretic drugs. Some of these complications are a direct extension of the wanted action of the drug. These include extracellular fluid volume depletion, associated orthostatic hypotension, and prerenal azotemia. Others are not a direct action of the diuretic, but can be explained as an intranephronal compensation to the diuretic action. These include hypokalemia, in part to increased potassium secretion secondary to the enhanced tubular fluid flow and aldosterone secretion induced by diuretic administration. Metabolic abnormalities are usually mild. Hyperglycemia and carbohydrate intolerance have been related to diuretic-induced hypokalemia, which inhibits insulin secretion by the beta cells, and reductions in extracellular fluid volume and cardiac output. This is compounded by increases in catecholamines from sympathetic nerve activity which decrease peripheral glucose utilization. A mild increase in serum cholesterol concentration is seen frequently during initiation of diuretic therapy, but during steady state therapy after 6 to 12 months, values usually return to baseline. Knowledge of the more common adverse effects induced by diuretics helps the physician in predicting patients at risk and taking effective steps to anticipate or treat adverse responses.

  1. Effect of electromagnetic force and anode gas on electrolyte flow in aluminum electrolysis cell

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA Xiao-xia; BAO Sheng-zhong

    2006-01-01

    Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.

  2. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  3. Seebeck effect in electrolytes.

    Science.gov (United States)

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  4. Multichannel discharge between jet electrolyte cathode and jet electrolyte anode

    NARCIS (Netherlands)

    Shakirova, E. F.; Gaitsin, Al. F.; Son, E. E.

    2011-01-01

    We present the results of an experimental study of multichannel discharge between a jet electrolyte cathode and jet electrolyte anode within a wide range of parameters. We pioneer the reveal of the burning particularities and characteristics of multichannel discharge with jet electrolyte and droplet

  5. Response to trauma and metabolic changes: posttraumatic metabolism.

    Science.gov (United States)

    Şimşek, Turgay; Şimşek, Hayal Uzelli; Cantürk, Nuh Zafer

    2014-01-01

    Stress response caused by events such as surgical trauma includes endocrine, metabolic and immunological changes. Stress hormones and cytokines play a role in these reactions. More reactions are induced by greater stress, ultimately leading to greater catabolic effects. Cuthbertson reported the characteristic response that occurs in trauma patients: protein and fat consumption and protection of body fluids and electrolytes because of hypermetabolism in the early period. The oxygen and energy requirement increases in proportion to the severity of trauma. The awareness of alterations in amino acid, lipid, and carbohydrate metabolism changes in surgical patients is important in determining metabolic and nutritional support. The main metabolic change in response to injury that leads to a series of reactions is the reduction of the normal anabolic effect of insulin, i.e. the development of insulin resistance. Free fatty acids are primary sources of energy after trauma. Triglycerides meet 50 to 80 % of the consumed energy after trauma and in critical illness. Surgical stress and trauma result in a reduction in protein synthesis and moderate protein degradation. Severe trauma, burns and sepsis result in increased protein degradation. The aim of glucose administration to surgical patients during fasting is to reduce proteolysis and to prevent loss of muscle mass. In major stress such as sepsis and trauma, it is important both to reduce the catabolic response that is the key to faster healing after surgery and to obtain a balanced metabolism in the shortest possible time with minimum loss. For these reasons, the details of metabolic response to trauma should be known in managing these situations and patients should be treated accordingly.

  6. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  7. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  8. Water, electrolytes, vitamins and trace elements – Guidelines on Parenteral Nutrition, Chapter 7

    Directory of Open Access Journals (Sweden)

    Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine

    2009-11-01

    Full Text Available A close cooperation between medical teams is necessary when calculating the fluid intake of parenterally fed patients. Fluids supplied parenterally, orally and enterally, other infusions, and additional fluid losses (e.g. diarrhea must be considered. Targeted diagnostic monitoring (volume status is required in patients with disturbed water or electrolyte balance. Fluid requirements of adults with normal hydration status is approximately 30–40 ml/kg body weight/d, but fluid needs usually increase during fever. Serum electrolyte concentrations should be determined prior to PN, and patients with normal fluid and electrolyte balance should receive intakes follwing standard recommendations with PN. Additional requirements should usually be administered via separate infusion pumps. Concentrated potassium (1 mval/ml or 20% NaCl solutions should be infused via a central venous catheter. Electrolyte intake should be adjusted according to the results of regular laboratory analyses. Individual determination of electrolyte intake is required when electrolyte balance is initially altered (e.g. due to chronic diarrhea, recurring vomiting, renal insufficiency etc.. Vitamins and trace elements should be generally substituted in PN, unless there are contraindications. The supplementation of vitamins and trace elements is obligatory after a PN of >1 week. A standard dosage of vitamins and trace elements based on current dietary reference intakes for oral feeding is generally recommended unless certain clinical situations require other intakes.

  9. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats.

    Science.gov (United States)

    Holecek, Milan; Sispera, Ludek

    2014-05-01

    Characteristic feature of critical illness, such as trauma and sepsis, is muscle wasting associated with activated oxidation of branched-chain amino acids (valine, leucine, isoleucine) and enhanced release of glutamine (GLN) to the blood. GLN consumption in visceral tissues frequently exceeds its release from muscle resulting in GLN deficiency that may exert adverse effects on the course of the disease. In the present study, we investigated the effects of GLN depletion in extracellular fluid on GLN production and protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Cecal ligation and puncture (CLP) was used as a model of sepsis. After 24 h, soleus muscle (SOL, slow-twitch, red muscle) and extensor digitorum longus (EDL, fast-twitch, white muscle) were isolated and incubated in a medium containing 0.5 mM GLN or without GLN. L-[1-(14)C]leucine was used to estimate protein synthesis and leucine oxidation, 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. CLP increased GLN release from muscle, protein breakdown and leucine oxidation, and decreased protein synthesis. The effects were more pronounced in EDL. Alterations induced by laparotomy were similar to those observed in sepsis, but of a lower extent. GLN deficiency in medium enhanced GLN release and decreased intramuscular GLN concentration, decreased protein synthesis in muscles of intact and laparotomized rats, and enhanced leucine oxidation in SOL of intact and protein breakdown in SOL of laparotomized rats. It is concluded that (1) fast-twitch fibers are more sensitive to septic stimuli than slow-twitch fibers, (2) extracellular GLN deficiency may exert adverse effects on protein and amino acid metabolism in skeletal muscle, and (3) muscles of healthy and laparotomized animals are more sensitive to GLN deficiency than muscles of septic animals.

  10. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  11. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  12. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  13. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  14. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  15. Coupling between electrolyte and organic semiconductor in electrolyte-gated organic field effect transistors (Conference Presentation)

    Science.gov (United States)

    Biscarini, Fabio; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Geerts, Yves H.; Vuillaume, Dominique

    2016-11-01

    Organic field effect transistors (OFET) operated in aqueous environments are emerging as ultra-sensitive biosensors and transducers of electrical and electrochemical signals from a biological environment. Their applications range from detection of biomarkers in bodily fluids to implants for bidirectional communication with the central nervous system. They can be used in diagnostics, advanced treatments and theranostics. Several OFET layouts have been demonstrated to be effective in aqueous operations, which are distinguished either by their architecture or by the respective mechanism of doping by the ions in the electrolyte solution. In this work we discuss the unification of the seemingly different architectures, such as electrolyte-gated OFET (EGOFET), organic electrochemical transistor (OECT) and dual-gate ion-sensing FET. We first demonstrate that these architectures give rise to the frequency-dependent response of a synapstor (synapse-like transistor), with enhanced or depressed modulation of the output current depending on the frequency of the time-dependent gate voltage. This behavior that was reported for OFETs with embedded metal nanoparticles shows the existence of a capacitive coupling through an equivalent network of RC elements. Upon the systematic change of ions in the electrolyte and the morphology of the charge transport layer, we show how the time scale of the synapstor is changed. We finally show how the substrate plays effectively the role of a second bottom gate, whose potential is actually fixed by the pH/composition of the electrolyte and the gate voltage applied.

  16. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  17. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  18. Electrolyte materials - Issues and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Balbuena, Perla B. [Department of Chemical Engineering, and Department of Materials Science and Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  19. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  20. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  1. Intravenous Solutions in the Care of Patients With Volume Depletion and Electrolyte Abnormalities

    NARCIS (Netherlands)

    Severs, David; Rookmaaker, Maarten B.; Hoorn, Ewout J.

    2015-01-01

    Infusion fluids are often given to restore blood pressure (volume resuscitation), but may also be administered to replace ongoing losses, match insensible losses, correct electrolyte or acid-base disorders, or provide glucose. The development of new infusion fluids has provided clinicians with a wid

  2. [The indices of water-salt metabolism and of the endocrine status in monkeys after flights on the Kosmos biological satellites].

    Science.gov (United States)

    Korol'kov, V I; Dotsenko, M A; Larina, I M; Shakhmatova, E I; Natochin, Iu V

    1996-01-01

    Findings of studying the indices of water-salt metabolism and endocrine status of monkeys after their exposure in the weightless environment onboard the biological satellites of Earth have revealed a change in the blood serum concentrations of electrolytes which is indicative of instability of the system responsible for maintenance of the fluid-mineral homeostasis during readaptation. Results of studying the endocrine status of monkeys infer alteration in calcium metabolism, i.e. decreased levels of parathyroid hormone, calcitonin and the transport form of vitamin D3.

  3. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    Science.gov (United States)

    Rachmawati, Heni; Rahma, Annisa; Al Shaal, Loaye; Müller, Rainer H.; Keck, Cornelia M.

    2016-01-01

    We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), sodium carboxymethylcellulose (Na-CMC), d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and sodium dodecyl sulfate (SDS). The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT) fluid. Non-ionic stabilizers (PVA, PVP, and TPGS) were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug. PMID:27763572

  4. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    Directory of Open Access Journals (Sweden)

    Heni Rachmawati

    2016-10-01

    Full Text Available We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP, polyvinyl alcohol (PVA, sodium carboxymethylcellulose (Na-CMC, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, and sodium dodecyl sulfate (SDS. The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT fluid. Non-ionic stabilizers (PVA, PVP, and TPGS were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug.

  5. Gelled Electrolytes For Lithium Batteries

    Science.gov (United States)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  6. Cerebrospinal fluid stasis and its clinical significance.

    Science.gov (United States)

    Whedon, James M; Glassey, Donald

    2009-01-01

    We hypothesize that stasis of the cerebrospinal fluid (CSF) occurs commonly and is detrimental to health. Physiologic factors affecting the normal circulation of CSF include cardiovascular, respiratory, and vasomotor influences. The CSF maintains the electrolytic environment of the central nervous system (CNS), influences systemic acid-base balance, serves as a medium for the supply of nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS by removing the waste products of cellular metabolism, and transports hormones, neurotransmitters, releasing factors, and other neuropeptides throughout the CNS. Physiologic impedance or cessation of CSF flow may occur commonly in the absence of degenerative changes or pathology and may compromise the normal physiologic functions of the CSF. CSF appears to be particularly prone to stasis within the spinal canal. CSF stasis may be associated with adverse mechanical cord tension, vertebral subluxation syndrome, reduced cranial rhythmic impulse, and restricted respiratory function. Increased sympathetic tone, facilitated spinal segments, dural tension, and decreased CSF flow have been described as closely related aspects of an overall pattern of structural and energetic dysfunction in the axial skeleton and CNS. Therapies directed at affecting CSF flow include osteopathic care (especially cranial manipulation), craniosacral therapy, chiropractic adjustment of the spine and cranium, Network Care (formerly Network Chiropractic), massage therapy (including lymphatic drainage techniques), yoga, therapeutic breath-work, and cerebrospinal fluid technique. Further investigation into the nature and causation of CSF stasis, its potential effects upon human health, and effective therapies for its correction is warranted.

  7. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  8. Fluid therapy in small ruminants and camelids.

    Science.gov (United States)

    Jones, Meredyth; Navarre, Christine

    2014-07-01

    Body water, electrolytes, and acid-base balance are important considerations in the evaluation and treatment of small ruminants and camelids with any disease process, with restoration of these a priority as adjunctive therapy. The goals of fluid therapy should be to maintain cardiac output and tissue perfusion, and to correct acid-base and electrolyte abnormalities. Hypoglycemia, hyperkalemia, and acidosis are the most life-threatening abnormalities, and require most immediate correction.

  9. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  10. Hormonal and electrolyte responses to acute isohemic volume expansion in unanesthetized rats

    Science.gov (United States)

    Chenault, V. M.; Morris, M.; Lynch, C. D.; Maultsby, S. J.; Hutchins, P. M.

    1993-01-01

    This study was undertaken to explore the time course of the metabolic response to isohemic blood volume expansion (30%) in normotensive, unanesthetized Sprague-Dawley rats. Whole blood, drawn from a femoral artery catheter of conscious donor rats, was infused into the jugular vein of recipient rats. Blood samples were drawn from a carotid artery of recipient rats at time points beginning immediately post-volume expansion (IPVE) up through 5 days post-volume expansion (PVE). To characterize the attendant compensatory mechanisms, the plasma concentrations of electrolytes and fluid regulatory hormones were determined. Hematocrit began to raise IPVE and was significantly elevated above control IPVE 20, 30, 40, 60, and 90 min, and 2, 4, 6, 8, 12, and 24 hr PVE. Consistent with our current understanding of the hormonal response to excess volume, atrial natriuretic factor was significantly increased above the prevolume expansion (control) values 0-30 min PVE. Surprisingly, plasma aldosterone levels were significantly increased above control at 20 and 30 min and 6 hr PVE, whereas plasma renin activity was significantly decreased 30-40 min PVE. Plasma sodium was not changed from control values except for a significant increase at 6 hr post-volume expansion. Plasma potassium, osmolality, and arginine vasopressin levels were not altered by the volume expansion. These studies delineate the physiologic time scheme operative in the regulation of fluid volume during acute ischemic volume expansion.

  11. Mechanisms Underlying Dysregulation of Electrolyte Absorption in IBD Associated Diarrhea

    OpenAIRE

    Priyamvada, Shubha; Gomes, Rochelle; Gill, Ravinder K.; Saksena, Seema; Alrefai, Waddah A.; Pradeep K Dudeja

    2015-01-01

    Inflammatory Bowel Diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, relapsing inflammatory disorders of the gastrointestinal tract. Chronic inflammation of the intestine affects the normal fluid and electrolyte absorption leading to diarrhea, the hallmark symptom of IBD. The management of IBD associated diarrhea still remains to be a challenge, and extensive studies over the last two decades have focused on investigating the molecular mechanisms underly...

  12. Photopolymerized Electrolytes For Electrochromic Devices

    Science.gov (United States)

    Cogan, Stuart; Rauh, R. David

    1994-01-01

    Thin ion-conducting electrolyte films for use in electrochromic devices now fabricated relatively easily and quickly with any of class of improved formulations containing ultraviolet-polymerizable components. Formulations are liquids in their monomeric forms and self-supporting, transparent solids in their polymeric forms. Thin solid electrolytes form quickly and easily between electrode-bearing substrates. Film thus polymerized acts not only as solid electrolyte but also as glue holding laminate together: feature simplifies fabrication by reducing need for sealants and additional mechanical supports.

  13. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  14. An electrolyte CPA equation of state for mixed solvent electrolytes

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    that the predictive capabilities could be improved through the development of an electrolyte equation of state. In this work, the Cubic Plus Association (CPA) Equation of State is extended to handle mixtures containing electrolytes by including the electrostatic contributions from the Debye-Hückel and Born terms...... depression. Finally, the model is applied to predict VLE, LLE, and SLE in aqueous salt mixtures as well as in mixed solvents....

  15. Effects of a novel palatinose based enteral formula (MHN-01) carbohydrate-adjusted fluid diet in improving the metabolism of carbohydrates and lipids in patients with esophageal cancer complicated by diabetes mellitus.

    Science.gov (United States)

    Fujiwara, Toshiya; Naomoto, Yoshio; Motoki, Takayuki; Shigemitsu, Kaori; Shirakawa, Yasuhiro; Yamatsuji, Tomoki; Kataoka, Masafumi; Haisa, Minoru; Fujiwara, Toshiyoshi; Egi, Maritoki; Morimatsu, Hiroshi; Hanazaki, Motohiko; Katayama, Hiroshi; Morita, Kiyoshi; Mizumoto, Kenji; Asou, Takanobu; Arima, Hirofumi; Sasaki, Hajime; Matsuura, Motoi; Gunduz, Mehmet; Tanaka, Noriaki

    2007-04-01

    During perioperative management of patients with gastrointestinal cancer complicated by diabetes mellitus, adequate alimentation is required, but we often face difficulties associated with hyperglycemia and other accompanying complications. Recently, we investigated the effects of a novel palatinose based enteral formula (MHN-01) in suppressing post-prandial hyperglycemia and improving lipid metabolism in experimental animals and perioperative management of patients with esophageal cancer complicated by diabetes mellitus. We gave normal rats and rats with type 2 diabetes mellitus a single oral dose of fluid diet, and analyzed comparatively the time course of blood glucose level in each group until 3 h after the dose. In both the normal rat group and the type 2 diabetes group, peak blood glucose level after the MHN-01 dose was significantly lower than after a dose of ordinary fluid diet and was comparable to the peak level after a dose of a fluid diet rich in MUFA (monounsaturated fatty acid). We allowed normal mice free access to fluid diet for 43 days, and measured their body fat levels. Fat accumulation was significantly lower in mice given MHN-01 than in mice given ordinary fluid diet. We also analyzed the respiratory quotient and resting energy expenditure of normal Sprague-Dawley rats fed by MHN-01 or an ordinary fluid diet. The respiratory quotient of the MHN-01 group was significantly lower than the ordinary fluid group, although the resting energy expenditure of both groups was almost the same level. The effect of MHN-01 was estimated to be based on improvement of lipid metabolism. Between 2003 and 2005, among 164 patients who underwent radical thoracic esophagectomy and/or reconstruction for esophageal carcinoma at Okayama University Hospital, nine patients (5.5%) were diagnosed with diabetes mellitus in pre-operative screening and were treated with MHN-01. Clinical courses of two cases with severe status of diabetes mellitus were presented as successful

  16. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  17. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  18. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  19. Milk protein and the restoration of fluid balance after exercise.

    Science.gov (United States)

    James, Lewis

    2012-01-01

    Sweat is produced during exercise to help dissipate some of the extra heat produced due to an increase in metabolic rate. Inadequate drink ingestion during exercise means athletes finish exercise hypohydrated and when the time between exercise bouts is short, effective rehydration strategies will be necessary to prevent subsequent performance impairment. For complete rehydration, drink volume must be sufficient to replace sweat losses as well as the additional water losses during recovery. Once a sufficient volume of drink is ingested it is the drink composition that dictates the rehydration success of the drink. It is well known that addition of sodium and some other nutrients to rehydration drinks enhances fluid balance restoration after exercise, but the effects of milk proteins have been less well documented. Skimmed milk is an effective post-exercise rehydration solution and enhances the restoration of fluid balance after exercise-induced dehydration to a greater extent than a carbohydrate-electrolyte sports drink. Whilst there are a number of factors in skimmed milk that might be responsible for this enhancement of rehydration, it appears that some of the effect is due to the milk protein, as milk protein has been shown to be more effective for post-exercise rehydration than an isoenergetic amount of carbohydrate. Whilst the effects of whey protein on post-exercise rehydration are equivocal, whey protein addition to a carbohydrate-electrolyte rehydration solution certainly does not impair rehydration. Therefore, in situations where protein ingestion after exercise might be advantageous for the athlete, this protein might also enhance restoration of fluid balance.

  20. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  1. Electrochemistry in supercritical fluids.

    Science.gov (United States)

    Branch, Jack A; Bartlett, Philip N

    2015-12-28

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  2. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  3. Analysis of electrolyte transport through charged nanopores

    CERN Document Server

    Peters, P B; Bazant, M Z; Biesheuvel, P M

    2015-01-01

    We revisit the classical problem of the flow of an electrolyte solution through charged capillaries (nanopores). In the limit where the length of the capillary is much larger than its radius, the problem can be simplified to a one-dimensional averaged flux-force formalism that relates the relevant fluxes (electrical current, salt flux, fluid velocity) to their respective driving forces (difference in electric potential, salt concentration, pressure). Calculations in literature mainly consider the limit of non-overlapping electrical double layers (EDLs) in the pores and the absence of salt concentration gradients in the axial direction. In the present work these simplifications are relaxed and we discuss the general case with overlapping EDLs and nonzero axial salt concentration gradients. The 3x3 matrix that relates these quantities exhibits Onsager symmetry and for one of the cross coefficients we report a new significant simplification. We describe how Onsager symmetry is preserved under change of variables...

  4. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  5. Fluid replacement and exercise stress. A brief review of studies on fluid replacement and some guidelines for the athlete.

    Science.gov (United States)

    Maughan, R J; Noakes, T D

    1991-07-01

    Fluid ingestion during exercise has the twin aims of providing a source of carbohydrate fuel to supplement the body's limited stores and of supplying water and electrolytes to replace the losses incurred by sweating. Increasing the carbohydrate content of drinks will increase the amount of fuel which can be supplied, but will tend to decrease the rate at which water can be made available; where provision of water is the first priority, the carbohydrate content of drinks will be low, thus restricting the rate at which substrate is provided. The composition of drinks to be taken will thus be influenced by the relative importance of the need to supply fuel and water, this in turn depends on the intensity and duration of the exercise task, on the ambient temperature and humidity, and on the physiological and biochemical characteristics of the individual athlete. Carbohydrate ingested during exercise appears to be readily available as a fuel for the working muscles, at least when the exercise intensity does not exceed 70 to 75% of maximum oxygen uptake. Carbohydrate-containing solutions appear to be more effective in improving performance than plain water. Water and electrolytes are lost form the body in sweat: although the composition of sweat is rather variable, it is invariably hypotonic with respect to plasma. Sweat rate is determined primarily by the metabolic rate and the environmental temperature and humidity. The sweat rate may exceed the maximum rate of gastric emptying of ingested fluids, and some degree of dehydration is commonly observed. Excessive replacement of sweat losses with plain water or fluids with a low sodium content may result in hyponatraemia. Sodium replacement is essential for postexercise rehydration. The optimum frequency, volume and composition of drinks will vary widely depending on the intensity and duration of the exercise, the environmental conditions and the physiology of the individual. The athlete must determine by trial and error

  6. High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture.

    Science.gov (United States)

    Ritter, Joachim B; Genzel, Yvonne; Reichl, Udo

    2006-11-07

    In this work, we present an improved method for the determination of a wide range of intracellular metabolites from mammalian cells by anion-exchange chromatography. The analysis includes the measurement of intermediates from glycolysis and tricarboxylic acid cycle as well as several additional nucleotides and sugar nucleotides. The use of an electrolytic on-line eluent generation device made the method highly convenient, reliable and prone to errors. Due to short delay times of the eluent generator, rapid KOH gradient changes could be applied to improve separation and to speed up elution. Suppressed conductivity and UV in series was used for detection. The detection wavelength of the UV detector was switched from 220 to 260 nm during the elution for a more selective signal depending on the absorption of analytes. Standards from more than 50 metabolites of major cellular pathways were chromatographically tested and compared to chromatograms from extraction samples of Madin-Darby canine kidney (MDCK) and BHK21 cells. A validation for most substances was performed. Detection limits were below the micromolar range and the coefficient of correlation (R(2)) was above 0.99 for most analytes. Working ranges were between 0.125-3.875 and 4.5-139.5 microM. Sample pH had a major impact on the quantification of several metabolites, but measurements were robust within a pH range of 6.5-9.0.

  7. Malaria parasitaemia and disorders of plasma electrolytes

    Institute of Scientific and Technical Information of China (English)

    Idogun ES; Airauhi LU

    2009-01-01

    Objective:To assess the plasma electrolyte status of patients with diagnosis of malaria but without the symptoms of diarrhea,vomiting or altered sensorium and correlation of the plasma electrolyte changes and the degree of parasitae-mia.Methods:All the participants were adults,who met the clinical case definition of malaria but without the symptoms of diarrhea,vomiting or other medical illness.Blood slides were screened microscopically for malaria par-asite and the parasite positive patients were grouped into A (mild),B (moderate)and C (heavy)malaria parasite-amia,depending on the malaria parasite count per high power microscopic field.Plasma sodium,potassium and chloride were estimated using the ion selective electrode method,while bicarbonate ions were determined by simple titration method.Results:A total of 200 subjects were studied which comprised of 150 patients and 50 controls.The mean plasma sodium was significantly lower in patients with heavy parasitaemia[group C,(128.8 ±1.2)mmol /L] compared to those with mild and moderate parasitemia[(133.5 ±2.8)mmol /L and (133.5 ±3.5)mmol /L,P <0.0001].The mean plasma chloride was lowest in those patients with heavy parasitaemia (group C)than those pa-tients of group A and B (P <0.0001).Patients in group C also had significant hypokalaemia[(3.2 ±0.5)mmol /L]when compared to those in groups A and B[(3.6 ±0.3)mmol /L and (4.1 ±0.6)mmol /L respectively,P <0. 0001].Conclusion:A disorder of plasma electrolytes in malaria patients that had no symptoms of diarrhea and vom-iting was reported.And the severity of hyponatraemia and hypokalaemia correlate with the severity of the patients′malaria parasitaemia.This data should alert clinicians on the need to assess electrolytes status of patients with ma-laria even without the symptoms of fluid loss,especially when malaria parasitaemia is heavy.

  8. Acid-Base and Plasma Biochemical Changes Using Crystalloid Fluids in Stranded Juvenile Loggerhead Sea Turtles (Caretta caretta).

    Science.gov (United States)

    Camacho, María; Quintana, María Del Pino; Calabuig, Pascual; Luzardo, Octavio P; Boada, Luis D; Zumbado, Manuel; Orós, Jorge

    2015-01-01

    The aim of this study was to compare the efficacy and effects on acid-base and electrolyte status of several crystalloid fluids in 57 stranded juvenile loggerhead turtles. Within a rehabilitation program four different crystalloid fluids were administered (0.9% Na Cl solution; 5% dextrose + 0.9% Na Cl solutions 1:1; 0.9% Na Cl + lactated Ringer's solutions 1:1; lactated Ringer's solution). Crystalloid fluids were intracoelomically administered during three days (20 ml/kg/day). Animals were sampled at three different moments: Upon admission for evaluating the type of acid-base or biochemical disorder, post-fluid therapy treatment for controlling the evolution of the disorder, and post-recovery period for obtaining the baseline values for rehabilitated loggerhead turtles. Each sample was analyzed with a portable electronic blood analyzer for pH, pO2, pCO2, lactate, sodium, potassium, chloride, glucose, and BUN concentration. Admission and post-fluid therapy treatment values were compared with those obtained for each turtle immediately before release. The highest percentage of acid-base recovery and electrolyte balance was observed in turtles treated with mixed saline-lactated Ringer's solution (63.6%), followed by turtles treated with physiological saline solution (55%), lactated Ringer's solution (33.3%), and dextrose-saline solutions (10%). Most turtles treated with lactated Ringer's solution had lower lactate concentrations compared with their initial values; however, 66.6% of turtles treated with lactated Ringer's solution had metabolic alkalosis after therapy. Significant higher concentrations of glucose were detected after saline-dextrose administration compared with all the remaining fluids. This is the first study evaluating the effects of several crystalloid fluids on the acid-base status and plasma biochemical values in stranded loggerhead sea turtles. Reference convalescent venous blood gas, acid-base, and plasma biochemical values, useful for veterinary

  9. Fluid balance and exercise performance.

    Science.gov (United States)

    Singh, Rabindarjeet

    2003-03-01

    Major sporting events in Malaysia are commonly staged in hot environments where the average daytime temperature is generally in the range of 29 to 31°C with the average relative humidity ranging from 80 to 95%. Exercise capacity and exercise performance are reduced when the ambient temperature is high and it has major implications for competitors as well as for spectators and officials. Prolonged exercise leads to progressive water and electrolyte loss from the body as sweat is secreted to promote heat loss. The rate of sweating depends on many factors and increases in proportion to work rate and environmental temperature and humidity. Sweat rates are highly variable and can exceed 2L.h-1 for prolonged periods in high heat. Since dehydration will impair exercise capacity and can pose a risk to health, the intake of fluid during exercise to offset sweat losses is important. Carbohydrate-electrolyte fluid ingestion during exercise has the dual role of providing a source of carbohydrate fuel to supplement the body's limited stores and of supplying water and electrolytes to replace the losses incurred by sweating. The composition of the drinks to be taken will be influenced by the relative importance of the need to supply fuel and water which, in turn depends on the intensity and duration of exercise activity, the ambient temperature, and humidity. Carbohydrate-electrolyte solutions appear to be more effective in improving performance than plain water. There is no advantage to fluid intake during exercise of less than 30-minute duration. Complete restoration of fluid balance after exercise is an important part of the recovery process and becomes even more important in hot, humid conditions. If a second bout of exercise has to be performed after a relatively short interval, the speed of rehydration becomes of crucial importance. Rehydration after exercise requires not only replacement of volume losses, but also replacement of some electrolytes, primarily sodium

  10. Solvent activities of the fluorinated solid polymer electrolyte/water system in fuel cells

    Science.gov (United States)

    Kim, Tae Hwan; Bae, Young Chan

    We modified the lattice fluid equation-of-state by the introducing Debye-Hückel equation. A thermodynamic model taking into account the specific interaction and ionic strength between the polymer and the solvent is proposed. The proposed model successfully predicts the vapor/liquid equilibria (VLE) of solvents and the solid polymer electrolyte (SPE). A generalized lattice fluid model is modified to describe the change of water activity in solid polymer electrolyte (SPE)/water systems. The calculated activity curves using the proposed model agree remarkably well with the experimental data.

  11. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  12. Hypothyroidism and possible association with Metabolic Syndrome

    OpenAIRE

    Iqbal, Shahid; Sharma, Anil Kumar; Ahmad, Mushir; Nagtilak, Suryakant; Ahmad, Naved

    2016-01-01

    Background: Thyroid dysfunctions are the most common forms of endocrine disorder in our country, Thyroid hormones perform a wide array of metabolic functions including regulation of lipids, carbohydrates, protein and electrolytes and mineral metabolism, Thyroid hormones are major regulatory hormones that controls the rate of metabolic function and alteration in the levels of thyroid hormones may be associated with metabolic syndromeAim: The study was performed to investigate the association b...

  13. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  14. A constitutive theory of reacting electrolyte mixtures

    Science.gov (United States)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  15. Water electrolyte transport through corrugated carbon nanopores.

    Science.gov (United States)

    Moghimi Kheirabadi, A; Moosavi, A

    2014-07-01

    We investigate the effect of wall roughness on water electrolyte transport characteristics at different temperatures through carbon nanotubes by using nonequilibrium molecular dynamics simulations. Our results reveal that shearing stress and the nominal viscosity increase with ion concentration in corrugated carbon nanotubes (CNTs), in contrast to cases in smooth CNTs. Also, the temperature increase leads to the reduction of shearing stress and the nominal viscosity at moderate degrees of wall roughness. At high degrees of wall roughness, the temperature increase will enhance radial movements and increases resistance against fluid motion. As the fluid velocity increases, the particles do not have enough time to fully adjust their positions to minimize system energy, which causes shearing stress and the nominal viscosity to increase. By increasing roughness amplitude or decreasing roughness wavelength, the shearing stress will increase. Synergistic effects of such parameters (wall roughness, velocity, ion concentration, and temperature) inside corrugated CNTs are studied and compared with each other. The molecular mechanisms are considered by investigating the radial density profile and the radial velocity profile of confined water inside modified CNT.

  16. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  17. Diabetes mellitus and electrolyte disorders

    Science.gov (United States)

    Liamis, George; Liberopoulos, Evangelos; Barkas, Fotios; Elisaf, Moses

    2014-01-01

    Diabetic patients frequently develop a constellation of electrolyte disorders. These disturbances are particularly common in decompensated diabetics, especially in the context of diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. These patients are markedly potassium-, magnesium- and phosphate-depleted. Diabetes mellitus (DM) is linked to both hypo- and hyper-natremia reflecting the coexistence of hyperglycemia-related mechanisms, which tend to change serum sodium to opposite directions. The most important causal factor of chronic hyperkalemia in diabetic individuals is the syndrome of hyporeninemic hypoaldosteronism. Impaired renal function, potassium-sparing drugs, hypertonicity and insulin deficiency are also involved in the development of hyperkalemia. This article provides an overview of the electrolyte disturbances occurring in DM and describes the underlying mechanisms. This insight should pave the way for pathophysiology-directed therapy, thus contributing to the avoidance of the several deleterious effects associated with electrolyte disorders and their treatment. PMID:25325058

  18. Perioperative fluid balance in patients with heart failure.

    Science.gov (United States)

    Sindelić, Radomir; Vlajković, Gordana; Davidović, Lazar; Marković, Dejan; Marković, Miroslav

    2010-01-01

    Careful assessment of fluid balance is required in the perioperative period since appropriate fluid therapy is essential for successful patient outcomes. Volume status is frequently assessed by different hemodynamic variables that could be targeted as endpoints for fluid therapy and resuscitation. Goal directed fluid therapy is a method for correction of fluid status in individual patients that includes invasive hemodynamic monitoring and aggressive perioperative correction of hemodynamics. Heart failure is a syndrome of ventricular dysfunction. It is associated with a variety of patophysiological disturbances, hydro-electrolyte balance disorders and compensatory mechanisms. Heart failure indicates careful assessment of fluid balance in perioperative period. The aim of this article is to describe actual techniques of hemodynamic measurements as well as main principles of fluid therapy to maintain hydro-electrolyte balance in patients with heart failure.

  19. Thermoelectricity in confined liquid electrolytes

    CERN Document Server

    Dietzel, Mathias

    2015-01-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  20. Evaluation of electrolyte imbalance among tuberculosis patients ...

    African Journals Online (AJOL)

    Adebimpe Wasiu Olalekan

    2015-02-24

    Feb 24, 2015 ... electrolyte and acid-base derangements frequently encountered in AIDS and TB, have ..... tuberculosis. Electrolyte and acid-base balance monitoring in ... National Agency for the Control of HIV/AIDS NACA. Preva- lence of ...

  1. Fluid and Electrolyte Needs for Training, Competition, and Recovery

    Science.gov (United States)

    2011-01-01

    eating and drinking practices if there is no urgency for recovery. But if rapid recovery (524 h) is desired or severe hypohydration (45% body mass...replaced to re-establish ‘‘normal’’ total body water (euhydration). This replacement can be by normal eating and drinking practices if there is no urgency ...exposure, as they induce an iso-osmotic hypovolaemia, for which there is no valid biomarkers. Daily water losses occur from respiration, urinary / faecal

  2. Strongly nonlinear dynamics of electrolytes in large ac voltages

    CERN Document Server

    Olesen, Laurits H; Bruus, Henrik

    2009-01-01

    We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and co...

  3. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  4. Electrolytes for magnesium electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  5. Correction of hypovolemia with crystalloid fluids: Individualizing infusion therapy.

    Science.gov (United States)

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2015-05-01

    Many situations in clinical practice involving patients with hypovolemia or acutely ill patients usually require the administration of intravenous fluids. Current evidence shows that the use of crystalloids should be considered, since most colloids and human albumin are usually associated with increased adverse effects and high cost, respectively. Among crystalloids, the use of normal saline is implicated with the development of hyperchloremic metabolic acidosis and renal vasoconstriction. These observations have led many authors to propose balanced solutions, mainly Lactated Ringer's, as the infusate of choice. However, although the restoration of volume status is the primary target in hypovolemic state, the correction of any associated acid-base or electrolyte disorders that frequently coexist is also of vital importance. This review presents specific situations that are common in daily clinical practice and require targeted infusate therapy in patients with reduced volume status. Furthermore, the review presents an algorithm aiming to help clinicians to make the best choice between normal or hypotonic saline and lactated Ringer's infusates. Lactated Ringer's infusate should not be given in patients with severe metabolic alkalosis, lactic acidosis with decreased lactate clearance, or severe hyperkalemia, and in patients with traumatic brain injury or at risk of increased intracranial pressure. The optimal choice of infusate should be guided by the cause of hypovolemia, the cardiovascular state of the patient, the renal function, as well as the serum osmolality and the coexisting acid-base and electrolyte disorders. Clinicians should be aware of any coexisting disorders in patients with hypovolemia and guide their choice of infusate treatment based on the overall picture of their patients.

  6. Experimental study on the characteristic and mechanism of body fluid metabolism in acute reaction phase of severe acute pancreatitis%重症急性胰腺炎早期体液代谢特点及机制

    Institute of Scientific and Technical Information of China (English)

    徐新建; 朱涛; 王喜艳; 付靓; 杨乐; 魏德海

    2008-01-01

    Objective To study the characteristic and mechanism of fluid metabolism in acute re-action phase of the severe acute pancreatitis (SAP). Methods Twenty-three dogs were randomly divided into two groups:mild acute pancreatitis (MAP) group (n=8) and SAP group (n= 15).The model of a-cute pancreatitis was made by injecting bile into main pancreatic duct. All the dogs were subjected to infu-sion therapy 1-5 days after model establishment. The plasma concentrations of Na+ and K+ ,red cell bema-tocrit,the plasma levels of aldosterone hormone and angiotensin Ⅱ were measured. The total incoming and excreting fluid and the total amount of isolation fluid were recorded. Results K+ concentration in SAP group had no significant change,and Na+ concentration was increased to (152.8±5.2) mmol/L at the first day ,decreased on the second day. The fluid output of 15 dogs was leas than the fluid input during the experiment period,and fluid sequestration at 48 h and 72 h was (1341±373) ml and (1998±510) ml respectively. There was significant difference between MAP and SAP groups (P < 0.05). The levels of plasma ALD and Ang Ⅱ were increased significantly in SAP group at the first day after the operation as compared with MAP group (P < 0.05). Both of them were declined at the second and third day, but higher than those preoperation. Conclusion The early body fluids metabolic disorder of the SAP mainly concen-trates in the capacity and concentration. The amount of the output is remarkably less than that of the input and fluid sequestration is increased continuously. The decline of the renal excretion function, which cannot play a fully role in regulating fluid metabolism,may be the key in metabolic disorder.%目的 探讨重症急性胰腺炎早期体液代谢的特点和机制.方法 取杂种犬23条分两组:轻症急性胰腺炎组(MAP组)8条和重症急性胰腺炎组(SAP组)5条,采用自身胆汁逆行主胰管注射法制模.制模后第1~5天每日补液,测定血浆Na+

  7. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  8. Acid-base and electrolyte disorders in patients with diabetes mellitus.

    Science.gov (United States)

    Sotirakopoulos, Nikolaos; Kalogiannidou, Irini; Tersi, Maria; Armentzioiou, Karmen; Sivridis, Dimitrios; Mavromatidis, Konstantinos

    2012-01-01

    Diabetes mellitus is the most common metabolic disorder in the community. The diabetics may suffer from acid-base and electrolyte disorders due to complications of diabetes mellitus and the medication they receive. In this study, acid-base and electrolyte disorders were evaluated among outpatient diabetics in our hospital. The study consisted of patients with diabetes mellitus who visited the hospital as outpatients between the period January 1, 2004 to December 31, 2006. The patients' medical history, age and type of diabetes were noted, including whether they were taking diuretics and calcium channel blockers or not. Serum creatinine, proteins, sodium, potassium and chloride and blood gases were measured in all patients. Proteinuria was measured by 24-h urine collection. Two hundred and ten patients were divided in three groups based on the serum creatinine. Group A consisted of 114 patients that had serum creatinine 3.1 mg/dL. Of the 210 patients, 176 had an acid-base disorder. The most common disorder noted in group A was metabolic alkalosis. In groups B and C, the common disorders were metabolic acidosis and alkalosis, and metabolic acidosis, respectively. The most common electrolyte disorders were hypernatremia (especially in groups A and B), hyponatremia (group C) and hyperkalemia (especially in groups B and C). It is concluded that: (a) in diabetic outpatients, acid-base and electrolyte disorders occurred often even if the renal function is normal, (b) the most common disorders are metabolic alkalosis and metabolic acidosis (the frequency increases with the deterioration of the renal function) and (c) the common electrolyte disorders are hypernatremia and hypokalemia.

  9. Acid-base and electrolyte disorders in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Nikolaos Sotirakopoulos

    2012-01-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder in the community. The diabetics may suffer from acid-base and electrolyte disorders due to complications of diabetes mellitus and the medication they receive. In this study, acid-base and electrolyte disorders were evaluated among outpatient diabetics in our hospital. The study consisted of patients with diabetes mellitus who visited the hospital as outpatients between the period January 1, 2004 to December 31, 2006. The patients′ medical history, age and type of diabetes were noted, including whether they were taking diuretics and calcium channel blockers or not. Serum creatinine, proteins, sodium, potassium and chloride and blood gases were measured in all patients. Proteinuria was measured by 24-h urine collection. Two hundred and ten patients were divided in three groups based on the serum creatinine. Group A consisted of 114 patients that had serum creatinine 3.1 mg/dL. Of the 210 patients, 176 had an acid-base disorder. The most common disorder noted in group A was metabolic alkalosis. In groups B and C, the common disorders were metabolic acidosis and alkalosis, and metabolic acidosis, respectively. The most common electrolyte disorders were hypernatremia (especially in groups A and B, hyponatremia (group C and hyperkalemia (especially in groups B and C. It is concluded that: (a in diabetic outpatients, acid-base and electrolyte disorders occurred often even if the renal function is normal, (b the most common disorders are metabolic alkalosis and metabolic acidosis (the frequency increases with the deterioration of the renal function and (c the common electrolyte disorders are hypernatremia and hypokalemia.

  10. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  11. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module III. Shock and Fluid Therapy.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on shock and fluid therapy is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Six units of study are presented: (1) body fluids, electrolytes and their effect on the body, and the general principles of fluid and acid base balances; (2) characteristics of…

  12. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  13. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  14. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  15. Electrochromic Device with Polymer Electrolyte

    Science.gov (United States)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  16. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  17. Electrolyte leakage as an indicator

    Directory of Open Access Journals (Sweden)

    ahmad nezami

    2009-06-01

    Full Text Available In order to evaluate the electrolyte leakage as an indicator of freezing injury in colza (Brassica napus L. genotypes under controlled conditions, a trial carried out at the green house of College of Agriculture, Ferdowsi University of Mashhad. In this study 10 rapeseed genotypes, with 5 temperatures (0, -4, -8, -12 and -16 °C on subplot and acclimation and non acclimation on main plot were evaluated on RCD factorial split plot with two replications. Plants were kept until 3-5 leaf stage in green house condition with 23/16 2 °C (day/night and natural photoperiod. Pots were subjected to acclimation (for three weeks or non acclimation that plants immediately frozen.For acclimation treatment after three weeks freezing was done in thermogradient freezer. The cell membrane integrity was measured through electrolyte leakage and the lethal temperature 50 (LT50 of samples also were determined. There were significant differences (p

  18. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  19. Analysis of electrolyte transport through charged nanopores

    Science.gov (United States)

    Peters, P. B.; van Roij, R.; Bazant, M. Z.; Biesheuvel, P. M.

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3 ×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968), 10.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  20. Electrolyte disorders associated with the use of anticancer drugs.

    Science.gov (United States)

    Liamis, George; Filippatos, Theodosios D; Elisaf, Moses S

    2016-04-15

    The use of anticancer drugs is beneficial for patients with malignancies but is frequently associated with the occurrence of electrolyte disorders, which can be hazardous and in many cases fatal. The review presents the electrolyte abnormalities that can occur with the use of anticancer drugs and provides the related mechanisms. Platinum-containing anticancer drugs induce hypomagnesemia, hypokalemia and hypocalcemia. Moreover, platinum-containing drugs are associated with hyponatremia, especially when combined with large volumes of hypotonic fluids aiming to prevent nephrotoxicity. Alkylating agents have been linked with the occurrence of hyponatremia [due to syndrome of inappropriate antidiuretic hormone secretion (SIADH)] and Fanconi's syndrome (hypophosphatemia, aminoaciduria, hypouricemia and/or glucosuria). Vinca alkaloids are associated with hyponatremia due to SIADH. Epidermal growth factor receptor monoclonal antibody inhibitors induce hypomagnesemia, hypokalemia and hypocalcemia. Other, monoclonal antibodies, such as cixutumumab, cause hyponatremia due to SIADH. Tyrosine kinase inhibitors are linked to hyponatremia and hypophosphatemia. Mammalian target of rapamycin inhibitors induce hyponatremia (due to aldosterone resistance), hypokalemia and hypophosphatemia. Other drugs such as immunomodulators or methotrexate have been also associated with hyponatremia. The administration of estrogens at high doses, streptozocin, azacitidine and suramin may induce hypophosphatemia. Finally, the drug-related tumor lysis syndrome is associated with hyperphosphatemia, hyperkalemia and hypocalcemia. The prevention of electrolyte derangements may lead to reduction of adverse events during the administration of anticancer drugs.

  1. Serum Electrolytes During Different Phases Of Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Dr. M. A. Lanje,

    2010-11-01

    Full Text Available Background: Although the coordinated sequence of hormonal changes during the normal menstrual cycle are well characterized, whether similar or parallel changes occur in the distribution of various electrolytes has not been clearly established. Materials and methods: This corollary follow up study on 50 healthy normal menstruating females presents variation in serum calcium, magnesium, sodium and potassium during menstrual, follicular and luteal phases of menstrual cycle. Results: The study demonstrated that serum calcium levels were significantly (p < 0.001 higher in follicular phase than menstrual and luteal phases. Serum magnesium levels were significantly (p < 0.001 lower in follicular phase than menstrual and luteal phases. Serum sodium levels were significantly lower in luteal phase than the menstrual and follicular phases. Serum potassium levels were higher (non-significant in luteal phase than menstrual and follicular phases. Conclusion: The concurrence of these cyclical changes in these electrolytes supports the claim of many women that they suffer changes in fluid and electrolyte balance in the premenstrual days. Moreover, these changes may have significance in terms of the normal reference interval, hence necessitate small but significant lterations to the normal reference interval.

  2. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  3. Neurologic complications of electrolyte disturbances and acid-base balance.

    Science.gov (United States)

    Espay, Alberto J

    2014-01-01

    Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia.

  4. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  5. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  6. Plasma volume and electrolyte shifts with heavy exercise in sitting and supine positions

    Science.gov (United States)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Morse, J. T.; Mangseth, G. R.

    1979-01-01

    An experimental study was carried out to compare fluid and electrolyte shifts after heavy exercise performed by four voluntary male subjects (26-45 yr) in sitting and supine positions. Plasma volume and electrolyte shifts were measured during the 6-min control period and for 60 min after a continuous peak oxygen uptake test. The results indicate that the most likely driving force for the restitution of plasma volume after peak exercise is provided by a change in hydrostatic and/or systemic blood pressures when exercise ceases.

  7. Hidratação enteral em bovinos: avaliação de soluções eletrolíticas isotônicas administradas por sonda nasogástrica em fluxo contínuo Enteral fluid therapy in cattle: evaluation of isotonic electrolyte solutions administered via nasogastric tube on continuous flow

    Directory of Open Access Journals (Sweden)

    José Dantas Ribeiro Filho

    2011-02-01

    Full Text Available Foram avaliados os efeitos de soluções eletrolíticas isotônicas administradas via sonda nasogástrica de pequeno calibre e fluxo contínuo sobre o hematócrito, proteína total, albumina, sódio, potássio, cloreto, magnésio total, uréia, creatinina, glicose e lactato de bovinos desidratados experimentalmente. Seis bovinos adultos, mestiços, dois machos e quatro fêmeas foram avaliados. A hidratação enteral foi administrada na dose de 15mL kg-1 h-1 durante 12 horas. Os animais foram separados em dois tratamentos num delineamento experimental crossover e submetidos a cada um dos seguintes tratamentos: SEGlic: NaCl 4g, KCl 1g, NaHCO3 4g, dextrose 5g em 1.000mL de água; SEProp: NaCl 8g, KCl 0,5g, CaCl2 0,5g, propilenoglicol 15mL em 1.000mL de água. Após a administração das soluções eletrolíticas, ocorreu expansão da volemia, em ambos os tratamentos, ocasionando diminuição do hematócrito e proteína total. A SEGli ocasionou o aparecimento de hipernatremia e aumento do lactato plasmático. Por sua vez, a SEProp aumentou a taxa de glicose plasmática, enquanto os demais parâmetros avaliados permaneceram na faixa de referência.This study evaluated the effects of isotonic electrolyte solutions administered via small-bore nasogastric intubation on a continuous flow rate on the hematocrit, total protein, albumin, sodium, potassium, chloride, total magnesium, urea, creatinine, glucose and lactate in cattle experimentally dehydrated. Six crossbred adult cattle, two males and four females were used for the study. Enteral fluid therapy was performed by using 15mL kg-1 h-1 for 12 hours. The animals were divided in two treatments in a "crossover" experimental design and subjected to the following treatments: SEGlic: 4g NaCl, 1g KCl, 4g NaHCO3, 5g dextrose in 1.000mL of water; SEProp: 8g NaCl, 0.5g KCl, 0.5g CaCl2, 15mL propylene glycol in 1.000mL of water. Both treatments demonstrated expansion of blood volume, reduction of hematocrit and

  8. Chemical stability of γ-butyrolactone-based electrolytes for aluminum electrolytic capacitors

    Science.gov (United States)

    Ue, Makoto; Takeda, Masayuki; Suzuki, Yoko; Mori, Shoichiro

    γ-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/γ-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/γ-butyrolactoneelectrolytes decomposed by SN2 reactions giving alkyi benzoates and trialkylamines. The deterioration of the carboxylate salt/γ-butyrolactone electrolytes was accelerated by electrolysis.

  9. Investigation of electrolyte electric discharge characteristics

    Science.gov (United States)

    Kirko, D. L.; Savjolov, A. S.

    2016-09-01

    The most important electrical characteristics of electrolyte electric discharge were investigated. The electric burning discharge was obtained with the help of different electrolytes. The spectral composition of the electric discharge electromagnetic radiation was determined, the plasma temperature was determined. The spectrum of the electric discharge high-frequency oscillations was calculated in the region v=10 kHz-80 MHz. The most appropriate modes of the electric burning discharge in different electrolytes were proposed.

  10. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  11. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  12. Solid-oxide fuel cell electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, I.D.; Hash, M.C.; Krumpelt, M.

    1991-12-31

    This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  13. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  14. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  15. [FTIR investigation of new polymer solid electrolytes].

    Science.gov (United States)

    Yang, Shu-ting; Chen, Hong-jun; Dong, Hong-yu; Jia, Jun-hua; Cao, Zhao-xia

    2004-04-01

    The conductivity of the porous polymer solid electrolyte blended with PVDF and PMMA, which was made by a micro-wave hot-cross-linking method, reached 2.05 x 10(-3) S x cm(-1) at room temperature. The polymer solid electrolyte was analyzed and investigated by FTIR. The results show that the PVDF, PMMA and LiClO4 in the polymer solid electrolyte were not simply blended, but certain kind of effect existed which was strengthened only when the polymer solid electrolyte came into being.

  16. Electrodeposition of Fe powder from acid electrolytes

    Directory of Open Access Journals (Sweden)

    VESNA M. MAKSIMOVIC

    2008-08-01

    Full Text Available Polarization characteristics of the electrodeposition processes of Fe powders from sulfate and chloride electrolytes and the morphology of the obtained powders were investigated. The morphology depended on the anion presence in the electrolyte but not on the current density in the investigated range. A characteristic feature of the dendritic powder with cauliflower endings obtained from sulfate electrolyte is the presence of cone-like cavities and the crystallite morphology of the powders surface. On the other hand, Fe powders electrodeposited from chloride electrolyte appear in the form of agglomerates. A soap solution treatment applied as a method of washing and drying provides good protection from oxidation of the powders.

  17. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  18. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization

    Science.gov (United States)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan

    2006-11-01

    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  19. Electrolytic Passivation of Nitinol Shape Memory Alloy in Different Electrolytes

    Institute of Scientific and Technical Information of China (English)

    SU Xiang-dong; WANG Tian-min; HAO Wei-chang; HE Li

    2006-01-01

    The corrosion behavior of the nitinol alloy was studied in various corrosion media of different Cl- ion concentrations. The results demonstrate that the Cl- ion concentration has significant influences on the corrosion behavior of the nitinol alloy. In order to enhance the corrosion resistance, protective films were generated on the surface of the nitinol alloy by means of the electrochemical passivation method, for which five different electrolytic solutions were investigated. The surface analysis indicates full growth of all samples passivated in the different electrolytic solutions with layers, however, showing different morphological features. Without any defects like micro-cracks and pores, the surface of the samples passivated in the molybdate solution turns out smoother and denser than those passivated in other solutions. It is shown that the electro-chemical passivation will reduce Ni content but increase Ti content in the surface, reaching the Mole ratio of Ti:Ni = 9.01:1 on the outermost surface. Potentiodynamic polarization test demonstrates that the samples electrochemically passivated in the molybdate solution present a significant increase in breakdown potential due to titanium enrichment on the outermost surface.

  20. Interfacial behavior of polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  1. A longitudinal study of cartilage matrix metabolism in patients with cruciate ligament rupture--synovial fluid concentrations of aggrecan fragments, stromelysin-1 and tissue inhibitor of metalloproteinase-1.

    Science.gov (United States)

    Dahlberg, L; Fridén, T; Roos, H; Lark, M W; Lohmander, L S

    1994-12-01

    This is the first study which quantifies aggrecan fragments, stromelysin-1 and tissue inhibitor of metalloproteinases-1 (TIMP-1) in SF samples prospectively obtained from the same patient at different time intervals after a cruciate ligament injury of the knee. Aggrecan fragment concentrations were determined by dye precipitation with Alcian Blue. Stromelysin-1 and TIMP-1 were analysed by immunoassay. Ten healthy volunteers formed the reference group. Immediately after knee injury, all marker concentrations were higher as compared to the reference group. The high marker concentrations decreased gradually with time, and in samples obtained between 6 months and 6 years after the injury, median concentrations of some of the markers were not different compared to reference levels. This was in contrast to results from previous cross-sectional studies, where chronic phase median concentrations of all markers were consistently higher than reference levels. In previous cross-sectional studies, however, the samples were obtained at arthroscopy done because of knee complaints at different times after a knee injury. In the present study, the knee injured patients visited the orthopaedic outpatient ward only for SF sampling, and they had no or only minor knee symptoms. We conclude that the temporal changes of marker concentrations in joint fluid after knee injury, suggested from cross-sectional studies, have now been confirmed in a longitudinal, prospective cohort study. We further find that in patients with mild knee symptoms in the chronic phase after cruciate ligament injury, median SF levels of aggrecan fragments, stromelysin-1, and TIMP-1 are lower than in patients with significant knee complaints after the same type of injury.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  3. 不同健脾方对脾虚模型大鼠水盐代谢及水转运的作用比较%Comparative Study of Effects of Spleen-strengthening Recipes on Water-Electrolyte Metabolism and Water Transport in Rats with Spleen-deficiency Syndrome

    Institute of Scientific and Technical Information of China (English)

    张广霞; 赵静; 刘碧原; 张媛凤; 谢鸣

    2016-01-01

    【目的】观察比较健脾—健脾渗湿—健脾升阳方对脾虚证模型大鼠水盐代谢状态的影响。【方法】选用雄性Wistar大鼠随机分为正常对照组、脾虚模型组,采用过度疲劳+饮食失节的方法复制脾虚证模型,造模2周后随机分为脾虚模型组、补中益气汤组、四君子汤组、参苓白术散组。于造模第15天,给药各组大鼠按4.05 g·kg-1·d-1剂量给予补中益气汤、四君子汤、参苓白术散灌胃;模型组和正常组给予等量蒸馏水,连续14 d。测定各组大鼠血清中Na+、 K+、抗利尿激素(ADH)、醛固酮(ALD)、结肠和小肠段水通道蛋白-3(AQP3)及肾脏水通道蛋白-2(AQP2)。【结果】与正常组比较,脾虚模型组大鼠血中Na+、 ALD、 ADH均显著性升高(P<0.01),肾脏AQP2显著升高,血K+及结肠和小肠段中AQP3显著降低(P<0.01)。与模型组比较,3方干预组大鼠血中Na+、 ALD、 ADH及肾脏AQP2均显著性降低(P<0.05或P<0.01),血K+及降结肠和小肠段AQP3显著性升高(P<0.05或P<0.01)。补脾类方之间比较,参苓白术散组血中Na+、 ALD、 AVP均较其他2方组显著性降低(P<0.01),血K+及降结肠段和小肠段AQP3较其他2方组显著升高(P<0.01);参苓白术散组和补中益气汤组的肾脏AQP2较四君子汤组显著性降低(P<0.05或P<0.01)。【结论】脾虚证模型大鼠存在水盐代谢及细胞水转运功能的异常,健脾—健脾渗湿—健脾升阳3方对脾虚证模型大鼠水液代谢失调均有不同程度的改善作用,其中以健脾渗湿方参苓白术散作用最优。%Objective To compare the effects of different spleen-strengthening recipes on water-electrolyte metabolism and water transport in rat model of spleen-deficiency syndrome. Methods The male Wistar rats were randomly assigned into the normal group and spleen-deficiency model group. The rat model of spleen-deficiency was

  4. Discharging dynamics in an electrolytic cell

    Science.gov (United States)

    Feicht, Sarah E.; Frankel, Alexandra E.; Khair, Aditya S.

    2016-07-01

    We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage VT=kBT /q ≃25 mV, where kB is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979), 10.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011), 10.1063/1.3554445]. In fact, at sufficiently large voltages (several VT), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than VT, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the R C timescale of the cell, λDL /D , where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ɛ =λD/L ≪1 , there is a "weakly nonlinear" regime defined by VT≲V ≲VTln(1 /ɛ ) , where the bulk salt concentration is uniform; thus the R C timescale of the evolution of the current magnitude

  5. Plasma electrolytic oxidation of AMCs

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  6. Plasma electrolytic oxidation of metals

    Directory of Open Access Journals (Sweden)

    Stojadinović Stevan

    2013-01-01

    Full Text Available In this lecture results of the investigation of plasma electrolytic oxidation (PEO process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determination of electron temperature, electron number density, spatial density of micro-discharges, the active surface covered by micro-discharges, and dimensional distribution of micro-discharges at various stages of PEO process. Special attention was focused on the results of the study of the morphology, chemical, and phase composition of oxide layers obtained by PEO process on aluminum, tantalum, and titanium in electrolytes containing tungsten. Physicochemical methodes: atomic force microscopy (AFM, scanning electron microscopy (SEM-EDS, x-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS, and Raman spectroscopy served as tools for examining obtained oxide coatings. Also, the application of the obtained oxide coatings, especially the application of TiO2/WO3 coatings in photocatalysis, were discussed.

  7. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  8. Nanocomposite polymeric electrolytes to record electrophysiological brain signals in prolonged, unconventional or extreme conditions.

    Science.gov (United States)

    Licoccia, Silvia; Luisa Di Vona, M; Romagnoli, Paola; Narici, Livio; Acquaviva, Massimo; Carozzo, Simone; Marco, Stefano Di; Saturno, Moreno; Sannita, Walter G; Traversa, Enrico

    2006-09-01

    Chemically stable nanocomposite iono-conducting polymeric membranes (based on lithium salts and nanocrystalline oxide powders dispersed in a polymethyl methacrylate matrix) performed successfully in the recording of human brain responses to visual stimulation. Impedance was higher than that of conventional electrodes. However, the electrophysiological signals recorded by acid Al(2)O(3) and neutral Al(2)O(3) 5 wt.% and 10 wt.% nanocomposite gel electrolytes were comparable to those obtained with standard electrodes, even without preliminary skin cleaning and in the absence of gel electrolytes allowing better contact with and skin-electrode ionic conductance. The electrochemical and mechanical characteristics of these membranes make them fit for human and animal research, for clinical application (specifically in emergencies, prolonged electrophysiological recordings), or in unconventional or extreme conditions when fluid electrolytes are unsuitable (e.g., biomedical space research).

  9. Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes

    Science.gov (United States)

    Dumitriu, Cristina; Popescu, Marian; Ungureanu, Camelia; Pirvu, Cristian

    2015-06-01

    Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO2 layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO2 nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  10. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  11. Polymeric electrolytes for ambient temperature lithium batteries

    Science.gov (United States)

    Farrington, G. C.

    1987-09-01

    During this reporting period a number of novel solid polymer electrolytes formed by salts of multivalent cations and polyethylene oxide (PEO) have been prepared and characterized. These materials are of interest not only because of their potential ionic conductivities, but also because some of them may have electronic conductivity and oxidizing power which would be useful for novel electrode materials in all-solid-state batteries. Two broad classes of materials were investigated: PEO solutions of Zn(2), Cd(2), and Pb(2), all of which are potential electrolytes for solid-state batteries, and PEO solutions of transition metal salts, which are of interest as possible cathode materials. Mixed compositions containing both divalent cations and lithium ions were also prepared. Electrolytes formed with small, highly-polarizing ions, such as Mg(2) and Ca(2), are essentially pure anion conductors. Electrolytes containing Zn(2) behave similarly, unless they are hydrated, in which case the Zn(2) ions are quite mobile. Electrolytes formed with larger, more polarizable cations, such as Pb(2) and Cd(2), conduct both anions and cations. Solutions of salts of transition metal cations form a third group of electrolytes. Of the electrolytes investigated so far, those formed with Ni(++) salts are the most unusual. It appears as if the transport number of Ni(2) and the electrolyte conductivity can be greatly enhanced by controlling the hydration and dehydration of the polymer.

  12. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  13. Microporous polymer electrolyte based on PVDF-PEO

    Institute of Scientific and Technical Information of China (English)

    LI Jian; XI Jingyu; SONG Qing; TANG Xiaozhen

    2005-01-01

    @@ Since Wright et al.[1] found that the complex of PEO/alkali metals salt had the ability of ionic conductivity in 1973, in-depth studies have been carried out about various polymer electrolytes, which were applied to replacing the liquid electrolytes in lithium ion battery[2,3]. At present, polymer electrolytes mainly include three kinds: dry polymer electrolytes, gel polymer electrolytes and microporous polymer electrolytes.

  14. Enteral fluid therapy through nasogastric tube in rumen cannulated goats

    Directory of Open Access Journals (Sweden)

    Katia Atoji-Henrique

    2012-12-01

    Full Text Available This paper reports the effects of fluid therapy in goats through nasogastric route with an electrolyte solution composed by concentrations of sodium, potassium and chloride similar to goat plasma (140mmol/L of Na+, 4.5mmol/L of K+, 110mmol/L of Cl-. Four Alpine Chamoisee goats, two of them with evident leakage of the rumen cannulas, were used in a crossover experimental design of two periods and two groups. In one group the two goats were submitted to a treatment protocol to induce dehydration before the fluid therapy, whereas the other group was not. Fluid therapy consisted supplying 10mL/kg/h of the electrolyte solution during 8 hours. No signs of discomfort or stress were observed. The dehydration model employed caused a mild dehydration indicated by decrease in feces humidity, body weight and abdominal circumference, and increase in plasma total solids concentration. During fluid therapy globular volume and plasma total solids decreased, whereas % body weight and abdominal circumference increased. No signs of hyperhydration were observed and serum electrolytes (Na+, Cl-, K+ presented no significant alterations in both groups. Fluid therapy proposed in this study was efficient to treat dehydration, even for rumen cannulated animals with evident leakage, and can be administrated safely with no electrolyte imbalance.

  15. Hydrochloric acid for treating metabolic alkalosis.

    Science.gov (United States)

    Korkmaz, A; Yildirim, E; Aras, N; Ercan, F

    1989-09-01

    Six patients with severe metabolic alkalosis were treated with intravenous hydrochloric acid (HCl) infusion. HCl was given through a central venous catheter, at a concentration of 0.1 mEq per ml. At least two of the following criteria were considered for initiation of the therapy: An arterial pH of greater than 7.45, a base excess (BE) of greater than +7 mmol/L, a PaCO2 of greater than 50 mmHg. The HCl amount was calculated using the BE formula, however, two thirds was infused for avoiding excessive acid loading. Patients were monitored by the blood gases, serum electrolytes, hemoglobin, hematocrit, bilirubin determinations and blood smear findings. While a significant decrease was noticed in pH and BE values, moderate changes were detected in PaCO2 due to different ventilatory status of the cases. All laboratory test results remained within normal limits and no complication was encountered. The advantage of the therapy is that less volume is needed for the correction of alkalosis, particularly in the cases requiring fluid restriction. HCl therapy, moreover, is a safe and time-saving method because of having rapid response to the treatment in the critically ill surgical patients.

  16. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  17. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  18. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  19. The effect of different rehydration drinks on post-exercise electrolyte excretion in trained athletes.

    Science.gov (United States)

    Brouns, F; Kovacs, E M; Senden, J M

    1998-01-01

    Eight well-trained cyclists were dehydrated (median [P25-P75 percentiles]) 3.21 [2.97-3.56]% of body mass by cycling in the heat (28 C). During the first 2 h of recovery, the subjects randomly ingested ad libitum either a caffeinated soft drink (CC), a low Na+ mineral water (MW), or an isotonic carbohydrate-electrolyte solution (CES). Fluid intake and urine loss amounted respectively to 2.77 [2.34-2.85] kg, 1.00 [0.82-1.20] kg for CC, 2.15 [1.86-2.79] kg, 0.96 [0.40-1.49] kg for MW, and 2.86 [2.15-3.58] kg, 1.10 [0.86- 1.50] kg for CES. Electrolyte retention was calculated from electrolyte intake with the drink and loss with the urine. Consumption of CC and MW which were low in electrolytes resulted in marked loss of Na+, K+, Cl-, Mg2+ and Ca2+. Consumption of CES resulted in Na+, Mg2+ and Ca2+ retention while K+ and Cl- loss were not influenced. The significantly lower Na+, Mg2+ and Ca2+ loss with CES compared to both CC and MW may be explained by its higher electrolyte content in CES, compared to CC and MW, which only had minor amounts of these electrolytes. Furthermore, it was shown that CC potentiated urinary Mg2+ and Ca2+ excretion. It is concluded that: 1) Post-exercise MW or CC ingestion results in a negative electrolyte balance, 2) Caffeine containing beverages potentiate Mg2+ and Ca2+ excretion; 3) Consumption of CES containing moderate amounts of Na+, Mg2+ and Ca2+ results in sufficient replacement to compensate for urinary losses.

  20. EFFECTS OF A CARBOHYDRATE-ELECTROLYTE DRINK ON SPECIFIC SOCCER TESTS AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Sergej M. Ostojic

    2002-06-01

    Full Text Available The aim of this study was to examine the effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. Twenty-two professional male soccer players volunteered to participate in the study. The players were allocated to two assigned trials ingesting carbohydrate-electrolyte drink (7% carbohydrates, sodium 24 mmol.l-1, chloride 12 mmol.l-1, potassium 3 mmol.l-1 or placebo during a 90 min on-field soccer match. The trials were matched for subjects' age, weight, height and maximal oxygen uptake. Immediately after the match, players completed four soccer-specific skill tests. Blood glucose concentration [mean (SD] was higher at the end of the match-play in the carbohydrate-electrolyte trial than in the placebo trial (4.4 (0.3 vs. 4.0 (0.3 mmol.l-1, P < 0.05. Subjects in the carbohydrate-electrolyte trial finished the specific dribble test faster in comparison with subjects in the placebo trial (12.9 (0.4 vs. 13.6 (0.5 s, P < 0.05. Ratings of the precision test were higher in the carbohydrate-electrolyte trial as compared to the placebo trial (17.2 (4.8 vs. 15.1 (5.2, P < 0.05 but there were no differences in coordination test and power test results between trials. The main finding of the present study indicates that supplementation with carbohydrate-electrolyte solution improved soccer-specific skill performance and recovery after an on-field soccer match compared with ingestion of placebo. This suggests that soccer players should consume carbohydrate-electrolyte fluid throughout a game to help prevent deterioration in specific skill performance

  1. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  2. Antibacterial efficiencies of TiO{sub 2} nanostructured layers prepared in organic viscous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Popescu, Marian [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Ungureanu, Camelia [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Pirvu, Cristian, E-mail: c_pirvu@yahoo.com [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2015-06-30

    Graphical abstract: - Highlights: • Ti substrate was covered with a nanostructured TiO{sub 2} layer in viscous electrolytes. • The formation mechanism and surface morphologies are very different. • The shielding covering the nanotubes incorporate the used electrolytes. • TiO{sub 2} nanostructured layers showed antibacterial efficiencies. - Abstract: Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO{sub 2} layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO{sub 2} nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  3. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  4. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2014-01-01

    In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar-circular ......In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport...

  5. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  6. 液体复苏的不良反应及对策%Adverse effects and management of fluid resuscitation

    Institute of Scientific and Technical Information of China (English)

    喻文亮; 葛许华

    2012-01-01

    Adverse effects and management of fluid resuscitation were reviewed in this article,which included pulmonary and peripheral edema,complication in nervous system ( cerebral edema,central pontine myelinalysis,and extrapontine myelinalysis),electrolyte disturbances and metabolic acidosis.%本文介绍了液体复苏时可能出现的不良反应及对策,包括肺水肿及组织水肿、神经系统并发症(如脑水肿、脑桥中央髓鞘溶解症及脑桥外髓鞘溶解症),以及电解质紊乱、酸中毒等.

  7. Polymer electrolytes, problems, prospects, and promises

    Energy Technology Data Exchange (ETDEWEB)

    Nagasubramanian, G.; Boone, D.

    1995-07-01

    Ionically conducting polymer electrolytes have generated, in recent years, wide-spread interest as candidate materials for a number of applications including high energy density and power lithium batteries. In the early 70s the first measurements of ionic conductivity in polyethylene oxide (PEO)-salt complexes were carried out. However, Armand was the first one to realize potential of these complexes (polymer-salt complexes) as practical ionically conducting materials for use as electrolytes in lithium batteries. Subsequent research efforts identified the limitations and constraints of the polymer electrolytes. These limitations include poor ionic conductivity at RT (< 10{sup {minus}8} S/cm), low cation transport number (<0.2) etc. Several different approaches have been made to improving the ionic conductivity of the polymer electrolytes while retaining the flexibility, processibility, ease of handling and relatively low impact on the environment that polymers inherently possess. This paper- reviews evolution of polymer electrolytes from conventional PEO-LiX slat complexes to the more conducting polyphosphazene and copolymers, gelled electrolytes etc. We also review the various chemical approaches including modifying PEO to synthesizing complicated polymer architecture. In addition, we discuss effect of various lithium salts on the conductivity of PEO-based polymers. Charge/discharge and cycle life data of polymer cells containing oxide and chalcogenide cathodes and lithium (Li) anode are reviewed. Finally, future research directions to improve the electrolyte properties are discussed.

  8. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  9. Electrolytic orthoborate salts for lithium batteries

    Science.gov (United States)

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  10. Cross-linked Polyelectrolyte and Its Function in Adsorption of Fluid and Excess Nitrogen Waste Products: an Experimental Study on Dialysate Effluent Fluid.

    Science.gov (United States)

    Tayebi Khosroshahi, Hamid; Abedi, Behzad; Daneshvar, Sabalan; Alizadeh, Effat; Khalilzadeh, Mohammadreza; Abedi, Yaghoub

    2017-07-01

    One of the most important issues in patients with chronic kidney disease is fluid retention and volume overload accompanied by retention of nitrogenous waste products and some electrolytes. Bowel fluid contains high levels of urea, creatinine, uric acid, and electrolytes, which make it a potential candidate for intestinal excretion of nitrogen wastes and electrolytes. Cross-linked polyelectrolyte (CLP) is a polymer that, given orally, absorbs excess fluid, electrolyte, and nitrogenous waste products. In an experimental study on 30 hemodialysis patients, the effect of CLP on adsorption of fluid, urea, creatinine, uric acid, sodium, and potassium were evaluated. For this purpose, 500 mL of effluent fluid of each patient were collected at the 1st hour of dialysis. The concentrations of the abovementioned products were measured by standard methods. Then the dialysate effluent samples were treated with 6 g of CLP and incubated for 4 hours at 37°C. Up to 80% of effluent fluid water was adsorbed by CLP. There were significant reductions in urea, creatinine, uric acid, and sodium levels in the remaining effluent fluid (P substitute for conventional dialysis methods, especially hemodialysis.

  11. R fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater

  12. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions

    CERN Document Server

    Medina, Stefan; Wang, Zhen-Gang; Schmid, Friederike

    2014-01-01

    We propose an efficient simulation algorithm based on the dissipative particle dynamics (DPD) method for studying electrohydrodynamic phenomena in electrolyte fluids. The fluid flow is mimicked with DPD particles while the evolution of the concentration of the ionic species is described using Brownian pseudo particles. The method is designed especially for systems with high salt concentrations, as explicit treatment of the salt ions becomes computationally expensive. For illustration, we apply the method to electro-osmotic flow over patterned, superhydrophobic surfaces. The results are in good agreement with recent theoretical predictions.

  13. Effects of water-electrolyte metabolism related to renin-angiotensin system and imprinting in the offspring rats induced by maternal hypoxia during pregnancy%妊娠期母鼠缺氧对子代肾素-血管紧张素系统及其水盐代谢调控的“印迹”效应

    Institute of Scientific and Technical Information of China (English)

    何睿; 曹莉; 李世刚; 陈宁静; 徐智策; 茅彩萍

    2012-01-01

    Objective To determine the effects of perinatal exposure to hypoxia on water-electrolyte metabolism related to rennin-angiotensin system (HAS) and "imprinting" effects in the offspring. Methods SD pregnant rats were individed into two groups randomly and were given different treatments. Fetal body weight, brain weight were measured at gestation 21 day (GD21). Blood gases, electrolytes and plasma osmotic pressure of both fetus and five-month old offsprings were measured. Intake of the 1.8% NaCl and water was measured following subcutaneous injection hypertonic saline in the offsprings, and an-giotensin receptors in the brain were determined. Results Maternal hypoxia during gestation significantly decreased GD21 fetal body weight, brain weight and plasma PO,and S03% level, but there were no different in offsprings. And there was no different of blood Na + /K+ concentrations and plasma osmolality either in fetus or in adult offspring rats regardless of perinatal exposure to hypoxia. To the offsprings following perinatal exposure to hypoxia, their salt appetite was significantly increased by subcutaneous injection hypertonic saline. Furthermore, in the forebrain of the offsprings with perinatal exposure to hypoxia, expression of angiotensin AT2 R but AT, R was reduced, and the ratio of AT, R/AT2 R was significantly increased compared to control offspring. Conclusion The results showed that stimulated salt intake can be affected by exposure to hypoxia in fetal origins, and the changed behavior was associated with the remodeled expression of AT5 and AT2 receptors in the forebrain of the offspring.%目的 研究妊娠期母鼠缺氧对子代肾素-血管紧张素系统(RAS)及其调控的水盐代谢的“印迹”效应.方法 妊娠母鼠随机分成缺氧组和对照组,缺氧组于妊娠第4~21 d放入缺氧舱(10.5%O2),对照组同期放入缺氧舱(21%O2).在妊娠21 d(GD21)测量对照组和缺氧组胎鼠的脑质量、体质量及其血液电解质、血

  14. Method of dosing electrolyte in a sealed storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Akbulatova, A.D.; Mel' nikova, T.A.; Perugina, T.P.

    1981-01-01

    A method is proposed for dosing electrolyte in a sealed storage battery by weighing the storage battery before pouring in the electrolyte, pouring in the electrolyte, forming, removing the surplus electrolyte, repeated weighing, calculation for the difference in the weight of the quantity of the remaining electrolyte and correction for the weight of the quantity of electrolyte according to theoretical calculations. In order to improve accuracy after repeated weighing, a measurement is made of the magnitude of free gas space of the storage battery and a volume of electrolyte is added until it reaches 90-95% of the degree of filling of the pores included in the volume of the gas space.

  15. Responses of Preterm Pigs to an Oral Fluid Supplement During Parenteral Nutrition

    DEFF Research Database (Denmark)

    Berding, Kirsten; Makarem, Patty; Hance, Brittany

    2016-01-01

    Background: Nutrients and electrolytes in amniotic fluid swallowed by fetuses are important for growth and development. Yet, preterm infants requiring parenteral nutrition (PN) receive minimal or no oral inputs. With the limited availability of amniotic fluid, we evaluated the responses of preterm...

  16. Multi-layered proton-conducting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  17. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A

    1997-01-01

    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  18. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  19. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  20. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  1. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  2. Hypothalamic knife cuts alter fluid regulation, vasopressin secretion, and natriuresis during water deprivation.

    Science.gov (United States)

    Bealer, S L; Crofton, J T; Share, L

    1983-05-01

    To investigate central neural pathways involved in release of vasopressin and in fluid electrolyte regulation, a retractable wire knife was used to make coronal knife cuts posterior to the organum vasculosum lamina terminalis (OVLT). 4 days following cuts or control surgery, animals were housed in metabolism cages and: (1) deprived of food and water for 48 h; (2) deprived of water only for 48 h; or (3) allowed continuous access to food and water. Water ingestion, food ingestion, urine volume, sodium excretion and urine osmolality were recorded daily. Trunk blood was then collected following decapitation for determination of plasma vasopressin, sodium, and protein concentrations, and osmolality. Animals with knife cuts and ad libitum access to food and water had significantly higher plasma osmolality (310 +/- 2 mosm/kg), and plasma vasopressin concentration (2.02 +/- 0.5 microunits/ml) than controls (306 +/- 1 mosm/kg and 0.60 +/- 0.04 microunits/ml, respectively). When rats were deprived of both food and water, there were no significant differences between the two groups in plasma vasopressin concentration, although plasma osmolality wa higher in animals with cuts. However, rats with knife cuts deprived of water only had significantly higher plasma osmolality (358 +/- 8 mosm/kg), sodium (164 +/- 19 mEq/l) and vasopressin (17.7 +/- 4 microunits/ml), than similarly treated control animals (317 +/- 1 mosm/kg, 145.5 +/- 1.0 mEq/1, 5.5 +/- 3 microunits/ml, respectively). These data indicate that a neural pathway in this brain region is critical for normal fluid and electrolyte balance during ad libitum access to food and water, and during water deprivation.

  3. Amniotic fluid propionylcarnitine in methylmalonic aciduria.

    Science.gov (United States)

    Penn, D; Schmidt-Sommerfeld, E; Jakobs, C; Bieber, L L

    1987-01-01

    Amniotic fluid samples from pregnancies complicated by foetal methylmalonic aciduria and from metabolically normal pregnancies were obtained at 16-18 weeks of gestation and analysed for total, free and acylcarnitine and individual carnitine esters. The amniotic fluid concentrations of total acylcarnitine and propionylcarnitine were higher in pregnancies with higher in pregnancies with methylmalonic aciduria than in normal pregnancies. The predominant carnitine ester was propionylcarnitine in the methylmalonic aciduria group and acetylcarnitine in the normal group. These findings suggest that in methylmalonic aciduria, abnormalities of carnitine metabolism already occur early in gestation. The amount of propionylcarnitine in amniotic fluid may be useful as an additional indicator of foetal methylmalonic aciduria.

  4. Hidratação enteral em equinos - solução eletrolítica associada ou não à glicose, à maltodextrina e ao sulfato de magnésio: resultados de laboratório Enteral fluid therapy in horses - electrolyte solution associated or not with glucose, maltodextrine and magnesium sulphate: laboratory results

    Directory of Open Access Journals (Sweden)

    Marcel Ferreira Bastos Avanza

    2009-07-01

    Full Text Available No presente estudo, foram avaliados os efeitos de soluções eletrolíticas administradas via sonda nasoesofágica de pequeno calibre sobre o hematócrito, o volume plasmático e as concentrações plasmáticas de proteínas totais, sódio, potássio, cloreto, magnésio total e cálcio iônico de eqüinos hígidos e desidratados experimentalmente. Foram utilizados quatro equinos adultos, mestiços, dois machos e duas fêmeas. No experimento 1 (E1Des, os animais foram desidratados experimentalmente, enquanto no 2 (E2Hig foram utilizados equinos hígidos. Os animais foram submetidos a cada um dos seguintes tratamentos: SE - solução eletrolítica isotônica; SEGli - solução eletrolítica isotônica + glicose; SEMalt - solução eletrolítica isotônica + maltodextrina e SEMg - solução eletrolítica isotônica + sulfato de magnésio. A solução eletrolítica foi administrada na dose de 15mL kg-1 h-1, durante 12h via sonda nasoesofágica por fluxo contínuo. Os tratamentos com as soluções eletrolíticas ocasionaram expansão do volume plasmático, ocasionando a redução nos valores das proteínas plasmáticas totais e do hematócrito, enquanto os valores dos eletrólitos avaliados permaneceram na faixa de referência.In the present study, the effects of four different electrolyte solutions on the packed cell volume (PCV, plasma volume and plasma concentrations of total protein, sodium, potassium, chloride, total magnesium, and ionized calcium in healthy and experimentally dehydrated horses were evaluated. Four crossbred horses, two males and two females were used. In experiment 1 (E1Des the animals were experimentally dehydrated, while in the second experiment (E2Hig healthy equines were used. In both experiments the animals were subjected to the following treatments: SE - isotonic electrolyte solution; SEGlu - glucose-enriched SE; SEMalt - maltodextrine-enriched SE and SEMg - magnesium sulphate-enriched SE. The electrolyte solutions used

  5. Modeling Electrolytically Top-Gated Graphene

    Directory of Open Access Journals (Sweden)

    Mišković ZL

    2010-01-01

    Full Text Available Abstract We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomenon is modeled using a modified Poisson–Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene’s doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.

  6. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  7. Review: electrolytes for electrochemical energy storage

    OpenAIRE

    Xia, Lin; Yu, Linpo; Hu, Di; Chen, George Z.

    2017-01-01

    An electrolyte is a key component of electrochemical energy storage (EES) devices and its properties greatly affect the energy capacity, rate performance, cyclability and safety of all EES devices. This article offers a critical review of the recent progress and challenges in electrolyte research and development, particularly for supercapacitors and supercapatteries, rechargeable batteries (such as lithium-ion and sodium-ion batteries), and redox flow batteries (including fuel cells in a broa...

  8. R Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-06-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  9. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    Science.gov (United States)

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  10. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  11. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    Energy Technology Data Exchange (ETDEWEB)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  12. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  13. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  14. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  15. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  16. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  17. Metabolic acidosis

    Science.gov (United States)

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  18. Metabolic neuropathies

    Science.gov (United States)

    Neuropathy - metabolic ... can be caused by many different things. Metabolic neuropathy may be caused by: A problem with the ... one of the most common causes of metabolic neuropathies. People who are at the highest risk for ...

  19. Sudden sensorineural hearing loss: Is there a connection with inner ear electrolytic disorders? A literature review.

    Science.gov (United States)

    Ciorba, Andrea; Corazzi, Virginia; Bianchini, Chiara; Aimoni, Claudia; Skarzynski, Henryk; Skarzynski, Piotr Henryk; Hatzopoulos, Stavros

    2016-12-01

    Electrolytic disorders of the inner ear represent a model that could be implicated in partially explaining the pathogenesis of sudden sensorineural hearing loss (SSNHL). Different types of electrolytes and different inner-ear loci are involved in cochlear homeostasis physiologically, to ensure the maintenance of an ion-balanced cochlear environment allowing a normal hair cell function. It has been hypothesized that a sudden loss of endocochlear potential, due to a rapid disruption of the inner ear fluid osmolality, could be responsible for a deterioration of the hearing function caused by damaged hair cells. The aim of this paper was to review the current literature and identify sources which might validate/fortify the hypothesis that inner ear electrolytic disorders have a role in the etiopathogenesis of SSNHL. The data in the literature underline the importance of ionic homeostasis in the inner ear, but they do not support a direct link between SSNHL and electrolyte disorders/imbalances. There is marginal evidence from otoacoustic emissions research that an indirect link might be present. © The Author(s) 2016.

  20. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  1. Ethyl Pyruvate Provides Therapeutic Benefits to Resuscitation Fluids

    Science.gov (United States)

    2009-02-01

    described in previous studies [40]. Animals without resuscitation were characterized by uremia, metabolic acidosis and hyperglycemia. Both resuscitation...AnGap) and negative base excess of extracellular fluid (BEecf). Resuscitation with Hextend alone or with ethyl pyruvate improved metabolic acidosis , anion...gap and BEecf . These effects on metabolic acidosis did not correlate with changes in bicarbonate, gases (total and partial CO2), or

  2. PMMA-based Gel Polymer Electrolytes with Crosslinking Network

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhang; Y. P. Wu; H. Q. Wu; M. Sun

    2005-01-01

    @@ 1Introduction The lithium-ion battery has a good rate capability and low-temperature performance, but its safety is relatively low due to the possibility of leakage of liquid electrolyte. The use of a solid or gel type electrolyte can lower the probability of leakage liquid electrolyte, and the electrochemical performance of gel electrolyte doesn't decrease so markedly as the solid electrolyte. Now, new types of advanced lithium-ion battery with gel polymer electrolytes are under developing which can be used in the future.

  3. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  4. 新型糖电解质输液在外科液体治疗的应用%Application of New Glucose and Electrolyte Infusion in Surgical Liquid Treatment

    Institute of Scientific and Technical Information of China (English)

    孙忠实; 朱明炜

    2016-01-01

    OBJECTIVE:The progress of liquid treatment is developing with the accompany of the deep understanding of the body fluid metabolism pathological physiological mechanism , research of infusion products and improvement of the clinical monitoring means .Fluid capacity , osmotic pressure and electrolyte content are the basic guarantee for maintaining matter metabolism , stable internal environment and physiological function in human body . The surgical patients were suppose to get rational fluid therapy for the disorder of body fluid balance caused by disease , fasting and surgical trauma , etc.Therefore, it is important to improve the prognosis of patients by the rational selection of types and dosage , the effective maintaining of systemic circulation and microcirculation , the normal operation of organ function and the reduction of incidence of perioperative complications .At present , the commonly used liquid are liquid crystal and colloid .Carbohydrate and electrolyte injection as one of the basic drugs for liquid treatment in clinic, on behalf of crystal infusion of new glucose electrolyte solution , developed rapidly in recent years .This thesis aims to review the purpose , the related theories , concrete proposal of surgical liquid treatment and the clinical application of new glucose and electrolyte infusion .%液体治疗的进步是伴随着对人体体液代谢病理生理机制认识的深入、输液产品的开发和临床监测手段的完善而发展的。体液容量、渗透压及电解质含量是维持机体正常代谢、内环境稳定和各器官功能的基本保证。外科患者由于疾病、禁食、手术创伤等原因导致体液平衡失调而需要进行合理的液体治疗。为此,合理选择液体的种类、剂量,有效地维持体/微循环的稳定,保证组织器官功能的正常运转,降低围术期并发症的发生率,对改善患者的预后极为重要。目前,常用的液体治疗药物主要有晶体

  5. Therapy of metabolic disorders with intravenous (IV) access ports and long term intravenous L-carnitine therapy.

    Science.gov (United States)

    Winter, S; Birek, L; Walker, T; Phalin-Roque, J; Chandler, M J; Field, C; Zorn, E

    1999-01-01

    With the expansion of newborn screening to include many organic acidurias and fatty acid oxidation defects, effective therapies of these disorders will be needed. Currently severe disorders such as methylmalonic and propionic aciduria. conventional therapy with diet and oral L-camitine often prove ineffective in preventing failure to thrive and recurrent metabolic decompensations. L-carnitine provides a natural pathway for removal of the toxic metabolites in these disorders and is life saving therapy but, with poor oral absorption (25%), it is difficult to supply adequate carnitine to meet the metabolic needs of these patients. Long term intravenous L-carnitine therapy, administered through a subcutaneous venous access port in 5 patients with organic acidurias [propionic aciduria (2), methylmalonic aciduria (2), 3 methylglutaconic aciduria(1)] resulted in improved growth, lower frequency of metabolic decompensations and increased tolerance of natural protein in the diet. An added benefit was the ability to initiate fluid. electrolytes, and antibiotics during metabolic decompensations at home thus averting hospitalizations.

  6. The Effect of Percutaneous Nephrolithotomy Process on Hemodynamic, Electrolyte and Acid-Base Changes

    Directory of Open Access Journals (Sweden)

    Ercan Baş

    2015-10-01

    Full Text Available Aim: Operation of percutaneous nephrolithotomy (PNL, is the most commonly used method of renal stone surgery. During this operation, kidney must be continually irrigated with isotonic liquid. In our study, we investigated the volume of irrigation, irrigation duration, input the number of percutaneous renal parenchymal thickness and the degree of this finding the effects of on hemodynamic, electrolyte and metabolic changes. Method: 64 patient with an indication for percutaneous nephrolithotomy were included in the study. Before irrigation, during irrigation and the post- irrigation; pulse, systolic and diastolic blood pressure (bp, electrolytes, arterial blood gases were measured. In preoperative and postoperative 1. and 24. hours hemoglobin, creatinine levels were measured. Before the operation; pelvicaliectasis degree, parenchymal thickness, volume and duration of irrigation and the number of percutaneous entry were recorded in all patients. Results: Following the start of irrigation, changes in diastolic and systolic bp and pulse also not statistically significant. No significant change of partial oxygen, carbon dioxide, and oxygen saturation pressure was observed. After the operation, serum sodium, potassium, calcium values are within normal limits, but when compared with preoperative values the decrease of these values statistically significant were observed. Bicarbonate and ph values with irrigation period had a negative correlation. Although not clinically significant parenchymal thickness was found to be negative correlation with decrease of calcium. Additionally degrees of pelvicaliectasis has been found negative correlation with the decrease of sodium and bicarbonate. Conclusion: Hemodynamics and electrolytes did not change significantly both during and after the PNL process, but metabolic acidosis was observed towards the end of the PNL process. In long-term irrigation, repeated percutaneous entrances, people with moderate and severe

  7. STUDY OF SERUM ELECTROLYTES IN FEMALE THYROID PATIENTS : A CASE CONTROL STUDY

    Directory of Open Access Journals (Sweden)

    Neela Mannangi

    2015-02-01

    Full Text Available NTRODUCTION : Thyroid hormone is a central regulator of body haemodynamic, thermoregulation and metabolism. The effect of thyroid hormones on lipid metabolism is well known, whereas the effect on electrolytes and minerals has not been well established and also the underlying mechanisms not well understood. Thyroid hormones regulate the activity of sodium potassium pumps in mo st of the tissues. The higher prevalence of thyroid disease in women suggests that estrogen might be involved in the pathophysiology of thyroid dysfunction. With this background the present study was undertaken to assess the alterations in the levels of serum electrolytes in hyperthyroid, hypothyroid & euthyroid female patients. MATERIAL AND METHODS : The present study was conducted in female patients who atte nded medicine outpatient D epartment of S. N. Medical C ollege & HSK H ospital , Bagalkot . Thyroid hormones were estimated by chemiluminiscence method . Electrolyte levels (Na + , k + & Cl - were measured by ion selective electrode method. Serum levels of free T3 T4 and TSH were obtained. Patients with history of intake of thyroid drugs, hypertensive, diabetes mellitus, obesity and all other causes for electrolyte abnormalities were excluded from the study. STATISTICS : All the values are expressed in mean ± SD . Unp aired ‘t’ test was applied. Pearson’s correlation was done to see the correlation between serum electrolytes and thyroid hormones using SPSS (version 16.0. RESULTS : In the present study mean age group of patients were between 20 - 60yrs. There were 90 femal e patients total in number. Out of which 30 patients were with hypothyroidism, another 30 were with hyperthyroidism and remaining 30 were with euthyroidism. Mean serum levels for thyroid function parameters and electrolytes are given in below table no.2 an d 3. DISCUSSION : Hypothyroidism is a very common condition and seen more in women than in men. The higher prevalence of thyroid disease in

  8. Mixing of two different electrolyte solutions in electromagnetic rectangular mixers

    Institute of Scientific and Technical Information of China (English)

    Meimei WEN; Chang Nyung KIM; Yue YAN

    2016-01-01

    This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combi- nation of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages (absolute values) to the electrodes.

  9. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...... of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  10. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  11. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  12. Polyethylene imine-metal salt solid electrolyte

    Science.gov (United States)

    Davis, G. T.; Chiang, C. K.; Takahashi, T.

    1985-02-01

    This research pertains to the development of new solid battery electrolytes. An object of this invention is to provide polymeric electrolytes using a wider variety of metal salts. These and other objects of this invention are accomplished by providing: (1) a solid polymer electrolyte comprising: a matrix of linear poly(ethylene amine) having the formula (-CH2CH2NH-)n; and (2) a metal salt which is LiI, LiClO4, NaI, NaBr, KI, CsSCN, AgNO3, CuCl1, CoCl2, or Mg(ClO4)2, wherein the salt is dissolved in and distributed throughout the poly(ethylene amine) matrix and from more than zero to 0.10 moles of salt are used per mole of monomer repeat unit, (-CH2CH2NH-).

  13. Multicomponent equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; Hemptinne, Jean-Charles de

    2007-01-01

    Four equations of state have been implemented and evaluated for multicomponent electrolyte solutions at 298.15 K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long-range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein-Zernicke equation or the simplified Debye-Huchel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multicomponent test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. To describe the thermodynamics of this multicomponent system, ion specific parameters were determined...

  14. Multi component equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; de Hemptinne, Jean-Charles

    2007-01-01

    Four equations of state have been implemented and evaluated for multi component electrolyte solutions at 298.15K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein–Zernicke equation or the simplified Debye-Hückel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multi component test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. In order to describe the thermodynamics of this multi component system, ion specific parameters were...

  15. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  16. [EEG manifestations in metabolic encephalopathy].

    Science.gov (United States)

    Lin, Chou-Ching K

    2005-09-01

    Normal brain function depends on normal neuronal metabolism, which is closely related to systemic homeostasis of metabolites, such as glucose, electrolytes, amino acids and ammonia. "Metabolic encephalopathy" indicates diffuse brain dysfunction caused by various systemic derangements. Electroencephalogram (EEG) is widely used to evaluate metabolic encephalopathy since 1937, when Berger first observed slow brain activity induced by hypoglycemia. EEG is most useful in differentiating organic from psychiatric conditions, identifying epileptogenicity, and providing information about the degree of cortical or subcortical dysfunction. In metabolic encephalopathy, EEG evolution generally correlates well with the severity of encephalopathy. However, EEG has little specificity in differentiating etiologies in metabolic encephalopathy. For example, though triphasic waves are most frequently mentioned in hepatic encephalopathy, they can also be seen in uremic encephalopathy, or even in aged psychiatric patients treated with lithium. Spike-and-waves may appear in hyper- or hypo-glycemia, uremic encephalopathy, or vitamin deficiencies, etc. Common principles of EEG changes in metabolic encephalopathy are (1) varied degrees of slowing, (2) assorted mixtures of epileptic discharge, (3) high incidence of triphasic waves, and (4), as a rule, reversibility after treatment of underlying causes. There are some exceptions to the above descriptions in specific metabolic disorders and EEG manifestations are highly individualized.

  17. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    Science.gov (United States)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  18. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  19. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    Science.gov (United States)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  20. Small domain-size multiblock copolymer electrolytes

    Science.gov (United States)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  1. Theory of electrohydrodynamic instabilities in electrolytic cells

    Science.gov (United States)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  2. Small domain-size multiblock copolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  3. Fluid volume kinetics of dilutional hyponatremia; a shock syndrome revisited

    Directory of Open Access Journals (Sweden)

    Robert G. Hahn

    2014-02-01

    Full Text Available OBJECTIVE: To evaluate whether the pathophysiology of shock syndromes can be better understood by comparing central hemodynamics with kinetic data on fluid and electrolyte shifts. METHODS: We studied the dilutional hyponatremic shock that developed in response to overhydration with electrolyte-free irrigating fluid - the so-called ‘transurethral resection syndrome' - by comparing cardiac output, arterial pressures, and volume kinetic parameters in 17 pigs that were administered 150 ml/kg of either 1.5% glycine or 5% mannitol by intravenous infusion over 90 minutes. RESULTS: Natriuresis appeared to be the key factor promoting hypovolemic hypotension 15-20 minutes after fluid administration ended. Excessive sodium excretion, due to osmotic diuresis caused by the irrigant solutes, was associated with high estimates of the elimination rate constant (k10 and low or negative estimates of the rate constant describing re-distribution of fluid to the plasma after translocation to the interstitium (k21. These characteristics indicated a high urinary flow rate and the development of peripheral edema at the expense of plasma volume and were correlated with reductions in cardiac output. The same general effects of natriuresis were observed for both irrigating solutions, although the volume of infused 1.5% glycine had a higher tendency to enter the intracellular fluid space. CONCLUSION: Comparisons between hemodynamics and fluid turnover showed a likely sequence of events that led to hypovolemia despite intravenous administration of large amounts of fluid.

  4. Pleural Fluid Analysis Test

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...

  5. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  6. Method of producing ceramic distribution members for solid state electrolyte cells

    Science.gov (United States)

    Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)

    1995-01-01

    A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes, The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.

  7. Synthesis and analysis of processes with electrolyte mixtures

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Gani, Rafiqul; Rasmussen, Peter

    1995-01-01

    A computer aided system for synthesis, design and simulation of crystallization and fractional crystallization processes with electrolyte mixtures is presented. The synthesis methodology is based on the use of computed solubility diagrams for the corresponding electrolyte systems....

  8. Synthesis and analysis of processes with electrolyte mixtures

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Gani, Rafiqul; Rasmussen, Peter

    1995-01-01

    A computer aided system for synthesis, design and simulation of crystallization and fractional crystallization processes with electrolyte mixtures is presented. The synthesis methodology is based on the use of computed solubility diagrams for the corresponding electrolyte systems....

  9. Polyethylene glycol-electrolyte solution (PEG-ES)

    Science.gov (United States)

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a colonoscopy ( ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by mouth. ...

  10. Fluid transport phenomena in ocular epithelia.

    Science.gov (United States)

    Candia, Oscar A; Alvarez, Lawrence J

    2008-03-01

    This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.

  11. Oral therapy in children with cholera: a comparison of sucrose and glucose electrolyte solutions.

    Science.gov (United States)

    Sack, D A; Islam, S; Brown, K H; Islam, A; Kabir, A K; Chowdhury, A M; Ali, M A

    1980-01-01

    We performed a double-blind trial comparing sucrose electrolyte oral solution with glucose electrolyte oral solution in children less than 5 years of age with severe cholera-like diarrhea. Of 111 patients studied (102 with bacteriologically confirmed cholera), 55 received sucrose solution and 56 received glucose solution. The success rates, as defined by the absence of the need to give unscheduled intravenous therapy, were similar in the two groups (73% and 77% in the sucrose and glucose groups, respectively). There was no difference in purging rates between the two groups. The primary determinant of success for oral fluid regardless of the sugar was the purging rate. Sucrose malabsorption was responsible for oral therapy failure in one child. This study demonstrates that sucrose is an effective alternative to glucose in the oral therapy solution, but either must be used in conjunction with intravenous solution when treating severe dehydrating diarrhea.

  12. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    OpenAIRE

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S.; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W.

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electro...

  13. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Skaarup, Steen; West, Keld

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...

  14. [Observation on the fluid resuscitation and the change in blood sodium of severely burned patients in the early stage].

    Science.gov (United States)

    Zhang, Hong-hui; Li, Yue-jun; Li, Xue-yong; Chen, Shao-zong; Lü, Xiao-xing; Feng, Jian; Li, Jing; Jiang, Li

    2010-10-01

    To study the necessary amount of fluid consisting of electrolyte and colloid, the ratio of electrolyte and colloid used, and the change of blood sodium during early resuscitation in severely burned patients. Sixty-seven patients with total burn surface area (TBSA) equal to or over 70% and full-thickness area equal to or over 50%TBSA, hospitalized from March 2004 to March 2009, were resuscitated with fluid. The infusion amount of electrolyte, colloid, and water, and urinary output of patients at post injury hour (PIH) 24, 48, and 72 were analyzed retrospectively. The variation in blood sodium and fluid infusion at different time points was recorded. Data were processed with SPSS 13.0 software. Among the 67 patients, hyponatremia occurred in 9 cases, hypernatremia occurred in 5 cases, and 53 patients had normal blood sodium level. The urinary output of patients within PIH 72 was above 70 mL/h. K value was calculated through the formula: actual total infusion amount of electrolyte and colloid (mL) = burn area (%TBSA) x body weight (kg) x K. In the first 24 PIH, K value was about 1.7, and the ratio of electrolyte and colloid was 1.4. In the second 24 PIH, K value was about 1.3 with electrolyte and colloid ratio 1.6. K value in the third 24 PIH was about 0.9 with electrolyte and colloid ratio 2.0. The actual amount of resuscitation fluid is slightly larger than that calculated from traditional formula during the early stage in severely burned patients. The amount of electrolytes and the proportion of electrolyte and colloid will influence blood sodium level of patients.

  15. Battery electrolytes. Citations from the NTIS data base

    Science.gov (United States)

    Young, C. G.

    1980-05-01

    Many types of solid, liquid and gaseous battery electrolytes are described and analyzed in the cited abstracts. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery life, efficiency, and maintenance characteristics are also delineated. Included are 196 citations.

  16. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  17. Gradient capacitance for solid particle position detection in electrolyte

    NARCIS (Netherlands)

    Solsona, Miguel; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    The conductivity of an electrolyte is a property that depends on the mobility of charged species inside a solution. Electrolyte conductivity measurements is a technique used for the study of the electrical properties of solutions and solids inside the electrolyte. Impedance measurements enable the p

  18. [Influence of weightlessness on water and electrolytes balance in body].

    Science.gov (United States)

    Shen, X Y

    2000-02-01

    The balance of water and electrolytes plays an important role in enabling the human body to adapt to spaceflight. This paper introduced the research methods, and changes in water and electrolytes balance during and after space flight. The mechanism and the hazard of the disorder of water and electrolytes caused by weightlessness were discussed.

  19. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor app...... for electrolyte conductivity from combinations of pressure, current density and electrolyte width among others....

  20. Superacid-Based Lithium Salts For Polymer Electrolytes

    Science.gov (United States)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  1. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  2. Gradient capacitance for solid particle position detection in electrolyte

    NARCIS (Netherlands)

    Solsona, Miguel; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    The conductivity of an electrolyte is a property that depends on the mobility of charged species inside a solution. Electrolyte conductivity measurements is a technique used for the study of the electrical properties of solutions and solids inside the electrolyte. Impedance measurements enable the

  3. Energetics of the Semiconductor-Electrolyte Interface.

    Science.gov (United States)

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  4. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  5. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  6. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    S Sampath; N A Choudhury; A K Shukla

    2009-09-01

    Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported. Varying HClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g-1, a phase angle value of 78°, and a maximum charge-discharge coulombic efficiency of 88%.

  7. Development of Doped Lanthanum Gallate Solid Electrolytes

    Institute of Scientific and Technical Information of China (English)

    蒋凯; 王海霞; 郑立庆; 杨林; 孟健; 苏锵

    2003-01-01

    Development of the doped lanthanum gallate solid electrolytes in the recent years was reviewed. The structure and oxygen ion transference mechanism were discussed. Effects of alkali earths, transition metals, and impurities on electrical conductivity of the doped lanthanum gallates were also discussed. The applications of doped lanthanum gallate were described. The current problems and corresponding strategies were explored.

  8. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) o

  9. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relat

  10. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum)

  11. An element with an organic electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Eda, N.; Indzima, K.

    1983-03-30

    Anodes of a light metal are used in the element, along with an electrolyte on the basis of an organic solvent into which a carionogenic polymer, which contains cations in the lateral chains, is added. Polyacryltrimethylperchlorate of ammonium, tetramethylperchlorate of ammonium and other compounds serve as the additive.

  12. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    Directory of Open Access Journals (Sweden)

    Chur Hoan Lim

    2015-12-01

    Full Text Available BackgroundWe investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome.MethodsIn a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses.ResultsIn patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46, 26.9% (n=21, 35.9% (n=28, 47.4% (n=37, and 23.1% (n=18, respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05. Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH and growth hormone (GH levels (all P<0.05. Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05, and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01.ConclusionElectrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease.

  13. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  14. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    Science.gov (United States)

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  15. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  16. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    Science.gov (United States)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  17. Plasma electrolytic oxidation of Titanium Aluminides

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  18. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes.

    Science.gov (United States)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A; Li, Qiuyan; Shao, Yuyan; Helm, Monte L; Borodin, Oleg; Graff, Gordon L; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J; Liu, Jun; Xiao, Jie

    2017-03-08

    Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li(+) cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the battery's life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI layer and prevents its continuous growth and therefore may lead to largely improved performance for LIBs.

  19. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions

    Directory of Open Access Journals (Sweden)

    Kumar Vivek

    2014-01-01

    Full Text Available Background: The most common definitions of large volume liposuction refer to total 5 l volume aspiration during a single procedure (fat plus wetting solution. Profound haemodynamic and metabolic alterations can accompany large volume liposuction. Due to paucity of literature on the effect of different tumescent solutions on the electrolyte balance and haematological changes during large volume liposuction, we carried out this study using two different wetting solutions to study the same. Materials and Methods: Total 30 patients presenting with varying degrees of localized lipodystrophy in different body regions were enrolled for the study. Prospective randomized controlled trial was conducted by Department of Plastic and Cosmetic Surgery, Sir Ganga Ram Hospital, New Delhi from January 2011 to June 2012. Patients were randomized into two groups of 15 patients each by using computer generated random numbers. Tumescent formula used for Group A (normal saline [NS] was our modification of Klein′s Formula and Tumescent formula used for Group B (ringer lactate [RL] was our modification of Hunstadt′s formula. Serum electrolytes and hematocrit levels were done at preinduction, immediate postoperative period and postoperative day 1. Result: Statistical analysis was performed using SPSS software version 15.0. Which showed statistically significant electrolytes and hematocrit changes occur during large volume liposuction. Conclusion: Statistically significant electrolytes and hematocrit changes occur during large volume liposuction and patients should be kept under observation of anaesthesist for at least 24 h. Patients require strict monitoring of vital parameters and usually Intensive Care Unit is not required. There was no statistical difference in the electrolyte changes using NS or RL as tumescent solution and both solutions were found safe for large volume liposuction.

  20. Brain glutamate metabolism during metabolic alkalosis and acidosis.

    Science.gov (United States)

    Ang, R C; Hoop, B; Kazemi, H

    1992-12-01

    Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.

  1. Dependence of the conductivity of a porous medium on electrolyte conductivity

    Science.gov (United States)

    Johnson, David Linton; Sen, Pabitra N.

    1988-03-01

    For an arbitrary geometry of insulating, but charged, objects immersed in an electrolyte for which diffusion currents are important, the mathematical problem of the dc electrical conductivity can be mapped onto that of an ordinary conduction problem without diffusion currents but with a conductive surface layer. As a result, using variational arguments we can prove two general theorems which hold irrespective of the geometry of the porous medium: (a) At high salinities, so that the conductivity of the pore fluid, σf, is large, the conductivity of the system as a whole, σeff, is a linear function of σf, with a slope of 1/F and with an offset proportional to 1/Λ. (b) For lower values of salinity, σeff as a function of σf is convex-up as long as the conductivity within the double-layer region is independent of the salinity of the pore fluid. The parameters F and Λ introduced previously [D. L. Johnson, J. Koplik, and L. M. Schwartz, Phys. Rev. Lett. 57, 2564 (1986); D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid Mech. 176, 379 (1987)] are hereby shown to be relevant to the electrolyte problem. An illustration of an ordered suspension is given to show how to implement these ideas.

  2. Molecular dynamics, density functional theory of the metal--electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [Department of Physics, University of Memphis, Memphis Tennessee 38152 (United States); Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1995-04-22

    Quantitative, predictive theories for metal--electrolyte interfaces require an atomic-scale representation of the interface, which must include an accurate statistical description of a polar fluid in contact with a solid surface; and also a description of the electronic density and structure of a metal surface in contact with a fluid. Such a complex system presents a difficult computational problem, and has been dealt with in the past essentially by parts; either by molecular dynamics calculations of the fluid structure, or density functional calculations of the metal--surface electronic structure. A complete and self-consistent determination of the surface structure would, however, involve a simultaneous calculation of both the atomic and electronic structure of the interface. This suggests a combination of these two calculational techniques, and it is just this sort of molecular dynamics and density functional combination which comprises the Car--Parrinello, and related, methods. We have developed a Car--Parrinello type combination of molecular dynamics and density functional methods, suitable for application to the metal--electrolyte interface. We briefly describe this calculation and discuss our initial results for a fairly simple metal--water interface.

  3. Boron clusters as highly stable magnesium-battery electrolytes.

    Science.gov (United States)

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-03-17

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  5. Electrochromic switchable mirror glass fabricated using adhesive electrolyte layer

    Science.gov (United States)

    Tajima, Kazuki; Hotta, Hiromi; Yamada, Yasusei; Okada, Masahisa; Yoshimura, Kazuki

    2012-12-01

    We have developed a simple process for fabricating electrochromic switchable mirror glass using an adhesive electrolyte layer. The adhesive electrolyte layer was a mixture of polyethyleneimine electrolyte and polyvinyl butyral adhesive dissolved in gamma-butyrolactone. The device was formed from two substrates; the adhesive electrolyte layer was applied to one of the substrates before they were stuck together. The applied voltage required to change the state of the device was smaller than that of a conventional device with a solid electrolyte layer deposited by sputtering. Our method is simple, fast, and efficient and can be used to fabricate large devices.

  6. Tunable optical properties of colloidal quantum dots in electrolytic environments.

    Science.gov (United States)

    Ramadurai, D; Kohanpour, B; Alexson, D; Shi, P; Sethuraman, A; Li, Y; Saini, V; Dutta, M; Stroscio, M A

    2004-12-01

    The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.

  7. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    Science.gov (United States)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  8. Effects of a new intravenous electrolyte solution for veterinary therapy on the electrolyte and acid-base balances of healthy horses

    Directory of Open Access Journals (Sweden)

    Priscilla Fajardo Valente Pereira

    2016-01-01

    Full Text Available ABSTRACT: The effects of a new intravenous electrolyte solution for veterinary therapy on electrolyte and acid-base balances of horses were evaluated, assessing the potential of the use of this solution as a rational alternative in fluid therapy. Eight healthy adult horses, including 4 males and 4 females, received two treatments in a cross-over design: isotonic saline solution (IS and a test solution (TS containing 145mEq of Na+, 5mEq of K+, 4mEq of Ca++, 2mEq of Mg++, 96mEq of Cl-, 60mEq of lactate, 50g of dextrose, and 4mg of cyanocobalamin per liter. Solutions were IV infused in a volume corresponding to 5% of BW, over 3 hours. Venous blood samples were taken 5 times before and after the infusion (at 0, 3, 6, 9 e 24h, for pHv, pCO2v, HCO3 -v, BEv, Na+, K+, Cl-, Ca++, Ca, P, Mg, glucose and L-lactate measurements, and AG and SID calculations. The data were analyzed through repeated measures ANOVA. The IS caused mild acidifying effect by increasing Cl- and decreasing plasma SID. In contrast, the TS induced mild and transient hypochloremia without changes in acid-base balance. Hyperglycemia was present at the end of the TS infusion and reversed 6 hours later. The horses did not exhibit any clinical changes. We concluded that TS is an option for fluid therapy in horses.

  9. Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium

    Science.gov (United States)

    Lugnani, Franco; Macchioro, Matteo

    2017-01-01

    Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Conclusion

  10. Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium

    Directory of Open Access Journals (Sweden)

    Franco Lugnani

    2017-01-01

    Full Text Available Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that

  11. Metabolic changes observed in astronauts

    Science.gov (United States)

    Leach, Carolyn S.; Cintron, N. M.; Krauhs, J. M.

    1991-01-01

    Results of medical experiments with astronauts reveal rapid loss of volume (2 l) from the legs and a transient early increase in left ventricular volume index. These findings indicate that, during space flight, fluid is redistributed from the legs toward the head. In about 2 days, total body water decreases 2 to 3 percent. Increased levels of plasma renin activity and antidiuretic hormone while blood sodium and plasma volume are reduced suggest that space flight-associated factors are influencing the regulatory systems. In addition to fluid and electrolyte loss, Skylab astronauts lost an estimated 0.3 kg of protein. Endocrine factors, including increased cortisol and thyroxine and decreased insulin, are favorable for protein catabolism. The body appears to adapt to weightlessness at some physiologic cost. Readaptation to earth's gravity at landing becomes another physiologic challenge.

  12. Prediction of thermophysical and transport properties of ternary organic non-electrolyte systems including water by polynomials

    OpenAIRE

    Đorđević Bojan D.; Kijevčanin Mirjana Lj.; Radović Ivona R.; Šerbanović Slobodan P.; Tasić Aleksandar Ž.

    2013-01-01

    The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister), Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Eng...

  13. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lalia, Boor Singh; Fujita, Takayoshi; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)

    2009-01-01

    Nonflammable polymeric gel electrolyte has been prepared by immobilizing 1 M LiBF{sub 4}/EC + DEC + TEP (55:25:20, v/v/v, EC: ethylene carbonate, DEC: diethyl carbonate and TEP: triethylphosphate) solution in poly(vinylidene fluoride-co-hexafluoro propylene) (PVdF-HFP) where TEP acts as a fire-retardant solvent in the gel electrolyte. The polymeric gel electrolyte has a high value of ionic conductivity of 1.76 mS cm{sup -1} at 28 C. Thermal safety calorimetry (TSC) experiments show good thermal stability of the gel electrolyte. Cyclic voltammetry and charge/discharge cycling tests were performed on LiMn{sub 2}O{sub 4}/gel electrolyte and graphite/gel electrolyte half cells. The gel electrolyte works well for graphite/LiMn{sub 2}O{sub 4} cell although some improvement in the cycleability of the graphite electrode is still needed. (author)

  14. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  15. Gamble and Darrow: pathfinders in body fluid physiology and fluid therapy for children, 1914-1964.

    Science.gov (United States)

    Holliday, M A

    2000-12-01

    The development of body fluid physiology and fluid therapy in pediatrics has special importance in the history of medicine because this development introduced physiology into clinical practice. James Gamble and Dan Darrow were leaders in this enterprise. Gamble was part of the group John Howland attracted to Johns Hopkins to establish the first organized program for clinical investigators in pediatrics. This group initiated fluid therapy as effective treatment for diarrheal dehydration and, led by Gamble, developed the discipline of body fluid physiology. Gamble was the first to describe the nature of extracellular fluid (ECF) to clinicians, using the new terminology for characterizing electrolytes in solution. In doing so, he became the teacher of body fluid physiology to a generation of medical students. Inexplicably, in his later years he failed to adopt yet newer terminology defining cations, anions, and acid-base status. This failure compromised his legacy. Dan Darrow extended our understanding of how body fluids react to hyper- and hyponatremia and to potassium deficiency. He was the first to add potassium to parenteral fluid therapy. In doing so, he broadened clinicians' understanding of body fluids but changed the emphasis of fluid therapy from rapid ECF restoration to replacement of estimated deficits. Unfortunately, this change in concept, taught by his successors as deficit therapy, slowed the adoption of oral rehydration therapy for treating diarrheal dehydration. The lapses noted for each of these men, now seen in hindsight, pale in comparison to their contributions. Pediatrics, medicine, and surgery are all indebted to the research of each, which emphasized the value of basic physiology in clinical practice.

  16. Metabolic Panel

    Science.gov (United States)

    ... basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP checks your blood sugar, calcium, and ... as creatinine to check your kidney function. The CMP includes all of those tests, as well as ...

  17. Metabolic Disorders

    Science.gov (United States)

    ... as your liver, muscles, and body fat. A metabolic disorder occurs when abnormal chemical reactions in your body ... that produce the energy. You can develop a metabolic disorder when some organs, such as your liver or ...

  18. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  19. Streaming potential-modulated capillary filling dynamics of immiscible fluids.

    Science.gov (United States)

    Bandopadhyay, Aditya; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-21

    The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices.

  20. Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode...... stoichiometry may even be as low as 1.05. The effect of operation pressure and temperature on the membrane water content is studied. Finally, experiments are suggested to determine the kinetic absorption coefficient and the specific surface area of the electrolyte inside the catalyst layers....

  1. Changes in total plasma content of electrolytes and proteins with maximal exercise.

    Science.gov (United States)

    Van Beaumont, W.; Strand, J. C.; Petrofsky, J. S.; Hipskind, S. G.; Greenleaf, J. E.

    1973-01-01

    To determine to what extent the increases in concentration of plasma proteins and electrolytes with short maximal work were a result of hemoconcentration, the changes in plasma volume and total content of the plasma constituents were simultaneously evaluated. The results obtained from six human subjects indicated that in comparison to preexercise values there was a net decrease in total content of plasma protein, sodium, and chloride in the first 2 min of the postexercise period, due primarily to a significant loss (13-15%) of plasma fluid. The total plasma potassium content was increased immediately after exercise but was significantly below the preexercise plasma content after 2 min of recovery.

  2. Lactate metabolism in acute uremia.

    Science.gov (United States)

    Leverve, Xavier; Mustafa, Iqbal; Novak, Ivan; Krouzecky, Ales; Rokyta, Richard; Matejovic, Martin; Ichai, Carole

    2005-01-01

    Lactate is a key metabolite that is produced by every cell and oxidized by most of them, provided that they do contain mitochondria. Its metabolism is connected to energetic homeostasis and the cellular redox state. It is well recognized as an indicator of severe outcome in severely ill patients, however, it is not a detrimental factor per se. Conversely, some recent data tend even to indicate a beneficial effect in several metabolic disorders. Although the liver has long been recognized as a key organ in lactate homeostasis, the kidney also plays a major role as a gluconeogenic organ significantly involved in the glucose-lactate cycle. In acute renal failure, sodium lactate is widely used as a buffer in replacement fluids because the anion (lactate - ) is metabolized and the cation (Na + ) remains, leading to decreased water dissociation and proton concentration. The metabolic disorders related to acute renal failure or associated with it, such as liver failure, may affect lactate metabolism, and therefore they are often regarded as limiting factors for the use of lactate-containing fluids in such patients. By investigating endogenous lactate production in severe septic patients with acute renal failure, we found that an acute exogenous load of lactate did not affect the basal endogenous lactate production and metabolism. This indicates that exogenous lactate is well metabolized even in patients suffering from acute renal failure and severe sepsis with a compromised hemodynamic status.

  3. Metabolism of phthalates in humans

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-01-01

    phthalates, but our knowledge about metabolic distribution in the body and other biological fluids, including breast milk, is limited. Compared to urine, human breast milk contains relatively more of the hydrophobic phthalates, such as di-n-butyl phthalate and the longer-branched, di(2-ethylhexyl) phthalate...

  4. Glasslike Behavior in Aqueous Electrolyte Solutions

    CERN Document Server

    Turton, David A; Hefter, Glenn; Buchner, Richard; Wynne, Klaas; 10.1063/1.2906132

    2009-01-01

    When salts are added to water, the viscosity generally increases suggesting the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules implying no enhance-ment or breakdown of the hydrogen-bond network. Here we report optical Kerr-effect and dielectric relaxa-tion spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  5. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  6. Glasslike behavior in aqueous electrolyte solutions.

    Science.gov (United States)

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  7. Dedicated nuclear facilities for electrolytic hydrogen production

    Science.gov (United States)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  8. An element with an anhydrous liquid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Toda, K.; Isiguro, Y.; Ota, K.; Sinoda, K.; Yamamoto, K.

    1983-01-01

    A light element metal of the lithium or sodium type is used in the element, along with a cathode of Mo02 or CuF2 and an anyhdrous liquid electrolyte from an oganic solvent with an ionogenic additive. An adsorbent which has a composition corresponding to the formula Mx/n((A102)x(Si02)y) with zH20, where M is the ion of sodium, potassium or calcium; n is the valency M and x, y and z are the coefficients which show the content of A102, Si02 and H20, respectively, is introduced into the cathode, separator or electrolyte. The element has high storage life.

  9. Electrolyte compositions for lithium ion batteries

    Science.gov (United States)

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  10. Fuel cells with doped lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng Man [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Goodenough, J.B. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Huang Keqin [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Milliken, C. [Cerematec, Inc., Salt Lake City, UT (United States)

    1996-11-01

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800 C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800 C was achieved, our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum gallate and achieve higher power density at 800 C from solid oxide fuel cells. (orig.)

  11. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  12. Electrochemistry in Near-Critical and Supercritical Fluids. I. Ammonia.

    Science.gov (United States)

    1984-07-18

    in a supercritical fluid containing an electrolyte. We show j here that electrocheical techniques, such as cyclic voltametry and .’ chronocoulametrY...8217,_- Electrochemistry, supercritical, ammonia S&. ASSTRACT. (CGWIU&UI VOWO *fo of Rea@ d 8~ US F &I-*I 81116 Cyclic voltanmetric and chronocoulometric studies of N...Bard 4 Department of Chemi stry, The University of Texas Austin, TX 78712 (Abstract) Cyclic voittuuntric and chronocoulometric studies of NH3

  13. Anti-perovskite solid electrolyte compositions

    Science.gov (United States)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  14. Thermal Decomposition of Dimethoxymethane Electrolyte Solution.

    Science.gov (United States)

    1982-06-01

    DIMETHOXYMETHANE ELECTROLYTE SOLUTION by J. S. Foos and V. Meltz Prepared for Publication in the Journal of the Electrochemical Society EIC...Journal of the Electrochemical Society . III. KEY WORDS (Conitiue onl reverse side It neci’eay and Identify by block nsinibor) Lithium Battery, Organic...Batteries, B. B. Owens and N. Margalit, eds., Vol. 80-4, The Electrochemical Society , Pennington, NJ, 384 (1980). .2. K. M. Abraham, J. L. Goldman and D. L

  15. Functional electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  16. Plasma electrolytic polishing of metalized carbon fibers

    Directory of Open Access Journals (Sweden)

    Falko Böttger-Hiller

    2016-02-01

    Full Text Available Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1. To increase performance and especially functionality of CFRPs, the integration of microelectronic components into CFRP parts is aspired. The functionalization by sensors, actuators and electronics can enable a high lightweight factor and a new level of failure-safety. The integration of microelectronic components for this purpose requires a working procedure to provide electrical contacts for a reliable connection to energy supply and data interfaces. To overcome this challenge, metalized carbon fibers are used. Metalized fibers are, similar to the usual reinforcing fibers, able to be soldered and therefore easy to incorporate into CFRPs. Unfortunately, metalized fibers have to be pre-treated by flux-agents. Until now, there is no flux which is suitable for mass production without destroying the polymer of the CFRP. The process of plasma electrolytic polishing (PeP could be an option, but is so far not available for copper. Thus, in this study, plasma electrolytic polishing is transferred to copper and its alloys. To achieve this, electrolytic parameters as well as the electrical setup are adapted. It can be observed that the gloss and roughness can be adjusted by means of this procedure. Finally, plasma electrolytic polishing is used to treat thin copper layers on carbon fibers.

  17. 16th Polymer Electrolyte Fuel Cell Symposium

    Science.gov (United States)

    2016-11-29

    Electrolyte Fuel Cell Catalyst Y. Nanba, D. S. Rivera Rocabado, T. Ishimoto, M. Koyama 717 Mo- doped Shaped Nanoparticles based on PtNi-alloys – A...Degradation of Nafion Ionomer to Functionalize Graphene as a Support for Core-Shell Palladium-Ruthenium Alloy @ Platinum Electrocatalysts C. C. Kuo...Layers B. Fu, Y. Minamida, Z. Noda, K. Sasaki, A. Hayashi 827 Porous Graphene Layers on Pt Catalyst for Long-Term Stability of Fuel Cell

  18. On electrochemical devices using alkaline polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L. [Wuhan Univ., Wuhan (China). Dept. of Chemistry

    2010-07-01

    Solid polymer electrolytes (SPEs) enable a compact assembly of fuel cells and electrolyzers, thereby increasing the space-specific conversion efficiency and avoiding electrolyte leakage. The most widely used SPE in proton exchange membrane fuel cells (PEMFC) and chloro-alkali electrolyzers is Nafion. However, this strongly acidic polyelectrolyte allows only noble metals to be used as the catalysts in the electrochemical devices, which poses a problem in terms of price and resource limits. In principle, alkaline polymer electrolytes (APEs) should be used to eliminate the dependence on noble metal catalysts. The general structure of alkaline polymer electrolytes is a positively charged polymer, notably, a polymer chain attached with fixed cations such as quaternary ammonia group, and dissociated anion, OH-, to act as the charge carrier. This presentation described the challenges of developing APEs in terms of the chemical stability of quaternary ammonia group, the mobility of OH-, and high ionic concentration. The authors have been working on developing high-performance APEs since 2001. The most recent APEs were quaternary ammonia polysulfone (QAPS), which were found to be suitable for fuel cell and electrolyzer applications. The ionic conductivity was high and the crosslinked membrane had excellent mechanical strength, enabling operation at 90 degrees C. Non-precious metal catalysts were used in the APEs. For APE-based fuel cells (APEFC), chromium decorated nickel was used as the anode catalyst for hydrogen oxidation, and silver was used as the cathode catalyst for oxygen reduction. The preliminary performance of such an APEFC with non-Pt catalysts was found to be much better than that of traditional water electrolyzers using KOH solutions. 2 refs.

  19. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    Science.gov (United States)

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  20. Why Electrolytic Aluminum Overcapacity Lingering for Years

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2009-01-01

    @@ According to the Opinions on Restraining Overcapacity and Redundant Construction in Parts of Industries and Leading the Healthy Development of Industries" (Hereafter short for OPINIONS) promulgated by ten ministries and emphasized by the State Council,the electrolytic aluminum capacity in China is 18 million tons,accounting for 42.9% of the global capacity,and the capacity utility rate is only 73.2%.

  1. International Symposium on Polymer Electrolytes (1st)

    Science.gov (United States)

    1987-06-01

    been attributed to the greater stability of the trifluoromethane sulphonate anion and a lower degree of ion-pairing, trifluoromethane sulphonic acid ...Electrolytes’. 31. R. TANAKA, T. IWASE, T. HORI and S. SAITO, ’Proton Conduction In Linear Poly(ethyleneimine)-Sulphuric Acid and Phosphoric Acid Systems’. 32...relaxation time requires some thought since the macroscopic viscosity in high molecular weight systems may not reflect at all the relaxation time for

  2. Apelin and energy metabolism

    Directory of Open Access Journals (Sweden)

    Chantal eBertrand

    2015-04-01

    Full Text Available A wide range of adipokines identified over the past years has allowed considering white adipose tissue as a secretory organ closely integrated into overall physiological and metabolic control. Apelin, an ubiquitous peptide was known to exert different physiological effects mainly on the cardiovascular system and the regulation of fluid homeostasis until its identification as an adipokine. This has increased its broad range of action and apelin now appears clearly as a new player in energy metabolism alongside leptin and adiponectin. Apelin has been shown to act on glucose and lipid metabolism but also to modulate insulin secretion. Moreover, different studies in both animals and humans have shown that plasma apelin concentrations are usually increased during obesity and type 2 diabetes. This mini-review will focus on the various systemic apelin effects on energy metabolism by addressing its mechanisms of action. The advances concerning the role of apelin in metabolic diseases in relation with the recent reports on apelin concentrations in obese and/or diabetic subjects will also be discussed.

  3. [Metabolic syndrome].

    Science.gov (United States)

    Mitsuishi, Masanori; Miyashita, Kazutoshi; Itoh, Hiroshi

    2009-02-01

    Metabolic syndrome, which is consisted of hypertension, dyslipidemia and impaired glucose tolerance, is one of the most significant lifestyle-related disorders that lead to cardiovascular diseases. Among many upstream factors that are related to metabolic syndrome, obesity, especially visceral obesity, plays an essential role in its pathogenesis. In recent studies, possible mechanisms which connect obesity to metabolic syndrome have been elucidated, such as inflammation, abnormal secretion of adipokines and mitochondrial dysfunction. In this review, we focus on the relationship between obesity and metabolic syndrome; and illustrate how visceral obesity contributes to, and how the treatments for obesity act on metabolic syndrome.

  4. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  5. Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Taggougui, M.; Carre, B.; Lemordant, D. [Laboratoire de Chimie-physique des Interfaces et des Milieux Electrolytiques (EA2098), Universite de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F 37200 Tours (France); Diaw, M. [Universite Cheikh Anta Diop, Dakar (Senegal); Willmann, P. [CNES, 18 Avenue E. Belin, 31055 Toulouse Cedex (France)

    2008-07-01

    An EC/DEC [40:60% (v/v)] solvent mixture has been added in various amounts to the ionic liquid (IL) hexyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N{sub 1116}-NTf{sub 2}) in the presence of LiNTf{sub 2} (lithium bis(trifluoromethylsulfonyl)imide) as lithium salt for possible use as electrolytes in lithium-ion batteries. These electrolytes exhibit a larger thermal stability than the reference electrolyte EC/DEC [40:60] + LiNTf{sub 2} 1 M when the percentage of the IL exceeds 30% (v/v). All studied electrolytes are glass forming ones with an ideal glass transition temperature of ca. -85 C({+-}5 C), which has been determined by application of the VTF theory to conductivity and viscosity measurements and confirmed by DSC (T{sub g} = -90 {+-} 5 C). An electrochemical window of about 5 V versus Li/Li{sup +} was measured at a glassy carbon electrode. The cycling ability of the optimized electrolyte N{sub 1116}-NTf{sub 2}/EC:DEC (40/60% (v/v)) + 1 M LiNTf{sub 2} has been investigated at a titanate oxide (Li{sub 4}Ti{sub 5}O{sub 12}) and a cobalt oxide (Li{sub x}CoO{sub 2}) electrodes. Cycling the positive and the negative electrodes was conducted successfully with a high capacity and without any significant fading. (author)

  6. Direct Lorentz force compensation flowmeter for electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyan, S., E-mail: suren.vasilyan@tu-ilmenau.de; Froehlich, Th. [Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, 98684 Ilmenau (Germany)

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known “electromagnetic force” compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6 }S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  7. Direct Lorentz force compensation flowmeter for electrolytes

    Science.gov (United States)

    Vasilyan, S.; Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known "electromagnetic force" compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 106 S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  8. Hindered Glymes for Graphite-Compatible Electrolytes.

    Science.gov (United States)

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  10. The importance of water quality and haemodialysis fluid composition.

    Science.gov (United States)

    Hoenich, Nicholas A; Ronco, Claudio; Levin, Robert

    2006-01-01

    Treatment of renal failure by haemodialysis uses dialysis fluid to facilitate the normalization of electrolyte and acid base abnormalities and the removal of low molecular weight uraemic compounds present in the plasma such as urea. The dialysis fluid is a continuously produced blend of treated tap water and a concentrated solution containing electrolytes, buffer, and glucose. The water used originates as drinking water but undergoes additional treatment. Recent surveys have indicated that the chemical and microbiological content of such water frequently fails to meet the requirements of established standards, and its bacterial content arising from the presence of a biofilm in the water distribution network or the hydraulic circuit of the dialysis machine is a contributory factor to the chronic inflammatory state in patients undergoing regular dialysis. The composition of the dialysis fluid plays an important role in the modulation of complications associated with end-stage renal disease, as well as those associated with the treatment itself. The avoidance of complications arising from water contaminants requires a constant and vigorous attention to water quality, whilst with the composition of electrolytes and buffer there is a trend towards greater individualization to provide a high degree of treatment tolerance.

  11. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  12. An oral electrolyte solution (Pedialyte) in the treatment of acute infantile gastroenteritis.

    Science.gov (United States)

    Sunoto; Pioh, H; Wiharta, A S; Suharyono

    1978-01-01

    During a 3-month period, 35 pediatric patients with infantile acute gastroenteritis were treated with a premixed oral glucose electrolyte solution. The study group consisted of 17 boys and 18 girls with a mean age of 12.4 months (range of 5.5-20 months). 13 patients (37%) had mild dehydration, 16 (46%) had moderate dehydration, and 6 (17%) had normal hydration. 29 (83%( had isotonic dehydration and only 6 (17%) presented with hypotonic dehydration. Almost all of the patients were admitted for a hospital stay of 3 days and on discharge, all were in good condition. None developed severe dehydration or needed intravenous fluid treatment. The mean weight gain during hospitalization was 147 gm with a range of 100-400 gm. Unexpectedly, pathogenic bacteria organisms were discovered in 24 (68.7%) of the total cases, but all the children recovered very well with the oral electrolyte solution only without the need for antibiotics. From clinical, chemical, and other observations, it could be concluded that this ready-to-feed oral electrolyte solution can be used safely and effectively for the treatment of acute infantile gastroenteritis both with or without mild or moderate dehydration. No complications were observed in this study.

  13. Neurologic presentations of acid-base imbalance, electrolyte abnormalities, and endocrine emergencies.

    Science.gov (United States)

    Yee, Alan H; Rabinstein, Alejandro A

    2010-02-01

    Accurate identification of nervous system dysfunction is vital in the assessment of any multisystem disorder. The neurologic manifestations of acid-base disturbances, abnormal electrolyte concentrations, and acute endocrinopathies are protean and typically determined by the acuity of the underlying derangement. Detailed history and physical examination may guide appropriate laboratory testing and lead to prompt and accurate diagnosis. Neurologic manifestations of primary and secondary systemic disorders are frequently encountered in all subspecialties of medicine. This article focuses on key neurologic presentations of respiratory and metabolic acid-base derangements and potentially life-threatening endocrinopathies.

  14. [Sugar substitute products impact on oral fluid biochemical properties].

    Science.gov (United States)

    Tsapok, P I; Imbriakov, K V; Chuchkova, M R

    2012-01-01

    Sugar substitute products impact on oral fluid protein and carbohydrate content, as well as oxidative balance were studied in 60 medical school students in compare with conventional sugar. Sugar intake proved to cause cariesogenic carbohydrate metabolism disorders in oral fluid, intensification of lipoperoxidation and decrease in antioxidation activity. Sugar substitute products help to prevent dental decay.

  15. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach.

    Science.gov (United States)

    Jiménez, José Víctor; Carrillo-Pérez, Diego Luis; Rosado-Canto, Rodrigo; García-Juárez, Ignacio; Torre, Aldo; Kershenobich, David; Carrillo-Maravilla, Eduardo

    2017-08-01

    Electrolyte and acid-base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid-base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid-base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid-base spectrum. Because most electrolyte and acid-base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

  16. Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard

    Science.gov (United States)

    Isenberg, Arnold O.

    1989-01-01

    The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.

  17. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    Science.gov (United States)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  18. Flexible electrochromic windows: a comparison using liquid and solid electrolytes

    Directory of Open Access Journals (Sweden)

    Girotto Emerson Marcelo

    1999-01-01

    Full Text Available In the present work, two electrochromic devices (or electrochromic windows based on intrinsically conducting polymers were assembled and characterized. For both devices, the materials used on the assembling were the same except for the electrolyte layer. In the first, we used as electrolyte a propylene carbonate solution and in the second the elastomer poly(epichlorohydrin-co-ethylene oxide, both containing LiClO4. The conductivity of the liquid electrolyte (10-3 S cm-1 is approximately two orders of magnitude higher than for the solid electrolyte and we obtained very good electrochromic properties in both cases. The calculated electrochromic efficiency at 640 nm was 700 C cm-2 for the liquid electrolyte device and 360 C cm-2 for the solid state device. Solid state electrochromic windows have been investigated and some of its advantages over windows with liquid electrolytes are discussed.

  19. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  20. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs

    Directory of Open Access Journals (Sweden)

    Rongguo Yan

    2016-10-01

    Full Text Available There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electrodes in medical laboratory electrolytic ion tests, from conventional ISEs, solid-contact ISEs, carbon nanotube based ISEs, to graphene-based ISEs.

  1. A Comparison of the Mechanisms of Cold- and Microgravity-Induced Fluid Loss.

    Science.gov (United States)

    1989-08-10

    endpoint of fluid and electrolyte loss through diuresis and natriuresis . Differences in the responses were also noted, although the data necessary to...SUBJECT TERMS (Continue on reverse if necessarynd..iien.nti., by c blo i("nunber ,. FIELD GROUP SUB-GROUP cold, diuresis , microgravity,-w•_ightlessness...rff’dentify by block number)cC The physiological mechanisms involved in the diuresis and overall fluid loss associated with exposure to cold or microgravity

  2. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    OpenAIRE

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electro...

  3. Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift

    Science.gov (United States)

    2015-05-18

    Partners Place, Suite 150 Norman , OK 73019 -5715 31-Aug-2014 ABSTRACT Final Report: Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm...7 This was the first step in a comparative study of low permittivity liquids and electrolytes. Acetates and their electrolyte solutions have low ...wisdom, based on a hydrodynamic picture of ion transport, states that the conductivity in propylene carbonate is relatively low because the

  4. Electrolyte Disturbance and the Type of Malarial Infection

    OpenAIRE

    Rani, Asima; AKHTAR, Shahnaz; Syed Kashif NAWAZ; Shazia IRFAN; AZAM, Sadia; Arshad, Muhammad

    2015-01-01

    Background: Electrolytes play an important role in the normal functioning of human body. Electrolyte imbalance and mineral disturbances is the common clinical manifestation in several infectious diseases including malaria. Malaria is a mosquito borne serious infectious disease of the world. Plasmodium vivax and P. falciparum are the main agents responsible for malaria in Pakistan. Electrolyte imbalance in malarial infection may lead towards the severity of disease.Methods: The present study a...

  5. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  6. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism....... The aim of this article is to provide knowledge of nucleotide metabolism and its regulation to facilitate interpretation of data arising from genetics, proteomics, and transcriptomics in connection with biotechnological processes and beyond....

  7. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism....... The aim of this article is to provide knowledge of nucleotide metabolism and its regulation to facilitate interpretation of data arising from genetics, proteomics, and transcriptomics in connection with biotechnological processes and beyond....

  8. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  9. Metal-air flow batteries using oxygen enriched electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  10. Quantum dot doped solid polymer electrolyte for device application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pramod K.; Kim, Kang Wook; Rhee, Hee-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul 121-742 (Korea)

    2009-06-15

    ZnS capped CdSe quantum dots embedded in PEO:KI:I{sub 2} polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity ({sigma}) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve. (author)

  11. Electrolyte Optimization of Microarc Oxidation of Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    FANG Da-ran; WANG Ji-hui; YANG Jing

    2004-01-01

    Magnesium alloy AZ91D was processed respectively in one, two, three and four-component electrolytes by using AC microarc oxidation technique. The corrosion resistance of AZ9 1D alloy was measured by electrochemical methods. The optimum electrolytes in two, three and four components were found. In four-component electrolyte composed by NaOH,NaAlO2, H2O2 and C4H4O6Na2, the film formed on AZ91D alloy is smooth and compact, and has a higher corrosion resistance. The effect of the ingredients in electrolytes was discussed based on their roles in the formation of corrosion resistant film.

  12. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  13. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  14. Candidate organic electrolytes for electric double-layer capacitor application

    Institute of Scientific and Technical Information of China (English)

    B.Fang; Y.Wei; K.Suzuki; M.Kumagai

    2004-01-01

    Electrolytic conductivity,viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate),MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents.It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity,lowest viscosity and acceptable potential window.The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.1 mol/L Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).

  15. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    Science.gov (United States)

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  16. Electrolyte Optimization of Microarc Oxidation of Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    FANGDa-ran; WANGJi-hui; YANGJing

    2004-01-01

    Magnesium alloy AZ91D was processed respectively in one, two, three and four-component electrolytes by using AC microarc oxidation technique. The corrosion resistance of AZ91D alloy was measured by electrochemical methods. The optimum electrolytes in two, three and four components were found. In four-component electrolyte composed by NaOH, NaAlO2, H2O2 and C4H4O6Na2, the film formed on AZ91D alloy is smooth and compact, and has a higher corrosion resistance. The effect of the ingredients in electrolytes was discussed based on their roles in the formation of corrosion resistant film.

  17. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  18. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.

    2006-01-01

    The contributions of the individual components of the cell (anode, cathode, and electrolyte) to the cell resistance were determined experimentally, directly from impedance spectra obtained from a full cell. It was an anode supported thin electrolyte cell, consisting of a YSZ electrolyte, a Ni....../YSZ cermet anode, and a LSM composite cathode. Additional, qualitative information was obtained using symmetric cells with LSM composite electrodes. The investigations were carried out in the temperature interval from 700 to 850 degrees C. The electrolyte and anode activation energies obtained were 0.9 and 1...

  19. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  20. Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery

    KAUST Repository

    Yi, Ying

    2015-04-01

    A novel drug delivery device is presented, implementing an electrolytic pump and a thermo-responsive valve. The device is remotely operated by an AC electromagnetic field (40.5∼58.5 mT, 450 kHz) that provides the power for the pump and the valve. It is suitable for long-term therapy applications, which use a solid drug in reservoir (SDR) approach and avoids unwanted drug diffusion. When the electromagnetic field is on, the electrolytic pump drives the drug towards the valve. The valve is made of a magnetic composite consisting of a smart hydrogel: Poly (N-Isopropylacrylamide) (PNIPAm) and iron powder. The heat generated in the iron powder via magnetic losses causes the PNIPAm to shrink, allowing the drug to flow past it. When the electromagnetic field is off, the PNIPAm swells, sealing the outlet. In the meantime, the bubbles generated by electrolysis recombine into water, causing a pressure reduction in the pumping chamber. This draws fresh fluid from outside the pump into the drug reservoir before the valve is fully sealed. The recombination can be accelerated by a platinum (Pt) coated catalytic reformer, allowing more fluid to flow back to the drug reservoir and dissolve the drug. By repeatedly turning on and off the magnetic field, the drug solution can be delivered cyclically. © 2015 IEEE.

  1. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2014-01-01

    In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar-circular ......In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport...... of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses...

  2. Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts

    Science.gov (United States)

    Tohda, Koji; Gratzl, Miklos

    2004-01-01

    Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of

  3. Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts

    Science.gov (United States)

    Tohda, Koji; Gratzl, Miklos

    2004-01-01

    Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of

  4. Videotapes and Movies on Fluid Dynamics and Fluid Machines

    OpenAIRE

    Carr, Bobbie; Young, Virginia E.

    1996-01-01

    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  5. Lithium Polymer Electrolytes and Solid State NMR

    Science.gov (United States)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  6. [Effects of irrigation fluid absorption on system during mini-percutaneous nephrolithotomy].

    Science.gov (United States)

    Li, Jiong-Ming; Liang, Ming; Wang, Guang; Liu, Jian-He; Chen, Jian; Jiang, Yong-Ming; Zhang, Jing-Song; Jia, Wan-Jian; Zhang, Hai-Yan

    2009-02-15

    To determine the effects of irrigation fluid absorption on system hemodynamics, fluid-electrolyte and hormone during mini-percutaneous nephrolithotomy. In this study 128 patients with renal calculus or calculus of superior ureter from January 2007 to February 2008 were collected. Hemoglobin (Hb), hematocrit (Hct), plasma osmotic pressure (POP), fluid-electrolyte, serum creatinine (Cre), renin, angiotensin II and aldosterone were determined before and after operation. Heart rate (HR), mean arterial blood pressure (MAP) and oxygen saturation (SPO(2)) were recorded dynamically every 30 min. The HR speeded up accompanied with the irrigation time. When compared with before operation, POP, Cl(-), renin and Cre were significantly increased after operation; Hb, Hct and K(+) were significantly decreased after operation; MAP, SPO(2), Na(+), aldosterone and angiotensin II did not change significantly after operation. No serious surgery-related complication occurred in all patients. Irrigation fluid is absorbed during mini-percutaneous nephrolithotomy. The absorption amount is positively correlated with irrigation time. Changes of hemodynamics, fluid-electrolyte balance and renin may be caused by the irrigation fluid absorption.

  7. An AFM study of calcite dissolution in concentrated electrolyte solutions

    Science.gov (United States)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  8. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  9. Interface Engineering of Garnet Solid Electrolytes

    Science.gov (United States)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  10. Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings

    Science.gov (United States)

    Gao, Yonghao; Yerokhin, Aleksey; Matthews, Allan

    2014-10-01

    Plasma electrolytic oxidation (PEO) coatings were produced on commercially pure magnesium in a biologically friendly electrolyte composed of 2 g L-1 Ca(OH)2 and 12 g L-1 Na3PO4·12H2O using pulsed unipolar and bipolar current regimes with negative biasing varying from 0 to 20 mA cm-2. Analysis of voltage transients was performed to characterise the PEO processes. The coating morphology and phase composition were studied by scanning electron microscopy and X-ray diffraction technique, respectively. In vitro corrosion performance of the coatings was evaluated in a simulated body fluid at 37 ± 1 °C, using electrochemical techniques including open circuit potential monitoring, electrochemical impedance spectroscopy and potentiodynamic polarisation scans. The influence of the negative biasing on the PEO process and resulting coating characteristics is discussed. Unlike generally recognised beneficial effects of the negative biasing in PEO treatments of some other metal-electrolyte systems, it was found that detrimental effects are induced to the coatings on cp-Mg produced in the studied electrolyte when the negative current amplitude increases, which may be attributed to hydrogen liberation at the coating/substrate interface during the negative biasing cycles. As a result, a deterioration of vitro corrosion performance was observed for the pulsed bipolar PEO coatings compared to those produced using the pulsed unipolar regime which provides better quality coatings.

  11. Current topics of purification and constitutions of dialysis fluid.

    Science.gov (United States)

    Tomo, Tadashi

    2015-01-01

    Dialysis fluid is a fundamental component of hemodialysis treatment, and its roles include the correction of electrolyte levels, pH, and osmolality, as well as the removal of uremic solutes from the blood of patients with renal failure. In recent years, purification of dialysis fluid has become essential due to the use of high-flux membrane dialyzers. Therefore, rigorous standards have been established for the purification of dialysis fluid, which is becoming widely practiced in Japan. The effects of dialysis fluid purification include the prevention of micro-inflammation, preservation of residual renal function, improvement of nutritional status, and resolution of resistance to erythropoiesis-stimulating agents. When purifying the dialysis fluid used in the central dialysis fluid delivery system, validation of the system is also important. Dialysis fluid that does not contain acetate has become available, and there have been reports of decreased micro-inflammation, etc., with this innovation. In addition, dialysis fluid containing a higher concentration of bicarbonate than is conventionally employed has become available. Although correction of acidosis remains important, excess alkalosis may reportedly worsen the survival prognosis of hemodialysis patients. Sufficient attention should be paid to these issues.

  12. Ion-Chain Dynamics in Polymer Electrolytes

    CERN Document Server

    Carlos, L D

    1996-01-01

    Representing polyether-salt systems by chains of interacting coordination shells, defined by the cation and by its nearest ligands, we derive the interaction potential between closest shells -- the inter-shells potential -- in terms of two-electron polarization effects. Values are presented for monovalent-based crystalline poly(ethylene oxide), PEO, electrolytes. For the eutectic composition $\\text{PEO}_{12} \\text{EuBr}_3$, the inter-shells energy is evaluated also by relating the empirical value of the nearest-ligands local-field potential with the variation of the $\\text{Eu}^{3+}$ concentration. Both methods give the same results.

  13. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  14. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  15. Diffusion and ionic conductivity in solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. N.

    1979-01-01

    In ionic solids, the most usual experimental method of determining the correlation factor (f) has been a comparison of tracer diffusion and ionic conductivity. Theoretical values of f have been determined for many lattice geometries and jump processes and compared with measured values of f as a means of determining the atomic jump process. This paper considers the problems of applying this technique to solid electrolytes where the concentration of defects responsible for diffusion is comparable to the concentration of the mobile ions. The difficulties of applying the more common experimental techniques are discussed and the present level of theoretical understanding of correlation effects will be outlined.

  16. Status and applicability of solid polymer electrolyte technology to electrolytic hydrogen and oxygen production

    Science.gov (United States)

    Titterington, W. A.

    1973-01-01

    The solid polymer electrolyte (SPE) water electrolysis technology is presented as a potential energy conversion method for wind driven generator systems. Electrolysis life and performance data are presented from laboratory sized single cells (7.2 sq in active area) with high cell current density selected (1000 ASF) for normal operation.

  17. Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes

    Science.gov (United States)

    Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Smith, M. E.; Howes, A.; Hollenkamp, A. F.; Bastow, T.; Hale, P.; Forsyth, M.

    An understanding of the solid electrolyte interphase (SEI) that forms on the lithium-metal surface is essential to the further development of rechargeable lithium-metal batteries. Currently, the formation of dendrites during cycling, which can lead to catastrophic failure of the cell, has mostly halted research on these power sources. The discovery of ionic liquids as electrolytes has rekindled the possibility of safe, rechargeable, lithium-metal batteries. The current limitation of ionic liquid electrolytes, however, is that when compared with conventional non-aqueous electrolytes the device rate capability is limited. Recently, we have shown that the addition of a zwitterion such as N-methyl- N-(butyl sulfonate) pyrrolidinium resulted in enhancement of the achievable current densities by 100%. It was also found that the resistance of the SEI layer in the presence of a zwitterion is 50% lower. In this study, a detailed chemical and electrochemical analysis of the SEI that forms in both the presence and absence of a zwitterion has been conducted. Clear differences in the chemical nature and also the thickness of the SEI are observed and these may account for the enhancement of operating current densities.

  18. Metabolic acidosis.

    Science.gov (United States)

    Lim, Salim

    2007-01-01

    Acute metabolic acidosis is frequently encountered in critically ill patients. Metabolic acidosis can occur as a result of either the accumulation of endogenous acids that consumes bicarbonate (high anion gap metabolic acidosis) or loss of bicarbonate from the gastrointestinal tract or the kidney (hyperchloremic or normal anion gap metabolic acidosis). The cause of high anion gap metabolic acidosis includes lactic acidosis, ketoacidosis, renal failure and intoxication with ethylene glycol, methanol, salicylate and less commonly with pyroglutamic acid (5-oxoproline), propylene glycole or djenkol bean (gjenkolism). The most common causes of hyperchloremic metabolic acidosis are gastrointestinal bicarbonate loss, renal tubular acidosis, drugs-induced hyperkalemia, early renal failure and administration of acids. The appropriate treatment of acute metabolic acidosis, in particular organic form of acidosis such as lactic acidosis, has been very controversial. The only effective treatment for organic acidosis is cessation of acid production via improvement of tissue oxygenation. Treatment of acute organic acidosis with sodium bicarbonate failed to reduce the morbidity and mortality despite improvement in acid-base parameters. Further studies are required to determine the optimal treatment strategies for acute metabolic acidosis.

  19. Mechanisms of the Effects of Acidosis and Hypokalemia on Renal Ammonia Metabolism

    OpenAIRE

    Han, Ki-Hwan

    2011-01-01

    Renal ammonia metabolism is the predominant component of net acid excretion and new bicarbonate generation. Renal ammonia metabolism is regulated by acid-base balance. Both acute and chronic acid loads enhance ammonia production in the proximal tubule and secretion into the urine. In contrast, alkalosis reduces ammoniagenesis. Hypokalemia is a common electrolyte disorder that significantly increases renal ammonia production and excretion, despite causing metabolic alkalosis. Although the net ...

  20. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Ceballos-Laita, Laura; Grusak, Michael A; Abadía, Javier; López-Millán, Ana-Flor

    2016-08-01

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  2. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe

    2000-04-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl{sup -} and SO{sub 4}{sup 2-}. These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl{sup 1-}) from sulfate (SO{sub 4}{sup 2-}), and separation efficiency as a function of electromotive force (emf).

  3. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  4. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  5. 40 CFR 424.60 - Applicability; description of the electrolytic manganese products subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic manganese products subcategory. 424.60 Section 424.60 Protection of Environment ENVIRONMENTAL... CATEGORY Electrolytic Manganese Products Subcategory § 424.60 Applicability; description of the electrolytic manganese products subcategory. The provisions of this subpart are applicable to...

  6. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  7. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.

    Science.gov (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh

    2012-03-14

    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties.

  8. Electrolytes for low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Berkel, F.P.F. van; Christie, G.M.; Heuveln, F.H. van; Huijsmans, J.P.P. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1995-12-31

    Self-supported electrolytes and electrode supported electrolytes of zirconia and ceria have been developed by means of tape casting. The conductivity data of these compounds have been obtained. Cell tests with these materials were conducted in the temperature range of 600 to 800 C. Operation of SOFC within this temperature range has been shown to be feasible.

  9. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    Science.gov (United States)

    2014-09-01

    Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells by Charles Brandon Sweeney, Mark Bundy, Mark Griep, and Shashi P. Karna...ARL-TR-7100 September 2014 Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells Charles Brandon Sweeney Texas A&M...

  10. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    Science.gov (United States)

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-07

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

  11. Electrolytes in solid-state dye-sensitized nanocrystalline solar cells

    Institute of Scientific and Technical Information of China (English)

    AN Hongli; XUE Bofei; LI Dongmei; MENG Qingbo; GUO Lin

    2006-01-01

    In this paper, the structure and operating principle of the dye-sensitized nanocrystalline solar cells (DSSC) are discussed. The electrolytes can be divided into three types: liquid electrolyte, quasi-solid electrolyte and solid electrolyte. Based on the rele vant study of our group, we summarized mainly the research progress of the quasi-solid electrolyte and solid electrolyte in solid-state DSSC.

  12. Synthesis and characterization of polyethylene oxide based nano composite electrolyte

    Indian Academy of Sciences (India)

    M Malathi; K Tamilarasan

    2014-08-01

    Polyethylene oxide (PEO) – montmorillonite (MMT) composite electrolytes were synthesised by solution casting technique. The salt used for the study is Lithium perchlorate (LiClO4). The morphology and percentage of crystallinity data were obtained through X-ray Diffraction and Differential Scanning Caloriemetry. The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. The addition of MMT resulted in an increase in conductivity over the temperature range of 25–60°C. The ionic conductivity of a composite polymer electrolyte containing 1.2 wt% MMT was 1 × 10-5 S cm−1 at 25°C, which is at least one order of magnitude higher than that of the polymer electrolyte (4 × 10-7S cm−1). The increase in ionic conductivity is explained on the basis of crystallinity of the polymer electrolyte.

  13. Effect of Electrolyte Composition on Characteristics of Plasma Electrolysis Nitrocarburizing

    Science.gov (United States)

    Tavakoli, H.; Mousavi Khoie, S. M.; Marashi, S. P. H.; Bolhasani, O.

    2013-08-01

    In this article, the effect of electrolyte composition on the characteristics of generated layer by plasma electrolytic nitrocarburizing process is studied. The characterization of the layer was carried out by means of SEM, x-ray diffraction, and EIS techniques. The relationship between workpiece temperature and the chemical composition of electrolyte was determined during the process. Three distinct regions in the temperature-voltage curves were observed. The effect of electrolyte's composition on the electrical parameters such as critical voltage, voltage of plasma formation, current density, and electrolyte conductivity was investigated. XRD studies showed that in addition to nitride phases, Fe3O4 phase also is generated. Moreover, EIS studies indicated that the corrosion resistance of the samples processed with higher water contents is less than the samples processed with lower water contents.

  14. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  15. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2010-08-01

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries. (author)

  16. Electrochemical potential at the interface between carbon nanotubes and electrolyte

    Institute of Scientific and Technical Information of China (English)

    LU Jian-wei; WANG Wan-lu; WU Zi-hua; WANG Yong-tian

    2004-01-01

    The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate,and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.

  17. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries.

  18. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  19. Electrolyte-gated transistors for organic and printed electronics.

    Science.gov (United States)

    Kim, Se Hyun; Hong, Kihyon; Xie, Wei; Lee, Keun Hyung; Zhang, Sipei; Lodge, Timothy P; Frisbie, C Daniel

    2013-04-04

    Here we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for organic and printed electronics. EGTs employ a high capacitance electrolyte as the gate insulator; the high capacitance increases drive current, lowers operating voltages, and enables new transistor architectures. Although the use of electrolytes in electronics is an old concept going back to the early days of the silicon transistor, new printable, fast-response polymer electrolytes are expanding the potential applications of EGTs in flexible, printed digital circuits, rollable displays, and conformal bioelectronic sensors. This report introduces the structure and operation mechanisms of EGTs and reviews key developments in electrolyte materials for use in printed electronics. The bulk of the article is devoted to electrical characterization of EGTs and emerging applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Theorethical principles of fluid managment according to physicochemical Stewart approach.

    Science.gov (United States)

    Smuszkiewicz, Piotr; Szrama, Jakub

    2013-01-01

    Interpreting acid base disturbances according to the physicochemical Stewart approach allows the cause of such abnormalities to be discovered. This method is based on three independent variables: SID (strong ion difference), mainly sodium and chloride; weak acids concentration - Atot, mainly albumins and phosphate; and carbon dioxide tension - pCO₂. These three independent variables are responsible for the change of water dissociation and for the change in H+ concentration and, consequently, the change in serum pH value. The SID value of the fluids administered to a patient is responsible for the change of serum SID value and therefore causes a change in the patient's acid base status. During the infusion of a given fluid, the SID value of the serum becomes closer to the SID value of that fluid; on the other hand, the infusion causes a decrease in Atot concentration. In order to avoid acid base disturbances connected with fluid administration, the SID value of fluids being administered should be greater than 0 and lower then the serum SID. It has been suggested that fluids should be given of which the SID value is as close as possible to the actual serum HCO₃ concentration. Knowing the SID value of the fluid administered, and the serum HCO₃ concentration, one can expect a change of serum pH after a fluid infusion. Administering a fluid with a SID greater than the HCO₃ concentration causes a pH increase towards alkalosis. Likewise, administering a a fluid with a SID lower than the HCO₃ concentration causes a pH decrease towards acidosis. It seems that knowledge of the electrolyte concentration and the SID value of an administered fluid is an important factor regarding acid base disturbances.

  1. Metabolic encephalopathies.

    Science.gov (United States)

    Angel, Michael J; Young, G Bryan

    2011-11-01

    Kinnier Wilson coined the term metabolic encephalopathy to describe a clinical state of global cerebral dysfunction induced by systemic stress that can vary in clinical presentation from mild executive dysfunction to deep coma with decerebrate posturing; the causes are numerous. Some mechanisms by which cerebral dysfunction occurs in metabolic encephalopathies include focal or global cerebral edema, alterations in transmitter function, the accumulation of uncleared toxic metabolites, postcapillary venule vasogenic edema, and energy failure. This article focuses on common causes of metabolic encephalopathy, and reviews common causes, clinical presentations and, where relevant, management.

  2. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  3. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  4. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  5. Polymer electrolyte fuel cell stack research and development

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Barbera, O.; Giacoppo, G.; Urbani, F.; Passalacqua, E. [Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' del CNR (CNR, ITAE), via Salita per, Santa Lucia sopra Contesse 5, Messina (Italy)

    2008-04-15

    The research activity in polymer electrolyte fuel cell (PEFC) is oriented to the evolution of components and devices for the temperature range from 20 to 130{sup o}C, and covers all the aspects of this matter: membranes and electrodes, fuel cell stack engineering (design and manufacturing) and characterization, computational modelling and small demonstration systems prototyping. Particular attention is devoted to portable and automotive application. Membranes research is focused on thermostable polymers (polyetheretherketone, polysulphone, etc.) and composite membranes able to operate at higher temperature (>100{sup o}C) and lower humidification than the commercial Nafion {sup registered}, while Pt load reduction and gas diffusion layer improvement are the main goals for the electrode development. PEFC stack engineering and characterization activity involve different aspects such as the investigation of new materials for stack components, fuel cell modelling and performance optimization by computational techniques, single cell and stack electrochemical characterization, development of investigation tools for stack monitoring and data acquisition. A lot of work has been focused to the fuel cell stack architecture, assembling, gas leakage and cross-over reduction (gasketing), flow field and manifold design. Computational fluid dynamics studies have been performed to investigate and improve reactants distribution inside the cell. A flow field design methodology, developed in this framework and related to serpentine like flow field, is actually under investigation. All of these aspects of PEFC stack research are realized in the framework of National and European research projects, or in collaboration with industries and other research centres. In the present work our stack research activity is reported and the most important results are also considered. (author)

  6. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  7. Semiconductor/Solid Electrolyte Junctions for Optical Information Storage. Electrochromic Effects on Heptylviologen Incorporated within a Solid Polymer Electrolyte Cell.

    Science.gov (United States)

    1986-05-15

    cathode5 . Electrochromic devices based upon these electrochemically reversible viologen redox couples would greatly benefit by their incorporation...electrolyte analogs. Here we wish to discuss some recent work from our laboratory on solid- state electrochromic cells in which heptyl viologen (HV2+) was...OPTICAL INFORMATION STORAGE. ELECTROCHROMIC EFFECTS QN HEPTYLVIOLOGEN INCORPORATED WITHIN A SOLID POLYMER ELECTROLYTE CELL By Anthony F. Sammells and

  8. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yingliang, E-mail: chengyingliang@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Matykina, Enzhe [Dpt. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Madrid 28040 (Spain); Skeldon, Peter; Thompson, George [Corrosion and Protection Centre, School of Materials, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom)

    2011-10-01

    Highlights: > ZrO{sub 2} coatings are grown on Zircaloy-4 by AC plasma electrolytic oxidation. > Tetragonal and monoclinic ZrO{sub 2} are formed using silicate electrolyte. > Pyrophosphate electrolyte results in flawed coatings of monoclinic ZrO{sub 2}. > Silicate favours formation of tetragonal ZrO{sub 2}, with coating hardness {approx}8 GPa. > Microstructures are related to temperature gradients and solidification rates. - Abstract: Plasma electrolytic oxidation was undertaken on Zircaloy-4 in alkaline silicate and pyrophosphate electrolytes, with a square waveform AC current regime. The resultant coatings were examined using scanning electron spectroscopy, X-ray diffraction and nanoindentation. The coatings formed in silicate electrolyte comprised mainly a porous inner layer and a more compact outer layer, with characteristic solidification structures being evident following prolonged treatment. The coatings contained monoclinic and tetragonal ZrO{sub 2}, the latter being mainly present in the outer layer, which was of hardness up to {approx}8 GPa. In contrast, extensively cracked coatings resulted from use of pyrophosphate electrolyte; the coating integrity was improved by the addition of silicate to the pyrophosphate electrolyte. The different morphologies of the coatings appeared to be related to the differing nature of the microdischarges and to the incorporation of silicon species that enhanced the formation of t-ZrO{sub 2}.

  9. Electrode–electrolyte interface stability in solid state electrolyte systems: influence of coating thickness under varying residual stresses

    National Research Council Canada - National Science Library

    Claas Hüter; Shuo Fu; Martin Finsterbusch; Egbert Figgemeier; Luke Wells; Robert Spatschek

    2017-01-01

    ... with the interface profile.As model system, we use metallic lithium as electrode, LLZO as electrolyte and Al2O3 as a thin filminterlayer, which is a highly relevant interfacial system in state of the art all-solid-electrolyte...

  10. Voltage of a solid electrolyte galvanic cell in terms of the activity of the mobile species of the electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Naefe, H. [Max-Planck-Institut fuer Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart (Germany)

    2007-09-15

    The voltage of a solid electrolyte galvanic cell is not related to the activity of the mobile ions in the electrolyte which is why this activity is not a measurable quantity. Any different view contradicts fundamental relationships inherent in solid state electrochemistry. (author)

  11. Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Seong Jin; Li, Jianlin; Daniel, Claus; Meyer, Harry M.; Trask, Stephen E.; Polzin, Bryant J.; Wood, David L.

    2017-05-23

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite / LiNi0.5Mn0.3CO0.2O2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendrites are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. Solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.

  12. Basics of fluid and blood transfusion therapy in paediatric surgical patients

    Directory of Open Access Journals (Sweden)

    Virendra K Arya

    2012-01-01

    Full Text Available Perioperative fluid, electrolyte and blood transfusion therapy for infants and children can be confusing due the numerous opinions, formulas and clinical applications, which can result in a picture that is not practical and is often misleading. Perioperatively, crystalloids, colloids and blood components are required to meet the ongoing losses and for maintaining cardiovascular stability to sustain adequate tissue perfusion. Recently controversies have been raised regarding historically used formulas and practices of glucose containing hypotonic maintenance crystalloid solutions for perioperative fluid therapy in children. Paediatric intraoperative transfusion therapy, particularly the approach to massive blood transfusion (blood loss ≥ one blood volume can be quite complex because of the unique relationship between the patient′s blood volume and the volume of the individual blood product transfused. A meticulous fluid, electrolyte and blood transfusion management is required in paediatric patients perioperatively because of an extremely limited margin for error. This article reviews the basic concepts in perioperative fluid and blood transfusion therapy for paediatric patients, along with recent recommendations. For this review, Pubmed, Ovid MEDLINE, HINARI and Google scholar were searched without date restrictions. Search terms included the following in various combinations: Perioperative, fluid therapy, paediatrics, blood transfusion, electrolyte disturbances and guidelines. Only articles with English translation were used.

  13. Basics of fluid and blood transfusion therapy in paediatric surgical patients.

    Science.gov (United States)

    Arya, Virendra K

    2012-09-01

    Perioperative fluid, electrolyte and blood transfusion therapy for infants and children can be confusing due the numerous opinions, formulas and clinical applications, which can result in a picture that is not practical and is often misleading. Perioperatively, crystalloids, colloids and blood components are required to meet the ongoing losses and for maintaining cardiovascular stability to sustain adequate tissue perfusion. Recently controversies have been raised regarding historically used formulas and practices of glucose containing hypotonic maintenance crystalloid solutions for perioperative fluid therapy in children. Paediatric intraoperative transfusion therapy, particularly the approach to massive blood transfusion (blood loss ≥ one blood volume) can be quite complex because of the unique relationship between the patient's blood volume and the volume of the individual blood product transfused. A meticulous fluid, electrolyte and blood transfusion management is required in paediatric patients perioperatively because of an extremely limited margin for error. This article reviews the basic concepts in perioperative fluid and blood transfusion therapy for paediatric patients, along with recent recommendations. For this review, Pubmed, Ovid MEDLINE, HINARI and Google scholar were searched without date restrictions. Search terms included the following in various combinations: Perioperative, fluid therapy, paediatrics, blood transfusion, electrolyte disturbances and guidelines. Only articles with English translation were used.

  14. Metabolic Syndrome

    Science.gov (United States)

    ... hypertension, hypertriglyceridemia, insulin resistance syndrome, low HDL cholesterol, Metabolic Syndrome, overweight, syndrome x, type 2 diabetes Family Health, Kids and Teens, Men, Women January 2005 Copyright © American Academy of Family PhysiciansThis ...

  15. Synovial fluid analysis

    Science.gov (United States)

    ... bursae (fluid-filled sacs in the joints), and tendon sheaths. After the joint area is cleaned, the ... HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes ...

  16. Amniotic fluid (image)

    Science.gov (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  17. Pericardial Fluid Analysis

    Science.gov (United States)

    ... help diagnose the cause of inflammation of the pericardium (pericarditis) and/or fluid accumulation around the heart ( ... pressure within blood vessels or inflammation of the pericardium. An initial set of tests, including fluid protein ...

  18. Pericardial fluid Gram stain

    Science.gov (United States)

    ... staining a sample of fluid taken from the pericardium. This is the sac surrounding the heart to ... sample of fluid will be taken from the pericardium. This is done through a procedure called pericardiocentesis . ...

  19. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  20. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.