DEFF Research Database (Denmark)
Brorsen, Michael
These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Applications of fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Round, G.R.; Garg, V.K.
1986-01-01
This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.
Webgraph connectivity and dynamics: Russian research institutions
Directory of Open Access Journals (Sweden)
Andrey A. Pechnikov
2015-06-01
Full Text Available This research paper proposes a webgraph dynamics model for research institutes based on a webgraph constructed on a set of instants of time and “return back” through removal of multiple hyperlinks. Analysis of the dynamics model, conducted for the webgraph of the Russian Academy of Sciences (RAS using real data obtained from websites age determination, shows that emergence of new links for each temporary step in the dynamics model of the webgraph cannot be explained only by the well-known principles of preferential attachment and initial attractiveness of vertices. Of much more importance are the so-called ‘administrative actions’ – target programs implemented by policy makers both at the regional and national level, which are aimed at developing information resources. Investigations revealed there is an almost perfect match between the model dates marking significant changes in the webgraph dynamics model and the real dates when administrative actions came into force. The webgraph dynamics and connectivity of RAS research institutions were shown to depend on administrative actions of policy makers, implemented at both the regional and national level in the form of targeted programs aimed at developing information resources.
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Blazek, Jiri
2015-01-01
Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new
Videotapes and Movies on Fluid Dynamics and Fluid Machines
Carr, Bobbie; Young, Virginia E.
1996-01-01
Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.
Magoules, Frederic
2011-01-01
Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow.Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel ap
Pedlosky, Joseph
1979-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...
Pedlosky, Joseph
1982-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...
Essential Computational Fluid Dynamics
Zikanov, Oleg
2011-01-01
This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and
Fluid dynamics of heart development.
Santhanakrishnan, Arvind; Miller, Laura A
2011-09-01
The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics.
Computational fluid dynamic applications
Energy Technology Data Exchange (ETDEWEB)
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Palazzi, Elisa; Fraedrich, Klaus
2016-01-01
This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.
OBJECTIVITY REQUIREMENT FOR FLUID DYNAMICS
Institute of Scientific and Technical Information of China (English)
邹文楠
2003-01-01
A new flow theory is established through the objectivity requirement on the fluid dynamics. It was known that inhomogeneous fluid motion gave rise to viscous force while the selection of observers on different space-time points would change such an inhomogeneous character. Therefore, when the viscous force was considered as an objective existence foreign to the selection of observers, the form invariances of viscous force and momentum equation under local rotation transformation required a new dynamic field,namely the vortex field to be introduced. Then the dynamical equations of all flow fields were obtained through constructing the Lagrangian density of fluid system and using the variational approach of energy.
Amniotic fluid water dynamics.
Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G
2007-01-01
Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.
Fetal fluid and protein dynamics
Pasman, Suzanne
2010-01-01
In this thesis fetal fluid and protein dynamics are investigated to gain insight in fetal (patho-)physiology. Studies were performed in fetuses with severe anemia and/or hydrops fetalis. Measurements were performed in fetal blood or amniotic fluid, obtained before or during intrauterine transfusion.
An Introduction to Fluid Dynamics
Batchelor, G. K.
2000-02-01
First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.
Lecture notes: Astrophysical fluid dynamics
Ogilvie, Gordon I
2016-01-01
These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes, and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is 'frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, includin...
Basic developments in fluid dynamics
Holt, Maurice
2012-01-01
Basic Developments in Fluid Dynamics, Volume 2 focuses on the developments, approaches, methodologies, reactions, and processes involved in fluid dynamics, including sea motion, wave interactions, and motion of spheres in a viscous fluid.The selection first offers information on inviscid cavity and wake flows and weak-interaction theory of ocean waves. Discussions focus on steady and unsteady cavity flows, radiation balance, theory of weak interactions in random fields, interactions between gravity waves and the atmosphere, and interactions within the ocean. The text then examines low Reynolds
Noncommutative geometry and fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)
2016-11-15
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Jarvis, P D
2006-01-01
We present a conformal theory of a dissipationless relativistic fluid in 2 space-time dimensions. The theory carries with it a representation of the algebra of 2-$D$ area-preserving diffeomorphisms in the target space of the complex scalar potentials. A complete canonical description is given, and the central charge of the current algebra is calculated. The passage to the quantum theory is discussed in some detail; as a result of operator ordering problems, full quantization at the level of the fields is as yet an open problem.
Fluid dynamics [and gas compressors
Energy Technology Data Exchange (ETDEWEB)
Kurz, Rainer [Solar Turbines Inc. (United States)
2002-02-01
The author examines the use of computational fluid dynamics in the development of gas compressors. The background to CFD is explained including modelling the geometry and the effects of turbulence. A typical design process is briefly explained and its limitations discussed. (UK)
Fluid Dynamics and Entropic Gravity
Nagle, Ian
2016-01-01
A new entropic gravity inspired derivation of general relativity from thermodynamics is presented. This generalizes, within Einstein gravity, the "Thermodynamics of Spacetime" approach by T. Jacobson, which relies on the Raychaudhuri evolution equation. Here the rest of the first law of thermodynamics is incorporated by using the Damour-Navier-Stokes equation, known from the membrane paradigm for describing fluid dynamics on the horizon.
Computational Fluid Dynamics in Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.;
2008-01-01
Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...
Artificial Heart Fluid Dynamics.
Mussivand, Tofigh Varcaneh
Flow characteristics within pneumatic, pulsatile, and pusher plate prosthetic hearts were studied. The blood pumps evaluated were duplicates of pumps used for in vivo calf and for clinical implantation at the Cleveland Clinic Foundation. Human dura mater bioprosthetic, caged disk, and Bjork-Shiley tilting disk valves were employed in the pumps. Dual camera video tape and synchronized still photography were used to study flow patterns. Diffused light and a planar laser source provided illumination. The laser light was fanned into a plane with a thickness of 0.2 mm to 10 mm. Magnesium oxide and Amberlite particles were used as tracers. Aqueous-glycerol, aqueous-sucrose solutions and mineral oil were used as blood analog fluids. Inflow, outflow, drive, and afterload pressures, diaphragm motion, cardiac output, and heart rate were measured and recorded. An electrical circuit was developed to synchronize pump diaphragm motion with captured images of flow trajectories. After digitizing the trajectories, velocities, global and local turbulence, and shear stresses were obtained. Disturbed and recirculating zones were identified. Qualitative and quantitative analyses were performed using data obtained from the digitization of flow trajectories. Simultaneous turbulence and stasis were observed during most phases of the cardiac cycles in all the pumps tested. A maximum Reynold's shear stress of 2889 dynes/cm ^2 occurred at 120 beats per minute (bpm). The peak velocity was 146 cm/sec during systole. The identified regions of recirculation, low velocity and disturbed flow were shown to correlate with thrombosed areas of explanted blood pumps. The maximum calculated turbulence intensity was 106 cm/sec which occurred at 120 bpm during systole.
Electromagnetics and Fluid Dynamics
Gaitonde, Datta
1998-01-01
Previous efforts focused on developing tools for design of low observables were sustained. The final product was the maturation of a high-order accurate finite-volume based code to solve Maxwell's equations. One of the primary achievements was the development and implementation of efficient filtering techniques which enhance the robustness of high-order and optimized schemes without significant adverse impact on accuracy. This has eliminated the stability barrier which restrains the common use of high-order schemes for conservative wave propagation phenomena on curvilinear meshes. A study was performed of crossing shock interactions under conditions of increasing interaction strength and asymmetry. In the first category, the observed computed topological bifurcations were correlated with the formation of various lines of coalescence and divergence evident in experimental and computed surf-ace oil maps. ne flow structure arising from asymmetric interactions was investigated with particular emphasis on: 1) vorticity dynamics, 2) shock-structure and 3) sidewall vortex loading. Several efforts of the prior year were successfully published in archival journals. The high-order algorithms developed for CEM have been implemented into the FDL3DI CFD code are presently undergoing extensive testing. Preliminary results are highly encouraging.
Fundamentals of Geophysical Fluid Dynamics
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
Lectures on Geophysical Fluid Dynamics
Samelson, Roger M.
The fluid kaleidoscope of the Earth's ocean and atmosphere churns and sparkles with jets, gyres, eddies, waves, streams, and cyclones. These vast circulations, essential elements of the physical environment that support human life, are given a special character by the Earth's rotation and by their confinement to a shallow surficial layer, thin relative to the solid Earth in roughly the same proportion as an apple skin is to an apple. Geophysical fluid dynamics exploits this special character to develop a unified theoretical approach to the physics of the ocean and atmosphere.With Lectures on Geophysical Fluid Dynamics, Rick Salmon has added an insightful and provocative volume to the handful of authoritative texts currently available on the subject. The book is intended for first-year graduate students, but advanced students and researchers also will find it useful. It is divided into seven chapters, the first four of these adapted from course lectures. The book is well written and presents a fresh and stimulating perspective that complements existing texts. It would serve equally well either as the main text for a core graduate curriculum or as a supplementary resource for students and teachers seeking new approaches to both classical and contemporary problems. A lively set of footnotes contains many references to very recent work. The printing is attractive, the binding is of high quality, and typographical errors are few.
Computational Fluid Dynamics in Combustion
Directory of Open Access Journals (Sweden)
P. J. Paul
2010-10-01
Full Text Available Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics. The study examines the computation of reacting flows. After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly. Two cases of computation, where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation.Defence Science Journal, 2010, 60(6, pp.577-582, DOI:http://dx.doi.org/10.14429/dsj.60.600
Dynamics of Complex Fluid-Fluid Interfaces
Sagis, L.M.C.
2016-01-01
This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables
Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.; Levitskih, O. O.
2017-05-01
Nowadays, metalworking fluids (MWF) in the design of technological processes in most cases are considered as mandatory persistant components despite the constant improvement of the technology of machining, tools and equipment. Three main functions of MWF: cooling, lubrication, waste chips removal - seems to be the essential condition for stable process. In most cases, cooling reduces wear of tool and improves the quality of the processed surface. The cooling characteristics of the MWF affect not only the heat capacity and thermal conductivity, but metal surfaces wettability and vaporization. If processing speed and temperature of the fluid are high then it may not be in direct contact with the surface of the tool due to low wettability or vapor blankets. Improvement of machining process with applying the MWF is accompanied with negative factors. Due to the high temperatures in the treatment area it is exposed to MWF vaporization. This article presents estimation of the applicable in Russian Federation MWF: fire risk, toxicological and environmental hazards.
Fluid Dynamics and Viscosity in Strongly Correlated Fluids
Schaefer, Thomas
2014-01-01
We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.
Computational methods for fluid dynamics
Ferziger, Joel H
2002-01-01
In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...
Principles of computational fluid dynamics
Wesseling, Pieter
2001-01-01
The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...
Introducing fluid dynamics using dimensional analysis
DEFF Research Database (Denmark)
Jensen, Jens Højgaard
2013-01-01
Many aspects of fluid dynamics can be introduced using dimensional analysis, combined with some basic physical principles. This approach is concise and allows exploration of both the laminar and turbulent limits—including important phenomena that are not normally dealt with when fluid dynamics...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Fluid dynamics of planetary ices
Greve, Ralf
2009-01-01
The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...
An introduction to Computational Fluid Dynamics
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt
1999-01-01
CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....
Experimental and theoretical advances in fluid dynamics
Klapp, Jaime; Fuentes, Oscar Velasco
2011-01-01
The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam
Introduction to mathematical fluid dynamics
Meyer, Richard E
2010-01-01
An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.
Fluid Dynamics in an Ecological Context
Denny, Mark
2007-11-01
Fluid dynamics has long been an invaluable tool in the study of biological mechanics, helping to explain how animals swim and fly, how blood is pumped, gases are exchanged, and propagules are dispersed. The goal of understanding how the physics of fluids has affected the evolution of individual organisms provides strong impetus for teaching and learning fluid mechanics; a viable alternative to the more traditional goals of engineering. In recent years, a third alternative has arisen. The principles of fluid dynamics can be used to specify when and where individual organisms will exceed their physical capabilities, information that can in turn be used to predict species-specific survivorship in a given environment. In other words, biological fluid dynamics can be extended beyond the study of individual organisms to play an important role in our understanding of ecological dynamics. In a world where environmental change is of increasing concern, fluid dynamic aspect of ``ecomechanics'' may be of considerable practical importance. Teaching fluid mechanics in ecology will be discussed in the context of wave-swept rocky shores. Various wave theories can be used to predict the maximum water velocities and accelerations impinging on specific surf-zone plants and animals. Theories of lift, drag, and accelerational forces can then be used to predict the maximum loads imposed on these organisms, loads that can be compared to the organisms' structural limits to predict the fraction of the species that will be dislodged or damaged. Taken across relevant species, this information goes far towards explaining shoreline community dynamics. .
Hidden Symmetry of a Fluid Dynamical Model
Neves, C
2001-01-01
A connection between solutions of the relativistic d-brane system in (d+1) dimensions with the solutions of a Galileo invariant fluid in d-dimensions is by now well established. However, the physical nature of the light-cone gauge description of a relativistic membrane changes after the reduction to the fluid dynamical model since the gauge symmetry is lost. In this work we argue that the original gauge symmetry present in a relativistic d-brane system can be recovered after the reduction process to a d-dimensional fluid model. To this end we propose, without introducing Wess-Zumino fields, a gauge invariant theory of isentropic fluid dynamics and show that this symmetry corresponds to the invariance under local translation of the velocity potential in the fluid dynamics picture. We show that different but equivalent choices of the sympletic sector lead to distinct representations of the embedded gauge algebra.
Computational fluid dynamics modeling in yarn engineering
CSIR Research Space (South Africa)
Patanaik, A
2011-07-01
Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...
Gay-Balmaz, François
2010-01-01
This paper is a rigorous study of the dual pair structure of the ideal fluid and the dual pair structure for the $n$-dimensional Camassa-Holm (EPDiff) equation, including the proofs of the necessary transitivity results. In the case of the ideal fluid, we show that a careful definition of the momentum maps leads naturally to central extensions of diffeomorphism groups such as the group of quantomorphisms and the Ismagilov central extension.
Directory of Open Access Journals (Sweden)
Olga Ivanovna Dmitrieva
2015-09-01
Full Text Available The article provides comprehensive justification of the principles and methods of the synchronic and diachronic research of word-formation subsystems of the Russian language. The authors also study the ways of analyzing historical dynamics of word family as the main macro-unit of word-formation system. In the field of analysis there is a family of words with the stem 'ход-' (the meaning of 'motion', word-formation of which is investigated in different periods of the Russian literary language. Significance of motion-verbs in the process of forming a language picture of the world determined the character and the structure of this word family as one of the biggest in the history of the Russian language. In the article a structural and semantic dynamics of the word family 'ход-' is depicted. The results of the study show that in the ancient period the prefixes of verbal derivatives were formed, which became the apex-branched derivational paradigms existing in modern Russian. The old Russian period of language development is characterized by the appearance of words with connotative meaning (with suffixes -ishk-, -ichn-, as well as the words with possessive semantics (with suffixes –ev-, -sk-. In this period the verbs with the postfix -cz also supplement the analyzed word family. The period of formation of the National Russian language was marked by the loss of a large number of abstract nouns and the appearance of neologisms from some old Russian abstract nouns. The studied family in the modern Russian language is characterized by the following processes: the appearance of terms, the active semantic derivation, the weakening of word-formation variability, the semantic differentiation of duplicate units, the development of subsystem of words with connotative meanings, and the preservation of derivatives in all functional styles.
International Conference on Mathematical Fluid Dynamics
Suzuki, Yukihito
2016-01-01
This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
Body fluid dynamics: back to the future.
Bhave, Gautam; Neilson, Eric G
2011-12-01
Pioneering investigations conducted over a half century ago on tonicity, transcapillary fluid exchange, and the distribution of water and solute serve as a foundation for understanding the physiology of body fluid spaces. With passage of time, however, some of these concepts have lost their connectivity to more contemporary information. Here we examine the physical forces determining the compartmentalization of body fluid and its movement across capillary and cell membrane barriers, drawing particular attention to the interstitium operating as a dynamic interface for water and solute distribution rather than as a static reservoir. Newer work now supports an evolving model of body fluid dynamics that integrates exchangeable Na(+) stores and transcapillary dynamics with advances in interstitial matrix biology.
Modern fluid dynamics for physics and astrophysics
Regev, Oded; Yecko, Philip A
2016-01-01
This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...
Herzfeld, T.; Huffman, S.K.; Oskam, A.J.; Rizov, M.I.
2009-01-01
This paper examines changes in aspects of the lifestyle of Russian adults between 1994 and 2004. We present evidence on the impact of individual as well as regional characteristics on changes in fat, protein, alcohol and cigarette consumption, and on diet’s diversity. The results from a dynamic econ
Directory of Open Access Journals (Sweden)
Syromyatnikov D. A.
2013-12-01
Full Text Available The article presents an analysis of the dynamics of the weighted average customs fare on the competitiveness of economic subjects. The characteristic of the current state of competitiveness of Russian companies after joining the World Trade Organization is given
Vortex dynamics in plasmas and fluids
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.;
1994-01-01
The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortical...
Interfacial gauge methods for incompressible fluid dynamics.
Saye, Robert
2016-06-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.
Computational Fluid Dynamics in Cardiovascular Disease
Lee, Byoung-kwon
2011-01-01
Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. Howev...
Colour in visualisation for computational fluid dynamics
2006-01-01
Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineers to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to il...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Variational principles for stochastic fluid dynamics.
Holm, Darryl D
2015-04-08
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler-Boussinesq and quasi-geostropic approximations.
Relativistic fluid dynamics in heavy ion collisions
Pu, Shi
2011-01-01
This dissertation is about the study of three important issues in the theory of relativistic fluid dynamics: the stability of dissipative fluid dynamics, the shear viscosity, and fluid dynamics with triangle anomaly.(1)The second order theory of fluid dynamics is necessary for causality. However the causality cannot be guaranteed for all parameters. The constraints for parameters are then given. We also point out that the causality and the stability are inter-correlated. It is found that a causal system must be stable, but an acausal system in the boost frame at high speed must be unstable. (2)The transport coefficients can be determined in kinetic theory. We will firstly discuss about derivation of the shear viscosity via variational method in the Boltzmann equation. Secondly, we will compute the shear viscosity via AdS/CFT duality in a Bjorken boost invariant fluid with radial flow. It is found that the ratio of the shear viscosity to entropy density is consistent with the work of Policastro, Son and Starin...
Reduced MHD and Astrophysical Fluid Dynamics
Arter, Wayne
2011-08-01
Recent work has shown a relationship between between the equations of Reduced Magnetohydrodynamics (RMHD), used to model magnetic fusion laboratory experiments, and incompressible magnetoconvection (IMC), employed in the simulation of astrophysical fluid dynamics (AFD), which means that the two systems are mathematically equivalent in certain geometries. Limitations on the modelling of RMHD, which were found over twenty years ago, are reviewed for an AFD audience, together with hitherto unpublished material on the role of finite-time singularities in the discrete equations used to model fluid dynamical systems. Possible implications for turbulence modelling are mentioned.
Introduction to Computational Fluid Dynamics
Date, Anil W.
2005-08-01
This is a textbook for advanced undergraduate and first-year graduate students in mechanical, aerospace, and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practicing engineers will find this particularly useful for reference and for continuing education.
Fluid Dynamic Verification Experiments on STS-70
Kleis, Stanley J.
1996-01-01
Fluid dynamic experiments were flown on STS-70 as phase two of the engineering evaluation of the first bioreactor Engineering Development Unit (EDU#1). The phase one experiments were comparative cell cultures in identical units on earth and onboard STS-70. In phase two, two types of fluid dynamic experiments were performed. Qualitative comparisons of the basic flow patterns were evaluated with the use of 'dye' streaklines formed from alternate injections of either a mild acid or base solution into the external flow loop that was then perfused into the vessel. The presence of Bromothymol Blue in the fluid then caused color changes from yellow to blue or vice versa, indicating the basic fluid motions. This reversible change could be repeated as desired. In the absence of significant density differences in the fluid, the flow patterns in space should be the same as on earth. Video tape records of the flow patterns for a wide range of operating conditions were obtained. The second type of fluid dynamic experiment was the quantitative evaluation of the trajectories of solid beads of various densities and sizes. The beads were introduced into the vessel and the paths recorded on video tape, with the vessel operated at various rotation rates and flow perfusion rates. Because of space limitations, the video camera was placed as close as possible to the vessel, resulting in significant optical distortion. This report describes the analysis methods to obtain comparisons between the in-flight fluid dynamics and numerical models of the flow field. The methods include optical corrections to the video images and calculation of the bead trajectories for given operating conditions and initial bead locations.
Directory of Open Access Journals (Sweden)
Dergunova Nina Vladimirovna
2015-12-01
Full Text Available Emigration of graduates of the Russian higher education institutions abroad has become the constant phenomenon of modern life. Creation of the social mobility conditions by the higher school emphasizes the problem of preserving ethnocultural identity by emigrants and their positive attitude to Russia. The paper shows the results of the field sociological studies (internet poll and focus group on the graduates of the Russian higher education institutions who currently live in Germany. The objective of these studies has been to investigate the tendencies of a change of the sociocultural and civil identity of the Russian-speaking youth abroad. The wave-like nature of the dynamics of the ethnocultural identification of the 8-year residence abroad is found, and four different models of the behavior of young migrants concerning the sociocultural adaptation and the preservation of ethnocultural identity are described. Two characteristics are used as the criteria for the models’ identification: “success” and “not success” in the adaptation to the sociocultural life in Germany and a strategy of the preservation of enthocultural identity. Based on them, first, the small group of young migrants who experience problems in the intercultural communication and adaptation and who feel their Russianness, home-sickness is separated. Other three different models of behavior are typical for the young Russian-speaking migrants successful from a standpoint of adaptation but they demonstrate diverse forms of the preservation of enthocultural identity. One of these three groups additionally reveals a negative civil identity to Russia. The studies also reveal the negative attitude of the Russian-speaking youth to collective forms of preservation of cultural identity and to the Russian diaspora aged over 50 years old. The forms of the preservation of ethnocultural identity of the youth to a greater extent have individual character with use of modern
The Fluid Dynamics of Competitive Swimming
Wei, Timothy; Mark, Russell; Hutchison, Sean
2014-01-01
Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.
Fluid dynamics in porous media with Sailfish
Coelho, Rodrigo C. V.; Neumann, Rodrigo F.
2016-09-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.
Fluid dynamics in porous media with Sailfish
Coelho, Rodrigo C V
2016-01-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through in order to calculate permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualize these concepts, we test the Kozeny--Carman equation, discuss its validity and calculate the Kozeny's constant for our artificial samples.
Computational fluid dynamics in oil burner design
Energy Technology Data Exchange (ETDEWEB)
Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)
1997-09-01
In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.
Syringe irrigation: blending endodontics and fluid dynamics
C. Boutsioukis; L.W.M. van der Sluis
2015-01-01
Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system
Engineering applications of computational fluid dynamics
Awang, Mokhtar
2015-01-01
This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.
Syringe irrigation: blending endodontics and fluid dynamics
Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.
2015-01-01
Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system
Modern Fluid Dynamics Intermediate Theory and Applications
Kleinstreuer, Clement
2010-01-01
Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements
Computational Fluid Dynamics in Ventilation Design
DEFF Research Database (Denmark)
Nielsen, Peter V.
2008-01-01
This paper is based on the new REHVA Guidebook Computational Fluid Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...
Computational Fluid Dynamics and Ventilation Airflow
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
2014-01-01
Computational fluid dynamics (CFD) was first introduced in the ventilation industry in the 1970s. CFD has been increasingly used since then, as testified by the number of peer-reviewed articles, which was less than 10 per year in the 1990s, and which is now 60 to 70 per year. This article discusses...
Droplet breakup dynamics of weakly viscoelastic fluids
Marshall, Kristin; Walker, Travis
2016-11-01
The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.
Nonlinear dynamics of zigzag molecular chains (in Russian)
DEFF Research Database (Denmark)
Savin, A. V.; Manevitsch, L. I.; Christiansen, Peter Leth
1999-01-01
Nonlinear, collective, soliton type excitations in zigzag molecular chains are analyzed. It is shown that the nonlinear dynamics of a chain dramatically changes in passing from the one-dimensional linear chain to the more realistic planar zigzag model-due, in particular, to the geometry......-dependent anharmonism that comes into the picture. The existence or otherwise of solitons is determined in this case by the interplay between the geometrical anharmonism and the physical anharmonism of the interstitial interaction, of opposite signs. The nonlinear dynamic analysis of the three most typical zigzag...... models (two-dimensional alpha-spiral, polyethylene transzigzag backbone, and the zigzag chain of hydrogen bonds) shows that the zigzag structure essentially limits the soliton dynamics to finite, relatively narrow, supersonic soliton velocity intervals and may also result in that several acoustic soliton...
Nonlinear dynamics of zigzag molecular chains (in Russian)
DEFF Research Database (Denmark)
Savin, A. V.; Manevitsch, L. I.; Christiansen, Peter Leth;
1999-01-01
Nonlinear, collective, soliton type excitations in zigzag molecular chains are analyzed. It is shown that the nonlinear dynamics of a chain dramatically changes in passing from the one-dimensional linear chain to the more realistic planar zigzag model-due, in particular, to the geometry-dependent...
Colour in visualisation for computational fluid dynamics
Kinnear, David; Atherton, Mark; Collins, Michael; Dokhan, Jason; Karayiannis, Tassos
2006-06-01
Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineer to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to illustrate the key visualisation approaches used in CFD.
Modeling Tools Predict Flow in Fluid Dynamics
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Genealogical tree of Russian schools on Nonlinear Dynamics
Prants, S V
2015-01-01
One of the most prominent feature of research in Russia and the former Soviet Union is so-called scientific schools. It is a collaboration of researchers with a common scientific background working, as a rule, together in a specific city or even at an institution. The genealogical tree of scientific schools on nonlinear dynamics in Russia and the former Soviet Union is grown. We use these terminology in a broad sense including theory of dynamical systems and chaos and its applications in nonlinear physics. In most cases we connect two persons if one was an advisor of the Doctoral thesis of another one. It is an analogue of the Candidate of Science thesis in Russia. If the person had no official advisor or we don't know exactly who was an advisor, we fix that person who was known to be an informal teacher and has influenced on him/her very much.
Carbon dioxide and methane dynamics in Russian tundra
DEFF Research Database (Denmark)
Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias
interactions and the annual carbon dynamics. Here we present eddy correlation measurements of CO2 and CH4 exchange during the period from early spring to late autumn, covering the full growing season, i.e., mid June to mid September. We present preliminary seasonal budgets of carbon, greenhouse gas exchange......, and discuss possible implications of climatic change on this lowland tundra ecosystem. This study have been conducted as a part of the CARBO-North project (2006-2010), a project within the EU 6th framework programme, aiming at quantifying the carbon budget in Northern Russia across temporal and spatial scales....
Collective dynamics of sperm in viscoelastic fluid
Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming
Collective dynamics in biology is an interesting subject for physicists, in part because of its close relations to emergent behaviors in condensed matter, such as phase separation and criticality. However, the emergence of order is often less drastic in systems composed of the living cells, sometimes due to the natural variability among individual organisms. Here, using bull sperm as a model system, we demonstrate that the cells migrate collectively in viscoelastic fluids, exhibiting behavior similar to ``flocking''. This collectiveness is greatly reduced in similarly viscous Newtonian fluids, suggesting that the cell-cell interaction is primarily a result of the elastic property or the memory effect of the fluids, instead of pure hydrodynamic interactions. Unlike bacterial swarming, this collectiveness does not require a change in phenotype of the cells; therefore, it is a better model system for physicists. Supported by NIH grant 1R01HD070038.
Meshfree methods for computational fluid dynamics
Jícha M.; Čermák L.; Niedoba P.
2013-01-01
The paper deals with the convergence problem of the SPH (Smoothed Particle Hydrodynamics) meshfree method for the solution of fluid dynamics tasks. In the introductory part, fundamental aspects of mesh- free methods, their definition, computational approaches and classification are discussed. In the following part, the methods of local integral representation, where SPH belongs are analyzed and specifically the method RKPM (Reproducing Kernel Particle Method) is described. In the contribution...
Delaunay triangulation and computational fluid dynamics meshes
Posenau, Mary-Anne K.; Mount, David M.
1992-01-01
In aerospace computational fluid dynamics (CFD) calculations, the Delaunay triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated meshes. Here, we present case studies which illustrate the limitations of using structured grid generation methods which produce points in a curvilinear coordinate system for subsequent triangulations for CFD applications. We discuss conditions under which meshes of quadrilateral elements may not produce a Delaunay triangulation suitable for CFD calculations, particularly with regard to high aspect ratio, skewed quadrilateral elements.
Computational fluid dynamics in ventilation design
Allard, Francis; Awbi, Hazim B; Davidson, Lars; Schälin, Alois
2007-01-01
CFD-calculations have been rapidly developed to a powerful tool for the analysis of air pollution distribution in various spaces. However, the user of CFD-calculation should be aware of the basic principles of calculations and specifically the boundary conditions. Computational Fluid Dynamics (CFD) – in Ventilation Design models is written by a working group of highly qualified international experts representing research, consulting and design.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the...
Statics and dynamics of fluids in nanotubes
Gouin, Henri
2013-01-01
The purpose of this article is to study the statics and dynamics of nanotubes by using the methods of continuum mechanics. The nanotube can be filled with only a liquid or a vapour phase according to the physicochemical characteristics of the wall and to the disjoining pressure associated with the liquid and vapour mother bulks of the fluid, regardless of the nature of the external mother bulk. In dynamics, flows through nanotubes can be much more important than classical Poiseuille flows. When the external mother bulk is of vapour, the flow can be a million times larger than the classical flows when slippage on wall does not exist.
Wetting dynamics of a collapsing fluid hole
Bostwick, J. B.; Dijksman, J. A.; Shearer, M.
2017-01-01
The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Computational Fluid Dynamics - Applications in Manufacturing Processes
Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance
2012-11-01
A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.
Manufacturing in space: Fluid dynamics numerical analysis
Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.
1981-01-01
Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.
Wetting dynamics of a collapsing fluid hole
Bostwick, Joshua; Dijksman, Joshua; Shearer, Michael
2016-11-01
An axisymmetric fluid cavity at the bottom of a rotating bucket bound by vertical sidewalls is studied, as it is filled in by the wetting fluid. Lubrication theory is applied to reduce the governing equations to a single evolution equation for the film thickness. In the quasi-static regime the contact-line motion is governed by a constitutive law relating the effective contact angle to the contact-line speed. The dependence of the collapse time on the initial hole size is calculated. For small holes, surface tension dominates the dynamics, leading to a universal power law that compares favorably to experiments in the literature. Further verification of the model is obtained through comparison of volume dependence with experimental results.
Topological fluid dynamics of interfacial flows
DEFF Research Database (Denmark)
Brøns, Morten
1994-01-01
The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....
Geophysical fluid dynamics: whence, whither and why?
Vallis, Geoffrey K.
2016-08-01
This article discusses the role of geophysical fluid dynamics (GFD) in understanding the natural environment, and in particular the dynamics of atmospheres and oceans on Earth and elsewhere. GFD, as usually understood, is a branch of the geosciences that deals with fluid dynamics and that, by tradition, seeks to extract the bare essence of a phenomenon, omitting detail where possible. The geosciences in general deal with complex interacting systems and in some ways resemble condensed matter physics or aspects of biology, where we seek explanations of phenomena at a higher level than simply directly calculating the interactions of all the constituent parts. That is, we try to develop theories or make simple models of the behaviour of the system as a whole. However, these days in many geophysical systems of interest, we can also obtain information for how the system behaves by almost direct numerical simulation from the governing equations. The numerical model itself then explicitly predicts the emergent phenomena-the Gulf Stream, for example-something that is still usually impossible in biology or condensed matter physics. Such simulations, as manifested, for example, in complicated general circulation models, have in some ways been extremely successful and one may reasonably now ask whether understanding a complex geophysical system is necessary for predicting it. In what follows we discuss such issues and the roles that GFD has played in the past and will play in the future.
Direct modeling for computational fluid dynamics
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Three-Dimensional Computational Fluid Dynamics
Energy Technology Data Exchange (ETDEWEB)
Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Computational fluid dynamics using CATIA created geometry
Gengler, Jeanne E.
1989-07-01
A method has been developed to link the geometry definition residing on a CAD/CAM system with a computational fluid dynamics (CFD) tool needed to evaluate aerodynamic designs and requiring the memory capacity of a supercomputer. Requirements for surfaces suitable for CFD analysis are discussed. Techniques for developing surfaces and verifying their smoothness are compared, showing the capability of the CAD/CAM system. The utilization of a CAD/CAM system to create a computational mesh is explained, and the mesh interaction with the geometry and input file preparation for the CFD analysis is discussed.
Kinematics and Fluid Dynamics of Jellyfish Maneuvering
Miller, Laura; Hoover, Alex
2014-11-01
Jellyfish propel themselves through the water through periodic contractions of their elastic bells. Some jellyfish, such as the moon jellyfish Aurelia aurita and the upside down jellyfish Cassiopea xamachana, can perform turns via asymmetric contractions of the bell. The fluid dynamics of jellyfish forward propulsion and turning is explored here by analyzing the contraction kinematics of several species and using flow visualization to quantify the resulting flow fields. The asymmetric contraction and structure of the jellyfish generates asymmetries in the starting and stopping vortices. This creates a diagonal jet and a net torque acting on the jellyfish. Results are compared to immersed boundary simulations
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Domain decomposition algorithms and computational fluid dynamics
Chan, Tony F.
1988-01-01
Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.
Optics and Fluid Dynamics Department annual progress report for 1995
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.
1996-01-01
Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs.
Dynamics of the Gay-Berne fluid
Energy Technology Data Exchange (ETDEWEB)
de Miguel, E.; Rull, L.F. (Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065, Sevilla 41080 (Spain)); Gubbins, K.E. (School of Chemical Engineering, Cornell University, Ithaca, New York 14853 (United States))
1992-03-15
Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters {kappa}=3 and {kappa}{prime}=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase.
Computational fluid dynamics: Transition to design applications
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
Bioreactor Studies and Computational Fluid Dynamics
Singh, H.; Hutmacher, D. W.
The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-03-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.
Fundamental algorithms in computational fluid dynamics
Pulliam, Thomas H
2014-01-01
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course, and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
Automated Computational Fluid Dynamics Design With Shape Optimization Project
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) is used as an analysis tool to help the designer gain greater understanding of the fluid flow phenomena involved in the...
Automated Computational Fluid Dynamics Design With Shape Optimization Project
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) is used as an analysis tool to help the designer gain greater understanding of the fluid flow phenomena involved in the components...
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Cardiac fluid dynamics anticipates heart adaptation.
Pedrizzetti, Gianni; Martiniello, Alfonso R; Bianchi, Valter; D'Onofrio, Antonio; Caso, Pio; Tonti, Giovanni
2015-01-21
Hemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart. We employed an in vivo model of patients who present a stable normal heart function in virtue of the cardiac resynchronization therapy (CRT, bi-ventricular pace-maker) and who are expected to develop left ventricle remodeling if pace-maker was switched off. Intra-ventricular fluid dynamics is analyzed by echocardiography (Echo-PIV). Under normal conditions, the flow presents a longitudinal alignment of the intraventricular hemodynamic forces. When pacing is temporarily switched off, flow forces develop a misalignment hammering onto lateral walls, despite no other electro-mechanical change is noticed. Hemodynamic forces result to be the first event that evokes a physiological activity anticipating cardiac changes and could help in the prediction of longer term heart adaptations.
The 3rd All-Russian Scientific Conference on “The Dynamics of Modern Ecosystems in the Holocene”
Directory of Open Access Journals (Sweden)
Galimova Madina Sh.
2013-09-01
Full Text Available On March 12-15, 2013, Kazan hosted the Third All-Russian Scientific Conference with International Participation "The Dynamics of modern ecosystems in the Holocene". The scientific forum was organized by the Institute of Ecology and Mineral Wealth, Tatarstan Academy of Sciences, the Institute of Ecology and Evolution named after A.N. Severtsov, Russian Academy of Sciences (RAS, and the Institute of Plant and Animal Ecology of the RAS Urals Branch, with support from the Russian Foundation for Fundamental Research. The conference was attended by over 200 researchers from different regions of Russia and ten foreign countries. The presented reports covered a wide range of problems, such as the dynamics of the natural environment in Northern Eurasia during the Holocene, the history of human interaction with the environment, etc. They contained the results of natural science studies in archeozoology, paleontology, paleobotany, paleoclimate reconstructions and paleolandscapes that are important for the archaeological science research.
Computational fluid dynamics in cardiovascular disease.
Lee, Byoung-Kwon
2011-08-01
Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Directory of Open Access Journals (Sweden)
Watson Ngenya
2016-04-01
Full Text Available Russian wheat aphid Diuraphis noxia (Kurdjumov is widely established in wheat-growing countries where it causes significant economic losses. The development and use of Russian wheat aphid (RWA-resistant wheat varieties has been constrained by the variation in resident RWA populations and the evolution of virulent biotypes. An experiment was set up at the Kenya Agricultural and Livestock Research Organization (KALRO, Njoro, to characterize RWA populations based on phenotypic characteristics of reproduction, development and population dynamics. RWA populations from the regions of Eldoret, Mau Narok and Njoro were used in the study. A factorial experiment was set up in randomized complete block design replicated eleven times. A single day-old nymph was placed on a new, fully-open leaf in a 0.5 cm-diameter clear plastic straw leaf cage and observed daily for its entire lifetime. The results showed that there were variations in aphid lifespan, reproductive longevity and aphid fecundity between populations, indicating that the phenotypic markers used to determine biotypes were good enough to show distinct biotypes among populations of the RWA in Kenya. Further, the study concluded that the use of phenotypic life and reproductive markers was a valid way of characterizing biotypes of RWA worldwide.
Ngenya, Watson; Malinga, Joyce; Tabu, Isaiah; Masinde, Emily
2016-04-02
Russian wheat aphid Diuraphis noxia (Kurdjumov) is widely established in wheat-growing countries where it causes significant economic losses. The development and use of Russian wheat aphid (RWA)-resistant wheat varieties has been constrained by the variation in resident RWA populations and the evolution of virulent biotypes. An experiment was set up at the Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, to characterize RWA populations based on phenotypic characteristics of reproduction, development and population dynamics. RWA populations from the regions of Eldoret, Mau Narok and Njoro were used in the study. A factorial experiment was set up in randomized complete block design replicated eleven times. A single day-old nymph was placed on a new, fully-open leaf in a 0.5 cm-diameter clear plastic straw leaf cage and observed daily for its entire lifetime. The results showed that there were variations in aphid lifespan, reproductive longevity and aphid fecundity between populations, indicating that the phenotypic markers used to determine biotypes were good enough to show distinct biotypes among populations of the RWA in Kenya. Further, the study concluded that the use of phenotypic life and reproductive markers was a valid way of characterizing biotypes of RWA worldwide.
Domain decomposition algorithms and computation fluid dynamics
Chan, Tony F.
1988-01-01
In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.
Artificial Intelligence In Computational Fluid Dynamics
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
A modular system for computational fluid dynamics
McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.
This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.
Astrophysical Fluid Dynamics via Direct Statistical Simulation
Tobias, S M; Marston, J B
2010-01-01
In this paper we introduce the concept of Direct Statistical Simulation (DSS) for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimised for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and MHD on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.
Lectures series in computational fluid dynamics
Thompson, Kevin W.
1987-01-01
The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.
Computational Fluid Dynamics In GARUDA Grid Environment
Roy, Chandra Bhushan
2011-01-01
GARUDA Grid developed on NKN (National Knowledge Network) network by Centre for Development of Advanced Computing (C-DAC) hubs High Performance Computing (HPC) Clusters which are geographically separated all over India. C-DAC has been associated with development of HPC infrastructure since its establishment in year 1988. The Grid infrastructure provides a secure and efficient way of accessing heterogeneous resource . Enabling scientific applications on Grid has been researched for some time now. In this regard we have successfully enabled Computational Fluid Dynamics (CFD) application which can help CFD community as a whole in effective manner to carry out computational research which requires huge compuational resource beyond once in house capability. This work is part of current on-going project Grid GARUDA funded by Department of Information Technology.
Artificial Intelligence In Computational Fluid Dynamics
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Fluid Dynamics with Cryogenic Fluid Transfer in Space Project
National Aeronautics and Space Administration — During chilldown of cryogenic fluid tanks and lines, the interface between the liquid and vapor rapidly changes. Understanding these rapid changes is key...
Fluid Dynamics of Human Phonation and Speech
Mittal, Rajat; Erath, Byron D.; Plesniak, Michael W.
2013-01-01
This article presents a review of the fluid dynamics, flow-structure interactions, and acoustics associated with human phonation and speech. Our voice is produced through the process of phonation in the larynx, and an improved understanding of the underlying physics of this process is essential to advancing the treatment of voice disorders. Insights into the physics of phonation and speech can also contribute to improved vocal training and the development of new speech compression and synthesis schemes. This article introduces the key biomechanical features of the laryngeal physiology, reviews the basic principles of voice production, and summarizes the progress made over the past half-century in understanding the flow physics of phonation and speech. Laryngeal pathologies, which significantly enhance the complexity of phonatory dynamics, are discussed. After a thorough examination of the state of the art in computational modeling and experimental investigations of phonatory biomechanics, we present a synopsis of the pacing issues in this arena and an outlook for research in this fascinating subject.
Computational fluid dynamics applications to improve crop production systems
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Computational Fluid Dynamics of rising droplets
Energy Technology Data Exchange (ETDEWEB)
Wagner, Matthew [Lake Superior State University; Francois, Marianne M. [Los Alamos National Laboratory
2012-09-05
The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.
Viscous fluid dynamics in Au+Au collisions at RHIC
Chaudhuri, A K
2008-01-01
We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$...
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
2D fluid simulations of interchange turbulence with ion dynamics
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...
Computational Fluid Dynamics Methods and Their Applications in Medical Science
Kowalewski Wojciech; Roszak Magdalena; Kołodziejczak Barbara; Ren-Kurc Anna; Bręborowicz Andrzej
2016-01-01
As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.
Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study
DEFF Research Database (Denmark)
Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren
1996-01-01
We have investigated the effect of the number p of components on the dynamics of phase separation in two-dimensional symmetric multicomponent fluids. In contrast to concentrated two-dimensional binary fluids, where the growth dynamics is controlled by the coupling of the velocity held to the orde...
Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan
2016-10-01
Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.
Non-metric fluid dynamics and cosmology on Finsler spacetimes
Hohmann, Manuel
2016-01-01
We generalize the kinetic theory of fluids, in which the description of fluids is based on the geodesic motion of particles, to spacetimes modeled by Finsler geometry. Our results show that Finsler spacetimes are a suitable background for fluid dynamics and that the equation of motion for a collisionless fluid is given by the Liouville equation, as it is also the case for a metric background geometry. We finally apply this model to collisionless dust and a general fluid with cosmological symmetry and derive the corresponding equations of motion. It turns out that the equation of motion for a dust fluid is a simple generalization of the well-known Euler equations.
Dynamics of fluid-conveying pipes: effects of velocity profiles
DEFF Research Database (Denmark)
Enz, Stephanie; Thomsen, Jon Juel
Varying velocity profiles and internal fluid loads on fluid-conveying pipes are investigated. Different geometric layouts of the fluid domain and inflow velocity profiles are considered. It is found that the variation of the velocity profiles along the bended pipe is considerable. A determination...... of the resulting fluid loads on the pipe walls is of interest e.g, for evaluating the dynamical behaviour of lightly damped structures like Coriolis flow meters....
Dynamic wetting with viscous Newtonian and non-Newtonian fluids.
Wei, Y; Rame, E; Walker, L M; Garoff, S
2009-11-18
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.
Water Channel Facility for Fluid Dynamics Experiments
Eslam-Panah, Azar; Sabatino, Daniel
2016-11-01
This study presents the design, assembly, and verification process of the circulating water channel constructed by undergraduate students at the Penn State University at Berks. This work was significantly inspired from the closed-loop free-surface water channel at Lafayette College (Sabatino and Maharjan, 2015) and employed for experiments in fluid dynamics. The channel has a 11 ft length, 2.5 ft width, and 2 ft height glass test section with a maximum velocity of 3.3 ft/s. First, the investigation justifies the needs of a water channel in an undergraduate institute and its potential applications in the whole field of engineering. Then, the design procedures applied to find the geometry and material of some elements of the channel, especially the contraction, the test section, the inlet and end tanks, and the pump system are described. The optimization of the contraction design, including the maintenance of uniform exit flow and avoidance of flow separation, is also included. Finally, the discussion concludes by identifying the problems with the undergraduate education through this capstone project and suggesting some new investigations to improve flow quality.
Meshfree methods for computational fluid dynamics
Directory of Open Access Journals (Sweden)
Jícha M.
2013-04-01
Full Text Available The paper deals with the convergence problem of the SPH (Smoothed Particle Hydrodynamics meshfree method for the solution of fluid dynamics tasks. In the introductory part, fundamental aspects of mesh- free methods, their definition, computational approaches and classification are discussed. In the following part, the methods of local integral representation, where SPH belongs are analyzed and specifically the method RKPM (Reproducing Kernel Particle Method is described. In the contribution, also the influence of boundary conditions on the SPH approximation consistence is analyzed, which has a direct impact on the convergence of the method. A classical boundary condition in the form of virtual particles does not ensure a sufficient order of consistence near the boundary of the definition domain of the task. This problem is solved by using ghost particles as a boundary condition, which was implemented into the SPH code as part of this work. Further, several numerical aspects linked with the SPH method are described. In the concluding part, results are presented of the application of the SPH method with ghost particles to the 2D shock tube example. Also results of tests of several parameters and modifications of the SPH code are shown.
Transcapillary fluid dynamics during the menstrual cycle.
Oian, P; Tollan, A; Fadnes, H O; Noddeland, H; Maltau, J M
1987-04-01
Transcapillary fluid dynamics in the follicular and luteal phase in women without symptoms of premenstrual syndrome were studied. Interstitial colloid osmotic pressure was measured by the "wick" method and interstitial hydrostatic pressure by the "wick-in-needle" method in subcutaneous tissue on the thorax and ankle. From follicular to luteal phase, the following changes were observed: Colloid osmotic pressures were significantly reduced, both in plasma (mean 2.5 mm Hg) and in the interstitium (thorax mean 1.9 mm Hg and ankle mean 2.0 mm Hg). The interstitial hydrostatic pressures did not change. There were no significant changes in serum albumin, hemoglobin, or hematocrit. A slight, but significant, weight gain was observed (mean 0.7 kg). The reduced plasma and interstitial colloid osmotic pressures in the luteal phase may be due to water retention, but the observed reductions in colloid osmotic pressures are probably not fully explained by simple dilution. A reduction in total protein mass in the luteal phase is suggested.
Fluid dynamic effects on staphylococci bacteria biofilms
Sherman, Erica; Bayles, Kenneth; Endres, Jennifer; Wei, Timothy
2016-11-01
Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. It is known that flow conditions play a role in the development, dispersion and propagation of biofilms in general. The influence of flow on tower formation, however, is not at all understood. This work is focused on the effect of applied shear on tower development. The hypothesis being examined is that tower structures form within a specific range of shear stresses and that there is an as yet ill defined fluid dynamic phenomenon that occurs hours before a tower forms. In this study, a range of shear stresses is examined that brackets 0.6 dynes/cm2, the nominal shear stress where towers seem most likely to form. This talk will include µPTV measurements and cell density data indicating variations in flow and biofilm evolution as a function of the applied shear. Causal relations between flow and biofilm development will be discussed.
Particle Dynamics of Polydisperse Magnetorheological Fluids
Directory of Open Access Journals (Sweden)
Chiranjit Sarkar
2015-12-01
Full Text Available In the present research work, three dimensional simulations of magnetorheological fluids, containing soft magnetic polydisperse particles in silicone oil, has been presented. The computer simulation helps to visualize and analyze the formed transient microstructures. The initial positions of particle-centres were decided based on random distribution. The particle positions were updated considering magnetic, hydrodynamic and repulsions forces on each particle along with explicit time marching scheme. Finally the particle’s positions at 10 ms have been plotted. The yield behaviors of MRFXXS (small sized: 2 to 33 µm and MRFXXL (large sized: 45 to 212 µm have been estimated using particle dynamic simulations and the predicted results have been compared with the results obtained from experiments. Due to large number of particles and limitations of computer hardware, the yield behavior of MRFXXM1 i.e. mixed (2 to 212 µm sized magnetic particles could not be simulated. However, experiments were performed to investigate the yield behavior of MRFXXM1. The results show that MRFXXM1 is better than MRFXXS and MRFXXL.
Computational Fluid Dynamics in Hypersonic Aerothermodynamics
Directory of Open Access Journals (Sweden)
Krishnendu Sinha
2010-10-01
Full Text Available Hypersonic flows are characterised by high Mach number and high total enthalpy. An elevated temperature often results in thermo-chemical reactions in the gas, which p lay a major role in aerothermodynamic characterisation of high-speed aerospace vehicles. Hypersonic flows in propulsion components are usually turbulent, resulting in additional effects. Computational simulation of such flows, therefore, need to account for a range of physical phenomena. Further, the numerical challenges involved in resolving strong gradients and discontinuities add to the complexity of computational fluid dynamics (CFD simulation. In this article, physical modelling and numerical methodology-related issues involved in hypersonic flow simulation are highlighted. State-of-the-art CFD challenges are discussed in the context of two prominent applications-the flow in a scramjet inlet and the flow field around a re-entry capsule.Defence Science Journal, 2010, 60(6, pp.663-671, DOI:http://dx.doi.org/10.14429/dsj.60.604
Optics and Fluid Dynamics Department annual progress report for 2000
DEFF Research Database (Denmark)
Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter;
2001-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....
Optics and Fluid Dynamics Department annual progress report for 2002
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter;
2003-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, includingEURATOM, by Danish research councils and by industry. A summary of the activities in 2002...
Optics and Fluid Dynamics Department annual progress report for 1999
DEFF Research Database (Denmark)
Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter;
2000-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competences in:optical sensors, optical materials, biooptics......, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by research councils and by industry. Asummary of the activities in 1999 is presented....
Body Fluid Dynamics: Back to the Future
Bhave, Gautam; Neilson, Eric G.
2011-01-01
Pioneering investigations conducted over a half century ago on tonicity, transcapillary fluid exchange, and the distribution of water and solute serve as a foundation for understanding the physiology of body fluid spaces. With passage of time, however, some of these concepts have lost their connectivity to more contemporary information. Here we examine the physical forces determining the compartmentalization of body fluid and its movement across capillary and cell membrane barriers, drawing p...
The main trends of dynamics of incomes of Russians in times of economic crisis
Directory of Open Access Journals (Sweden)
O. L. Petryakova
2016-01-01
Full Text Available A research objective which result was this article is the analysis of dynamics of the income of families during the last economic crisis in Russia and influence of change of the standard of living on performance by a family of the main functions, first of all reproductive, zhizneokhranitelny and educational. Now quite steady growth of birth rate, improvement of the indicators characterizing family trouble (refusals of the born children, deprivation of the parental rights, deviant behavior of children and teenagers and health of children and teenagers is observed, however, as a result of decrease in the standard of living, increase in employment of parents, violation of this favorable tendency is possible. The research is based on the analysis of statistical and sociological information, including results of polls of the population, in him the research of ranks of dynamics, graphic and tabular methods is applied. In article sources of the income of the population, first of all – the salary and social payments exerting the greatest impact on the level of the income in general are considered. On the basis of the carried-out analysis the main tendencies characterizing extent of fall of the income of families with children proceeding from this research are formulated, it is possible to speak about increase of needs of families in measures of economic support. However, at the same time becomes the negative moment on the one hand, extremely low knowledge of families of already available measures of such help, and with another – their low assessment and unwillingness to participate in these or those programs offered by the state. In turn it is the factor worsening financial position of families too. High prosperity, material security still (as well as the 90th years, as well as at the beginning of this century are on an equal basis with a family and children the leading value of Russians. It is connected, first of all
Dynamic Characteristics of Magneto-Fluid Supports
Directory of Open Access Journals (Sweden)
V. A. Chernobai
2008-01-01
Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².
Introduction to Magneto-Fluid-Dynamics for Aerospace Applications
2004-07-08
incisive understanding is strongly dependent on how knowledge is accumulated and transferred in times. The growth of magneto- fluid-dynamics is not...S. Goldstein, Lectures on Fluid Mechanics (Interscience Publishers Ltd, London, 1960). [15] B. Finzi, Principio d’Azione Stazionaria
Effect of Fluid Dynamic Viscosity on the Strength of Chalk
DEFF Research Database (Denmark)
Hedegaard, K.; Fabricius, Ida Lykke
The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...
The stability and dynamic behaviour of fluid-loaded structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2015-07-01
Full Text Available ECCOMAS Young Investigators Conference 6th GACM Colloquium, July 20–23, 2015, Aachen, Germany The stability and dynamic behaviour of fluid-loaded structures R. Suliman, N. Peake Abstract. The deformation of slender elastic structures due...
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
DEFF Research Database (Denmark)
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren
2009-01-01
Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat......Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume...
Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion
Zeytounian, Radyadour K
1991-01-01
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
Mathematical Fluid Dynamics of Store and Stage Separation
2005-05-01
34Theoretical Aerodynamics in Today’s Real World," Opportunities and Challenges," Julian D. Cole Lecture , 4 th AIAA Theoretical Fluid Dynamics Meeting, June...Reports A 4th AIAA Theoretical Fluid Dynamics Meeting Julian D. Cole Lecture June 6-9, 2005 Toronto, Canada AIAA 2005-5059 Theoretical Aerodynamics in...technique was developed to treat the problem of shock manipulation by MHD Lorentz forces in Ref. 68 that has been validated by large scale CFD and
2D fluid simulations of interchange turbulence with ion dynamics
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...
Fifty years dynamics of Russian forests: Impacts on the earth system
Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian
2015-04-01
The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on
Molecular dynamics of a dense fluid of polydisperse hard spheres
Sear, Richard P.
2000-01-01
Slow dynamics in a fluid are studied in one of the most basic systems possible: polydisperse hard spheres. Monodisperse hard spheres cannot be studied as the slow down in dynamics as the density is increased is preempted by crystallisation. As the dynamics slow they become more heterogeneous, the spread in the distances traveled by different particles in the same time increases. However, the dynamics appears to be less heterogeneous than in hard-sphere-like colloids at the same volume fractio...
Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach
Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.
2017-04-01
The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating
The Tibetan singing bowl : an acoustics and fluid dynamics investigation
Terwagne, Denis
2011-01-01
We present the results of an experimental investigation of the acoustics and fluid dynamics of Tibetan singing bowls. Their acoustic behavior is rationalized in terms of the related dynamics of standing bells and wine glasses. Striking or rubbing a fluid-filled bowl excites wall vibrations, and concomitant waves at the fluid surface. Acoustic excitation of the bowl's natural vibrational modes allows for a controlled study in which the evolution of the surface waves with increasing forcing amplitude is detailed. Particular attention is given to rationalizing the observed criteria for the onset of edge-induced Faraday waves and droplet generation via surface fracture. Our study indicates that drops may be levitated on the fluid surface, induced to bounce on or skip across the vibrating fluid surface.
Hard sphere dynamics for normal and granular fluids.
Dufty, James W; Baskaran, Aparna
2005-06-01
A fluid of N smooth, hard spheres is considered as a model for normal (elastic collision) and granular (inelastic collision) fluids. The potential energy is discontinuous for hard spheres so that the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics system is identified in a special stationary representation. This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.
Cerebral venous outflow and cerebrospinal fluid dynamics
Directory of Open Access Journals (Sweden)
Clive B. Beggs
2014-12-01
Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.
Optics and Fluid Dynamics Department. Annual progress report for 2001
Energy Technology Data Exchange (ETDEWEB)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B. (eds.)
2002-03-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)
Optics and Fluid Dynamics Department annual progress report for 2000
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B. (eds.)
2001-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)
Optics and Fluid Dynamics Department annual progress report for 2001
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter;
2002-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM,by Danish research councils and by industry. A summary of the activities in 2001 is presented....
Optics and Fluid Dynamics Department. Annual Progress Report for 2002
Energy Technology Data Exchange (ETDEWEB)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B
2003-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)
Optics and Fluid Dynamics Department. Annual progress report for 2003
Energy Technology Data Exchange (ETDEWEB)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B. (eds.)
2004-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)
The problem of fluid-dynamics in semicircular canal
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An analytical solution with high accuracy which holds for any values of ε for fluid-dynamics model equation in a single semicircular canal presented by Buskirk and his co-workers has been obtained.It not only includes all of the results of Buskirk et al.but also covers three possible kinds of dynamical response modes in practice.The theoretical results are in better agreement with those of experimental observations.This investigation has laid a reliable theoretical foundation for quantitatively understanding fluid-dynamics in semicircular canal,especially fluid dynamical response.The distribution of the velocity of the endolymph in semicircular canal is given.A nonstandard method of the inverse Laplace transform is presented.
The problem of fluid-dynamics in semicircular canal
Institute of Scientific and Technical Information of China (English)
徐明瑜; 谭文长
2000-01-01
An analytical solution with high accuracy which holds for any values of E for fluid-dynamics model eguation in a single semicircular canal presented by Buskirk and his co-workers has been ob-tained. it not only includes ali of the results of Buskirk et al. but also covers three possible kinds of dy-namical response modes in practice. The theoretical results are in betler agreement with those of ex-perimental observations. This investigation has laid a reliable theoretical foundation for quantitatively understanding fluid-dynamics in semicircular canal, especially fluid dynamical response. The distribu-tion of the velocity of the endolymph in semicircular canal is given. A nonstandard method of the in-verse Laplace transform is presented.
Prandtl, Ludwig
1953-01-01
Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.
Adaptive finite difference methods in fluid dynamics
Berger, Marsha J.
1987-01-01
An adaptive method to solve partial differential equations in fluid mechanics is presented. The approach requires internal boundary conditions that must be conservative, data structures for keeping track of several layers of fine grid patches, error estimation, and heuristics for automatic grid generation. In practical calculations gains in computer efficiency up to 10 over nonadaptive methods are observed. The whole procedure takes 3000 lines of FORTRAN code.
Cerebrospinal Fluid Dynamics and the Pathophysiology of Hydrocephalus: New Concepts.
Yamada, Shinya; Kelly, Erin
2016-04-01
Many controversies remain regarding basic cerebrospinal fluid (CSF) physiology and the mechanism behind the development of hydrocephalus. Recent information obtained from CSF time spatial spin labeling inversion pulse method discovers different aspect of CSF dynamics. In this article, we would discuss how recent CSF imaging advances are leading to new concepts of CSF flow dynamics and the pathophysiology of hydrocephalus, with an emphasis on time spatial spin labeling inversion pulse imaging of CSF dynamics.
Engineering Applications of Computational Fluid Dynamics: Volume 2
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi
2013-01-01
Full Text Available Chapter 1: CFD Modeling of Methane Reforming in Compact Reformers. Meng Ni Chapter 2: FEM Based Solution of Thermo Fluid Dynamic Phenomena in Solid Oxide Fuel Cells (SOFCS. F. Arpino, A. Carotenuto, N. Massarotti, A. Mauro Chapter 3: Computational Fluid Dynamics in the Development of a 3D Simulator for Testing Pollution Monitoring Robotic Fishes. John Oyekan, Bowen Lu, Huosheng Hu Chapter 4: CFD Applications in Electronic Packaging. C.Y. Khor, Chun-Sean Lau, M.Z. Abdullah Chapter 5: CFD Simulation of Savonius Wind Turbine Operation. Jo?o Vicente Akwa, Adriane Prisco Petry Chapter 6: Intermittency Modelling of Transitional Boundary Layer Flows on Steam and Gas Turbine Blades. Erik Dick, Slawomir Kubacki, Koen Lodefier, Witold Elsner Chapter 7: Numerical Analysis of the Flow through Fitting in Air Conditioning Systems. N.C. Uz?rraga-Rodriguez, A. Gallegos-Mu?oz, J.M. Belman-Flores, J.C. Rubio-Arana Chapter 8: Design and Optimization of Food Processing Equipments using Computational Fluid Dynamics Modeling. N. Chhanwal and C. Anandharamakrishnan Chapter 9: Fuel and Intake Systems Optimization of a Converted LPG Engine: Steady and Unsteady in-Cylinder Flow CFD Investigations and Experiments Validation. M. A. Jemni, G. Kantchev, Z. Driss, M. S. Abid Chapter 10: Computational Fluid Dynamics Application for Thermal Management in Underground Mines. Agus P. Sasmito, Jundika C. Kurnia, Guan Mengzhao, Erik Birgersson, Arun S. Mujumdar Chapter 11: Computational Fluid Dynamics and its Applications. R.Parthiban, C.Muthuraj, A.Rajakumar
Russian-Estonian Economic and Investment Cooperation During the Crisis: Dynamics and Possibilities
Directory of Open Access Journals (Sweden)
Nevskaya Anastasia
2015-06-01
Full Text Available The article deals with the development in Russian-Estonian relations during the crises of 2007 and 2014, taking into consideration the balance between political and economic factors in the decision-making by Estonian government. A number of special aspects, trends and problems in trade and investment ties are detected. The aim of the study is to uncover key motivation behind the actions of both Russia and Estonia, to identify the drivers for economic and political development in the region, and to work out recommendations to adjust them. The questions put forward by the authors of this article could not be more topical at the time, when Russian economic situation is obviously getting worse and capital flight (to the neighboring EU Member States is likely to increase. The method of the study is comparative analysis of the impact on economic ties made by Russian-Estonian crisis of 2007 and the current international tension around Ukraine. The regional fossil fuel market and the possibilities of Gazprom involvement in its development are also analyzed. It is concluded that political motives are still important for Estonian decisionmaking, though they are balanced out by measures of business support (despite some of these measures being taken by the EU bodies. The role of political factor for the Russian side is increasing. It is acknowledged that there is a growing number of missed economic opportunities in the Russian Northwest.
Relaxation Dynamics of Non-Power-Law Fluids
Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong
2013-12-01
The relaxation of non-Newtonian liquids with non-power-law rheology on partially wetted surfaces is rarely investigated. This study assesses the relaxation behavior of 14 partial wetting systems with non-power-law fluids by sessile drop method. These systems are two carboxymethylcellulose sodium solutions on two kinds of slides, cover glass, and silicon wafer surfaces; three polyethylene glycol (PEG400) + silica nanoparticle suspensions on polymethyl methacrylate and polystyrene surfaces. The dynamic contact angle and moving velocity of contact line relationship data for relaxation drops of the 14 tested systems demonstrate a power-law fluid-like behavior, and the equivalent power exponent for a certain fluid on different solid substrates are uniform. By analyzing the relationship between the equivalent power exponent and shear rate, it is proposed that a fluid regime with shear rates of a few tens of s controls relaxation dynamics.
Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver
Frisch, Jerome
2012-06-01
Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.
Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations
2017-05-23
NUMBER (Include area code) 23 May 2017 Briefing Charts 25 April 2017 - 23 May 2017 Improved Pyrolysis Micro-reactor Design via Computational Fluid... PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release...Approved for public release, distribution unlimited. PA Clearance 17247 Chen-Source (>240 references from SciFinder as of 5/1/17): Flash pyrolysis
Statistic fluid dynamic of multiphase flow
Lim, Hyunkyung; Glimm, James; Zhou, Yijie; Jiao, Xiangmin
2012-11-01
We study a turbulent two-phase fluid mixing problem from a statistical point of view. The test problem is high speed turbulent two-phase Taylor-Couette flow. We find extensive mixing in a transient state between an initial unstable and a final stable configuration. With chemical processing as a motivation, we estimate statistically surface area, droplet size distribution and transient droplet duration. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, Battelle Energy Alliance LLC 00088495.
Fluid Dynamical Consequences of Current and Stress-Energy Conservation
Scofield, Dillon; Huq, Pablo
The dynamical consequences of fluid current conservation combined with the conservation of fluid stress-energy are used to develop the geometrodynamical theory of fluid flow (GTF). In the derivation of the GTF, we highlight the fact the continuity equation, equivalently the conservation of current density, implies the existence of the fluid dynamical vortex field. The vortex field transports part of the stress-energy; the other part of the stress-energy is transported by the fluid inertia field. Two channels of energy dissipation are determined by the GTF. One is an analog of the Joule heating found in electrodynamics. This follows from the conservation of stress-energy. The other dissipation channel arises from mechanisms leading to complex-valued constitutive parameters described in the electrodynamical analogy as due to a lossy medium. The dynamical consequences of the continuity equation, combined with the conservation of total stress-energy, then lead to a causal, covariant, theory of fluid flow, consistent with thermodynamics for all physically possible flow rates.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
A dynamic neutral fluid model for the PIC scheme
Wu, Alan; Lieberman, Michael; Verboncoeur, John
2010-11-01
Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.
A Textbook for a First Course in Computational Fluid Dynamics
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
Compatible finite element spaces for geophysical fluid dynamics
Natale, Andrea
2016-01-01
Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Stochastic hard-sphere dynamics for hydrodynamics of nonideal fluids.
Donev, Aleksandar; Alder, Berni J; Garcia, Alejandro L
2008-08-15
A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard-sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.
Baroclinic Channel Model in Fluid Dynamics
Directory of Open Access Journals (Sweden)
Kharatti Lal
2016-02-01
Full Text Available A complex flow structure is studied using a 2-dimentional baroclinic channel model Unsteady Navier - stokes equation coupled with equation of thermal energy ,salinity and the equation of state are implemented .System closure is achieved through a modified Prandtl, s mixing length formulation of turbulence dissipation The model is applied in a region where the fluid flow is effected by various forcing equation .In this case ,flow is estuarine region affected by diurnal tide and the fresh water inflow in to the estuary and a submerged structure is considered giving possible insight in to stress effects on submerged structure .the result show that in the time evolution of the vertical velocity along downstream edge changes sign from negative to positive .as the dike length increases the primary cell splits and flow becomes turbulent du e to the non-linear effect caused by the dike .these are found to agree favourably with result published in the open literature.
Archer, A J
2009-01-07
In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.
Computational modeling of glow discharge-induced fluid dynamics
Jayaraman, Balaji
Glow discharge at atmospheric pressure using a dielectric barrier discharge can induce fluid flow and operate as an actuator for flow control. The largely isothermal surface plasma generation realized above can modify the near-wall flow structure by means of Lorentzian collisions between the ionized fluid and the neutral fluid. Such an actuator has advantages of no moving parts, performance at atmospheric conditions and devising complex control strategies through the applied voltage. However, the mechanism of the momentum coupling between the plasma and the fluid flow is not yet adequately understood. In the present work, a modeling framework is presented to simulate athermal, non-equilibrium plasma discharges in conjunction with low Mach number fluid dynamics at atmospheric pressure. The plasma and fluid species are treated as a two-fluid system exhibiting a few decades of length and time scales. The effect of the plasma dynamics on the fluid dynamics is devised via a body force treatment in the Navier-Stokes equations. Two different approaches of different degrees of fidelity are presented for modeling the plasma dynamics. The first approach, a phenomenological model, is based on a linearized force distribution approximating the discharge structure, and utilizing experimental guidance to deduce the empirical constants. A high fidelity approach is to model the plasma dynamics in a self-consistent manner using a first principle-based hydrodynamic plasma model. The atmospheric pressure regime of interest here enables us to employ local equilibrium assumptions, signifying efficient collisional energy exchange as against thermal heating from inelastic collision processes. The time scale ratios between convection, diffusion, and reaction/ionization mechanisms are O(107), making the system computationally stiff. To handle the stiffness, a sequential finite-volume operator-splitting algorithm capable of conserving space charge is developed; the approach can handle time
Directory of Open Access Journals (Sweden)
Dmitriy Yu. Ivanov
2016-01-01
Full Text Available Objective to carry out a comparative analysis of the dynamics of industrial production and the rocket and space industry of Russia. Methods an asynchronous method of harmonic analysis comparative method. Results the forecasts of the development of rocket and space industry for 2015 and 2016 are obtained which are compared with the data of the Ministry of Economic Development and the World Bank of Development. The comparison of the results showed that the analysis and forecast data of the Ministry of Economic Development and the World Bank of Development coincide only partially. The tendency to increase the volumes in rocket and space industry is shown. Scientific novelty the mathematical models are presented for the dynamics of industrial production and the rocket and space industry of the Russian Federation built on the basis of the asynchronous harmonic analysis. The retrospective of the rocketspace complex development is considered. Practical significance using the proposed mathematical models of the dynamics of industrial production and the rocket and space industry of the Russian Federation based on the economy cycles the more accurate forecasts of economic development can be made. nbsp
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
Prediction of Dynamic Wellbore Pressure in Gasified Fluid Drilling
Institute of Scientific and Technical Information of China (English)
Wang Zhiming; Ping Liqiu; Zou Ke
2007-01-01
The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used to establish a dynamic model to predict weIlbore pressure according to the study results of Ansari and Beggs-Brill on gas-liquid two-phase flow. The dynamic model was solved by the finite difference approach combined with the mechanistic steady state model. The mechanistic dynamic model was numerically implemented into a FORTRAN 90 computer program and could simulate the coupled flow of fluid in wellbore and reservoir. The dynamic model revealed the effects of wellhead back pressure and injection rate of gas/liquid on bottomhole pressure. The model was validated against full-scale experimental data, and its 5.0% of average relative error could satisfy the accuracy requirements in engineering design.
Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics
Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David
2016-01-01
Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.
Green Algae as Model Organisms for Biological Fluid Dynamics.
Goldstein, Raymond E
2015-01-01
In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
Fluid Dynamics in Rotary Piston Blood Pumps.
Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas
2017-03-01
Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.
Recent Developments in the Fluid Dynamics of Tropical Cyclones
Montgomery, Michael T.; Smith, Roger K.
2017-01-01
This article reviews progress in understanding the fluid dynamics and moist thermodynamics of tropical cyclone vortices. The focus is on the dynamics and moist thermodynamics of vortex intensification and structure. We discuss previous ideas on many facets of the subject and articulate also some open questions. The advances reviewed herein provide new insight and tools for interpreting complex vortex-convective phenomenology in simulated and observed tropical cyclones.
Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids
Energy Technology Data Exchange (ETDEWEB)
Sundaryanto, Bagus; Yortsos, Yanis C.
1999-10-18
In applications involving this injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controlling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, a fundamental approach based on optimal control theory, for the case when the fluids are miscible, of equal viscosity and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates.
Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid
Directory of Open Access Journals (Sweden)
Chen An
2017-01-01
Full Text Available Dynamic behavior of axially functionally graded (FG pipes conveying fluid was investigated numerically by using the generalized integral transform technique (GITT. The transverse vibration equation was integral transformed into a coupled system of second-order differential equations in the temporal variable. The Mathematica’s built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. Excellent convergence of the proposed eigenfunction expansions was demonstrated for calculating the transverse displacement at various points of axially FG pipes conveying fluid. The proposed approach was verified by comparing the obtained results with the available solutions reported in the literature. Moreover, parametric studies were performed to analyze the effects of Young’s modulus variation, material distribution, and flow velocity on the dynamic behavior of axially FG pipes conveying fluid.
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
Jespersen, Dennis C.; Levit, Creon
1989-01-01
The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.
Surface accumulation of spermatozoa: a fluid dynamic phenomenon
Smith, David J
2010-01-01
Recent mathematical fluid dynamics models have shed light into an outstanding problem in reproductive biology: why do spermatozoa cells show a 'preference' for swimming near to surfaces? In this paper we review quantitative approaches to the problem, originating with the classic paper of Lord Rothschild in 1963. A recent 'boundary integral/slender body theory' mathematical model for the fluid dynamics is described, and we discuss how it gives insight into the mechanisms that may be responsible for the surface accumulation behaviour. We use the simulation model to explore these mechanisms in more detail, and discuss whether simplified models can capture the behaviour of sperm cells. The far-field decay of the fluid flow around the cell is calculated, and compared with a stresslet model. Finally we present some new findings showing how, despite having a relatively small hydrodynamic drag, the sperm cell 'head' has very significant effects on surface accumulation and trajectory.
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
A new scenario of the universe dynamics with interacting fluids
Aydiner, Ekrem
2016-01-01
In this study, I discuss universe dynamics by considering mutual and self-interactions between fluid components such as dark energy, dark, matter etc, in the the spatially flat Friedmann-Robertson-Walker space-time. I show that dynamics of the interacting two-fluid with linear EoS can be given by Lotka-Volterra equations. On the other hand, I show that interacting two-fluid model with quadratic EoS can be transformed to the self-interacting Lotka-Volterra equations. Finally I show that these equations can be generalized to $N$ interacting Lotka-Volterra equations for more interacting fluids. Also I find fixed points of these equations and discuss the dynamics of universe. Even though present model needs to be confirmed experimentally, obtained results clearly show that dynamics of universe at large scale and within the time may have stable, unstable or chaotic behaviour in the presence of the interaction and self-interaction in between dark energy, dark matter, matter and others components of the universe unl...
Fluids as Dynamic Templates for Cytoskeletal Proteins in Plant Cells
Lofthouse, J T
2008-01-01
The Dynamic Template model of biological cell membranes and the cytoplasm as spatially organised fluid layers is extended to plant cells, and is shown to offer a feasible shear driven mechanism for the co-alignment of internal and external fibres observed during growth and tropic responses
Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model
Dijke, van K.C.; Schroën, C.G.P.H.; Boom, R.M.
2008-01-01
Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found g
An Assessment of Productive Computational Fluid Dynamics for Aerodynamic Design
2008-01-01
PANAIR [7]) to marching techniques (like ZEUS [8] and parabolized Navier-S tokes codes) and full-field, elliptical, Computational Fluid Dynamics (CFD...undeflected case), but individual representations were required to create each deflection angle for the bent nose configuration. Figure 1. Three
Critical velocity and dynamic respondency of pipe conveying fluid
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Presents the calculation of critical velocity, natural frequencyand dynamic respondency of fluid-conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc.
Direct visualization of fluid dynamics in sub-10 nm nanochannels.
Li, Huawei; Zhong, Junjie; Pang, Yuanjie; Zandavi, Seyed Hadi; Persad, Aaron Harrinarine; Xu, Yi; Mostowfi, Farshid; Sinton, David
2017-07-13
Optical microscopy is the most direct method to probe fluid dynamics at small scales. However, contrast between fluid phases vanishes at ∼10 nm lengthscales, limiting direct optical interrogation to larger systems. Here, we present a method for direct, high-contrast and label-free visualization of fluid dynamics in sub-10 nm channels, and apply this method to study capillary filling dynamics at this scale. The direct visualization of confined fluid dynamics in 8-nm high channels is achieved with a conventional bright-field optical microscope by inserting a layer of a high-refractive-index material, silicon nitride (Si3N4), between the substrate and the nanochannel, and the height of which is accurately controlled down to a few nanometers by a SiO2 spacer layer. The Si3N4 layer exhibits a strong Fabry-Perot resonance in reflection, providing a sharp contrast between ultrathin liquid and gas phases. In addition, the Si3N4 layer enables robust anodic bonding without nanochannel collapse. With this method, we demonstrate the validity of the classical Lucas-Washburn equation for capillary filling in the sub-10 nm regime, in contrast to the previous studies, for both polar and nonpolar liquids, and for aqueous salt solutions.
Modelling Emission from Building Materials with Computational Fluid Dynamics
DEFF Research Database (Denmark)
Topp, Claus; Nielsen, Peter V.; Heiselberg, Per
This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...
Prospects for Computational Fluid Dynamics in Room Air Contaminant Control
DEFF Research Database (Denmark)
Nielsen, Peter V.
The fluid dynamics research is strongly influenced by the increasing computer power which has been available for the last decades. This development is obvious from the curve in figure 1 which shows the computation cost as a function of years. It is obvious that the cost for a given job...
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Tryggvason, T.
1998-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
Porozinskaya, Galina
1994-01-01
Discusses Russian translatology after 1950. Introduces in chronological order some of the most important Russian works and discusses their main points. Deals with Russian approaches to key problems in translation such as equivalence, pragmatic relations, audience orientation, and problems of cultural transfer. (SR)
Directory of Open Access Journals (Sweden)
Julien Vercueil
2016-07-01
Full Text Available During the past decades, sustained economic growth in emerging countries (and among them, BRICS countries has attracted much attention in the western world. Multinational companies have been lured by the growing purchasing power of a significant part of the population, often presented as the “promised land” of consumer spending in durable goods, high tech services and fashion products. Of course, increasing incomes imply also significant socio-economic changes within these countries as well. A growing number of studies have been carried in order to track the evolution of income distribution in BRICS countries, and the formation and composition of a social group usually called “middle class” in western countries (Kharas (2010, SIEMS (2010, Levada (2012, Ernst and Young (2013, Kochhar R., Oates R. (2015. In this paper we try to assess the impact of recent macroeconomic fluctuations on Russian households income levels. We analyse the Russian trajectory in three different ways. First, we compare the evolution of the “middle class” in Russia with other (BRIC and western countries, using the wealthbased definition of this group proposed in the Global Wealth Report (Crédit Suisse Research Institute, 2015. Second, we go deeper into the Russian case in order to show how regional disparities regarding incomes distribution can be interpreted, considering the country’s recent macroeconomic trajectory. For this purpose, we build a productive typology of the Russian regions and study the link between each type and the level of income inequalities, using the varying structures in sources of household’s incomes as a possible explanation of regional variations. We conclude by an assessment of the remaining challenges for incomes policy in Russia
Trade intensity in the Russian stock market:dynamics, distribution and determinants
Stanislav Anatolyev; Dmitry Shakin
2006-01-01
We investigate the distribution and evolution of intertrade durations for frequently traded stocks at the Moscow Interbank Currency Exchange. We use a flexible econometric model based on ARMA and GARCH which, when coupled with a certain class of distributions that allow for skewness and slim-tailedness, adequately captures the characteristics of conditional distribution of durations for Russian stocks, and is able to generate high quality density forecasts. We also analyze what factors determ...
Dynamics of complex fluids in rotary atomization
Keshavarz, Bavand; McKinley, Gareth; MIT, Mechanical Engineering Department Team
2016-11-01
We study the dynamics of fragmentation for different Newtonian and viscoelastic liquids in rotary atomization. In this process, at the rim of a spinning cup, the centripetal acceleration destabilizes the formed liquid torus due to the Rayleigh-Taylor instability. The resulting ligaments leave the liquid torus with a remarkably repeatable spacing that scales linearly with the inverse of the rotation rate. Filaments then follow a well-defined geometrical path-line that is described by the involute of the circle. Knowing the geometry of this phenomenon we derive the detailed kinematics of this process and compare it with the experimental observations. We show that the ligaments elongate tangentially to the involute of the circle and thin radially as they separate from the cup. A theoretical form is derived for the spatial variation of the filament deformation rate. Once the ligaments are far from the cup they breakup into droplets since they are not stretched fast enough (compared to the critical rate of capillary thinning). We couple these derivations with the known properties of Newtonian and viscoelastic liquids to provide a physical analysis for this fragmentation process that is compared in detail with our experiments.
Numerical simulation of particle dynamics at a fluid interface
Yue, Pengtao
2016-11-01
Particles straddling a fluid interface exhibit rich dynamics due to the coexistence of moving boundaries, fluid interfaces, and moving contact lines. For instance, as a particle falls onto a liquid surface, it may sink, float, or even bounce off depending on a wide range of parameters. To better understand the dynamics of such a multiphase system, we develop a finite-element based arbitrary Lagrangian-Eulerian-phase-field method. The governing equations for particles and fluids are solved in a unified variational framework that satisfies an energy law. We first validate our code by computing three problems found in literature: sinking of a horizontal cylinder through an air-water interface, sinking of a sphere through an air-oil interface at small Reynolds numbers, and bouncing of a sphere after its normal impact onto an air-water interface. Our numerical results show good agreements with experimental data. We then investigate the effect of wetting properties, including static contact angle, slip length, and wall energy relaxation, on particle dynamics at the fluid interface. This work is supported by NSF DMS-1522604.
Unsteady bio-fluid dynamics in flying and swimming
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Fluid dynamics of the shock wave reactor
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter
Human impact on the dynamics of the Russian Northern and Far East Coasts
Arkhipov, V.; Belova, N.; Kuznetsov, D.; Ogorodov, S.
2009-04-01
The northern coasts of Russia, which are composed of dispersive deposits, have poor erosion resistance qualities. In natural conditions such coasts may retreat with a rate of 1 to 5 m a year. Under the influence of human activities this rate can double and even triple. Over the last twenty years the human impact on the natural coastal geosystems has noticeably increased due to the latest oil and gas developments on the sea shelf and coasts of the Russian North. A range of facilities - oil custody terminals for drilling and production platforms, submerged pipelines, ports and other industrial features and residential infrastructure - are currently being operated in the coastal and shelf zones. In most of the cases no morphodynamic or lithodynamic features of the coastal zone had been taken into account during the construction or operation of these facilities. This results in a disturbance of the sediment budget in the coastal zone, which triggers active erosion of both the shore itself and the coastal slope beneath. The operated facilities themselves are then threatened as their destruction is possible and often than no new facilities can be constructed in the area. The operating companies have to bear forced nonmanufacturing expenses to protect or move their facilities of oil and gas industry to new areas. We may cite here three instances for Russia where human impact has already brought in negative effects. One of the examples is Varandei coast of the Barents Sea. From 1979 to 2005 a deliberate destruction of the dune chain of the barrier beach by vehicle traffic and a removal of the beach material for construction needs led to a quick intensification of the coastal retreat here. Let's move on to Kharasavei coast further east to the Kara Sea. A large-scale extraction of sediments from the coastal slope has resulted in a depletion of the material on the beaches and triggered a violent thermoabrasion of the coast in 1982-1985 and 2006-2008. Chayvo coast of the Sea
A Dynamical System Analysis of Three Fluid cosmological Model
Mahata, Nilanjana
2015-01-01
In Friedman-Robertson-Walker flat spacetime, we consider a three fluid cosmological model which contains dark matter, dark energy and baryonic matter in the form of perfect fluid with a barotropic equation of state. Dark matter is taken in form of dust and dark energy is described by a scalar field with a potential $V(\\phi)$. Einstein's field equations are reduced to an autonomous dynamical system by suitable redefinition of basic variables. Considering exponential potential for the scalar field, critical points are obtained for the autonomous system. Finally stability of the critical points and cosmological implications are analyzed.
Self-gravitating fluid solutions of Shape Dynamics
Guariento, Daniel C
2016-01-01
Shape Dynamics is a 3D conformally invariant theory of gravity which possesses a large set of solutions in common with General Relativity. When looked closely, these solutions are found to behave in surprising ways, so in order to probe the fitness of Shape Dynamics as a viable alternative to General Relativity one must find and understand increasingly more complex, less symmetrical exact solutions, on which to base perturbative studies and numerical analyses in order to compare them with data. Spherically symmetric exact solutions have been studied, but only in a static vacuum setup. In this work we construct a class of time-dependent exact solutions of Shape Dynamics from first principles, representing a central inhomogeneity in an evolving cosmological environment. By assuming only a perfect fluid source in a spherically symmetric geometry we show that this fully dynamic non-vacuum solution satisfies in all generality the Hamiltonian structure of Shape Dynamics. The simplest choice of solutions is shown to...
Use of computational fluid dynamics in respiratory medicine.
Fernández Tena, Ana; Casan Clarà, Pere
2015-06-01
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases.
Optics and Fluid Dynamics Department annual progress report for 1996
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.
1997-01-01
Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs.
Computational Fluid and Particle Dynamics in the Human Respiratory System
Tu, Jiyuan; Ahmadi, Goodarz
2013-01-01
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...
Optics and Fluid Dynamics Department annual progress report for 1997
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.
1998-04-01
Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au) 1 tab., 63 ills., 249 refs.
Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics
Jiang, Yin; Yin, Yi; Liao, Jinfeng
2016-01-01
Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured ch...
Lily Pad: Towards Real-time Interactive Computational Fluid Dynamics
Weymouth, Gabriel D
2015-01-01
Despite the fact that computational fluid dynamics (CFD) software is now (relatively) fast and freely available, it is still amazingly difficult to use. Inaccessible software imposes a significant entry barrier on students and junior engineers, and even senior researchers spend less time developing insights and more time on software issues. Lily Pad was developed as an initial attempt to address some of these problems. The goal of Lily Pad is to lower the barrier to CFD by adopting simple high-speed methods, utilising modern programming features and environments, and giving immediate visual feed-back to the user. The resulting software focuses on the fluid dynamics instead of the computation, making it useful for both education and research. LilyPad is open source and available online at https://github.com/weymouth/lily-pad for all use under the MIT license.
Streaming potential-modulated capillary filling dynamics of immiscible fluids.
Bandopadhyay, Aditya; Mandal, Shubhadeep; Chakraborty, Suman
2016-02-21
The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices.
Fluid-dynamical aspects of laser-metal interaction
Cantello, M.; Menin, R.; Donati, V.; Garifo, L.; La Rocca, A. V.; Onorato, M.
During the interaction of a high-power laser beam with a material surface many fluid-dynamical phenomena arise. The produced flow field interacts with the beam and affects the thermal coupling between the laser energy and the target metal. In this paper the fluid-dynamical aspects of these phenomena are discussed and new experimental results are illustrated. The experiments have been performed in conditions of interest for industrial laser processes with a 15-kW CW CO2 laser. The development and the motion of bright clouds ignited from metal targets at incident laser power up to 11.6 kW, using an f/18 focusing system, have been studied by high speed photographic records. The properties of the cloud have been examined by spectroscopic analysis and absorption measurements.
Fluid Dynamic Field in Bozhong Depression, Bohai Bay Basin
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 ℃/100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, slight pressure and intense overpressure from top to bottom. The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a “double-deck” structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge.
Stochastic Euler Equations of Fluid Dynamics with Lvy Noise
2016-08-10
Asymptotic Analysis 99 (2016) 67–103 67 DOI 10.3233/ASY-161376 IOS Press Stochastic Euler equations of fluid dynamics with Lévy noise Manil T. Mohan...References [1] D. Applebaum, Lévy Processes and Stochastic Calculus , Cambridge Studies in Advanced Mathematics, Vol. 93, Cam- bridge University Press...2004. [2] H. Bessaih and F. Flandoli, 2-D Euler equation perturbed by noise, Nonlinear Differential Equations and Applications 6 (1998), 35–54. doi
Computational Fluid Dynamics. [numerical methods and algorithm development
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
Quality control of computational fluid dynamics in indoor environments
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Nielsen, P. V.
2003-01-01
Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....
Optics and fluid dynamics department annual progress report for 1994
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Lading, L.; Lynov, J.P.; Michelsen, P.
1995-01-01
Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.).
A numerical model for dynamic crustal-scale fluid flow
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Review of Recent Results in Heavy Ion Fluid Dynamics
Directory of Open Access Journals (Sweden)
Csernai Laszlo P.
2014-03-01
Full Text Available Fluid dynamical phenomena in high energy heavy ion reactions were predicted in the 1970s and still today these are the most dominant and basic observables. With increasing energy and the reach of QGP the low viscosity of the plasma became apparent and this brought a new revolution in the fluid dynamical studies. The high energy and low viscosity made it possible to observe fluctuations up to high multipolarity flow harmonics. This is an obvious, direct proof of the low viscosity of QGP. Many aspects of these fluctuations are under intensive study today. The low viscosity opened ways to observe special fluid dynamical turbulent phenomena. These may arise from random fluctuations, as well as from the global symmetries of peripheral collisions. At LHC energies the angular momentum of the participant matter can reach 106ħ, which leads to rotation and turbulent instabilities, like the Kelvin-Helmholtz instability. Low viscosity ensures that these remain observable at the final freeze-out stages of the collision. Thus new investigations in addition to the standard flow analysis methods became possible. Femtoscopy may also detect rotation and turbulence. Due to the high local thermal vorticity, particle polarization and orbital rotation may reach thermal and mechanical equilibrium. This leads to baryon polarization which, in given directions may be detectable.
Energy Technology Data Exchange (ETDEWEB)
Locatelli, C
1999-10-01
The question of the emergence of a new organisational model based on the firm is at the heart of the reform in the Russian energy sector, as it is at the heart of the structural changes that the planned economic systems are undergoing. The reform has given rise to one main observation: the firm, as currently defined in Western economic writings, does not exist because of the essentially non-monetary nature of the planned economic systems. Eight years after the creation of Gazprom, however, one can be asked questions about the organisational model that has actually emerged. It is evident that the reform in ownership rights that was its initial objective has not created a private enterprise, even though the reform arose in a modification of ownership rights. Gazprom, given the essentially non-monetary economic relations amongst which it finds itself, remains in essence an organisation that is not subject to a ''hard budget constraint''. Instead of the private enterprise, we have an original and stable type of organisational model that has still to be fully defined. This specific ''vertical integration'' model is the model that allows the distinctive characteristics of the Russian economic environment to be managed best, whether they be non monetization of exchange and the salaried contract inherited from the planned economy. Some aspects of which have been retained in the post-communist transformation. In the case in point, this model shows that the firm is an organisation but also much an institution, a place where various interests and conflicts are managed. (A.L.B.)
Issues in computational fluid dynamics code verification and validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Blottner, F.G.
1997-09-01
A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.
Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang
2014-02-01
Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.
DEFF Research Database (Denmark)
Cermak, Daniel; Holmgård, Christoffer
2015-01-01
Daniel Cermak-Sassenrath, Christoffer Holmgård. Russian Reset. Installation. HyperKult XXV: Shutdown, Lüneburg, FRG, Jul 9-11, 2015.......Daniel Cermak-Sassenrath, Christoffer Holmgård. Russian Reset. Installation. HyperKult XXV: Shutdown, Lüneburg, FRG, Jul 9-11, 2015....
Dynamical fluid-type Universe scenario with dust and radiation
Mihu, Denisa-Andreea
2016-01-01
Within the context of a cosmic space whose energy source is modeled with a perfect fluid, a uniform model of Universe based on a standard FRW cosmology containing decoupled mixed matter sources namely stiff matter and cosmic dust together with a positive cosmological constant, has been studied. Within the scenario of a $k=0-$ spatially-flat geometry, we analysed the geometrodynamics of the theoretical cosmology. For the model with an added cosmological constant, the main scope was to point out the effects of it on the universe' dynamics. In this last case, the thermodynamics of the model was also considered together with the relation between the cosmological energy density and fluid pressure in terms of the inverse function of the equation of state.
Computational Fluid Dynamics Simulation of Multiphase Flow in Structured Packings
Directory of Open Access Journals (Sweden)
Saeed Shojaee
2012-01-01
Full Text Available A volume of fluid multiphase flow model was used to investigate the effective area and the created liquid film in the structured packings. The computational results revealed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packing. In particular, the effective area increases as the flow rates of both phases increase. Numerical results were compared with the Brunazzi and SRP models, and a good agreement between them was found. Attention was given to the process of liquid film formation in both two-dimensional (2D and three-dimensional (3D models. The current study revealed that computational fluid dynamics (CFD can be used as an effective tool to provide information on the details of gas and liquid flows in complex packing geometries.
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Two-fluid Dynamics in Clusters of Galaxies
Institute of Scientific and Technical Information of China (English)
Yu-Qing Lou
2005-01-01
We develop a theoretical formulation for the large-scale dynamics of galaxy clusters involving two spherical ‘isothermal fluids’ coupled by their mutual gravity and derive asymptotic similarity solutions analytically. One of the fluids roughly approximates the massive dark matter halo, while the other describes the hot gas, the relatively small mass contribution from the galaxies being subsumed in the gas. By properly choosing the self-similar variables, it is possible to consistently transform the set of time-dependent two-fluid equations of spherical symmetry with self-gravity into a set of coupled nonlinear ordinary differential equations (ODEs). We focus on the analytical analysis and discuss applications of the solutions to galaxy clusters.
Data Point Averaging for Computational Fluid Dynamics Data
Norman, Jr., David (Inventor)
2016-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Spreading dynamics and dynamic contact angle of non-Newtonian fluids.
Wang, X D; Lee, D J; Peng, X F; Lai, J Y
2007-07-17
The spreading dynamics of power-law fluids, both shear-thinning and shear-thickening fluids, that completely or partially wet solid substrate was investigated theoretically and experimentally. An evolution equation for liquid-film thickness was derived using a lubrication approximation, from which the dynamic contact angle versus the contact line moving velocity relationship was evaluated. In the capillary spreading regime, film thickness h is proportional to xi3/(n+2) (xi is the distance from the contact line), whereas in the gravitational regime, h is proportional to xi1/(n+2), relating to the rheological power exponent n. The derived model fit the experimental data well for a shear-thinning fluid (0.2% w/w xanthan solution) or a shear-thickening fluid (7.5% w/w 10 nm silica in polypropylene glycol) on a completely wetted substrate. The derived model was extended using Hoffmann's proposal for partially wetting fluids. Good agreement was also attained between model predictions and the shear-thinning fluid (1% w/w cmc solution) and shear-thickening fluid (10% w/w 15 nm silica) on partially wetted surfaces.
Fluid dynamics of ventricular filling in the embryonic heart.
Miller, Laura A
2011-09-01
The vertebrate embryonic heart first forms as a valveless tube that pumps blood using waves of contraction. As the heart develops, the atrium and ventricle bulge out from the heart tube, and valves begin to form through the expansion of the endocardial cushions. As a result of changes in geometry, conduction velocities, and material properties of the heart wall, the fluid dynamics and resulting spatial patterns of shear stress and transmural pressure change dramatically. Recent work suggests that these transitions are significant because fluid forces acting on the cardiac walls, as well as the activity of myocardial cells that drive the flow, are necessary for correct chamber and valve morphogenesis. In this article, computational fluid dynamics was used to explore how spatial distributions of the normal forces acting on the heart wall change as the endocardial cushions grow and as the cardiac wall increases in stiffness. The immersed boundary method was used to simulate the fluid-moving boundary problem of the cardiac wall driving the motion of the blood in a simplified model of a two-dimensional heart. The normal forces acting on the heart walls increased during the period of one atrial contraction because inertial forces are negligible and the ventricular walls must be stretched during filling. Furthermore, the force required to fill the ventricle increased as the stiffness of the ventricular wall was increased. Increased endocardial cushion height also drastically increased the force necessary to contract the ventricle. Finally, flow in the moving boundary model was compared to flow through immobile rigid chambers, and the forces acting normal to the walls were substantially different.
Optimization of fluid front dynamics in porous media using rate control. I. Equal mobility fluids
Energy Technology Data Exchange (ETDEWEB)
Sudaryanto, Bagus [Petroleum Engineering Program, Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211 (United States); Yortsos, Yannis C. [Petroleum Engineering Program, Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211 (United States)
2000-07-01
In applications involving the injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, we provide a fundamental approach based on optimal control theory, for the simplified case when the fluids are miscible, of equal viscosity, and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates. It is shown that the optimal injection policy that maximizes the displacement efficiency, at the time of arrival of the injected fluid, is of the ''bang-bang'' type, in which the rates take their extreme values in the range allowed. This result applies to both homogeneous and heterogeneous media. Examples in simple geometries and for various constraints are shown, illustrating the efficiency improvement over the conventional approach of constant rate injection. In the heterogeneous case, the effect of the permeability heterogeneity, particularly its spatial correlation structure, on diverting the flow paths, is analyzed. It is shown that bang-bang injection remains the optimal approach, compared to constant rate, particularly if they were both designed under the assumption that the medium was homogeneous. Experiments in a homogeneous Hele-Shaw cell are found to be in good agreement with the theory. (c) 2000 American Institute of Physics.
The stochastic dynamics of tethered microcantilevers in a viscous fluid
Energy Technology Data Exchange (ETDEWEB)
Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)
2014-10-28
We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.
Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines
Stern, Philip; Casartelli, Ernesto; Egli, Marcel
2017-01-01
Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth’s gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the “bulk volume,” however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid
Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines.
Wuest, Simon L; Stern, Philip; Casartelli, Ernesto; Egli, Marcel
2017-01-01
Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth's gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the "bulk volume," however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid
Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent
2011-06-01
Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized
Dynamic Multiscaling in Two-dimensional Fluid Turbulence
Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul
2011-01-01
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Coupling lattice Boltzmann and molecular dynamics models for dense fluids
Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.
2007-04-01
We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.
Computational fluid dynamics in fire engineering theory, modelling and practice
Yuen, Kwok Kit
2009-01-01
Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f
Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion
Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.
2011-01-01
A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.
Experimental investigations of fluid dynamic and thermal performance of nanofluids
Kulkarni, Devdatta Prakash
The goal of this research was to investigate the fluid dynamic and thermal performance of various nanofluids. Nanofluids are dispersions of metallic nanometer size particles (choice of base fluid is an ethylene or propylene glycol and water mixture in cold regions. Initially the rheological characterization of copper oxide (CuO) nanofluids in water and in propylene glycol was performed. Results revealed that higher concentrations of CuO nanoparticles (5 to 15%) in water exhibited time-independent pseudoplastic and shear-thinning behavior. Lower concentrations (1 to 6%) of CuO nanofluids in propylene glycol revealed that these nanofluids behaved as Newtonian fluids. Both nanofluids showed that viscosity decreased exponentially with increase in temperature. Subsequent correlations for viscosities as a function of volume concentration and temperature were developed. Effects of different thermophysical properties on the Prandtl number of CuO, silicon dioxide (SiO2) and aluminum oxide (A12O 3) nanofluids were investigated. Results showed that the Prandtl number increased with increasing volume concentrations, which in turn increased the heat transfer coefficients of the nanofluids. Various nanofluids were compared for their heat transfer rates based on the Mouromtseff number, which is a Figure of Merit for heat transfer fluids. From this analysis, the optimal concentrations of nanoparticles in base fluids were found for CuO-water nanofluids. Experiments were performed to investigate the convective heat transfer enhancement and pressure loss of CuO, SiO2 and A12O 3 nanofluids in the turbulent regime. The increases in heat transfer coefficient by nanofluids for various volume concentrations compared to the base fluid were determined. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Calculations showed that application of nanofluids in heat
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Energy Technology Data Exchange (ETDEWEB)
Fan, Rong [Iowa State Univ., Ames, IA (United States)
2006-01-01
Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section
MagIC: Fluid dynamics in a spherical shell simulator
Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.
2017-09-01
MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.
Relativistic Fluid Dynamics: Physics for Many Different Scales
Directory of Open Access Journals (Sweden)
Comer Gregory L.
2007-01-01
Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.
Dissolution Dynamic Nuclear Polarization capability study with fluid path
Malinowski, Ronja M.; Lipsø, Kasper W.; Lerche, Mathilde H.; Ardenkjær-Larsen, Jan H.
2016-11-01
Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.
Dissolution Dynamic Nuclear Polarization capability study with fluid path.
Malinowski, Ronja M; Lipsø, Kasper W; Lerche, Mathilde H; Ardenkjær-Larsen, Jan H
2016-11-01
Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)
Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin
2015-11-01
A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.
Ringin' the water bell: dynamic modes of curved fluid sheets
Kolinski, John; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran
2015-11-01
A water bell is formed by fluid flowing in a thin, coherent sheet in the shape of a bell. Experimentally, a water bell is created via the impact of a cylindrical jet on a flat surface. Its shape is set by the splash angle (the separation angle) of the resulting cylindrically symmetric water sheet. The separation angle is altered by adjusting the height of a lip surrounding the impact point, as in a water sprinkler. We drive the lip's height sinusoidally, altering the separation angle, and ringin' the water bell. This forcing generates disturbances on the steady-state water bell that propagate forward and backward in the fluid's reference frame at well-defined velocities, and interact, resulting in the emergence of an interference pattern unique to each steady-state geometry. We analytically model these dynamics by linearizing the amplitude of the bell's response about the underlying curved geometry. This simple model predicts the nodal structure over a wide range of steady-state water bell configurations and driving frequencies. Due to the curved water bell geometry, the nodal structure is quite complex; nevertheless, the predicted nodal structure agrees extremely well with the experimental data. When we drive the bell beyond perturbative separation angles, the nodal locations surprisingly persist, despite the strikingly altered underlying water bell shape. At extreme driving amplitudes the water sheet assumes a rich variety of tortuous, non-convex shapes; nevertheless, the fluid sheet remains intact.
Fluid-dynamic design optimization of hydraulic proportional directional valves
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999
Energy Technology Data Exchange (ETDEWEB)
Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.
1997-12-31
The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project
Dynamic hysteresis in the rheology of complex fluids.
Puisto, Antti; Mohtaschemi, Mikael; Alava, Mikko J; Illa, Xavier
2015-04-01
Recently, rheological hysteresis has been studied systematically in a wide range of complex fluids combining global rheology and time-resolved velocimetry. In this paper we present an analysis of the roles of the three most fundamental mechanisms in simple-yield-stress fluids: structure dynamics, viscoelastic response, and spatial flow heterogeneities, i.e., time-dependent shear bands. Dynamical hysteresis simulations are done analogously to rheological ramp-up and -down experiments on a coupled model which incorporates viscoelasticity and time-dependent structure evolution. Based on experimental data, a coupling between hysteresis measured from the local velocity profiles and that measured from the global flow curve has been suggested. According to the present model, even if transient shear banding appears during the shear ramps, in typical narrow-gap devices, only a small part of the hysteretic response can be attributed to heterogeneous flow. This results in decoupling of the hysteresis measured from the local velocity profiles and the global flow curve, demonstrating that for an arbitrary time-dependent rheological response this proposed coupling can be very weak.
Meniscal Tear Film Fluid Dynamics Near Marx’s Line
Zubkov, V. S.
2013-07-03
Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx\\'s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line. © 2013 Society for Mathematical Biology.
Fluid dynamics in airway bifurcations: I. Primary flows.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
The subject of fluid dynamics within human airways is of great importance for the risk assessment of air pollutants (inhalation toxicology) and the targeted delivery of inhaled pharmacologic drugs (aerosol therapy). As cited herein, experimental investigations of flow patterns have been performed on airway models and casts by a number of investigators. We have simulated flow patterns in human lung bifurcations and compared the results with the experimental data of Schreck (1972). The theoretical analyses were performed using a third-party software package, FIDAP, on the Cray T90 supercomputer. This effort is part of a systematic investigation where the effects of inlet conditions, Reynolds numbers, and dimensions and orientations of airways were addressed. This article focuses on primary flows using convective motion and isovelocity contour formats to describe fluid dynamics; subsequent articles in this issue consider secondary currents (Part II) and localized conditions (Part III). The agreement between calculated and measured results, for laminar flows with either parabolic or blunt inlet conditions to the bifurcations, was very good. To our knowledge, this work is the first to present such detailed comparisons of theoretical and experimental flow patterns in airway bifurcations. The agreement suggests that the methodologies can be employed to study factors affecting airflow patterns and particle behavior in human lungs.
Respiratory mechanics and fluid dynamics after lung resection surgery.
Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria
2010-08-01
Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur.
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Energy Technology Data Exchange (ETDEWEB)
Rokkam, Ram [Iowa State Univ., Ames, IA (United States)
2012-01-01
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Dynamics of fluid and light intensity in mechanically stirred photobioreactor.
Zhang, T
2013-10-10
Turbulent flows in a single-stage and a two-stage impeller-stirred photobioreactor with a simple geometric configuration were analyzed using computational fluid dynamics. The trajectories of the microorganisms entrained in the flow field were traced by the particle tracking method. By projecting these trajectories onto a radial-axial (r-z) plane with a given azimuth angle, we were able to observe four different dynamics zones: circulation, pure rotation, trap, and slow-motion. Within the pure rotation zone, turbulence can be observed near the edges of the impeller. The light intensity and the light/dark cycles subjected by the microorganisms differ significantly in these zones. These differences can be further changed by providing different incident light illuminations on the reactor surface. The dynamics zones can be altered by modifying the geometric configuration of the reactor and the impeller stirring mechanism. In combination with the utilization of different incident light illuminations, the light intensity dynamics and the light/dark cycles subjected by the microorganisms can be controlled such that an optimal photobioreactor design with a high efficiency of light utilization and a high formation rate of the biochemical products can be realized.
Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers
Energy Technology Data Exchange (ETDEWEB)
Garcia, Julio Enrique
2003-12-18
Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous
Computational fluid dynamics framework for aerodynamic model assessment
Vallespin, D.; Badcock, K. J.; Da Ronch, A.; White, M. D.; Perfect, P.; Ghoreyshi, M.
2012-07-01
This paper reviews the work carried out at the University of Liverpool to assess the use of CFD methods for aircraft flight dynamics applications. Three test cases are discussed in the paper, namely, the Standard Dynamic Model, the Ranger 2000 jet trainer and the Stability and Control Unmanned Combat Air Vehicle. For each of these, a tabular aerodynamic model based on CFD predictions is generated along with validation against wind tunnel experiments and flight test measurements. The main purpose of the paper is to assess the validity of the tables of aerodynamic data for the force and moment prediction of realistic aircraft manoeuvres. This is done by generating a manoeuvre based on the tables of aerodynamic data, and then replaying the motion through a time-accurate computational fluid dynamics calculation. The resulting forces and moments from these simulations were compared with predictions from the tables. As the latter are based on a set of steady-state predictions, the comparisons showed perfect agreement for slow manoeuvres. As manoeuvres became more aggressive some disagreement was seen, particularly during periods of large rates of change in attitudes. Finally, the Ranger 2000 model was used on a flight simulator.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics Project
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD...
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Improvement of Basic Fluid Dynamics Models for the COMPASS Code
Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi
The COMPASS code is a new next generation safety analysis code to provide local information for various key phenomena in core disruptive accidents of sodium-cooled fast reactors, which is based on the moving particle semi-implicit (MPS) method. In this study, improvement of basic fluid dynamics models for the COMPASS code was carried out and verified with fundamental verification calculations. A fully implicit pressure solution algorithm was introduced to improve the numerical stability of MPS simulations. With a newly developed free surface model, numerical difficulty caused by poor pressure solutions is overcome by involving free surface particles in the pressure Poisson equation. In addition, applicability of the MPS method to interactions between fluid and multi-solid bodies was investigated in comparison with dam-break experiments with solid balls. It was found that the PISO algorithm and free surface model makes simulation with the passively moving solid model stable numerically. The characteristic behavior of solid balls was successfully reproduced by the present numerical simulations.
Adaptive thermo-fluid moving boundary computations for interfacial dynamics
Institute of Scientific and Technical Information of China (English)
Chih-Kuang Kuan; Jaeheon Sim; Wei Shyy
2012-01-01
In this study,we present adaptive moving boundary computation technique with parallel implementation on a distributed memory multi-processor system for large scale thermo-fluid and interfacial flow computations.The solver utilizes Eulerian-Lagrangian method to track moving (Lagrangian) interfaces explicitly on the stationary (Eulerian)Cartesian grid where the flow fields are computed. We address the domain decomposition strategies of EulerianLagrangian method by illustrating its intricate complexity of the computation involved on two different spaces interactively and consequently,and then propose a trade-off approach aiming for parallel scalability.Spatial domain decomposition is adopted for both Eulerian and Lagrangian domain due to easy load balancing and data locality for minimum communication between processors.In addition,parallel cell-based unstructured adaptive mesh refinement (AMR)technique is implemented for the flexible local refinement and even-distributed computational workload among processors.Selected cases are presented to highlight the computational capabilities,including Faraday type interfacial waves with capillary and gravitational forcing,flows around varied geometric configurations and induced by boundary conditions and/or body forces,and thermo-fluid dynamics with phase change.With the aid of the present techniques,large scale challenging moving boundary problems can be effectively addressed.
Transcapillary fluid dynamics during ovarian stimulation for in vitro fertilization.
Tollan, A; Holst, N; Forsdahl, F; Fadnes, H O; Oian, P; Maltau, J M
1990-02-01
Transcapillary fluid dynamics were studied in 10 women during ovarian stimulation for in vitro fertilization. The examinations were done on the first day of stimulation (day 3 of the menstrual cycle, mean serum estradiol concentration 0.2 nmol/L), and the day before oocyte aspiration (day 10 to 12, mean serum estradiol concentration 6.8 nmol/L). Interstitial colloid osmotic pressure was measured on the thorax at heart level by the "wick" method, and interstitial hydrostatic pressure by the "wick-in-needle" method. Plasma colloid osmotic pressure decreased (mean, 2.0 mm Hg; p less than 0.002) and interstitial colloid osmotic pressure increased (mean, 1.0 mm Hg; p less than 0.02) during hormonal stimulation. This implies a reduced transcapillary colloid osmotic gradient (plasma colloid osmotic pressure--interstitial colloid osmotic pressure), probably because of increased capillary permeability to plasma proteins. Hemoglobin and hematocrit were significantly reduced, and body weight and foot volume significantly increased. These results demonstrate that during ovarian stimulation there are both water retention and augmented filtration of fluid from the vascular to the interstitial compartment. This may be of significance for the pathophysiologic condition in the ovarian hyperstimulation syndrome.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years.
Molecular dynamics of fluid flow at solid surfaces
Koplik, Joel; Banavar, Jayanth R.; Willemsen, Jorge F.
1989-05-01
Molecular dynamics techniques are used to study the microscopic aspects of several slow viscous flows past a solid wall, where both fluid and wall have a molecular structure. Systems of several thousand molecules are found to exhibit reasonable continuum behavior, albeit with significant thermal fluctuations. In Couette and Poiseuille flow of liquids it is found that the no-slip boundary condition arises naturally as a consequence of molecular roughness, and that the velocity and stress fields agree with the solutions of the Stokes equations. At lower densities slip appears, which can be incorporated into a flow-independent slip-length boundary condition. The trajectories of individual molecules in Poiseuille flow are examined, and it is also found that their average behavior is given by Taylor-Aris hydrodynamic dispersion. An immiscible two-fluid system is simulated by a species-dependent intermolecular interaction. A static meniscus is observed whose contact angle agrees with simple estimates and, when motion occurs, velocity-dependent advancing and receding angles are observed. The local velocity field near a moving contact line shows a breakdown of the no-slip condition and, up to substantial statistical fluctuations, is consistent with earlier predictions of Dussan [AIChE J. 23, 131 (1977)].
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Directory of Open Access Journals (Sweden)
Ying Yan
Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.
Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H
2017-02-08
Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen.
High-Performance Java Codes for Computational Fluid Dynamics
Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.
Osmoregulation with Focus on Fluid and Solute Dynamics in Tardigradia
DEFF Research Database (Denmark)
Halberg, Kenneth Agerlin
a continuous traffic of compounds in and out of the organism. These demands appear to be in fundamental contradiction however cells and animals achieve so-called “steady-state” by means of an array of transport proteins, which provide a stringent control on the exchange of water and solutes across body......, with the main focus being on fluid and solute dynamics in Tardigrada. For example, the inorganic ion composition of several species was investigated, which revealed that tardigrades contain roughly similar relative contributions of inorganic ions to total osmotic concentration, when compared to closely related...... animal groups. Moreover, it was inferred that cryptobiotic tardigrades (species able to enter a state of latent life) contain a large fraction of organic osmolytes. The mechanisms of organic anion transport in a marine species of tardigrade was investigated pharmacologically, and compared...
Dynamic phase transitions in confined lubricant fluids under shear
Energy Technology Data Exchange (ETDEWEB)
Drummond, Carlos; Israelachvili, Jacob
2001-04-01
A surface force apparatus was used to measure the transient and steady-state friction forces between molecularly smooth mica surfaces confining thin films of squalane, C{sub 30}H{sub 62}, a saturated, branched hydrocarbon liquid. The dynamic friction ''phase diagram'' was determined under different shearing conditions, especially the transitions between stick-slip and smooth sliding ''states'' that exhibited a chaotic stick-slip regime. The apparently very different friction traces exhibited by simple spherical, linear, and branched hydrocarbon films under shear are shown to be due to the much longer relaxation times and characteristic length scales associated with transitions from rest to steady-state sliding, and vice versa, in the case of branched liquids. The physical reasons and tribological implications for the different types of transitions observed with spherical, linear, and branched fluids are discussed.
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Tryggvason, Tryggvi
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....
Uncertainty quantification in computational fluid dynamics and aircraft engines
Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone
2015-01-01
This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...
Computational Fluid Dynamics Analysis of an Evaporative Cooling System
Directory of Open Access Journals (Sweden)
Kapilan N.
2016-11-01
Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.
Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
W. K. Chow
2011-01-01
Full Text Available Many tall halls of big space volume were built and, to be built in many construction projects in the Far East, particularly Mainland China, Hong Kong, and Taiwan. Smoke is identified to be the key hazard to handle. Consequently, smoke exhaust systems are specified in the fire code in those areas. An update on applying Computational Fluid Dynamics (CFD in smoke exhaust design will be presented in this paper. Key points to note in CFD simulations on smoke filling due to a fire in a big hall will be discussed. Mathematical aspects concerning of discretization of partial differential equations and algorithms for solving the velocity-pressure linked equations are briefly outlined. Results predicted by CFD with different free boundary conditions are compared with those on room fire tests. Standards on grid size, relaxation factors, convergence criteria, and false diffusion should be set up for numerical experiments with CFD.
Modeling of a continuous pretreatment reactor using computational fluid dynamics.
Berson, R Eric; Dasari, Rajesh K; Hanley, Thomas R
2006-01-01
Computational fluid dynamic simulations are employed to predict flow characteristics in a continuous auger driven reactor designed for the dilute acid pretreatment of biomass. Slurry containing a high concentration of biomass solids exhibits a high viscosity, which poses unique mixing issues within the reactor. The viscosity increases significantly with a small increase in solids concentration and also varies with temperature. A well-mixed slurry is desirable to evenly distribute acid on biomass, prevent buildup on the walls of the reactor, and provides an uniform final product. Simulations provide flow patterns obtained over a wide range of viscosities and pressure distributions, which may affect reaction rates. Results provide a tool for analyzing sources of inconsistencies in product quality and insight into future design and operating parameters.
Computational methods of the Advanced Fluid Dynamics Model
Energy Technology Data Exchange (ETDEWEB)
Bohl, W.R.; Wilhelm, D.; Parker, F.R.; Berthier, J.; Maudlin, P.J.; Schmuck, P.; Goutagny, L.; Ichikawa, S.; Ninokata, H.; Luck, L.B.
1987-01-01
To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development.
Teaching an Undergraduate Course on Computational Fluid Dynamics
Sheikhi, Reza H.
2013-11-01
A new computational fluid dynamics (CFD) course is introduced to Mechanical Engineering undergraduate curriculum at Northeastern University. The main objective is to enable students to make use of CFD in their cooperative-education work, senior capstone project as well as future engineering career. CFD has become an indispensable tool for engineering design & analysis, and it is now available to broad range of users, through commercial software packages. Proper use of these softwares, however, requires basic knowledge of CFD to understand their capabilities and limitations, to be aware of the pitfalls and to interpret the predictions. The course is designed to offer a balanced coverage of essential and applied CFD, with particular emphasis on verification & validation and CFD analysis. Training for a commercial CFD package is an integral part of the course which is facilitated by the use of project-based learning. In this presentation, details of development and implementation of this course will be discussed.
Mutual Dynamics of Swimming Microorganisms and Their Fluid Habitat
Kessler, John O.; Burnett, G. David; Remick, Katherine E.
"Organisms alter their material environment, and their environment constrains and naturally selects organisms." Lenton's [17] statement applies especially well to populations of swimming micro-organisms. The mutual dynamic of themselves and their fluid habitat orders and constrains them, generates concentration-convection patterns [12], [15], enhances transport of metabolites and, at all scales, guides many of their interactions. Our objective is to describe mathematical models sufficient for reaching insights that can further guide theory and experiment. These models necessarily include nonlinear and stochastic features. To illustrate self-organization and the type of experimental statistical inputs available, we present some rather astonishing data concerning the motile bacteria Bacillus subtilis and hydrodynamics associated with their activity. The inescapable interdependence of physics and biology emerges from the analysis.
Osmoregulation with Focus on Fluid and Solute Dynamics in Tardigradia
DEFF Research Database (Denmark)
Halberg, Kenneth Agerlin
, with the main focus being on fluid and solute dynamics in Tardigrada. For example, the inorganic ion composition of several species was investigated, which revealed that tardigrades contain roughly similar relative contributions of inorganic ions to total osmotic concentration, when compared to closely related...... animal groups. Moreover, it was inferred that cryptobiotic tardigrades (species able to enter a state of latent life) contain a large fraction of organic osmolytes. The mechanisms of organic anion transport in a marine species of tardigrade was investigated pharmacologically, and compared...... to that of insects. These data showed that organic anion transport is localized to the midgut epithelium and that the transport is both active and transporter mediated with a pharmacological profile similar to that of insects. Tardigrades survive in a variety of osmotic environments (semi-terrestrial, limnic...
Transport Properties of Fluids in Micropores by Molecular Dynamics Simulation
Institute of Scientific and Technical Information of China (English)
LIU, Ying-Chun(刘迎春); WANG, Qi(王琦); Lü, Ling-Hong(吕玲红)
2004-01-01
The transport properties of fluid argon in micropores, i.e. diffusivity and viscosity, were studied by molecular dynamics simulations. The effects of pore width, temperature and density on diffusivity and viscosity were analyzed in micropores with pore widths from 0.8 to 4.0 nm. The results show that the diffusivity in micropores is much lower than the bulk diffusivity, and it decreases as the pore width decreases; but the viscosity in micropores is significantly larger than the bulk one, and it increases sharply in narrow micropores. The diffusivity in channel parallel direction is obviously larger than that in channel perpendicular direction. The temperature and density are important factors that obviously affect diffusivity and viscosity in micropores.
Fluid dynamics in airway bifurcations: III. Localized flow conditions.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.
Computational fluid dynamics for defect control in semiconductor processing
Kempka, S. N.; Geller, A. S.
Finite element simulations of mixed convection flow (Re less than 100, Gr less than 10(exp 6)) are presented for two gas flow reactors characteristic of those used in the manufacture of microchips. The simulations demonstrate the usefulness of FIDAP (a finite element, Navier-Stokes code developed by Fluid Dynamics International, Inc.) as a tool to design new reactors and to assess the effects of varying operating conditions in present reactors. The calculations predict the existence of thermal plumes and recirculation regions within reactors. These flow nonuniformities are important since they can result in fatal defects in microchips. Comparisons between solutions obtained using a Boussinesq model and FIDAP's variable density model are presented. The FIDAP calculations agree with previous simulations using more detailed models, supporting the use of FIDAP as a design tool in the semiconductor industry.
Dynamic response of shear thickening fluid under laser induced shock
Wu, Xianqian; Zhong, Fachun; Yin, Qiuyun; Huang, Chenguang
2015-02-01
The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.
Mapping flow distortion on oceanographic platforms using computational fluid dynamics
Directory of Open Access Journals (Sweden)
N. O'Sullivan
2013-10-01
Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.
Computational Fluid Dynamics in Aerospace Industry in India
Directory of Open Access Journals (Sweden)
K. P. Singh
2010-10-01
Full Text Available The role of computational fluid dynamics (CFD in the design of fighter aircraft, transport aircraft, launch vehicle and missiles in India is explained. Indigenous developments of grid generators, 3-D Euler and Navier-Stokes solvers using state-of-the-art numerical techniques and physical models have been described. Applications of these indigenous softwares for the prediction of various complex aerodynamic flows over a wide range of Mach number, angle of attacks, are presented. Emergence of CFD methods as an efficient tool for aerospace vehicle design is highlighted.Defence Science Journal, 2010, 60(6, pp.639-652, DOI:http://dx.doi.org/10.14429/dsj.60.582
Evaluation of nacelle drag using Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
Luis Gustavo Trapp
2010-08-01
Full Text Available Thrust and drag components must be defined and properly accounted in order to estimate aircraft performance, and this hard task is particularty essential for propulsion system where drag components are functions of engine operating conditions. The present work describes a numerical method used to calculate the drag in different nacelles, long and short ducted. Two- and three-dimensional calculations were performed, solving the Reynolds Averaged Navier-Stokes (RANS equations with a commercial Computational Fluid Dynamics (CFD code. It is then possible to obtain four drag components: wave, induced, viscous and spurious drag using a far-field formulation. An expression in terms of entropy variations was shown and drag for different nacelle geometries was estimated.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
Meir Israelowitz
2012-01-01
Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.
Parallel Computational Fluid Dynamics: Current Status and Future Requirements
Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)
1994-01-01
One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.
Fluid dynamics of aortic root dilation in Marfan syndrome
Querzoli, Giorgio; Espa, Stefania; Costantini, Martina; Sorgini, Francesca
2014-01-01
Aortic root dilation and propensity to dissection are typical manifestations of the Marfan Syndrome (MS), a genetic defect leading to the degeneration of the elastic fibres. Dilation affects the structure of the flow and, in turn, altered flow may play a role in vessel dilation, generation of aneurysms, and dissection. The aim of the present work is the investigation in-vitro of the fluid dynamic modifications occurring as a consequence of the morphological changes typically induced in the aortic root by MS. A mock-loop reproducing the left ventricle outflow tract and the aortic root was used to measure time resolved velocity maps on a longitudinal symmetry plane of the aortic root. Two dilated model aortas, designed to resemble morphological characteristics typically observed in MS patients, have been compared to a reference, healthy geometry. The aortic model was designed to quantitatively reproduce the change of aortic distensibility caused by MS. Results demonstrate that vorticity released from the valve ...
On Computational Fluid Dynamics Tools in Architectural Design
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther
engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...... the durability of the two program types for simulation of flow is strongly depended of the purpose. One case presents results obtained with the programs with respect to the accuracy and physical behaviour of the flow. Another case deals with wind flow around a complex building design, the roof of the new Utzon...... Centre in Aalborg, Denmark. The obtained results show that detailed and accurate flow predictions can be obtained using a simulation tool like ANSYS CFX. On the other hand RealFlow provides satisfactory flow results for evaluation of a proposed building shape in an early phase of a design process...
Computational fluid dynamics of developing avian outflow tract heart valves.
Bharadwaj, Koonal N; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C; Butcher, Jonathan T
2012-10-01
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16-30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm(2) at HH16 to 671.24 dynes/cm(2) at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm(2) at HH16 to 136.50 dynes/cm(2) at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research.
A fully dynamic magneto-rheological fluid damper model
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory
Kluwick, A.
2017-03-01
The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the
Studying microstructural dynamics of complex fluids with particle tracking microrheology
Breedveld, Victor
2004-11-01
Over the last decade, particle tracking microrheology has matured as a new tool for complex fluids research. The main advantages of microrheology over traditional macroscopic rheometry are: the required sample size is extremely small ( ˜ 1 microliter); local viscoelastic properties in a sample can be probed with high spatial resolution ( ˜1-10 micrometer); and the sample is not disturbed by moving rheometer parts. I will present two examples of recent work in my group that highlight how these characteristics can be exploited to acquire unique information about the microstructure of complex fluids. First, we have studied protein unfolding. Traditionally, protein unfolding is studied with spectroscopic techniques (circular dichroism, NMR, fluorescence). Although viscosity has been listed in textbooks as a suitable technique, few -if any- quantitative rheological studies of unfolding have been reported, mainly due to technical difficulties. With microrheology, we have been able to quantify the size of the folded and unfolded protein, as well as the Gibbs free energy of unfolding, for aqueous bovine serum albumine solutions upon addition of urea as a denaturant. The results are in excellent agreement with literature data. Secondly, we have developed new technology for studying the microstructural dynamics of solvent-responsive complex fluids. In macroscopic rheometry it is virtually impossible to change solvent composition and measure the rheological response of a sample. By integrating microfluidics and microrheology we have been able to overcome this barrier: due to the micrometer lengthscales in microfluidiv devices, diffusive timescales in a dialysis set-up become short enough to achieve rapid and reversible changes in sample composition, without affecting the concentration of macromolecular components. Our dialysis cell for microrheology is a unique tool for studying the dynamics of structural and rheological changes induced by solvent composition. I will
MacPhee, RDE; Tikhonov, AN; Mol, D; Maliave, CD; Van der Plicht, H; Greenwood, AD; Flemming, C; Agenbroad, L; MacPhee, Ross D.E.; Tikhonov, Alexei N.; Marliave, Christian de; Greenwood, Alex D.
2002-01-01
This paper presents 75 new radiocarbon dates based on late Quaternary mammal remains recovered from eastern Taimyr Peninsula and adjacent parts of the northern Siberian lowlands, Russian Federation, including specimens of woolly mammoth (Mammuthus primigenius), steppe bison (Bison priscus), muskox (
Fluid dynamics of competitive swimming: An experimental study
Wei, T.; Voorhees, A.; Mark, R.; Mittal, R.
2004-11-01
The world of competitive swimming is dynamic. Swimmers today are bigger, stronger and faster than they ever have been. The training regimen of an elite athlete includes not only endless practice of his or her skills, but also a carefully planned diet, strength and endurance training, and hours of mental preparation. Within this framework, researchers from Rutgers and George Washington Universities have teamed with USA Swimming to develop advanced, fluid dynamics based training and analysis tools for current and future Olympic swimmers. The focus of this presentation will be on the objectives, methodologies and early outcomes of DPIV measurements of flow around swimmers. Testing was conducted at the Olympic training center in Colorado Springs and focussed specifically on the dolphin kick, an undulating motion swimmers use at the beginning of a race and after pushing off from the wall during a turn. Movies of flow measurements around swimmers, including Beth Botsford, the 1996 Olympic Gold Medalist in the 100 m backstroke, will be presented.
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
Ghil, Michael; Simonnet, Eric; 10.1016/j.physd.2008.03.036
2010-01-01
The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural ...
APS presents prizes in fluid dynamics and plasma physics
Energy Technology Data Exchange (ETDEWEB)
1992-12-01
This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation.
Dynamic self-consistent field theory for unentangled homopolymer fluids
Mihajlovic, Maja; Lo, Tak Shing; Shnidman, Yitzhak
2005-10-01
We present a lattice formulation of a dynamic self-consistent field (DSCF) theory that is capable of resolving interfacial structure, dynamics, and rheology in inhomogeneous, compressible melts and blends of unentangled homopolymer chains. The joint probability distribution of all the Kuhn segments in the fluid, interacting with adjacent segments and walls, is approximated by a product of one-body probabilities for free segments interacting solely with an external potential field that is determined self-consistently. The effect of flow on ideal chain conformations is modeled with finitely extensible, nonlinearly elastic dumbbells in the Peterlin approximation, and related to stepping probabilities in a random walk. Free segment and stepping probabilities generate statistical weights for chain conformations in a self-consistent field, and determine local volume fractions of chain segments. Flux balance across unit lattice cells yields mean field transport equations for the evolution of free segment probabilities and of momentum densities on the Kuhn length scale. Diffusive and viscous contributions to the fluxes arise from segmental hops modeled as a Markov process, with transition rates reflecting changes in segmental interaction, kinetic energy, and entropic contributions to the free energy under flow. We apply the DSCF equations to study both transient and steady-state interfacial structure, flow, and rheology in a sheared planar channel containing either a one-component melt or a phase-separated, two-component blend.
Directory of Open Access Journals (Sweden)
Azrar A.
2012-07-01
Full Text Available The dynamic instabilities of Carbon NanoTubes (CNTs conveying fluid are modeled and numerically simulated based on the nonlocal elasticity theory. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviors of the CNT-fluid system as well as the instabilities induced by the fluid-velocity are investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses can be obtained based on the presented methodological approach.
Experimental Observation of Differences in the Dynamic Response of Newtonian and Viscoelastic Fluids
Castrejon-Pita, J R; Castrejon-Pita, A A; Huelsz, G
2003-01-01
In this paper we present an experimental study of the dynamic responses of a Newtonian fluid and a Maxwellian fluid under an oscillating pressure gradient. We use laser Doppler anemometry in order to determine the velocity of each fluid inside a cylindrical tube. In the case of the Newtonian fluid, the dissipative nature is observed and the response obeys the Zhou and Sheng universality (PRB 39, 12027 (1989)). In the dynamic response of the Maxwellian fluid an enhancement at the frequencies predicted by the corresponding theory (PRE 39, 12027 (1989)) is observed.
On the tribological characteristics of dynamically loaded journal bearing with micropolar fluids
Institute of Scientific and Technical Information of China (English)
WANG; Xiaoli; WANG; Kongying; ZHU; Keqin
2004-01-01
The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteristics of a dynamically-loaded journal bearing are numerically studied. Comparisons are made between the Newtonian fluids and the micropolar fluids. It is shown that for a dynamically-loaded journal bearing, the micropolar fluids yield an increase not only in the friction force, but also in the friction coefficient. In addition, the oil film pressure and the oil film thickness are obviously higher than that of Newtonian fluids.
Norby, W. P.; Ladd, J. A.; Yuhas, A. J.
1996-01-01
A procedure has been developed for predicting peak dynamic inlet distortion. This procedure combines Computational Fluid Dynamics (CFD) and distortion synthesis analysis to obtain a prediction of peak dynamic distortion intensity and the associated instantaneous total pressure pattern. A prediction of the steady state total pressure pattern at the Aerodynamic Interface Plane is first obtained using an appropriate CFD flow solver. A corresponding inlet turbulence pattern is obtained from the CFD solution via a correlation linking root mean square (RMS) inlet turbulence to a formulation of several CFD parameters representative of flow turbulence intensity. This correlation was derived using flight data obtained from the NASA High Alpha Research Vehicle flight test program and several CFD solutions at conditions matching the flight test data. A distortion synthesis analysis is then performed on the predicted steady state total pressure and RMS turbulence patterns to yield a predicted value of dynamic distortion intensity and the associated instantaneous total pressure pattern.
Collapse dynamics and runout of dense granular materials in a fluid.
Topin, V; Monerie, Y; Perales, F; Radjaï, F
2012-11-02
We investigate the effect of an ambient fluid on the dynamics of collapse and spread of a granular column simulated by means of the contact dynamics method interfaced with computational fluid dynamics. The runout distance is found to increase as a power law with the aspect ratio of the column, and, surprisingly, for a given aspect ratio and packing fraction, it may be similar in the grain-inertial and fluid-inertial regimes but with considerably longer duration in the latter case. We show that the effect of fluid in viscous and fluid-inertial regimes is to both reduce the kinetic energy during collapse and enhance the flow by lubrication during spread. Hence, the runout distance in a fluid may be below or equal to that in the absence of fluid due to compensation between those effects.
Energy Technology Data Exchange (ETDEWEB)
Sentman, L.H.; Nayfeh, M.H.
1983-12-01
This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Energy Technology Data Exchange (ETDEWEB)
Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
Simulating the Dynamic Behavior of Shear Thickening Fluids
Ozgen, Oktar; Brown, Eric
2015-01-01
While significant research has been dedicated to the simulation of fluids, not much attention has been given to exploring new interesting behavior that can be generated with the different types of non-Newtonian fluids with non-constant viscosity. Going in this direction, this paper introduces a computational model for simulating the interesting phenomena observed in non-Newtonian shear thickening fluids, which are fluids where the viscosity increases with increased stress. These fluids have unique and unconventional behavior, and they often appear in real world scenarios such as when sinking in quicksand or when experimenting with popular cornstarch and water mixtures. While interesting behavior of shear thickening fluids can be easily observed in the real world, the most interesting phenomena of these fluids have not been simulated before in computer graphics. The fluid exhibits unique phase changes between solid and liquid states, great impact resistance in its solid state and strong hysteresis effects. Our...
Dynamic modeling of fluid power transmissions for wind turbines
Diepeveen, N.F.B.; Jarquin Laguna, A.
2011-01-01
Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power
Dynamic modeling of fluid power transmissions for wind turbines
Diepeveen, N.F.B.; Jarquin Laguna, A.
2011-01-01
Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power
Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics
Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor
2015-04-01
Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine
NMR imaging of fluid dynamics in reservoir core.
Baldwin, B A; Yamanashi, W S
1988-01-01
A medical NMR imaging instrument has been modified to image water and oil in reservoir rocks by the construction of a new receiving coil. Both oil and water inside the core produced readily detectable proton NMR signals, while the rock matrix produced no signal. Because of similar T2 NMR relaxation times, the water was doped with a paramagnetic ion, Mn+2, to reduce its T2 relaxation time. This procedure enhanced the separation between the oil and water phases in the resulting images. Sequential measurements, as water imbibed into one end and oil was expelled from the other end of a core plug, produced a series of images which showed the dynamics of the fluids. For water-wet Berea Sandstone a flood front was readily observed, but some of the oil was apparently left behind in small, isolated pockets which were larger than individual pores. After several additional pore volumes of water flowed through the plug the NMR image indicated a homogeneous distribution of oil. The amount of residual oil, as determined from the ratio of NMR intensities, closely approximated the residual oil saturation of fully flooded Berea samples measured by Dean-Stark extraction. A Berea sandstone core treated to make it partially oil-wet, did not show a definitive flood front, but appeared to channel the water around the perimeter of the core plug. The relative ease with which these images were made indicates that NMR imaging can be a useful technique to follow the dynamics of oil and water through a core plug for a variety of production processes.
In-vitro interferometric characterization of dynamic fluid layers on contact lenses
Primeau, Brian C.; Greivenkamp, John E.; Sullivan, John J.
2011-08-01
The anterior refracting surface of the eye when wearing a contact lens is the thin fluid layer that forms on the surface of the contact lens. Under normal conditions, this fluid layer is less than 10 microns thick. The fluid layer thickness and topography change over time and are affected by the material properties of the contact lens, and may affect vision quality and comfort. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The interferometer system has measured the formation and break up of fluid layers. Different fluid and contact lens material combinations have been used, and significant fluid layer properties have been observed in some cases. The interferometer is capable of identifying features in the fluid layer less than a micron in depth with a spatial resolution of about ten microns. An area on the contact lens approximately 6 mm wide can be measured with the system. This paper will discuss the interferometer design and analysis methods used. Measurement results of different material and fluid combinations are presented.
Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.
2015-06-01
In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.
CAB Furnace Atmosphere Visualisation Using Computational Fluid Dynamics
Institute of Scientific and Technical Information of China (English)
P F Stratton; A P Richardson
2004-01-01
In today's automotive industry almost all car and truck radiators, oil coolers and air conditioning heat exchangers are manufactured using Nocolok Controlled Atmosphere Brazing (CAB). One of the most critical elements of the brazing process is the atmosphere used to protect the flux. Oxygen content is the major variable affecting the performance of the nitrogen atmosphere. Furnace design and flow rate are the major factors affecting oxygen content. Optimisation of these atmosphere parameters has a significant impact on operating cost, and on the quality and consistency of the brazed product.Computational fluid dynamics provides a tool to visualise the atmosphere conditions within the furnace and to explore the effects of changing some of the variables. Modelling the atmosphere in a typical CAB furnace has shown the importance of the integrity of the curtains in maintaining the low oxygen levels required for successful Nocolok brazing. For a given set of curtains it has shown that the only effective way of decreasing oxygen levels is to increase atmosphere gas flow.
CAB Furnace Atmosphere Visualisation Using Computational Fluid Dynamics
Institute of Scientific and Technical Information of China (English)
PFStratton; APRichardson
2004-01-01
In today's automotive industry almost all car and truck radiators, oil coolers and air conditioning heat exchangers are manufactured using Nocolok Controlled Atmosphere Brazing (CAB). One of the most critical elements of the brazing process is the atmosphere used to protect the flux. Oxygen content is the major variable affecting the performance of the nitrogen atmosphere. Furnace design and flow rate are the major factors affecting oxygen content. Optimisation of these atmosphere parameters has a significant impact on operating cost, and on the quality and consistency of the brazed product. Computational fluid dynamics provides a tool to visualise the atmosphere conditions within the furnace and to explore the effects of changing some of the variables. Modelling the atmosphere in a typical CAB furnace has shown the importance of the integrity of the curtains in maintaining the low oxygen levels required for successful Nocolok brazing. For a given set of curtains it has shown that the only effective way of decreasing oxygen levels is to increase atmosphere gas flow.
Fluid Dynamics of Competitive Swimming: A Computational Study
Mittal, Rajat; Loebbeck, Alfred; Singh, Hersh; Mark, Russell; Wei, Timothy
2004-11-01
The dolphin kick is an important component in competitive swimming and is used extensively by swimmers immediately following the starting dive as well as after turns. In this stroke, the swimmer swims about three feet under the water surface and the stroke is executed by performing an undulating wave-like motion of the body that is quite similar to the anguilliform propulsion mode in fish. Despite the relatively simple kinematics of this stoke, considerable variability in style and performance is observed even among Olympic level swimmers. Motivated by this, a joint experimental-numerical study has been initiated to examine the fluid-dynamics of this stroke. The current presentation will describe the computational portion of this study. The computations employ a sharp interface immersed boundary method (IBM) which allows us to simulate flows with complex moving boudnaries on stationary Cartesian grids. 3D body scans of male and female Olympic swimmers have been obtained and these are used in conjuction with high speed videos to recreate a realistic dolphin kick for the IBM solver. Preliminary results from these computations will be presented.
Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design
Energy Technology Data Exchange (ETDEWEB)
Beach, R.; Prahl, D.; Lange, R.
2013-12-01
IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.
Numerical simulation of landfill aeration using computational fluid dynamics.
Fytanidis, Dimitrios K; Voudrias, Evangelos A
2014-04-01
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.
Development of new flux splitting schemes. [computational fluid dynamics algorithms
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1992-01-01
Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.
Shape Optimization of Vehicle Radiator Using Computational Fluid Dynamics (cfd)
Maddipatla, Sridhar; Guessous, Laila
2002-11-01
Automotive manufacturers need to improve the efficiency and lifetime of all engine components. In the case of radiators, performance depends significantly on coolant flow homogeneity across the tubes and overall pressure drop between the inlet and outlet. Design improvements are especially needed in tube-flow uniformity to prevent premature fouling and failure of heat exchangers. Rather than relying on ad-hoc geometry changes, the current study combines Computational Fluid Dynamics with shape optimization methods to improve radiator performance. The goal is to develop an automated suite of virtual tools to assist in radiator design. Two objective functions are considered: a flow non-uniformity coefficient,Cf, and the overall pressure drop, dP*. The methodology used to automate the CFD and shape optimization procedures is discussed. In the first phase, single and multi-variable optimization methods, coupled with CFD, are applied to simplified 2-D radiator models to investigate effects of inlet and outlet positions on the above functions. The second phase concentrates on CFD simulations of a simplified 3-D radiator model. The results, which show possible improvements in both pressure and flow uniformity, validate the optimization criteria that were developed, as well as the potential of shape optimization methods with CFD to improve heat exchanger design. * Improving Radiator Design Through Shape Optimization, L. Guessous and S. Maddipatla, Paper # IMECE2002-33888, Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002
Experimental methodology for computational fluid dynamics code validation
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Oberkampf, W.L.
1997-09-01
Validation of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. Typically, CFD code validation is accomplished through comparison of computed results to previously published experimental data that were obtained for some other purpose, unrelated to code validation. As a result, it is a near certainty that not all of the information required by the code, particularly the boundary conditions, will be available. The common approach is therefore unsatisfactory, and a different method is required. This paper describes a methodology developed specifically for experimental validation of CFD codes. The methodology requires teamwork and cooperation between code developers and experimentalists throughout the validation process, and takes advantage of certain synergisms between CFD and experiment. The methodology employs a novel uncertainty analysis technique which helps to define the experimental plan for code validation wind tunnel experiments, and to distinguish between and quantify various types of experimental error. The methodology is demonstrated with an example of surface pressure measurements over a model of varying geometrical complexity in laminar, hypersonic, near perfect gas, 3-dimensional flow.
Model Order Reduction for Fluid Dynamics with Moving Solid Boundary
Gao, Haotian; Wei, Mingjun
2016-11-01
We extended the application of POD-Galerkin projection for model order reduction from usual fixed-domain problems to more general fluid-solid systems when moving boundary/interface is involved. The idea is similar to numerical simulation approaches using embedded forcing terms to represent boundary motion and domain change. However, such a modified approach will not get away with the unsteadiness of boundary terms which appear as time-dependent coefficients in the new Galerkin model. These coefficients need to be pre-computed for prescribed motion, or worse, to be computed at each time step for non-prescribed motion. The extra computational cost gets expensive in some cases and eventually undermines the value of using reduced-order models. One solution is to decompose the moving boundary/domain to orthogonal modes and derive another low-order model with fixed coefficients for boundary motion. Further study shows that the most expensive integrations resulted from the unsteady motion (in both original and domain-decomposition approaches) have almost negligible impact on the overall dynamics. Dropping these expensive terms reduces the computation cost by at least one order while no obvious effect on model accuracy is noticed. Supported by ARL.
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
Computational fluid dynamics for turbomachinery internal air systems.
Chew, John W; Hills, Nicholas J
2007-10-15
Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.
Methodology for computational fluid dynamics code verification/validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Blottner, F.G.; Aeschliman, D.P.
1995-07-01
The issues of verification, calibration, and validation of computational fluid dynamics (CFD) codes has been receiving increasing levels of attention in the research literature and in engineering technology. Both CFD researchers and users of CFD codes are asking more critical and detailed questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from a research tool to the world of impacting engineering hardware and system design. In this environment, the broad issue of code quality assurance becomes paramount. However, the philosophy and methodology of building confidence in CFD code predictions has proven to be more difficult than many expected. A wide variety of physical modeling errors and discretization errors are discussed. Here, discretization errors refer to all errors caused by conversion of the original partial differential equations to algebraic equations, and their solution. Boundary conditions for both the partial differential equations and the discretized equations will be discussed. Contrasts are drawn between the assumptions and actual use of numerical method consistency and stability. Comments are also made concerning the existence and uniqueness of solutions for both the partial differential equations and the discrete equations. Various techniques are suggested for the detection and estimation of errors caused by physical modeling and discretization of the partial differential equations.
Computational fluid dynamics challenges for hybrid air vehicle applications
Carrin, M.; Biava, M.; Steijl, R.; Barakos, G. N.; Stewart, D.
2017-06-01
This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicle£s component is analyzed. It was found that the ¦ns contributed the most to increase the lift and drag.
Introducing Computational Fluid Dynamics Simulation into Olfactory Display
Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi
An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.
The role of computational fluid dynamics (CFD) in hair science.
Spicka, Peter; Grald, Eric
2004-01-01
The use of computational fluid dynamics (CFD) as a virtual prototyping tool is widespread in the consumer packaged goods industry. CFD refers to the calculation on a computer of the velocity, pressure, and temperature and chemical species concentrations within a flowing liquid or gas. Because the performance of manufacturing equipment and product designs can be simulated on the computer, the benefit of using CFD is significant time and cost savings when compared to traditional physical testing methods. CFD has been used to design, scale-up and troubleshoot mixing tanks, spray dryers, heat exchangers and other process equipment. Recently, computer models of the capillary wicking process inside fibrous structures have been added to CFD software. These models have been used to gain a better understanding of the absorbent performance of diapers and feminine protection products. The same models can also be used to represent the movement of shampoo, conditioner, colorants and other products through the hair and scalp. In this paper, we provide an introduction to CFD and show some examples of its application to the manufacture of consumer products. We also provide sonic examples to show the potential of CFD for understanding the performance of products applied to the hair and scalp.
Design of airborne wind turbine and computational fluid dynamics analysis
Anbreen, Faiqa
Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.
Dynamic oxygen-enhanced MRI of cerebrospinal fluid.
Directory of Open Access Journals (Sweden)
Taha M Mehemed
Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.
Cerebrospinal fluid dynamics in Chiari malformation associated with syringomyelia
Institute of Scientific and Technical Information of China (English)
LIU Bin; WANG Zhen-yu; XIE Jing-cheng; HAN Hong-bin; PEI Xin-long
2007-01-01
Background About 50%-70% of patients with Chiari malformation I (CMI) presented with syringomyelia (SM), which is supposed to be related to abnormal cerebrospinal fluid (CSF) flow around the foramen magnum. The aim of this study was to investigate the cerebrospinal fluid dynamics at levels of the aqueduct and upper cervical spine in patients with CMI associated with SM, and to discuss the possible mechanism of formation of SM.Methods From January to April 2004, we examined 10 adult patients with symptomatic CMI associated with SM and 10 healthy volunteers by phase-contrast MRI. CSF flow patterns were evaluated at seven regions of interest (ROI): the aqueduct and ventral and dorsal subarachnoid spaces of the spine at levels of the cerebellar tonsil, C2-3, and C5-6. The CSF flow waveforms were analyzed by measuring CSF circulation time, durations and maximum velocities of cranial- and caudal-directed flows, and the ratio between the two maximum velocities. Data were analyzed by ttest using SPSS 11.5.Results We found no definite communication between the fourth ventricle and syringomyelia by MRI in the 10 patients.In both the groups, we observed cranial-directed flow of CSF in the early cardiac systolic phase, which changed the direction from cranial to caudal from the middle systolic phase to the early diastolic phase, and then turned back in cranial direction in the late diastolic phase. The CSF flow disappeared at the dorsal ROI at the level of C2-3 in 3 patients and 1 volunteer, and at the level of C5-6 in 6 patients and 3 volunteers. The durations of CSF circulation at all the ROIs were significantly shorter in the patients than those in the healthy volunteers (P=0.014 at the midbrain aqueduct, P=0.019 at the inferior margin of the cerebellar tonsil, P=0.014 at the level of C2-3, and P=0.022 at the level of C5-6). No significant difference existed between the two groups in the initial point and duration of the caudal-directed CSF flow during a cardiac cycle at
Applications of laser based measurements to combustion related fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Klingmann, J.
1998-12-01
This thesis is concerned with laser based techniques for the measurement of fluid dynamical properties and their application to combusting flow fields or flow fields related to combustion. As an introduction, the theory of turbulent flow and combustion is shortly presented. An overview of laser based measuring techniques is given. Next, seven papers are included. The main topic of papers 1 and 2 is the measurements of swirling pipe flows with sudden axi-symmetric expansions. These flow fields are related to the flow fields of gas turbine combustors. Measurements and computations using commercial software are compared. Papers 3 and 7 deal with a laser Doppler anemometry based method for the measurement of the turbulent dissipation rate and its application to an axi-symmetric free jet, respectively. The measurements rely on two-point measurements with high spatial resolution. Also three-component one-point measurements are used to obtain the triple velocity correlations. Together these measurements are sufficient to present the energy balance, if pressure effects are neglected. Papers 4, 5 and 6 are concerned with the turbulent flame speed under premixed conditions. Papers 4 and 5 present flame speed measurements from a stationary burner using methane and Danish natural gas. Particle image velocimetry and one- and two-point Laser Doppler anemometry is used to measure flame speed and turbulent quantities, including integral length scales. Paper 7 presents measurements of flame speed and turbulence parameters in a spark ignition engine. Here heat release analyses from pressure measurements are combined with one- and two-point laser Doppler anemometry to analyze influence of turbulence on flame propagation 50 refs, 25 figs
PIV Application to Fluid Dynamics of Bass Reflex Ports
Rossi, Massimiliano; Esposito, Enrico; Tomasini, Enrico Primo
A bass reflex (or vented or ported) loudspeaker system (BRS) is a particular type of loudspeaker enclosure that makes use of the combination of two second-order mechanic/acoustic devices, i.e., the driver and a Helmotz resonator, in order to create a new system with reinforced emission in the low frequency region. The resonator is composed by the box itself in which one or more ports are present with suitable shapes and dimensions. This category of loudspeaker presents several advantages compared to closed-box systems such as higher efficiency and power, smaller dimensions and reduced distortion at lower frequencies. Notwithstanding these advantages, they present some drawbacks like more complexity and unloading of the cone below the tuning frequency. Moreover, at high power levels the airflow in the port(s) may generate unwanted noises due to turbulence as well as distortion and acoustic compression. In this work we will present and compare a series of experiments conducted on two different bass reflex ports designs to assess their performance in terms of flow turbulence and sound-level compression at high input power levels. These issues are quite important in professional sound systems, where increasing power levels and sound clarity require exponentially growing cost and weight. For these reasons it is vital to optimize port design. To the knowledge of the authors there does not exist an accurate, nonintrusive experimental full-field study of air flows emitting from reflex ports in operating conditions. In this work, the experimental fluid dynamic investigation has been conducted by means of PIV and LDA techniques.
Computational fluid dynamics modeling for emergency preparedness and response
Energy Technology Data Exchange (ETDEWEB)
Lee, R.L.; Albritton, J.R.; Ermak, D.L.; Kim, J.
1995-02-01
Computational fluid dynamics (CFD) has (CFD) has played an increasing in the improvement of atmospheric dispersion modeling. This is because many dispersion models are now driven by meteorological fields generated from CFD models or, in numerical weather prediction`s terminology, prognostic models. Whereas most dispersion models typically involve one or a few scalar, uncoupled equations, the prognostic equations are a set of highly-couple equations whose solution requires a significant level of computational power. Recent advances in computer hardware and software have enabled modestly-priced, high performance, workstations to exhibit the equivalent computation power of some mainframes. Thus desktop-class machines that were limited to performing dispersion calculations driven by diagnostic wind fields may now be used to calculate complex flows using prognostic CFD models. The Release and Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory (LLNL) has, for the past several years, taken advantage of the improvements in hardware technology to develop a national emergency response capability based on executing diagnostic models on workstations. Diagnostic models that provide wind fields are, in general, simple to implement, robust and require minimal time for execution. Because these models typically contain little physics beyond mass-conservation, their performance is extremely sensitive to the quantity and quality of input meteorological data and, in spite of their utility, can be applied with confidence to only modestly complex flows. We are now embarking on a development program to incorporate prognostic models to generate, in real-time, the meteorological fields for the dispersion models. In contrast to diagnostic models, prognostic models are physically-based and are capable of incorporating many physical processes to treat highly complex flow scenarios.
Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.
Dawes, W N
2007-10-15
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
Global Dynamics of Shaft Lines Rotating in Surrounding Fluids Application to Thin Fluid Films
Directory of Open Access Journals (Sweden)
David Lornage
2004-01-01
a disc and a thin-walled shaft mounted on a hydrodynamic bearing. The second is intended for studying a more realistic structure composed of a shaft and a wheel coupled with a fluid film between the wheel and a casing. These applications make it possible to identify trends related to fluid effects and couplings between the flexible structural parts.
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
Fluid dynamic constraints on resource acquisition in small pelagic organisms
DEFF Research Database (Denmark)
Kiørboe, Thomas
2016-01-01
by the application of formal fluid physics. Here, I examine resource acquisition mechanisms in small aquatic organisms, ranging from uptake of dissolved molecules to feeding on suspended particulate prey, and examine how organism behaviors and morphologies may be shaped by the often non-intuitive small-scale fluid...
Poster on MPI application in Computational Fluid Dynamics
Argentini, Gianluca
2003-01-01
Poster-presentation of the paper "Message Passing Fluids: molecules as processes in parallel computational fluids" held at "EURO PVMMPI 2003" Congress; the paper is on the proceedings "Recent Advances in Parallel Virtual Machine and Message Passing Interface", 10th European PVM/MPI User's Group Meeting, LNCS 2840, Springer-Verlag, Dongarra-Laforenza-Orlando editors, pp. 550-554.
On Subextensive Corrections to Fluid Dynamics from Gravity
Lópes-Cardoso, G; Grass, V
2010-01-01
We use the fluid-gravity correspondence to compute subextensive corrections, proportional to the shear tensor, to the energy-momentum tensor of fluids on three-spheres. The dual configurations we consider are charged black hole solutions of N = 2 gauged supergravity theories in five dimensions.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;
2015-01-01
force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force...
Analytical, Computational Fluid Dynamics and Flight Dynamics of Coandă MAV
Djojodihardjo, H.; Ahmed, RI
2016-11-01
The paper establishes the basic working relationships among various relevant variables and parameters governing the aerodynamics forces and performance measures of Coandă MAV in hover and translatory motion. With such motivation, capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. To gain better understanding on the principle of Coandă MAV lift generation, a mathematical model for a spherical Coandă MAV is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulation for a Coandă MAV generic model are elaborated using commercial software FLUENT®. In addition, the equation of motion for translatory motion of Coandă MAV is elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.
Relativistic vortex dynamics in axisymmetric stationary perfect fluid configuration
Prasad, G.
2017-06-01
Relativistic formulation of Helmholtz's vorticity transport equation is presented on the basis of Maxwell-like version of Euler's equation of motion. Entangled characteristics associated with vorticity flux conservation in a vortex tube and in a stream tube are displayed on basis of Greenberg's theory of spacelike congruence of vortex lines and 1+1+(2) decomposition of the gradient of fluid's 4-velocity. Vorticity flux surfaces are surfaces of revolution about the rotation axis and are rotating with fluid's angular velocity due to gravitational isorotation in a stationary axisymmetric perfect fluid configuration. Fluid's angular velocity, angular momentum per baryon, injection energy, and invariant rotational potential are constant on such vorticity flux surfaces. Gravitation causes distortion of coaxial cylindrical vorticity flux surfaces in the limit of post-Newtonian approximation. The rotation of the fluid with angular velocity relative to vorticity flux surfaces generates swirl which causes the stretching of material vortex lines being wrapped on vorticity flux surfaces. Fluid helicity which is conserved in the fluid's rest frame does not remain conserved in a locally nonrotating frame because of the existence of swirl. Vortex lines are twist free in the absence of meridional circulations, but the twisting of spacetime due to dragging effect leads to the increase in vorticity flux in a vortex tube.
Flow study in channel with the use computational fluid dynamics (CFD)
Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.
2016-08-01
The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.
Dynamics of Biomembranes: Effect of the Bulk Fluid
Bonito, A.
2011-01-01
We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. © EDP Sciences, 2011.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... is given using an analytically solvable example, showing the explicit form of the force terms and highlighting the significance of the added mass and history term in certain fast switching valve applications. A general approximate model for arbitrary valve geometries is then proposed with offset...
Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines: a Parameter Study
Jarquin Laguna, A.; Diepeveen, N.F.B.
2013-01-01
In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed w
Direct control of the small-scale energy balance in two-dimensional fluid dynamics
Frank, Jason; Leimkuhler, Benedict; Myerscough, Keith W.
2015-01-01
We explore the direct modification of the pseudo-spectral truncation of two-dimensional, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation sta
Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines: a Parameter Study
Jarquin Laguna, A.; Diepeveen, N.F.B.
2013-01-01
In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed w
Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales
Xia, Yidong; Goral, Jan; Huang, Hai; Miskovic, Ilija; Meakin, Paul; Deo, Milind
2017-05-01
A many-body dissipative particle dynamics model, namely, MDPD, is applied for simulation of pore-scale, multi-component, multi-phase fluid flows in fine-grained, nanoporous shales. Since this model is able to simultaneously capture the discrete features of fluid molecules in nanometer size pores and continuum fluid dynamics in larger pores, and is relatively easy to parameterize, it has been recognized as being particularly suitable for simulating complex fluid flow in multi-length-scale nanopore networks of shales. A remarkable feature of this work is the integration of a high-resolution FIB-SEM (focused ion beam scanning electron microscopy) digital imaging technique to the MDPD model for providing 3D voxel data that contain the invaluable geometrical and compositional information of shale samples. This is the first time that FIB-SEM is seamlessly linked to a Lagrangian model like MDPD for fluid flow simulation, which offers a robust approach to bridging gaps between the molecular- and continuum-scales, since the relevant spatial and temporal scales are too big for molecular dynamics, and too small for computational fluid dynamics with known constitutive models. Simulations ranging from a number of benchmark problems to a forced two-fluid flow in a Woodford shale sample are presented. Results indicate that this model can be used to deliver reasonable simulations for multi-component, multi-phase fluid flows in arbitrarily complex pore networks in shales.
Energy Technology Data Exchange (ETDEWEB)
Gorlin, Y.; Dmitriev, A.; Klimov, S. [Russian Ministry of Fuel and Energy (Russian Federation)
1998-08-01
The Russian government instigated an intensive programme of federal shares sales in the coal companies at the end of 1997 with two large and viable companies: Kuzbassrazrezugol and Yuzhny Kuzbass Coal. 11 more joint-stock companies are included in the provisional privatisation schedule but it is unlikely these will be sold before the end of the third quarter of 1998. The article gives a brief description of the companies up for sale with details of shares, coal production employee numbers, coal sales, profit and losses, and state support funds. Despite the grave economic situation in Russia many coal companies have good prospects and are attractive for investors. 1 fig., 1 tab.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be build up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coars...
Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad
2013-01-01
Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...
Riemann solvers and numerical methods for fluid dynamics a practical introduction
Toro, Eleuterio F
2009-01-01
High resolution upwind and centred methods are a mature generation of computational techniques applicable to a range of disciplines, Computational Fluid Dynamics being the most prominent. This book gives a practical presentation of this class of techniques.
Fluid dynamics and noise in bacterial cell—cell and cell—surface scattering
National Research Council Canada - National Science Library
Knut Drescher; Jörn Dunkel; Luis H. Cisneros; Sujoy Ganguly; Raymond E. Goldstein
2011-01-01
.... While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell—cell and cell—surface scattering...
Sega, Marcello; Sbragaglia, Mauro; Kantorovich, Sofia Sergeevna; Ivanov, Alexey Olegovich
2013-01-01
Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phy...
Dynamics of non-minimally coupled perfect fluids
Bettoni, Dario
2015-01-01
We present a general formulation of the theory for a non-minimally coupled perfect fluid in which both conformal and disformal couplings are present. We discuss how such non-minimal coupling is compatible with the assumptions of a perfect fluid and derive both the Einstein and the fluid equations for such model. We found that, while the Euler equation is significantly modified with the introduction of an extra force related to the local gradients of the curvature, the continuity equation is unaltered, thus allowing for the definition of conserved quantities along the fluid flow. As an application to cosmology and astrophysics we compute the effects of the non-minimal coupling on a Friedmann--Lema\\^itre--Robertson--Walker background metric and on the Newtonian limit of our theory.
Body drop into a fluid tank and dynamic loads calculation
Directory of Open Access Journals (Sweden)
Komarov Aleksandr Andreevich
2014-05-01
Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.
Dentinal fluid dynamics in human teeth, in vivo.
Ciucchi, B; Bouillaguet, S; Holz, J; Pashley, D
1995-04-01
Cavities were prepared in human premolars scheduled for extraction for orthodontic reasons. The smear layer was removed from the dentin surface by acid etching, and the cavity was sealed using a hollow chamber. The chamber was filled with sterile saline solution and connected via tubing to a hydraulic circuit featuring an adjustable pressure reservoir and a device that measures fluid movement across dentin. In the absence of any exogenous pressure, all cavities exhibited an outward fluid flow rate of 0.36 microliters min-1 cm-2. As exogenous pressure was applied to the cavity, the outward flow slowed. The exogenous pressure that stopped outward fluid flow was taken to be equal to normal pulpal tissue pressure. The mean value was 14.1 cm H2O in five teeth. This simple method permits measurement of dentinal fluid flux, the hydraulic conductance of dentin, and estimates pulpal tissue pressure.
Computational Fluid Dynamics (CFD) Research Branch Technical Briefs
1993-06-09
models 13 Stability Analysis of a Combined Couette - Poiseuille , Two-Fluid Flow Lt John J. Nelson Interdisciplinary and Applied CFD Section Research...analysis and weakly non- tortion of the mean flow , the rise of the second ,armonic linear analysis for a combined Couette - Poiseuille , two and growth...Stability Analysis of a Combined Couette -Poiseulle, Two-Fluid Flow . . I I Computational Aerodynamic Analysis of a Decoy Configuration ....... 15 Euler
Dynamic changes of phase in a van der Waals fluid
Hagan, R.; Serrin, J.
1984-03-01
This paper gives sufficient conditions to guarantee the existence of a shock layer solution connecting two different equilibrium states in a van der Waals fluid. In particular, the equilibrium states can belong to two different phases of the fluid. The constitutive laws come from a modified Korteweg theory which is compatible with the Clausius Duhem inequality. The Clausius Duhem inequality in turn gives rise to a Liapunov function. The main mathematical tool is the LaSalle invariance principle.
Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors
Del Toro, Adam
2012-01-01
Butterfly valves are commonly used in industrial applications to control the internal flow of both compressible and incompressible fluids. A butterfly valve typically consists of a metal disc formed around a central shaft, which acts as its axis of rotation. As the valve's opening angle is increased from 0 degrees (fully closed) to 90 degrees (fully open), fluid is able to more readily flow past the valve. Characterizing a valve's performance factors, such as pressure drop, hydrodynamic torqu...
Suspended Sediment Transport and Fluid Mud Dynamics in Tidal Estuaries
Becker, Marius
2011-01-01
Cohesive sediments transport has been systematically studied for more than a century from field studies, laboratory experiments, and mathematical models. During the past decades, the accumulation of flocculated cohesive sediments and the formation of weakly consolidated mud deposits, including fluid mud, gained increased attention. Despite extensive research efforts, the governing processes of fluid mud formation are far from being fully understood. The primary objective of this study is to i...
Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET
DEFF Research Database (Denmark)
De Leon, Mony J.; Li, Yi; Okamura, Nobuyuki
2017-01-01
Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribrif......Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing...
THREE DIMENSIONAL MULTIPHASE COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF VENTILATED SUPERCAVITATION
Institute of Scientific and Technical Information of China (English)
YANG Wugang; ZHANG Yuwen; YANG Jie; ZUO Liankai
2008-01-01
For some vehicles travelling through water, it is advantageous to cover the vehicle in a supercavity for the sake of reducing the drag acting on it. The method of artificial ventilation is most effective for generating and dominating the supercavity. This paper focuses on the numerical simulation of flow field around three dimensional body. The method is based on the multiphase computational fluid dynamics (CFD) model combined with the turbulence model and the full cavity model. The flow field of cavity is simulated by solving the compressible Navier-Stokes equations. The fundamental similarity parameters of ventilated supercavitaty flows that include cavitation number, Froude number, ventilation rate and drag coefficient are all investigated numerically in the case of steady flow and gravity field. We discuss the following simulations results in section 3: The variations of the cavitation number and the supercavity's relative diameter with ventilation rate (subtopic 3.1); The drag coefficient versus the cavitation number (subtopic 3.2); Deformation of supercavity axis caused by gravitational effect for three different fixed Froude numbers-2.8, 3.4, 4.2 (subtopic 3.3). In subtopic 3.2, we give the comparison results of the drag reduction ratio among numerical simulation and experiment conducted in hydrodynamic tunnel and towing tank respectively. In subtopic 3.3, we summarize our discussion of gravitational effect on the axis deformation of supercavity as follows: In the case of smaller Froude number, the inclination of the cavity axis increases monotonously with increasing horizontal length, and reaches its maximal value at the end of supercavity; This deformation can be almost completely negligible when the Froude number Fr>7. The comparisons with the experimental data in the hydrodynamic tunnel and the towing tank indicate that the present method is effective for predicting the flows around ventilated supercavity; that the numerical results is in good agreement
Thermodynamics and fluid dynamics of effusive subglacial eruptions
Höskuldsson, A.; Sparks, R. S. J.
We consider the thermodynamic and fluid dynamic processes that occur during subglacial effusive eruptions. Subglacial eruptions typically generate catastrophic floods (jökulhlaups) due to melting of ice by lava and generation of a large water cavity. We consider the heat transfer from basaltic and rhyolitic lava eruptions to the ice for typical ranges of magma discharge and geometry of subglacial lavas in Iceland. Our analysis shows that the heat flux out of cooling lava is large enough to sustain vigorous natural convection in the surrounding meltwater. In subglacial eruptions the temperature difference driving convection is in the range 10-100 °C. Average temperature of the meltwater must exceed 4 °C and is usually substantially greater. We calculate melting rates of the walls of the ice cavity in the range 1-40m/day, indicating that large subglacial lakes can form rapidly as observed in the 1918 eruption of Katla and the 1996 eruption of Gjálp fissure in Vatnajökull. The volume changes associated with subglacial eruptions can cause large pressure changes in the developing ice cavity. These pressure changes can be much larger than those associated with variation of bedrock and glacier surface topography. Previous models of water-cavity stability based on hydrostatic and equilibrium conditions may not be applicable to water cavities produced rapidly in volcanic eruptions. Energy released by cooling of basaltic lava at the temperature of 1200 °C results in a volume deficiency due to volume difference between ice and water, provided that heat exchange efficiency is greater than approximately 80%. A negative pressure change inhibits escape of water, allowing large cavities to build up. Rhyolitic eruptions and basaltic eruptions, with less than approximately 80% heat exchange efficiency, cause positive pressure changes promoting continual escape of meltwater. The pressure changes in the water cavity can cause surface deformation of the ice. Laboratory
Computational fluid dynamics analysis of aerosol deposition in pebble beds
Mkhosi, Margaret Msongi
2007-12-01
The Pebble Bed Modular Reactor is a high temperature gas cooled reactor which uses helium gas as a coolant. The reactor uses spherical graphite pebbles as fuel. The fuel design is inherently resistant to the release of the radioactive material up to high temperatures; therefore, the plant can withstand a broad spectrum of accidents with limited release of radionuclides to the environment. Despite safety features of the concepts, these reactors still contain large inventories of radioactive materials. The transport of most of the radioactive materials in an accident occurs in the form of aerosol particles. In this dissertation, the limits of applicability of existing computational fluid dynamics code FLUENT to the prediction of aerosol transport have been explored. The code was run using the Reynolds Averaged Navier-Stokes turbulence models to determine the effects of different turbulence models on the prediction of aerosol particle deposition. Analyses were performed for up to three unit cells in the orthorhombic configuration. For low flow conditions representing natural circulation driven flow, the laminar flow model was used and the results were compared with existing experimental data for packed beds. The results compares well with experimental data in the low flow regime. For conditions corresponding to normal operating of the reactor, analyses were performed using the standard k-ɛ turbulence model. From the inertial deposition results, a correlation that can be used to estimate the deposition of aerosol particles within pebble beds given inlet flow conditions has been developed. These results were converted into a dimensionless form as a function of a modified Stokes number. Based on results obtained in the laminar regime and for individual pebbles, the correlation developed for the inertial impaction component of deposition is believed to be credible. The form of the correlation developed also allows these results to be applied to pebble beds of different
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of
Directory of Open Access Journals (Sweden)
Karpuhin Aleksandr Anatolyevich
2012-03-01
Full Text Available The author examines the question of concentration-tratnyh indicators of the Russian innovation system, using the index method. Empirical base of research were statistics as a tool used by a package of data analysis of the social sciences SPSS Base. The objects of investigation were the Federal District, as well as major research centers - Moscow and St. Petersburg, as of 2000-2009.
Immersed Particle Dynamics in Fluctuating Fluids with Memory
Hohenegger, Christel; McKinley, Scott
2014-11-01
Multibead passive microrheology characterizes bulk fluid properties of viscoelastic liquids by connecting statistically measurable quantities (e.g. mean-square displacement, auto-correlation to mechanical fluid properties (loss and storage modulus). Understanding how these material properties relate to biological quantities (e.g. exit time, first passage time through a layer) is of crucial importance for many pharmaceutical and industrial applications. To correctly model the correlations due to the fluid's memory, it is necessary to include a thermally fluctuating stress in the Stokes equations (Landau and Lifschitz 1958). We present such a model for an immersed particle passively advected by a fluctuating Maxwellian fluid. We describe the resulting stochastic partial differential equations for the underlying non-Markovian, stationary fluid velocity process and we present a covariance based numerical method for generating particle paths. Finally, we apply standard experimental one and two-point microrheology protocol to recover bulk loss and storage modulus and quantify the resulting errors. Our approach can be applied to a Stokes fluid with memory created by a large suspension of active swimmers or to the diffusion of a particle in a crowded environment.
DEFF Research Database (Denmark)
Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.;
2005-01-01
shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...... been suggested and tested by means of computational fluid dynamics modelling. The most promissing design change have been found and reported....
Macqueron, Corentin
2014-01-01
The traditional sauna is studied from a thermal and fluid dynamics standpoint using the NIST's Fire Dynamics Simulator (FDS) software. Calculations are performed in order to determine temperature and velocity fields, heat flux, soot and steam cloud transport, etc. Results are discussed in order to assess the reliability of this new kind of utilization of the FDS fire safety engineering software.
Dynamics of Shells and Fluid-Loaded Plates.
Wang, Zhang
This thesis is composed of two parts. The first part is concerned with wave propagation on elastic structures in vacuum. An asymptotic approximation is obtained for the dispersion relation of flexural waves propagating in an infinite, flat plate, with material and/or geometric properties periodic in one direction. A matrix approach is proposed to investigate waves in circular cylindrical thin shells joined with circular plates. Both the general propagator matrix and S-matrix formalisms are presented, with emphasis on the latter. The second part is devoted to structures with ambient fluid loading. The Green's function for a fluid-loaded plate under line loading is expressed as a sum of five fluid-loaded plate waves and an acoustic wave with magnitude given by an infinite integral, similar to a branch cut integral. A scattering matrix approach is presented to solve wave propagation problems on fluid-loaded plates with attached ribs. The low frequency asymptotic dispersion relation for a fluid-loaded plate with infinite number of equally spaced identical ribs is derived, from which an equation of motion for the plate is inferred which is valid also at low frequencies.
The fluid dynamics of a downer fluidised bed using a cluster-based approach (CBA
Directory of Open Access Journals (Sweden)
Germán González Silva
2010-05-01
Full Text Available The fluid dynamics of a downer reactor were numerically resolved by adapting a mathematical conservation model. The mathematical model was based on the solid and fluid properties and physical characteristics using a cluster-based approach (CBA. Comparing the numerical results to the experimental data found in the literature indicated that the mathematical model could satisfactorily predict the experimental data. The mathematical simulation determined that there were three fluid dynamic areas in the downer reactor which were characterized by accelerated, slowed-down and fully-developed flow. The fully developed flow area in the downer decreased with increased gas surface speed keeping solid flux constant.
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Energy Technology Data Exchange (ETDEWEB)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
Variational discretizations for the dynamics of fluid-conveying flexible tubes
Gay-Balmaz, François; Putkaradze, Vakhtang
2016-11-01
We derive a variational approach for discretizing fluid-structure interactions, with a particular focus on the dynamics of fluid-conveying elastic tubes. Our method is based on a discretization of the fluid's back-to-labels map and a Lie group discretization of the tube's variables, coupled with an appropriately formulated discrete version of the fluid conservation law. This approach allows the development of geometric numerical schemes for the dynamics of fluid-conveying collapsible tubes, which preserve several intrinsic geometric properties of the continuous system, such as symmetries and symplecticity. In addition, our approach can also be used to derive simplified, but geometrically consistent, low-component models for further analytical and numerical analysis of the system. xml:lang="fr"
Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics
Aurnou, J.
2005-12-01
The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.
Fermionic corrections to fluid dynamics from BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Gentile, L.G.C. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”,Università di Padova, via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,via Marzolo 8, 35131, Padova (Italy); Grassi, P.A. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy); PH-TH Department, CERN,CH-1211 Geneva 23 (Switzerland); Mezzalira, A. [Dipartimento di Fisica Teorica, Università di Torino,via P. Giuria, 1, Torino, 10125 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy)
2015-11-23
We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows
Selvam, A M
2006-01-01
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Primeau, Brian C.; Greivenkamp, John E.
2012-06-01
The anterior refracting surface of the eye when wearing a contact lens is the thin fluid layer that forms on the surface of the contact lens. Under normal conditions, this fluid layer is less than 10 μm thick. The fluid layer thickness and topography change over time and are affected by the material properties of the contact lens and may affect vision quality and comfort. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed by use of a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. Quantitative analysis beyond typical contact angle or visual inspection methods is provided. Different fluid and contact lens material combinations have been evaluated, and variations in fluid layer properties have been observed. This paper discusses the interferometer design and analysis methods used. Example measurement results of different contact lens are presented.
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics
Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD2015)
DEFF Research Database (Denmark)
Bar-Yoseph, P. Z.; Brøns, Morten; Gelfgat, A.
2016-01-01
Hydrodynamic stability is of fundamental importance in fluid dynamics. As a well-established subject of scientific investigation, it continues to attract great interest in the fluid mechanics community. Bifurcations and instabilities are observed in all areas of fundamental and applied fluid...... dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns...... International Symposium on Instability and Bifurcations in Fluid Dynamics (BIFD) held at the ESPCI, Paris, 15–17 July2015. With four invited and nearly 400 contributed talks, the symposium gave an overview of the state of the art of the field including experimental, theoretical, and computational approaches...
Analysis of the fluid-dynamic behavior of fluidized and vibrofluidized bed containing glycerol
Directory of Open Access Journals (Sweden)
R. V. Daleffe
2004-01-01
Full Text Available The fluid-dynamic characteristics of fluidized and vibrofluidized beds of inert particles in liquids are being widely studied by researchers interested in understanding and modeling the paste drying process. In this work characteristic fluid-dynamic curves of pressure drop versus air velocity were obtained for fluidized and vibrofluidized beds with glycerol. Glycerol was used as a standard fluid to simulate a paste in the bed, and "ballotini" glass spheres were used as inert particles. The fluid-dynamic behavior as well as the quality of the fluidization regimes was analyzed through pressure drop versus air velocity curves and visual observation of the flow patterns in the beds. The results indicated that standard deviation curves are a useful tool for gaining an understanding of the fluid-dynamic behavior of a vibrofluidized bed. They allow detection of changes in the fluid-dynamic behavior which were not observed by analyzing only the pressure drop versus air velocity curves. For fluidized beds (G=0.00, it was also observed that analysis of curves of standard deviations of pressure drop may help in the estimation of more accurate values of minimum fluidization velocities.
Molecular group dynamics study on slip flow of thin fluid film based on the Hamaker hypotheses
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The thin fluid film was assumed to consist of a number of spherical fluid molecular groups and the attractive forces of molecular group pairs were calculated by the derived equation according to the three Hamaker homogeneous material hypotheses. Regarding each molecular group as a dynamics individual, the simulation method for the shearing motion of multilayer fluid molecular groups, which was initiated by two moving walls, was proposed based on the Verlet velocity iterative algorithm. The simulations reveal that the velocities of fluid molecular groups change about their respective mean velocities within a narrow range in steady state. It is also found that the velocity slips occur at the wall boundary and in a certain number of fluid film layers close to the wall. Because the dimension of molecular group and the number of group layers are not restricted, the hypothetical thickness of fluid film model can be enlarged from nanometer to micron by using the proposed simulation method.
Computational fluid dynamics analysis of a mixed flow pump impeller
African Journals Online (AJOL)
ATHARVA
results of CFD analysis, the velocity and pressure in the outlet of the impeller is predicted. ... The numerical simulation can provide quite accurate information on the fluid ... of the computational domain the mass flow rate, the turbulence intensity, and a reference pressure are specified. .... Averaged velocity distribution.
Fluid dynamics analysis of a rotating axisymmetric part using FIDAP
Giles, G. E.; Kirkpatrick, J. R.; Wendel, M. W.; Bullock, J. S., IV
1990-03-01
The effect of fluid flow on electrochemical plating on a rotating axisymmetric part was investigated by using a finite element computer code, FIDAP. The results from these investigations compare well with analytical results for laminar flow conditions. The addition of a nonrotating shield was also investigated for laminar flow conditions. An attempt to extend these analyses to turbulent conditions was unsuccessful.
Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization
Gómez-Pérez, C.A.; Espinosa Oviedo, J.J.; Montenegro Ruiz, L.C.; Boxtel, van A.J.B.
2017-01-01
This paper discusses a new tubular PhotoBioReactor (PBR) called twisted tubular PBR. The geometry of a twisted tubular PBR induces swirl mixing to guarantee good exposure of microalgae to Light-Dark (LD) cycles and to the nutrients and dissolved CO 2 . The paper analyses the energy uptake for fluid
Topological Fluid Dynamics For Free and Viscous Surfaces
DEFF Research Database (Denmark)
Balci, Adnan
In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given...
Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation
Dijkstra, H.A.; Wubs, F.W.; et al, [No Value; Thiele, U.
2014-01-01
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical con
Numerical Bifurcation Methods and their Application to Fluid Dynamics : Analysis beyond Simulation
Dijkstra, Henk A.; Wubs, Fred W.; Cliffe, Andrew K.; Doedel, Eusebius; Dragomirescu, Ioana F.; Eckhardt, Bruno; Gelfgat, Alexander Yu.; Hazel, Andrew L.; Lucarini, Valerio; Salinger, Andy G.; Phipps, Erik T.; Sanchez-Umbria, Juan; Schuttelaars, Henk; Tuckerman, Laurette S.; Thiele, Uwe
2014-01-01
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical con
An Eulerian-based Bubble Dynamics Model for Computational Fluid Dynamics
Balu, Asish; Kinzel, Michael
2015-11-01
Cavitation dynamics of nuclei are largely governed by the Rayleigh-Plesset Equation (RPE). This research explores the implementation of a one-way coupling to the solution of the RPE to a computational fluid dynamics (CFD) simulation in an Eulerian-framework. In this work, we used transport equations (i.e., advection) of the bubble radius and bubble growth rate, both of which are governed by advection mechanisms and coupling to the RPE through the CFD pressure field. The method is validated in the context of hypothetical pressure fields by prescribing a temporally varying pressure. Then, it is extended to one-way coupling with cavitation development in three different flow situations: (1) flow over a cylinder, (2) bubble formation during a bottle collapse event, and (3) cavitation in a tip vortex. In the context of these flows, the CFD simulations replicate an equivalent MATLAB-based solution to the RPE, thus validating the model. Additionally, an analytical formulation for appropriate upper and lower bounds for the bubble's physical properties is presented. These boundary values allow the CFD solver to run at larger time steps, therefore increasing the rate of convergence as well as maintaining solution accuracy. The results from this work suggest that Eulerian-based RPE cavitation models are practical and have the potential to simulate large numbers of bubbles that challenge Lagrangian methods.
Fluid Dynamics in Heart Development: Effects of Hematocrit and Trabeculation
Battista, Nicholas A; Liu, Jiandong; Miller, Laura A
2016-01-01
Recent \\emph{in vivo} experiments have illustrated the importance of understanding the hemodynamics of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate interaction between hemodynamic forces, myocardial activity, and morphogen gradients, all of which are coupled to genetic regulatory networks. The underlying hemodynamics at the stage of development in which the trabeculae form is particularly complex, given the balance between inertial and viscous forces. Small perturbations in the geometry, scale, and steadiness of the flow can lead to changes in the overall flow structures and chemical morphogen gradients, including the local direction of flow, the transport of morphogens, and the formation of vortices. The immersed boundary method was used to solve the fluid-structure interaction problem of fluid flow moving through a two chambered heart of a zebrafish (\\emph{Danio rerio}), with a trabeculated ventricle, at $96\\ hpf$ (hours post fertilization). Trabeculae heights and ...
Dynamics of magnetic nano-flake vortices in Newtonian fluids
Bazazzadeh, Nasim; Mohseni, Seyed Majid; Khavasi, Amin; Zibaii, Mohammad Ismail; Movahed, S. M. S.; Jafari, G. R.
2016-12-01
We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy stored in the disks. Our approach can be implemented in many practical applications including biotechnology and multi-functional fluidics.
Agent-Based Chemical Plume Tracing Using Fluid Dynamics
Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William
2004-01-01
This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.
The Stability and Dynamics of Elastic Structures and Fluid Flows.
1985-03-01
Pol- Duffing oscillators . For special values of the detuning parameters the secondary states are periodic. Then periodic multiplication of solutions...incident wave is near a resonant frequency, the target oscillates and its interaction with the surrounding fluid produces peaks in the scattered field...slightly damped, and oscillating outgoing spherical waves that represent the "decayed ringing" of the membrane. Application is given to the baffled circular
Fluid patterns and dynamics induced by vibrations in microgravity conditions
Porter, Jeff; Tinao Perez-Miravete, Ignacio; Laverón-Simavilla, Ana
Understanding the effects of vibrations is extremely important in microgravity environments where residual acceleration, or g-jitter, is easily generated by crew manoeuvring or machinery, and can have a significant impact on material processing systems and on-board experiments. Indeed, vibrations can dramatically affect fluid behaviour whether gravity is present or not, inducing instability in some cases while suppressing it in others. We will describe the results of investigations being conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluids interfaces, most notably with the forcing oriented parallel to the fluid surface. Pattern formation properties will be described in detail, and the importance of symmetry constraints and mean flows will be considered. Current exper-imental results are intriguing and have challenged existing assumptions in the field, particularly with regard to the parametric instability underlying subharmonic cross-waves. They suggest an intimate connection between Faraday waves, which are observed in vertically vibrated systems, and cross-waves, which are found in horizontally forced systems. Concurrent theoretical work, based on the analysis of reduced models, and on numerical simulations, will then be described. Finally, this research will be placed in a microgravity context and used to motivate the defini-tion of a proposed set of experiments on the International Space Station (ISS). The experiments would be in the large-aspect-ratio-limit, requiring relatively high frequency but low amplitude vibrations, where comparatively little microgravity research has been done. The interest of such a microgravity experiment will be discussed, with emphasis on fluid management and the potential of vibrations to act as a kind of artificial gravity by orienting surfaces (or density contours) perpendicular to the axis of vibration.
Dynamics of magnetic nano-flake vortices in Newtonian fluids
Energy Technology Data Exchange (ETDEWEB)
Bazazzadeh, Nasim, E-mail: n.bazazzadeh@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Mohseni, Seyed Majid, E-mail: m-mohseni@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Khavasi, Amin, E-mail: khavasi@sharif.edu [Department of Electrical Engineering, Sharif University of Technology, Tehran 11555-4363 (Iran, Islamic Republic of); Zibaii, Mohammad Ismail, E-mail: mizibaye@gmail.com [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Movahed, S.M.S., E-mail: m_movahed@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Jafari, G.R., E-mail: gjafari@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of)
2016-12-01
We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy stored in the disks. Our approach can be implemented in many practical applications including biotechnology and multi-functional fluidics. - Highlights: • The rotational motion of magnetic-vortex microdiscs in a Newtonian fluid is studied. • Results are compared against experimental ones and excellent agreement is observed. • The uncertainty in the orientation of the microdiscs is analytically derived.
Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara
2016-04-01
Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D
Application of computational fluid dynamics methods to improve thermal hydraulic code analysis
Sentell, Dennis Shannon, Jr.
A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.
Costa, L; Mantha, V R; Silva, A J; Fernandes, R J; Marinho, D A; Vilas-Boas, J P; Machado, L; Rouboa, A
2015-07-16
Computational fluid dynamics (CFD) plays an important role to quantify, understand and "observe" the water movements around the human body and its effects on drag (D). We aimed to investigate the flow effects around the swimmer and to compare the drag and drag coefficient (CD) values obtained from experiments (using cable velocimetry in a swimming pool) with those of CFD simulations for the two ventral gliding positions assumed during the breaststroke underwater cycle (with shoulders flexed and upper limbs extended above the head-GP1; with shoulders in neutral position and upper limbs extended along the trunk-GP2). Six well-trained breaststroke male swimmers (with reasonable homogeneity of body characteristics) participated in the experimental tests; afterwards a 3D swimmer model was created to fit within the limits of the sample body size profile. The standard k-ε turbulent model was used to simulate the fluid flow around the swimmer model. Velocity ranged from 1.30 to 1.70 m/s for GP1 and 1.10 to 1.50 m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and experimental values display opposite tendencies. Results suggest that CFD values obtained by single model approaches should be considered with caution due to small body shape and dimension differences to real swimmers. For better accuracy of CFD studies, realistic individual 3D models of swimmers are required, and specific kinematics respected.
A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments
Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad
2012-01-01
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Gat, Amir; Boyko, Evgeniy; Bercovici, Moran
2016-11-01
We study the fluid-structure interaction dynamics of non-Newtonian flow through a slender linearly elastic cylinder at the creeping flow regime. Specifically, considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a non-homogeneous p-Laplacian equation governing the viscous-elastic dynamics. We obtain exact solutions for the pressure and deformation fields for various initial and boundary conditions, for both shear thinning and shear thickening fluids. In particular, impulse or a step in inlet pressure yield self-similar solutions, which exhibit a compactly supported propagation front solely for shear thinning fluids. Applying asymptotic expansions, we provide approximations for weakly non-Newtonian behavior showing good agreement with the exact solutions sufficiently far from the front.
Shahmohammadi Beni, Mehrdad; Yu, K N
2015-12-14
A promising application of plasma medicine is to treat living cells and tissues with cold plasma. In cold plasmas, the fraction of neutrals dominates, so the carrier gas could be considered the main component. In many realistic situations, the treated cells are covered by a fluid. The present paper developed models to determine the temperature of the fluid at the positions of the treated cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat transfer to examine the injection of the helium carrier gas into water and to investigate both the fluid dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas, and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer computations to determine the temperature at the surface of living cells. Different velocities and plasma temperatures were also investigated using finite element method, and the model was built using the comsol multiphysics software. Using the current model to simulate plasma injection into such systems, the authors were able to investigate the temperature distributions in the domain, as well as the surface and bottom boundary of the medium in which cells were cultured. The temperature variations were computed at small time intervals to analyze the temperature increase in cell targets that could be highly temperature sensisitve. Furthermore, the authors were able to investigate the volume of the plasma plume and its effects on the average temperature of the medium layer/domain. Variables such as temperature and velocity at the cell layer could be computed, and the variations due to different plume sizes could be determined. The current models would be very useful for future design of plasma medicine devices and procedures involving cold plasmas.
Augusto, PED; Cristianini, M
2010-01-01
Food processes must ensure safety and high-quality products for a growing demand consumer creating needs for its better unit operations knowledge. Computational fluid dynamics (CFD) have been widely used to better understand food thermal processes, one of the safest and most frequently used methods for food preservation. Fluid heating in enclosures is a complex phenomenon, which must be better understood. Although the relative convection importance at thermal liquid food process was recently ...
The development of an intelligent interface to a computational fluid dynamics flow-solver code
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
Application of Lie group analysis in geophysical fluid dynamics
Ibragimov, Ranis
2011-01-01
This is the first monograph dealing with the applications of the Lie group analysis to the modeling equations governing internal wave propagation in the deep ocean. A new approach to describe the nonlinear interactions of internal waves in the ocean is presented. While the central idea of the book is to investigate oceanic internal waves through the prism of Lie group analysis, it is also shown for the first time that internal wave beams, representing exact solutions to the equation of motion of stratified fluid, can be found by solving the given model as invariant solutions of nonlinear equat
Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.
Weis, P; Driesner, T; Heinrich, C A
2012-12-21
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems
Institute of Scientific and Technical Information of China (English)
邓军; 方云; 杨立强; 杨军臣; 孙忠实; 王建平; 丁式江; 王庆飞
2001-01-01
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.
Developing a cyber-physical fluid dynamics facility for fluid-structure interaction studies
Mackowski, Andrew W.; Williamson, Charles H. K.
2011-07-01
In fluid-structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a physical system, comprises a fluid and a mechanical actuator, and a cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass-spring-damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow-structure interactions.
Institute of Scientific and Technical Information of China (English)
WANG Yu; HE Pingting; YE Hong; XIN Zhihong
2007-01-01
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.
Dynamic Elasticity of a Magnetic Fluid Column in a Strong Magnetic Field
Polunin, V. M.; Ryapolov, P. A.; Shel'deshova, E. V.; Kuz'ko, A. E.; Aref'ev, I. M.
2017-07-01
The elastomagnetic parameters of a magnetic fluid kept by magnetic levitation in a tube placed horizontally in a strong magnetic field are measured, including the oscillation frequency, the ponderomotive and dynamic elasticity coefficients, the magnetization curve, and the magnetic field strength and its gradient. Results of calculations for the model of ponderomotive elasticity for the examined sample of the magnetic fluid corrected for the resistance of the moving viscous fluid are in good agreement with the experimental magnetization curve. The described method is of interest for a study of magnetophoresis, nanoparticle aggregations, viscosity, and their time dependences in magnetic colloids.
Zang, Thomas A.; Green, Lawrence L.
1999-01-01
A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.
Effect of enclosed fluid on the dynamic response of inflated torus
Srivastava, Ashish; Mishra, B. K.; Jain, S. C.
2008-01-01
Large inflatable structures have been the subject of renewed interest for scientists/engineers in recent years due to their potential space applications such as communication antennas, solar thermal propulsion and space solar power. The major advantages of using inflatable structures in space are their extremely low-weight, on-orbit deployability and inherent low launch volume. An inflated torus is a key component of many inflated space structures such as a thin membrane reflector. In view of their importance, structural static and dynamic behavior of inflated torus need to be investigated. In order to develop a more realistic model, dynamic interaction between the enclosed fluid and the torus has been included in the present work. An appreciable decrease in the modal frequencies is observed when fluid-structure interaction is taken into account. Some additional modes are also obtained. It is concluded that fluid-structure interaction significantly affects the dynamic behavior of inflatable space structures.
Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering
Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108
2011-01-01
Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...
The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center
Griffin, Lisa W.
2012-01-01
The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.
Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade
Directory of Open Access Journals (Sweden)
Osama N. Alshroof
2012-01-01
Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.
Using compressibility factor as a predictor of confined hard-sphere fluid dynamics.
Mittal, Jeetain
2009-10-22
We study the correlations between the diffusivity (or viscosity) and the compressibility factor of bulk hard-sphere fluid as predicted by the ultralocal limit of the barrier hopping theory. Our specific aim is to determine if these correlations observed in the bulk equilibrium hard-sphere fluid can be used to predict the self-diffusivity of fluid confined between a slit-pore or a rectangular channel. In this work, we consider a single-component and a binary mixture of hard spheres. To represent confining walls, we use purely reflecting hard walls and interacting square-well walls. Our results clearly show that the correspondence between the diffusivity and the compressibility factor can be used along with the knowledge of the confined fluid's compressibility factor to predict its diffusivity with quantitative accuracy. Our analysis also suggests that a simple measure, the average fluid density, can be an accurate predictor of confined fluid diffusivity for very tight confinements ( approximately 2-3 particle diameters wide) at low to intermediate density conditions. Together, these results provide further support for the idea that one can use robust connections between thermodynamic and dynamic quantities to predict dynamics of confined fluids from their thermodynamics.
Dissolution Dynamic Nuclear Polarization capability study with fluid path
DEFF Research Database (Denmark)
Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge
2016-01-01
Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...
Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.
2015-12-01
We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.
Fluid epitaxialization effect on velocity dependence of dynamic contact angle in molecular scale.
Ito, Takahiro; Hirata, Yosuke; Kukita, Yutaka
2010-02-07
Molecular dynamics simulations were used to investigate the effect of epitaxial ordering of the fluid molecules on the microscopic dynamic contact angle. The simulations were performed in a Couette-flow-like geometry where two immiscible fluids were confined between two parallel walls moving in opposite directions. The extent of ordering was varied by changing the number density of the wall particles. As the ordering becomes more evident, the change in the dynamic contact angle tends to be more sensitive to the increase in the relative velocity of the contact line to the wall. Stress components around the contact line is evaluated in order to examine the stress balance among the hydrodynamic stresses (viscous stress and pressure), the deviation of Young's stress from the static equilibrium condition, and the fluid-wall shear stress induced by the relative motion between them. It is shown that the magnitude of the shear stress on the fluid-wall surface is the primary contribution to the sensitivity of the dynamic contact angle and that the sensitivity is intensified by the fluid ordering near the wall surface.
International Conference on Numerical Grid Generation in Computational Fluid Dynamics
1989-04-30
Grun Convex Computer Corporation Brunnenstr. 17 701 Piano Road 8049 Bachenhausen Richardson Germany TX 75081 Chunyuan Gu J. E.Holcomb Dept. of Gas...Lab System Dynamics Inc. L-95, PO Box 808 1211 N.W. 10th Avenue Livermore, CA 94550 Gainesville FL 32601 Bernadette Palmero Azine Renzo Universite de
Optics and Fluid Dynamics Department annual progress report for 2003
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter
2004-01-01
, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...
Clarke, Elizabeth C; Fletcher, David F; Stoodley, Marcus A; Bilston, Lynne E
2013-07-26
The pathogenesis of syringomyelia in association with Chiari malformation (CM) is unclear. Studies of patients with CM have shown alterations in the CSF velocity profile and these could contribute to syrinx development or enlargement. Few studies have considered the fluid mechanics of CM patients with and without syringomyelia separately. Three subject-specific CFD models were developed for a normal participant, a CM patient with syringomyelia and a CM patient without syringomyelia. Model geometries, CSF flow rate data and CSF velocity validation data were collected from MRI scans of the 3 subjects. The predicted peak CSF pressure was compared for the 3 models. An extension of the study performed geometry and flow substitution to investigate the relative effects of anatomy and CSF flow profile on resulting spinal CSF pressure. Based on 50 monitoring locations for each of the models, the CM models had significantly higher magnitude (psyringomyelia mechanisms and relative effects of CSF velocity profile and spinal geometry on CSF pressure.
On the coupling of fluid dynamics and electromagnetism at the top of the earth's core
Benton, E. R.
1985-01-01
A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.
On the coupling of fluid dynamics and electromagnetism at the top of the earth's core
Benton, E. R.
1985-01-01
A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.
Computational Fluid Dynamics Modelling and Experimental Study on a Single Silica Gel Type B
Directory of Open Access Journals (Sweden)
John White
2012-01-01
Full Text Available The application of computational fluid dynamics (CFDs in the area of porous media and adsorption cooling system is becoming more practical due to the significant improvement in computer power. The results from previous studies have shown that CFD can be useful tool for predicting the water vapour flow pattern, temperature, heat transfer and flow velocity and adsorption rate. This paper investigates the effect of silica gel granular size on the water adsorption rate using computational fluid dynamics and gravimetric experimental (TGA method.
Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces
Morciano, M.; Fasano, M.; Nold, A.; Braga, C.; Yatsyshin, P.; Sibley, D. N.; Goddard, B. D.; Chiavazzo, E.; Asinari, P.; Kalliadasis, S.
2017-06-01
We investigate the hydrodynamic properties of a Lennard-Jones fluid confined to a nanochannel using molecular dynamics simulations. For channels of different widths and hydrophilic-hydrophobic surface wetting properties, profiles of the fluid density, stress, and viscosity across the channel are obtained and analysed. In particular, we propose a linear relationship between the density and viscosity in confined and strongly inhomogeneous nanofluidic flows. The range of validity of this relationship is explored in the context of coarse grained models such as dynamic density functional-theory.
DEFF Research Database (Denmark)
Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.
2013-01-01
A fast rotating 1500 rpm radial piston digital displacement motor connected to a 350 bar high pressure manifold is simulated by means of transient 3D CFD analysis of a single pressure chamber. The analysis includes dynamic piston and valve movement, influencing the boundaries of the fluid domain....
Rotating magnetic particle microrheometry in biopolymer fluid dynamics: mucus microrheology.
Besseris, George J; Yeates, Donovan B
2007-09-14
The polymer properties of canine mucus were investigated through the method of rotating magnetic particle microrheometry. Mucus is visualized as a physically entangled biopolymer of low polydispersity in a water-based solution. Mucus was modeled according to the constitutive law of a Doi-Edwards fluid. The magnetic-particle equation of rotational motion is analytically solved in the linear viscoelastic limit rendering theoretical flow profiles which are used to fit the experimental trace signals of the particle remanent-magnetic-field decay. The zero-shear-rate viscosity was found to be 18,000 P and the relaxation time at about 42 s. The molecular weight between entanglements for mucins was estimated at 1.7 MDa rendering an estimation of about seven physical cross-links per molecule. Rheological investigations were extended also to diluted and concentrated rations of the normal mucus simulating the conditions found in more physiological extremes.
Progress in Parallel Schur Complement Preconditioning for Computational Fluid Dynamics
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
We consider preconditioning methods for nonself-adjoint advective-diffusive systems based on a non-overlapping Schur complement procedure for arbitrary triangulated domains. The ultimate goal of this research is to develop scalable preconditioning algorithms for fluid flow discretizations on parallel computing architectures. In our implementation of the Schur complement preconditioning technique, the triangulation is first partitioned into a number of subdomains using the METIS multi-level k-way partitioning code. This partitioning induces a natural 2X2 partitioning of the p.d.e. discretization matrix. By considering various inverse approximations of the 2X2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 and the SGI Power Challenge array using MPI message passing protocol. A number of example CFD calculations will be presented to illustrate and assess various Schur complement approximations.
Anisotropic pressure molecular dynamics for atomic fluid systems
Energy Technology Data Exchange (ETDEWEB)
Romero-Bastida, M [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209 (Mexico); Lopez-Rendon, R [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco 186, 09340 Mexico DF (Mexico)
2007-07-20
The MTK equations (Martyna G J, Tobias D J and Klein M L 1994 J. Chem. Phys. 101 4177-89), which simulate the constant-pressure, constant-temperature NPT ensemble, have been modified to simulate an anisotropic pressure along a single coordinate axis, thus rendering the NP{sub zz}T ensemble. The necessary theory of non-Hamiltonian systems is briefly reviewed in order to analytically prove that the proposed equations indeed sample the desired ensemble. A previously derived geometric integrator for the MTK equations is modified to take into account the anisotropic pressure and volume fluctuations. We choose a Lennard-Jones fluid as an illustrative example. The density distribution function, as well as various thermodynamic and interfacial properties of the model system in a liquid-vapour coexistence state, was computed to test the robustness of the proposed equations of motion to simulate the NP{sub zz}T ensemble.
DYNAMIC SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS INVOLVING LARGE-AMPLITUDE SLOSHING
Institute of Scientific and Technical Information of China (English)
Chen Jianping; Zhou Rurong; Wu Wenlong
2004-01-01
An effective computational method is developed for dynamic analysis of fluid-structure interaction problems involving large-amplitude sloshing of the fluid and large-displacement motion of the structure.The structure is modeled as a rigid container supported by a system consisting of springs and dashpots.The motion of the fluid is decomposed into two parts: the large-displacement motion with the container and the large-amplitude sloshing relative to the container.The former is conveniently dealt with by defining a container-fixed noninertial local frame, while the latter is easily handled by adopting an ALE kinematical description.This leads to an easy and accurate treatment of both the fluid-structure interface and the fluid free surface without producing excessive distortion of the computational mesh.The coupling between the fluid and the structure is accomplished through the coupling matrices that can be easily established.Two numerical examples, including a TLD-structure system and a simplified liquid-loaded vehicle system, are presented to demonstrate the effectiveness and reliability of the proposed method.The present work can also be applied to simulate fluid-structure problems incorporating multibody systems and several fluid domains.
Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester.
Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A
2017-05-01
Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 10(4)) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 10(3)) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling.
Analysis of drafting effects in swimming using computational fluid dynamics.
Silva, António José; Rouboa, Abel; Moreira, António; Reis, Victor Machado; Alves, Francisco; Vilas-Boas, João Paulo; Marinho, Daniel Almeida
2008-01-01
The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent(®) and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m) and swimming velocities (1.6-2.0 m.s(-1)). Drag coefficient (Cd) was computed for each one of the distances and velocities. We found that the drag coefficient of the leading swimmer decreased as the flow velocity increased. The relative drag coefficient of the back swimmer was lower (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m). This value increased progressively until the distance between swimmers reached 6.0 m, where the relative drag coefficient of the back swimmer was about 84% of the leading swimmer. The results indicated that the Cd of the back swimmer was equal to that of the leading swimmer at distances ranging from 6.45 to 8. 90 m. We conclude that these distances allow the swimmers to be in the same hydrodynamic conditions during training and competitions. Key pointsThe drag coefficient of the leading swimmer decreased as the flow velocity increased.The relative drag coefficient of the back swimmer was least (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m).The drag coefficient values of both swimmers in drafting were equal to distances ranging between 6.45 m and 8.90 m, considering the different flow velocities.The numerical simulation techniques could be a good approach to enable the analysis of the fluid forces around objects in water, as it happens in swimming.
Pirbodaghi, Tohid; Vigolo, Daniele; Akbari, Samin; deMello, Andrew
2015-05-07
The widespread application of microfluidic devices in the biological and chemical sciences requires the implementation of complex designs and geometries, which in turn leads to atypical fluid dynamic phenomena. Accordingly, a complete understanding of fluid dynamics in such systems is key in the facile engineering of novel and efficient analytical tools. Herein, we present an accurate approach for studying the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy with white light illumination and a standard high-speed camera. Specifically, we combine Ghost Particle Velocimetry and the detection of moving objects in automated video surveillance to track submicron size tracing particles via cross correlation between the speckle patterns of successive images. The efficacy of the presented technique is demonstrated by measuring the flow field over a square pillar (80 μm × 80 μm) in a 200 μm wide microchannel at high volumetric flow rates. Experimental results are in excellent agreement with those obtained via computational fluid dynamics simulations. The method is subsequently used to study the dynamics of droplet generation at a flow focusing microfluidic geometry. A unique feature of the presented technique is the ability to perform velocimetry analysis of high-speed phenomena, which is not possible using micron-resolution particle image velocimetry (μPIV) approaches based on confocal or fluorescence microscopy.
A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling
Directory of Open Access Journals (Sweden)
Honghai Fan
2017-01-01
Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.
Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds
Armas, Jay; Niarchos, Vasilis; Obers, Niels A; Pedersen, Andreas Vigand
2016-01-01
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic $p$-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings...
Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent
2016-04-01
Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.
Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai
2016-12-01
There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts.
How (not to measure Russian regional institutions
Directory of Open Access Journals (Sweden)
Alexey Baranov
2015-06-01
Full Text Available The paper explores various measures of institutional quality in Russian regions, and compares those measures to each other. Such analysis leads to the conclusion that Russian regional institutions are essentially multidimensional, and therefore comparisons of Russian regions in terms of their overall institutional quality could be problematic. New institutional indices are derived from Russian enterprise surveys held under the BEEPS project of the European Bank of Reconstruction and Development. Such indices yield a typology of Russian regions in terms of efficacy of regional administrations’ control over economy and bureaucracy in their regions. Dynamics of regional institutional indices is investigated against the backdrop of Russia-wide institutional trends.JEL classification: D73, D78, H73, H83, O17
Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis
Institute of Scientific and Technical Information of China (English)
XIAO Ruofu; WANG Zhengwei; LUO Yongyao
2008-01-01
Fatigue and cracks have occurred in many large hydraulic turbines after they were put into production.The cracks are thought to be due to dynamic stresses in the runner caused by hydraulic forces.Computational fluid dynamics(CFD)simulations that included the spiral case,stay vane,guide vane,runner vane.and draft tube were run at various operating points to analyze the pressure distribution on the runner surface and the stress characteristics in the runner due to the fluid-structure interactions(FSl).The dynamic stresses in the Francis turbine runner at the most dangerous operating point were then analyzed.The results show that the dynamic stresses caused by the hydraulic forces during off-design operating points are one of the main reasons for the fatigue and cracks in the runner blade.The results can be used to optimize the runner and to analyze other critical components in the hydraulic turbine.
ANALYSIS OF DRAFTING EFFECTS IN SWIMMING USING COMPUTATIONAL FLUID DYNAMICS
Directory of Open Access Journals (Sweden)
António José Silva
2008-03-01
Full Text Available The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent® and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m and swimming velocities (1.6-2.0 m.s-1. Drag coefficient (Cd was computed for each one of the distances and velocities. We found that the drag coefficient of the leading swimmer decreased as the flow velocity increased. The relative drag coefficient of the back swimmer was lower (about 56% of the leading swimmer for the smallest inter-swimmer distance (0.5 m. This value increased progressively until the distance between swimmers reached 6.0 m, where the relative drag coefficient of the back swimmer was about 84% of the leading swimmer. The results indicated that the Cd of the back swimmer was equal to that of the leading swimmer at distances ranging from 6.45 to 8. 90 m. We conclude that these distances allow the swimmers to be in the same hydrodynamic conditions during training and competitions.
E. Graeme Robertson--dynamics in fluid and light.
Kempster, P A; Gerraty, R P; Bower, S P C
2013-02-01
An eponymous lecture at the Australian and New Zealand Association of Neurologists Annual Scientific Meeting commemorates E. Graeme Robertson (1903-75), and some neurologists will know that particular Australian practices in clinical neurology, so far as they exist, have origins in his career. This is a historical article on the literary record of a man who had his own sense of history--an affinity with the past as well as an awareness of future generations of readers. He wrote authoritative texts on pneumoencephalography before new technology made it obsolete, and he produced a series of books on decorative architectural cast iron in Australian cities. A talent for visual interpretation seems to have drawn him to both of these topics; a common theme is contrast between light and dark, which is expatiated in images and in clear, well-written prose in his publications. We review his medical writings, including some largely forgotten principles of cerebrospinal fluid physics that he discovered when researching pneumoencephalography. We also explore his obsession with cast iron--its architectural historical significance, his techniques for photographing it, and some of the ways that it related to his life's work as a clinical neurologist.
Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation
Dijkstra, Henk A.
2014-01-01
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as 'tipping points', is important for understanding the transition mechanisms. We describe the two basic classes of methods of numer...
Computational Fluid Dynamic Model of Steam Ingestion into a Transonic Compressor
2009-06-01
DYNAMIC MODEL OF STEAM INGESTION INTO A TRANSONIC COMPRESSOR by Collin R. Hedges June 2009 Thesis Advisor: Anthony J. Gannon Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Computational Fluid Dynamic Model of Steam Ingestion into a Transonic Compressor 6...flight deck. When ingested into jet engines, this steam may increase the engines’ susceptibility to stall. The serpentine air inlet ducts and single
Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids
Donev, Aleksandar; Alder, Berni J.; Garcia, Alejandro L.
2008-01-01
A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian sys...
Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings
DEFF Research Database (Denmark)
Estupinan, Edgar Alberto; Santos, Ilmar
2009-01-01
The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....
Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion
Ferrua, MJ; Singh, RP
2010-01-01
During gastric digestion, food is disintegrated by a complex interaction of chemical and mechanical effects. Although the mechanisms of chemical digestion are usually characterized by using in vitro analysis, the difficulty in reproducing the stomach geometry and motility has prevented a good understanding of the local fluid dynamics of gastric contents. The goal of this study was to use computational fluid dynamics (CFD) to develop a 3-D model of the shape and motility pattern of the stomach wall during digestion, and use it to characterize the fluid dynamics of gastric contents of different viscosities. A geometrical model of an averaged-sized human stomach was created, and its motility was characterized by a series of antral-contraction waves of up to 80% relative occlusion. The flow field within the model (predicted using the software Fluent™) strongly depended on the viscosity of gastric contents. By increasing the viscosity, the formation of the 2 flow patterns commonly regarded as the main mechanisms driving digestion (i.e., the retropulsive jet-like motion and eddy structures) was significantly diminished, while a significant increase of the pressure field was predicted. These results were in good agreement with experimental data previously reported in the literature, and suggest that, contrary to the traditional idea of a rapid and complete homogenization of the meal, gastric contents associated with high viscous meals are poorly mixed. This study illustrates the capability of CFD to provide a unique insight into the fluid dynamics of the gastric contents, and points out its potential to develop a fundamental understanding and modeling of the mechanisms involved in the digestion process. Practical Application This study illustrates the capability of computational fluid dynamic techniques to provide a unique insight into the dynamics of the gastric contents, pointing out its potential to develop a fundamental understanding and modeling of the human
Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter
Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.
2016-10-01
In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.
Fluid mechanics of dynamic stall. I - Unsteady flow concepts
Ericsson, L. E.; Reding, J. P.
1988-01-01
Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.
Shear-stress-controlled dynamics of nematic complex fluids.
Klapp, Sabine H L; Hess, Siegfried
2010-05-01
Based on a mesoscopic theory we investigate the nonequilibrium dynamics of a sheared nematic liquid, with the control parameter being the shear stress σ xy (rather than the usual shear rate, γ). To this end we supplement the equations of motion for the orientational order parameters by an equation for γ, which then becomes time dependent. Shearing the system from an isotropic state, the stress-controlled flow properties turn out to be essentially identical to those at fixed γ. Pronounced differences occur when the equilibrium state is nematic. Here, shearing at controlled γ yields several nonequilibrium transitions between different dynamic states, including chaotic regimes. The corresponding stress-controlled system has only one transition from a regular periodic into a stationary (shear-aligned) state. The position of this transition in the σ xy-γ plane turns out to be tunable by the delay time entering our control scheme for σ xy. Moreover, a sudden change in the control method can stabilize the chaotic states appearing at fixed γ.
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Armas, Jay; Gath, Jakob; Niarchos, Vasilis; Obers, Niels A.; Pedersen, Andreas Vigand
2016-10-01
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super) gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2016-10-27
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Voulgarakis, Nikolaos K.; Chu, Jhih-Wei
2014-11-01
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings
Sanandres, Luis A.
1991-01-01
A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.
THE DYNAMIC BEHAVIORS OF VISCOELASTIC PIPE CONVEYING FLUID WITH THE KELVIN MODEL
Institute of Scientific and Technical Information of China (English)
Wang Zhongmin; Zhao Fengqun; Feng Zhenyu; Liu Hongzhao
2000-01-01
Based on the differential constitutive relationship of linear viscoelastic material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model ( flutter instability) are calculated with the modified finite difference method in the form of the recurrence for mula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI
DEFF Research Database (Denmark)
Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S
2015-01-01
approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution......BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose...
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
Skiba, Yuri N
2017-01-01
This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
Dynamics and Stability of Pinned-Clamped and Clamped-Pinned Cylindrical Shells Conveying Fluid
Misra, A. K.; Wong, S. S. T.; Païdoussis, M. P.
2001-11-01
The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned-clamped or clamped-pinned boundary conditions, where ``pinned'' is an abbreviation for ``simply supported''. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods - the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped-pinned systems and positive damping of the pinned-clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.
Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography
Zeytounian, Radyadour Kh
2014-01-01
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...
Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.
Marconi, Umberto Marini Bettolo; Melchionna, Simone
2009-07-07
Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.
A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2013-01-01
The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... to be coupled with multibody dynamics models. The focus of the current paper is an approach where the transient pressure field in hydrodynamic lubricated joint clearances are modelled by a set of control volumes and coupled with the fluid power machinery mechanics....... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...
High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.
Ekinci, K L; Yakhot, V; Rajauria, S; Colosqui, C; Karabacak, D M
2010-11-21
A solid body undergoing oscillatory motion in a fluid generates an oscillating flow. Oscillating flows in Newtonian fluids were first treated by G.G. Stokes in 1851. Since then, this problem has attracted much attention, mostly due to its technological significance. Recent advances in micro- and nanotechnology require that this problem be revisited: miniaturized mechanical resonators with linear dimensions in microns and sub-microns-microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), respectively-give rise to oscillating flows when operated in fluids. Yet flow parameters for these devices, such as the characteristic flow time and length scales, may deviate greatly from those in Stokes' solution. As a result, new and interesting physics emerges with important consequences to device applications. In this review, we shall provide an introduction to this area of fluid dynamics, called high-frequency nanofluidics, with emphasis on both theory and experiments.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Floerchinger, Stefan, E-mail: stefan.floerchinger@cern.ch; Wiedemann, Urs Achim, E-mail: urs.wiedemann@cern.ch
2014-01-20
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel–Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan; Wiedemann, Urs Achim
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions
de Waal, Eric E. C.; Rex, Steffen; Kruitwagen, Cas L. J. J.; Kalkman, Cor J.; Buhre, Wolfgang F.
2009-01-01
Objective: Dynamic preload indicators like pulse pressure variation (PPV) and stroke volume variation (SVV) are increasingly being used for optimizing cardiac preload since they have been demonstrated to predict fluid responsiveness in a variety of perioperative settings. However, in open-chest cond
DEFF Research Database (Denmark)
Pedersen, Marie Cecilie; Sørensen, Henrik; Condra, Thomas Joseph
This paper presents an icing model developed using Computational Fluid Dynamics (CFD). One key part part of the model development is the surface boundary displacement due to the accumulated mass of ice. The paper presents the development of a boundary layer displacement method to be included...... in the CFD icing model using ANSYS-FLUENT....
1983-05-01
layer is being irves - tigated in a ser.es of two-dimensional experiments utilizing LDV measurements. The objectives of these experiments are to obtain a...1974, pp. 105-112. 16 8. Mazumder, M. K., Hoyle, B. D., and Kirsch , K. J., "Generation and Fluid Dynamics of Scattering Aerosols in Laser Doppler
Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver
CSIR Research Space (South Africa)
Heyns, Johan A
2013-06-01
Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso...
DEFF Research Database (Denmark)
Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.;
2006-01-01
Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...
Directory of Open Access Journals (Sweden)
Alina Żogała
2014-01-01
Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.
2017-04-03
and Computational Fluid Dynamics Models for Seakeeping Analysis Awardee: University of Hawaii, Honolulu, Hawaii Technical Contact: Kwok Fai...the coast to provide important information for seakeeping analysis . However, such endeavors involve appreciable numerical errors and complex near...nonlinear and dispersive theories, present-day computational models based on Boussinesq-type equations are being applied over vast regions from deep to
77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications
2012-10-23
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is requesting public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications.'' The draft NUREG-2152 report provides best practice guidelines for undertaking simulations used to evaluate the thermal response of dry casks. Dry cask applications include transfer, transport, and......
A meshless front tracking method for the Euler equations of fluid dynamics
Witteveen, J.A.S.
2009-01-01
A second order front tracking method is developed for solving the Euler equations of inviscid fluid dynamics numerically. Front tracking methods are usually limited to first order accuracy, since they are based on a piecewise constant approximation of the solution. Here the second order convergence
An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept
Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.
2007-01-01
An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Spacecraft components may be damaged due to airflow produced by Environmental Control Systems (ECS). There are uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field around a spacecraft from the ECS System. This paper describes an approach to estimate the uncertainty in using CFD to predict the airflow speeds around an encapsulated spacecraft.