WorldWideScience

Sample records for fluid dynamics analysis

  1. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  2. Dynamic analysis of a nuclear reactor with fluid-structure interaction

    International Nuclear Information System (INIS)

    Sigrist, Jean-Francois; Broc, Daniel; Laine, Christian

    2007-01-01

    The present paper is related to the dynamic (shock) analysis of a naval propulsion (on-board) reactor with fluid-structure interaction modelling. In a previous study, low frequency analysis has been performed; the present study deals with high frequency analysis, i.e. taking into account compressibility effects in the fluid medium. Elasto-acoustic coupling effects are studied and described in the industrial case. The coupled problem is formulated using the so-called (u, p, φ) formulation which yields symmetric matrices. A modal analysis is first performed on the fluid problem alone, then for the coupled fluid-structure problem in the following cases: (i) with incompressible fluid; (ii) with compressible fluid at standard pressure and temperature conditions; (iii) with compressible fluid at the operating pressure and temperature conditions. Elasto-coupling effects are then highlighted, in particular through the calculation of an elastic energy ratio. As a general conclusion, compressibility effects are proved significant in the dynamic response of the reactor in the high frequency range

  3. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  4. Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun

    2009-01-01

    In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.

  5. Development of an advanced fluid-dynamic analysis code: α-flow

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1990-01-01

    A Project for development of large scale three-dimensional fluid-dynamic analysis code, α-FLOW, coping with the recent advancement of supercomputers and workstations, has been in progress. This project is called the α-Project, which has been promoted by the Association for Large Scale Fluid Dynamics Analysis Code comprising private companies and research institutions such as universities. The developmental period for the α-FLOW is four years, March 1989 to March 1992. To date, the major portions of basic design and program preparation have been completed and the project is in the stage of testing each module. In this paper, the present status of the α-Project, design policy and outline of α-FLOW are described. (author)

  6. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  7. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    Science.gov (United States)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  8. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  9. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  10. International Conference on Mathematical Fluid Dynamics

    CERN Document Server

    Suzuki, Yukihito

    2016-01-01

    This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

  11. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  12. Dynamic analysis on magnetic fluid interface validated by physical laws

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Yo, E-mail: yomizuta@eng.hokudai.ac.jp

    2017-06-01

    Numerical analyses of magnetic fluid especially for fast phenomena such as the transition among interface profiles require rigorous as well as efficient method under arbitrary interface profiles and applied magnetic field distributions. Preceded by the magnetic analysis for this purpose, the present research has attempted to investigate interface dynamic phenomena. As an example of these phenomena, this paper shows the wavenumber spectrum of the interface profile and the sum of interface stresses changing in time, since the change of the balance among the interface stresses causing the transition can be observed conveniently. As time advances, wavenumber components increase due to the nonlinear interaction of waves. It is further argued that such analyses should be validated by the law of conservation of energy, the relation between the interface energy density and the interface stress, and the magnetic laws. - Highlights: • Numerical analysis for dynamic interface phenomena of magnetic fluid is attempted. • This analysis intends fast processes during transition of interface profile. • Wavenumber spectra of interface elevation and sum of stresses are shown. • Under magnetic field close to transition, components increase drastically in time. • Validation rules by physical laws of energy and magnetic field are shown.

  13. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  14. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  15. Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method

    International Nuclear Information System (INIS)

    Li Baohui; Gao Hangshan; Zhai Hongbo; Liu Yongshou; Yue Zhufeng

    2011-01-01

    Research highlights: → The dynamic stiffness method was proposed to analysis the free vibration of multi-span pipe conveying fluid. → The main advantage of the proposed method is that it can hold a high precision even though the element size is large. → The flowing fluid can weaken the pipe stiffness, when the fluid velocity increases, the natural frequencies of pipe are decreasing. - Abstract: By taking a pipe as Timoshenko beam, in this paper the original 4-equation model of pipe conveying fluid was modified by taking the dynamic effects of fluid into account. The shape function that always used in the finite element method was replaced by the exact wave solution of the modified four equations. And then the dynamic stiffness was deduced for the free vibration of pipe conveying fluid. The proposed method was validated by comparing the results of critical velocity with analytical solution for a simply supported pipe at both ends. In the example, the proposed method was applied to calculate the first three natural frequencies of a three span pipe with twelve meters long in three different cases. The results of natural frequency for the pipe conveying stationary fluid fitted well with that calculated by finite element software Abaqus. It was shown that the dynamic stiffness method can still hold high precision even though the element's size was quite large. And this is the predominant advantage of the proposed method comparing with conventional finite element method.

  16. Analysis of molten salt thermal-hydraulics using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaji, B.; Csom, G.; Aszodi, A.

    2003-01-01

    To give a good solution for the problem of high level radioactive waste partitioning and transmutation is expected to be a pro missing option. Application of this technology also could extend the possibilities of nuclear energy. Large number of liquid-fuelled reactor concepts or accelerator driven subcritical systems was proposed as transmutors. Several of these consider fluoride based molten salts as the liquid fuel and coolant medium. The thermal-hydraulic behaviour of these systems is expected to be fundamentally different than the behaviour of widely used water-cooled reactors with solid fuel. Considering large flow domains three-dimensional thermal-hydraulic analysis is the method seeming to be applicable. Since the fuel is the coolant medium as well, one can expect a strong coupling between neutronics and thermal-hydraulics too. In the present paper the application of Computational Fluid Dynamics for three-dimensional thermal-hydraulics simulations of molten salt reactor concepts is introduced. In our past and recent works several calculations were carried out to investigate the capabilities of Computational Fluid Dynamics through the analysis of different molten salt reactor concepts. Homogenous single region molten salt reactor concept is studied and optimised. Another single region reactor concept is introduced also. This concept has internal heat exchanges in the flow domain and the molten salt is circulated by natural convection. The analysis of the MSRE experiment is also a part of our work since it may form a good background from the validation point of view. In the paper the results of the Computational Fluid Dynamics calculations with these concepts are presented. In the further work our objective is to investigate the thermal-hydraulics of the multi-region molten salt reactor (Authors)

  17. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Paul D. Morris, PhD

    2017-08-01

    Full Text Available Fractional flow reserve (FFR-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel “pseudotransient” analysis protocol for computing virtual fractional flow reserve (vFFR based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33% and more by microvascular physiology (59%. If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  18. Dynamic analysis of an industrial structure with fluid-structure interaction

    International Nuclear Information System (INIS)

    Sigrist, J.F.

    2006-01-01

    The present paper deals with the dynamic analysis of a nuclear reactor subjected to a shock loading with fluid-structure interaction modeling. The general framework of the study is that of linear vibrations, which are investigated for coupled fluid-structure problems. From a methodological point of view, energy deformation and modal mass calculation are exposed for elasto-acoustic systems. From an industrial point of view, the influence of elasto-acoustic coupling effects are highlighted for the studied structure. The dynamic analysis of the coupled system is carried out with various procedures (static, spectral and temporal methods), which are exposed and compared. As a general result, the spectral method is proved to be the most effective for the industrial problem. From the numerical point of view, the discretization procedure is based on a finite element method for the coupled problem, using a displacement and pressure-displacement potential coupled formulation with axi-symmetric representation of the problem unknowns. A finite element code is developed within MATLAB for the specific study, the numerical calculations presented in the paper are used as reference test cases for integration of the (u,p,φ) formulation in the commercial finite element code Ansys. (author)

  19. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

    Science.gov (United States)

    Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto

    2004-10-01

    The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

  20. Classical big-bounce cosmology: dynamical analysis of a homogeneous and irrotational Weyssenhoff fluid

    International Nuclear Information System (INIS)

    Brechet, S D; Hobson, M P; Lasenby, A N

    2008-01-01

    A dynamical analysis of an effective homogeneous and irrotational Weyssenhoff fluid in general relativity is performed using the 1 + 3 covariant approach that enables the dynamics of the fluid to be determined without assuming any particular form for the spacetime metric. The spin contributions to the field equations produce a bounce that averts an initial singularity, provided that the spin density exceeds the rate of shear. At later times, when the spin contribution can be neglected, a Weyssenhoff fluid reduces to a standard cosmological fluid in general relativity. Numerical solutions for the time evolution of the generalized scale factor R(t) in spatially curved models are presented, some of which exhibit eternal oscillatory behaviour without any singularities. In spatially flat models, analytical solutions for particular values of the equation-of-state parameter are derived. Although the scale factor of a Weyssenhoff fluid generically has a positive temporal curvature near a bounce, it requires unreasonable fine tuning of the equation-of-state parameter to produce a sufficiently extended period of inflation to fit the current observational data

  1. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    Science.gov (United States)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  2. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  3. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    Science.gov (United States)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  4. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    International Nuclear Information System (INIS)

    Johnson, Richard W.; Schultz, Richard R.

    2009-01-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U.S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made

  5. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  6. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  7. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  8. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  9. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  10. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  11. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  12. Painleve Analysis and Darboux Transformation for a Variable-Coefficient Boussinesq System in Fluid Dynamics with Symbolic Computation

    International Nuclear Information System (INIS)

    Li Hongzhe; Tian Bo; Li Lili; Zhang Haiqiang

    2010-01-01

    The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen in fluid dynamics, are studied in this paper with symbolic computation. First, the Painleve analysis is used to investigate its integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darboux transformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutions might be of some value in fluid dynamics. (general)

  13. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  14. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  15. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  16. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  17. Dynamic Analysis of A 5-MW Tripod Offshare Wind Turbine by Considering Fluid-Structure Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-wei; LI Xin

    2017-01-01

    Fixed of fshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod of fshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of of fshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of of fshore wind turbines fixed in deep seawater.

  18. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    Science.gov (United States)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  19. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  20. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  1. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    Science.gov (United States)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  2. Dynamics of vortex structures in a stratified rotating fluid

    CERN Document Server

    Sokolovskiy, Mikhail A

    2013-01-01

    This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean.

  3. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  4. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  5. Dynamic analysis of structures with solid-fluid interaction

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.

    1977-01-01

    This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined

  6. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  7. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  8. A Dynamic Behavior of the Nuclear Test Rig with Coolant using the Fluid-Structural interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tae-Ho; Hong, Jintae; Ahn, Sung-Ho; Joung, Chang-Young; Jang, Seo-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeon, Kon-Whi [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the dynamic behavior of the test rig in the coolant flow simulator is evaluated by using the 2-way fluid-structural interaction analysis. The maximum value and location of the deformation and equivalent stress in the test rig is confirmed. The fluid-structural interaction analysis is applied to perform the fluid and structural analysis A fluid-structure interaction analysis is used to simulate the relationship between the deformation and hydraulic pressure. There are two types of fluid-structural interaction analysis. One is a 1-way direction analysis in which the hydraulic pressure is calculated by a CFD and transmitted to the surface of the structure, and a structural analysis is then performed. The other is a 2-way direction analysis that is performed by changing the data between the deformation of the structural and pressure of the coolant water for every time step. The location of the maximum deformation of the test rig is the bottom parts of the test rig. It is expected that the equivalent stress of the test rig is occurred. The maximum equivalent stress in the test rig under the circulation of the coolant is 90.1 MPa. The location of the maximum stress in the test rig is the connect part between the fuel rod and flow divider. A safety factor on the test rig is 3, approximately. The deformation motion of the test rig at the bottom part of the test rig is caused about the fluid-induced vibration. A test on the fluid-induced vibration of the test rig will be performed and compared with results of the analysis in further paper.

  9. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  10. Parallel processing for fluid dynamics applications

    International Nuclear Information System (INIS)

    Johnson, G.M.

    1989-01-01

    The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices

  11. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    Science.gov (United States)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  12. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  13. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  14. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  15. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  16. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2011-07-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  17. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.

    2011-01-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  18. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  19. Dynamics of radiating fluids

    International Nuclear Information System (INIS)

    Mihalas, D.; Weaver, R.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented

  20. Phase space density representations in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1989-01-01

    Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable

  1. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  2. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  3. Colour in visualisation for computational fluid dynamics

    OpenAIRE

    Kinnear, D; Atherton, MA; Collins, MW; Dokhan, J; Karayiannis, TG

    2006-01-01

    Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineers to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to il...

  4. An introduction to Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1999-01-01

    CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....

  5. Activities and interconnections of thermal-fluid dynamics

    International Nuclear Information System (INIS)

    Celata, G.P.

    1999-01-01

    Thermal-fluid dynamics is a field of fundamental interest for a wide spectrum of past and present advanced 'applications': in nature, in the 'machines' of our everyday life and in industry. In particular, in today industry, its knowledge and the developments are of fundamental importance in understanding, modelling and in the advance design of heat and mass transfer process in energy conversion and transformation plants. Various examples of the role of the thermal-fluid dynamics to increase efficiency in energy utilization and in the design and in the development of new components and high performance system are exposed. New thermodynamic models and advanced analysis techniques together with necessary balance between theoretical advances codes for modelling and their experimental specific verifications are throughout discussed and illustrated

  6. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  7. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  8. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  9. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study.

    Science.gov (United States)

    Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2017-08-01

    Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  10. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Vedel Søren

    2009-09-01

    Full Text Available Abstract Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis.

  11. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  12. Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis.

    Science.gov (United States)

    Noh, Yung-Kyun; Hamm, Jihun; Park, Frank Chongwoo; Zhang, Byoung-Tak; Lee, Daniel D

    2018-01-01

    Classical discriminant analysis attempts to discover a low-dimensional subspace where class label information is maximally preserved under projection. Canonical methods for estimating the subspace optimize an information-theoretic criterion that measures the separation between the class-conditional distributions. Unfortunately, direct optimization of the information-theoretic criteria is generally non-convex and intractable in high-dimensional spaces. In this work, we propose a novel, tractable algorithm for discriminant analysis that considers the class-conditional densities as interacting fluids in the high-dimensional embedding space. We use the Bhattacharyya criterion as a potential function that generates forces between the interacting fluids, and derive a computationally tractable method for finding the low-dimensional subspace that optimally constrains the resulting fluid flow. We show that this model properly reduces to the optimal solution for homoscedastic data as well as for heteroscedastic Gaussian distributions with equal means. We also extend this model to discover optimal filters for discriminating Gaussian processes and provide experimental results and comparisons on a number of datasets.

  13. A Study on the Dynamic Analysis of the Nuclear Fuel Test Rig Using 1-Way Fluid-Structure Coupled Analysis

    International Nuclear Information System (INIS)

    Yang, Tae-Ho; Hong, Jin-Tae; Ahn, Sung-Ho; Joung, Chang-Young; Heo, Sung-Ho; Jang, Seo-Yun

    2015-01-01

    1-way fluid-structure coupled analysis is used to estimate the dynamic characteristic of the fuel test rig. the motion at the bottom of the test rig is confirmed. The maximum deformation of the test rig is 0.11 mm. The structural integrity of the test rig is performed by using the comparison with the Von-mises stress of the analysis and yield stress of the material. It is evaluated that the motion at the bottom of the test rig is able to cause other structural problem. Using the 2-way fluid-structural coupled analysis, the structural integrity of the test rig will be performed in further paper. The cooling water with specific flow rate was flowed in the nuclear fuel test rig. The structural integrity of the test rig was affected by the vibration. The fluid-induced vibration test had to be performed to obtain the amplitude of the vibration on the structure. Various test systems was developed. Flow-induced vibration and pressure drop experimental tester was developed in Korea Atomic Energy Research Institute. The vibration test with high fluid flow rate was difficult by the tester. To generate the nuclear fuel test environment, coolant flow simulation system was developed. The scaled nuclear fuel test was able to be performed by the simulation system. The mock-up model of the test rig was used in the simulation system. The mock-up model in the simulation system was manufactured with scaled down full model. In this paper, the fluid induced vibration characteristic of the full model in the nuclear fuel test is studied. The hydraulic pressure on the velocity of the fluid was calculated. The static structure analysis was performed by using the pressure. The structural integrity was assessed using the results of the analysis

  14. Fluid free surface effect on the vibration analysis of cylindrical shells

    International Nuclear Information System (INIS)

    Lakis, A.A.; Brusuc, G.; Toorani, M.

    2007-01-01

    The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)

  15. Computational fluid dynamics in ventilation design

    CERN Document Server

    Allard, Francis; Awbi, Hazim B; Davidson, Lars; Schälin, Alois

    2007-01-01

    CFD-calculations have been rapidly developed to a powerful tool for the analysis of air pollution distribution in various spaces. However, the user of CFD-calculation should be aware of the basic principles of calculations and specifically the boundary conditions. Computational Fluid Dynamics (CFD) – in Ventilation Design models is written by a working group of highly qualified international experts representing research, consulting and design.

  16. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  18. Experimental and theoretical advances in fluid dynamics

    CERN Document Server

    Klapp, Jaime; Fuentes, Oscar Velasco

    2011-01-01

    The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam

  19. Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models

    International Nuclear Information System (INIS)

    Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin

    2014-01-01

    Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation. (paper)

  20. On the characteristics of a numerical fluid dynamics simulator

    International Nuclear Information System (INIS)

    Winkler, K.H.A.; Norman, M.L.; Norton, J.L.

    1986-01-01

    John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics

  1. Symposium on computational fluid dynamics: technology and applications

    International Nuclear Information System (INIS)

    1988-01-01

    A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow

  2. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  3. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  4. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  5. Three-Dimensional Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  6. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  7. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    Science.gov (United States)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  8. Eulerian fluid-structure analysis of BWR

    International Nuclear Information System (INIS)

    McMaster, W.H.

    1979-05-01

    A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments

  9. Computational Fluid Dynamic (CFD) Analysis of a Generic Missile With Grid Fins

    National Research Council Canada - National Science Library

    DeSpirito, James

    2000-01-01

    This report presents the results of a study demonstrating an approach for using viscous computational fluid dynamic simulations to calculate the flow field and aerodynamic coefficients for a missile with grid fin...

  10. Collective dynamics in noble-gas and other very simple classical fluids

    Directory of Open Access Journals (Sweden)

    U.Bafile

    2008-03-01

    Full Text Available Rare gases and their liquids are the simplest systems to study for accurate investigations of the collective dynamics of fluid matter. Much work has been done using different spectroscopic techniques, molecular-dynamics simulations, and theoretical developments, in order to gain insight into the microscopic processes involved, in particular, in the propagation of acoustic excitations in gases and liquids. Here we briefly review the interpretation schemes currently applied to the characterization of such excitations, and recall a few results obtained from the analysis of rare-gas fluids and other very simple systems.

  11. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  12. Numerical simulation of temperature and thermal stress for nuclear piping by using computational fluid dynamics analysis and Green’s function

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)

    2017-05-15

    Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.

  13. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    Science.gov (United States)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  14. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  15. Optics and Fluid Dynamics Department annual progress report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs.

  16. Optics and Fluid Dynamics Department annual progress report for 1995

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs

  17. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  18. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    Science.gov (United States)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  19. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  20. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    Science.gov (United States)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  1. Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gu Jijun; An Chen; Duan Menglan; Levi, Carlos; Su Jian

    2013-01-01

    Highlights: ► Dynamic response of pipe conveying fluid was studied numerically. ► The generalized integral transform technique (GITT) was applied. ► Numerical solutions with automatic global accuracy control were obtained. ► Excellent convergence behavior was shown. ► Modal separation analysis was carried out and the influence of mass ratio was analyzed. - Abstract: Analysis of dynamic response of pipe conveying fluid is an important aspect in nuclear power plant design. In the present paper, dynamic response of a clamped–clamped pipe conveying fluid was solved by the generalized integral transform technique (GITT). The governing partial differential equation was transformed into a set of second-order ordinary differential equations which is then numerically solved by making use of the subroutine DIVPAG from IMSL Library. A thorough convergence analysis was performed to yield sets of reference results of the transverse deflection at different time and spanwise position. We found good agreement between the computed natural frequencies at mode 1–3 and those obtained by previous theoretical study. Besides, modal separation analysis was carried out and the influence of mass ratio on deflection and natural frequencies was qualitatively and quantitatively assessed.

  2. The profile of high school students’ scientific literacy on fluid dynamics

    Science.gov (United States)

    Parno; Yuliati, L.; Munfaridah, N.

    2018-05-01

    This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).

  3. Geophysical fluid dynamics understanding (almost) everything with rotating shallow water models

    CERN Document Server

    Zeitlin, Vladimir

    2018-01-01

    The book explains the key notions and fundamental processes in the dynamics of the fluid envelopes of the Earth (transposable to other planets), and methods of their analysis, from the unifying viewpoint of rotating shallow-water model (RSW). The model, in its one- or two-layer versions, plays a distinguished role in geophysical fluid dynamics, having been used for around a century for conceptual understanding of various phenomena, for elaboration of approaches and methods, to be applied later in more complete models, for development and testing of numerical codes and schemes of data assimilations, and many other purposes. Principles of modelling of large-scale atmospheric and oceanic flows, and corresponding approximations, are explained and it is shown how single- and multi-layer versions of RSW arise from the primitive equations by vertical averaging, and how further time-averaging produces celebrated quasi-geostrophic reductions of the model. Key concepts of geophysical fluid dynamics are exposed and inte...

  4. Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics

    International Nuclear Information System (INIS)

    Bird, R.B.; Armstrong, R.C.; Hassager, O.

    1987-01-01

    This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems

  5. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  6. MINIMUM QUANTITY LUBRICANT FLOW ANALYSIS IN END MILLING PROCESSES: A COMPUTATIONAL FLUID DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    M. S. Najiha

    2012-12-01

    Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.

  7. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  8. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Amirante, R.; Del Vescovo, G.; Lippolis, A.

    2006-01-01

    The aim of the present paper is the evaluation of the driving forces acting on a 4/3 hydraulic open center directional control valve spool by means of a complete numerical analysis. In a previous paper by the same authors, the valve was inserted in a closed hydraulic circuit and was tested with different pump flow rate values to obtain experimental results about the driving forces. The experimental results are used in this paper to evaluate and validate the numerical analysis of the valve. The obtained numerical results show important differences between an open center valve and a closed center one, the latter being extensively analyzed in the literature. The numerical analysis is performed by using the commercial code 'Fluent', and the numerical results show the complete flow field inside the valve. The aim of this analysis is to evaluate the valve fluid dynamic performance, exploiting computational fluid dynamics (CFD) techniques, in order to give the reliable indications needed to define the valve design criteria and avoid expensive experimental tests

  9. Data Point Averaging for Computational Fluid Dynamics Data

    Science.gov (United States)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  10. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  11. Cepstrum analysis and applications to computational fluid dynamic solutions

    Science.gov (United States)

    Meadows, Kristine R.

    1990-04-01

    A novel approach to the problem of spurious reflections introduced by artificial boundary conditions in computational fluid dynamic (CFD) solutions is proposed. Instead of attempting to derive non-reflecting boundary conditions, the approach is to accept the fact that spurious reflections occur, but to remove these reflections with cepstrum analysis, a signal processing technique which has been successfully used to remove echoes from experimental data. First, the theory of the cepstrum method is presented. This includes presentation of two types of cepstra: The Power Cepstrum and the Complex Cepstrum. The definitions of the cepstrum methods are applied theoretically and numerically to the analytical solution of sinusoidal plane wave propagation in a duct. One-D and 3-D time dependent solutions to the Euler equations are computed, and hard-wall conditions are prescribed at the numerical boundaries. The cepstrum method is applied, and the reflections from the boundaries are removed from the solutions. One-D and 3-D solutions are computed with so called nonreflecting boundary conditions, and these solutions are compared to those obtained by prescribing hard wall conditions and processing with the cepstrum.

  12. The use of computers for instruction in fluid dynamics

    Science.gov (United States)

    Watson, Val

    1987-01-01

    Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.

  13. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  14. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  15. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  16. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  17. Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

    Directory of Open Access Journals (Sweden)

    Kupecki Jakub

    2017-03-01

    Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.

  18. Technical Competencies Applied in Experimental Fluid Dynamics

    Science.gov (United States)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  19. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  20. Computational Fluid Dynamics (CFD) Analysis Of Optical Payload For Lasercomm Science (OPALS) sealed enclosure module

    Science.gov (United States)

    Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel

    2012-01-01

    Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.

  1. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  2. Analysis of anisotropic shells containing flowing fluid

    International Nuclear Information System (INIS)

    Lakis, A.A.

    1983-01-01

    A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt

  3. Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm

    2010-01-01

    The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...

  4. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  5. Application of symplectic integrator to numerical fluid analysis

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu

    2000-01-01

    This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)

  6. Ninth Thermal and Fluids Analysis Workshop Proceedings

    Science.gov (United States)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  7. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  8. Vortex dynamics in plasmas and fluids

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.

    1994-01-01

    The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortica...

  9. Technical and functional analysis of Spanish windmills: 3D modeling, computational-fluid-dynamics simulation and finite-element analysis

    International Nuclear Information System (INIS)

    Rojas-Sola, José Ignacio; Bouza-Rodríguez, José Benito; Menéndez-Díaz, Agustín

    2016-01-01

    Highlights: • Technical and functional analysis of the two typologies of windmills in Spain. • Spatial distribution of velocities and pressures by computational-fluid dynamics (CFD). • Finite-element analysis (FEA) of the rotors of these two types of windmills. • Validation of the operative functionality of these windmills. - Abstract: A detailed study has been made of the two typologies of windmills in Spain, specifically the rectangular-bladed type, represented by the windmill ‘Sardinero’, located near the town of Campo de Criptana (Ciudad Real province, Spain) and the type with triangular sails (lateens), represented by the windmill ‘San Francisco’, in the town of Vejer de la Frontera (Cádiz province, Spain). For this, an ad hoc research methodology has been applied on the basis of three aspects: three-dimensional geometric modeling, analysis by computational-fluid dynamics (CFD), and finite-element analysis (FEA). The results found with the CFD technique show the correct functioning of the two windmills in relation to the spatial distribution of the wind velocities and pressures to which each is normally exposed (4–7 m/s in the case of ‘Sardinero’, and 5–11 for ‘San Francisco’), thereby validating the operative functionality of both types. In addition, as a result of the FEA, the spatial distribution of stresses on the rotor has revealed that the greatest concentrations of these occurs in the teeth of the head wheel in ‘Sardinero’, reaching a value of 12 MPa, and at the base of the masts in the case of the ‘San Francisco’, with a value of 24 MPa. Also, this analysis evidences that simple, effective designs to reinforce the masts absorb a great concentration of stresses that would otherwise cause breakage. Furthermore, it was confirmed that the oak wood from which the rotors were made functioned properly, as the windmill never exceeded the maximum admissible working stress, demonstrating the effectiveness of the materials

  10. CFD application to subsonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Anderson, Bernhard H.

    1988-01-01

    The fluid dynamics of curved diffuser duct flows of military aircraft is discussed. Three-dimensional parabolized Navier-Stokes analysis, and experiment techniques are reviewed. Flow measurements and pressure distributions are shown. Velocity vectors, and the effects of vortex generators are considered.

  11. Synovial fluid analysis

    Science.gov (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  12. Analysis of the fluid-structure dynamic interaction of reactor pressure vessel internals during blowdown

    International Nuclear Information System (INIS)

    Schlechtendahl, E.G.; Krieg, R.; Schumann, U.

    1977-01-01

    The loadings on reactor internal structures (in particular the core barrel) induced during a PWR-blowdown must not result in excessive stresses and strains. The deformations are strongly influenced by the coupling of fluid and structure dynamics and it is necessary, therefore, to develop and apply new coupled analysis tools. In this paper a survey is given over work currently in progress in the Nuclear Research Center Karlsruhe and the Los Alamos Scientific Laboratory which aim towards 'best estimate codes'. The new methods will be verified by means of the HDR-blowdown tests and other experiments. The results of several scoping calculations are presented and illustrated by movie films. (orig.) [de

  13. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    Science.gov (United States)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  14. Nonlinear Dynamical Analysis for a Plain Bearing

    Directory of Open Access Journals (Sweden)

    Ali Belhamra

    2014-03-01

    Full Text Available This paper investigates the nonlinear dynamic behavior for a plain classic bearing (fluid bearing lubricated by a non-Newtonian fluid of a turbo machine rotating with high speed; this type of fluid contains additives viscosity (couple-stress fluid film. The solution of the nonlinear dynamic problem of this type of bearing is determined with a spatial discretisation of the modified Reynolds' equation written in dynamic mode by using the optimized short bearing theory and a temporal discretisation for equations of rotor motion by the help of Euler's explicit diagram. This study analyzes the dynamic behavior of a rotor supported by two couple-stress fluid film journal lubricant enhances the dynamic stability of the rotor-bearing system considerably compared to that obtained when using a traditional Newtonian lubricant. The analysis shows that the dynamic behavior of a shaft which turns with high velocities is strongly nonlinear even for poor eccentricities of unbalance; the presence of parameters of couple stress allows strongly attenuating the will synchrony (unbalance and asynchrony (whipping amplitudes of vibrations of the shaft which supports more severe conditions (large unbalances.

  15. Dynamic Behavior Analysis of Non-Contacting Hydrodynamic Finger Seal Based on Fluid-Solid-Interaction Method

    Directory of Open Access Journals (Sweden)

    Su Hua

    2018-01-01

    Full Text Available Finger seal is an advanced compliant seal and can be utilized to separate high (HP and low pressure (LP zones in high speed rotating shaft environment. The work to be presented concerns the dynamic behavior of a repetitive section of a two-layer finger seal with high-and padded low-pressure laminates. The dynamic performance of the finger seal are analyzed by the coupled fluid-solid-interaction (FSI simulations. By using the commercial software ANSYS-CFX, the numerical simulation results of interactions between the gas flow and fingers structural deformation are described when the radial periodic excitation from the shaft applies to the finger seal. And the gas film loading capacity, gas film stiffness and leakage varied with time are put forward in different working conditions. Compared with the dynamic performance analysis results based on equivalent dynamic method, the FSI dynamic analysis shows some different characteristics which are more accordance with actual circumstance. Moreover, it is shown that under low pressure differential and high rotation speed the non-contacting finger seal with advance features both in sealing effectiveness and potential unlimited life span can be obtained by rational structure design. But for the non-contacting finger seal with circumferential convergent pad working in high pressure and low rotating speed conditions, it is difficult to improve the sealing performance by the way of changing the structure parameters of finger seal. It is because the high pressure plays a major role on this sealing situation.

  16. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  17. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment

    Science.gov (United States)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing

    2018-03-01

    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  18. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  19. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    Science.gov (United States)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  20. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  1. The Variety of Fluid Dynamics.

    Science.gov (United States)

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  2. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  3. Challenges in fluid dynamics a new approach

    CERN Document Server

    Zeytounian, R Kh

    2017-01-01

    This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.

  4. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  5. A future for computational fluid dynamics at CERN

    CERN Document Server

    Battistin, M

    2005-01-01

    Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using computers. CFD has been used at CERN since 1993 by the TS-CV group, to solve thermo-fluid related problems, particularly during the development, design and construction phases of the LHC experiments. Computer models based on CFD techniques can be employed to reduce the effort required for prototype testing, saving not only time and money but offering possibilities of additional investigations and design optimisation. The development of a more efficient support team at CERN depends on to two important factors: available computing power and experienced engineers. Available computer power IS the limiting resource of CFD. Only the recent increase of computer power had allowed important high tech and industrial applications. Computer Grid is already now (OpenLab at CERN) and will be more so in the future natural environment for CFD science. At CERN, CFD activities have been developed by...

  6. Using Incremental Dynamic Analysis to Visualize the Effects of Viscous Fluid Dampers on Steel Moment Frame Drift

    OpenAIRE

    Kruep, Stephanie Jean

    2007-01-01

    This thesis presents the details of a study regarding both the use of linear viscous fluid dampers in controlling the interstory drift in steel moment frames, and the use of incremental dynamic analysis as a method of visualizing the behavior of these moment frames when subjected to seismic load effects. Models of three story and nine story steel moment frames were designed to meet typical strength requirements for office buildings in Seattle, Washington. These models were intentionally des...

  7. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Fluid dynamics in porous media with Sailfish

    Science.gov (United States)

    Coelho, Rodrigo C. V.; Neumann, Rodrigo F.

    2016-09-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.

  9. EDITORIAL: Changes to Fluid Dynamics Research in 2009 Changes to Fluid Dynamics Research in 2009

    Science.gov (United States)

    Funakoshi, Mitsuaki

    2009-02-01

    Welcome to the first issue of the modified Fluid Dynamics Research (FDR) journal, which is now being published by IOP Publishing on behalf of the Japan Society of Fluid Mechanics. Since its launch in 1986, FDR has become a well-established international journal that publishes theoretical, numerical and experimental studies contributing to the fundamental understanding and application of fluid phenomena. It has also been an invaluable resource for physicists and researchers in engineering interested in problems relevant to the motion of fluids. From 2009, FDR will be edited by a new international Editorial Board, with the strong intention of establishing the journal further and bringing it to a wider audience. In this new-look FDR, which will be published six times per year, readers will find several special sections containing high quality invited reviews and papers written by leading researchers who have been selected by the international Editorial Board. This is in addition to the regular papers on a variety of topical subjects by active researchers in the field. As before, there are no publication charges for standard articles, and now article numbering has been adopted, enabling accepted papers to be published online more quickly, ahead of print publication. In order to maintain a balanced and up-to-date perspective, we welcome feedback from our readers regarding the content of the journal, as well as suggestions for topics to cover and areas to highlight. Finally, I would like to thank our authors, members of the international Editorial Board, and the staff at IOP Publishing for producing this first issue. We hope you will enjoy reading this renewed and exciting journal for the international fluid dynamics community.

  10. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  11. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)

  12. Computational fluid dynamics analysis of a mixed flow pump impeller

    African Journals Online (AJOL)

    ATHARVA

    International Journal of Engineering, Science and Technology ... From the CFD analysis software and advanced post processing tools the complex flow inside the ... The numerical simulation can provide quite accurate information on the fluid ...

  13. TDHF and fluid dynamics of nuclear collective motions

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)

  14. Effect of hole size on fluid dynamics of a posterior-chamber phakic intraocular lens with a central perforation by using computational fluid dynamics.

    Science.gov (United States)

    Kawamorita, Takushi; Shimizu, Kimiya; Shoji, Nobuyuki

    2016-04-01

    A modified implantable collamer lens (ICL) with a central hole with a diameter of 0.36 mm, referred to as a hole-ICL, was created to improve aqueous humour circulation. The aim of this study is to investigate the ideal hole size in a hole-ICL from the standpoint of the fluid dynamic characteristics of the aqueous humour using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V 12.2 (Mentor Graphics Corp.). In the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with a conventional ICL (Model ICM, Staar Surgical) and a hole-ICL were used. The hole-ICL was -9.0 dioptres (D) and 12.0 mm in length, with an optic zone of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μL/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was calculated, and trajectory analysis was performed. With an increase in the central hole size, the velocity of the aqueous humour increased, with the peak velocity occurring at a diameter of approximately 0.4 mm. Once the diameter had increased above 0.4 mm, the velocity then decreased. The velocity difference between the cases of a central hole size of 0.1 mm and 0.2 mm was significant. The desirable central hole size was 0.2 mm or larger in terms of flow dynamics. The current model, based on a central hole size of 0.36 mm, was close to ideal. The optimisation of the hole size should be performed based on results from a long-term clinical study so as to analyse the incidence rate of secondary cataract and optical performance.

  15. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    International Nuclear Information System (INIS)

    Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs

  16. Optics and Fluid Dynamics Department annual progress report for 1999

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2000-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competences in:optical sensors, optical materials, biooptics...

  17. Fluid dynamics in porous media with Sailfish

    International Nuclear Information System (INIS)

    Coelho, Rodrigo C V; Neumann, Rodrigo F

    2016-01-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples. (paper)

  18. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    Science.gov (United States)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized

  19. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  20. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2010-01-01

    This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

  1. Optics and Fluid Dynamics Department annual progress report for 2003

    OpenAIRE

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter; Petersen, Paul Michael; Skaarup, Bitten

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several ...

  2. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  3. A dynamic neutral fluid model for the PIC scheme

    Science.gov (United States)

    Wu, Alan; Lieberman, Michael; Verboncoeur, John

    2010-11-01

    Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.

  4. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  5. Methods for simulation-based analysis of fluid-structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  6. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  7. Chaotic convective behavior and stability analysis of a fractional viscoelastic fluids model in porous media

    KAUST Repository

    N'Doye, Ibrahima

    2015-05-25

    In this paper, a dynamical fractional viscoelastic fluids convection model in porous media is proposed and its chaotic behavior is studied. A preformed equilibrium points analysis indicates the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate orders of a fractional viscoelastic fluids system, which exhibits chaos, are presented as well.

  8. Nonlinear dynamics of a flexible rotor supported by turbulent journal bearings with couple stress fluid

    International Nuclear Information System (INIS)

    Lo, C.-Y.; Chang-Jian, C.-W.

    2008-01-01

    This study presents a dynamic analysis of a rotor supported by two turbulent flow model journal bearings and lubricated with couple stress fluid under nonlinear suspension. The dynamics of the rotor center and bearing center is studied. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The results show that the values of dimensionless parameters l* strongly influence dynamic motions of bearing and rotor centre. It is found that couple stress fluid improve the stability of the system when l* > 0.4 even if the flow of this system is turbulent. We also demonstrated that the dimensionless rotational speed ratios s and the dimensionless unbalance parameter β are also significant system parameters. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided

  9. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  10. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  11. Frequency response analysis of cylindrical shells conveying fluid using finite element method

    International Nuclear Information System (INIS)

    Seo, Young Soo; Jeong, Weui Bong; Yoo, Wan Suk; Jeong, Ho Kyeong

    2005-01-01

    A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degree-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools

  12. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  13. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    Science.gov (United States)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  14. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  15. Application of Lie group analysis in geophysical fluid dynamics

    CERN Document Server

    Ibragimov, Ranis

    2011-01-01

    This is the first monograph dealing with the applications of the Lie group analysis to the modeling equations governing internal wave propagation in the deep ocean. A new approach to describe the nonlinear interactions of internal waves in the ocean is presented. While the central idea of the book is to investigate oceanic internal waves through the prism of Lie group analysis, it is also shown for the first time that internal wave beams, representing exact solutions to the equation of motion of stratified fluid, can be found by solving the given model as invariant solutions of nonlinear equat

  16. Experimental investigation of unsteady fluid dynamic forces acting on tube array

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi

    1981-01-01

    It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)

  17. Development of the tube bundle structure for fluid-structure interaction analysis model

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong

    2010-02-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  18. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  19. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model in 2D

    NARCIS (Netherlands)

    Reid, D.A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  20. Optics and Fluid Dynamics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2001-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....

  1. The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics

    Science.gov (United States)

    Tree, Mike; Fagan, Kiley; Yoganathan, Ajit

    2014-11-01

    The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.

  2. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  3. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  4. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  5. Optics and Fluid Dynamics Department annual progress report for 2000

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B.

    2001-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)

  6. Optics and Fluid Dynamics Department annual progress report for 2003

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...

  7. Optics and Fluid Dynamics Department annual progress report for 2001

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2002-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM,by Danish research councils and by industry. A summary of the activities in 2001 is presented....

  8. Optics and Fluid Dynamics Department annual progress report for 2002

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2003-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, includingEURATOM, by Danish research councils and by industry. A summary of the activities in 2002...

  9. BMS3 invariant fluid dynamics at null infinity

    Science.gov (United States)

    Penna, Robert F.

    2018-02-01

    We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \

  10. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2016-12-01

    Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  11. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  12. Four-fluid description of turbulent plasma focus dynamics

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1984-06-01

    The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)

  13. Atomic dynamics in fluids studied by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Kajihara, Yukio; Matsuda, Kazuhiro; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q.

    2010-01-01

    Studies on atomic dynamics in supercritical fluids at high temperature and high pressure have remarkably been advanced by using an inelastic x-ray scattering technique that achieved a meV-energy resolution in the middle of 1990's. In this article, we describe a brief review of the theoretical background on liquid dynamics, our own high-temperature high-pressure technique and recent results of atomic dynamics in supercritical fluids. In particular, we report the results of inelastic x-ray scattering measurements for expanding fluid Hg at high temperature and high pressure, which were conduced at BL35XU/SPring-8. We found that in the metal-nonmetal transition in fluid Hg, the excitation energy of the acoustic mode disperses three times faster than the adiabatic sound velocity obtained by ultrasonic measurements. This phenomenon must be crucial to understand how a metallic state is formed during atomic condensation accurately. Finally we put a future development of this field in perspective. (author)

  14. Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics

    International Nuclear Information System (INIS)

    Birchall, Daniel; Zaman, Azfar; Hacker, Jacob; Davies, Gavin; Mendelow, David

    2006-01-01

    Computational fluid dynamics (CFD) provides a means for the quantitative analysis of haemodynamic disturbances in vivo, but most work has used phantoms or idealised geometry. Our purpose was to use CFD to analyse flow in carotid atherosclerosis using patient-specific geometry and flow data. Eight atherosclerotic carotid arteries and one healthy control artery were imaged with magnetic resonance angiography (MRA) and duplex ultrasound, and the data used to construct patient-specific computational models used for CFD and wall shear stress (WSS) analysis. There is a progressive change in three-dimensional (3-D) velocity profile and WSS profile with increasing severity of stenosis, characterised by increasing restriction of areas of low WSS, change in oscillation patterns, and progressive rise in WSS within stenoses and downstream jets. Areas of turbulent, retrograde flow and of low WSS are demonstrated in the lee of the stenoses. This study presents the largest CFD analysis of abnormal haemodynamics at the atheromatous carotid bifurcation using patient-specific data and provides the basis for further investigation of causal links between haemodynamic variables and atherogenesis and formation of unstable plaque. We propose that this provides a means for the prospective assessment of relative stroke risk in patients with carotid atherosclerosis. (orig.)

  15. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    Science.gov (United States)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  16. The analysis of the mathematics concept comprehension of senior high school student on dynamic fluid material

    Science.gov (United States)

    Kristian, P. L. Y.; Cari, C.; Sunarno, W.

    2018-04-01

    This study purposes to describe and analyse the students' concept understanding of dynamic fluid. The subjects of this research are 10 students of senior high school. The data collected finished the essay test that consists of 5 questions have been adapted to the indicators of learning. The data of this research is analysed using descriptive-qualitative approach by referring of the student's argumentations about their answer from the questions that given. The results showed that students still have incorrect understanding the concept of dynamic fluids, especially on the Bernoulli’s principle and its application. Based on the results of this research, the teachers should emphasize the concept understanding of the students therefore the students don not only understand the physics concept in mathematical form.

  17. Optics and Fluid Dynamics Department. Annual progress report for 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2002-03-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)

  18. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 Laser systems and optical materials (2 Optical diagnostics and information processing and (3 Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  19. Optics and Fluid Dynamics Department. Annual progress report for 2003

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2004-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)

  20. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Hanson, S G; Lynov, J P; Petersen, P M; Skaarup, B

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  1. Design of airborne wind turbine and computational fluid dynamics analysis

    Science.gov (United States)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  2. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  3. Computational fluid dynamics application: slosh analysis of a fuel tank model

    International Nuclear Information System (INIS)

    Iu, H.S.; Cleghorn, W.L.; Mills, J.K.

    2004-01-01

    This paper presents the analysis of fluid slosh behaviour inside a fuel tank model. The fuel tank model was a simplified version of a stock fuel tank that has a sloshing noise problem. A commercial CFD software, FLOW-3D, was used to simulate the slosh behaviour. Slosh experiments were performed to verify the computer simulation results. High speed video equipment enhanced with a data acquisition system was used to record the slosh experiments and to obtain the instantaneous sound level of each video frame. Five baffle configurations including the no baffle configuration were considered in the computer simulations and the experiments. The simulation results showed that the best baffle configuration can reduce the mean kinetic energy by 80% from the no baffle configuration in a certain slosh situation. The experimental results showed that 15dB(A) noise reduction can be achieved by the best baffle configuration. The correlation analysis between the mean kinetic energy and the noise level showed that high mean kinetic energy of the fluid does not always correspond to high sloshing noise. High correlation between them only occurs for the slosh situations where the fluid hits the top of the tank and creates noise. (author)

  4. Evaluation of Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian methods for fluid-structure interaction problems in HCDA analysis

    International Nuclear Information System (INIS)

    Chang, Y.W.; Chu, H.Y.; Gvildys, J.; Wang, C.Y.

    1979-01-01

    The analysis of fluid-structure interaction involves the calculation of both fluid transient and structure dynamics. In the structural analysis, Lagrangian meshes have been used exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these three types of meshes. The emphasis is placed on the applicability of the method in analyzing fluid-structure interaction problems in HCDA analysis

  5. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Science.gov (United States)

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  6. Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method

    International Nuclear Information System (INIS)

    Dompierre, F; Sabourin, M

    2010-01-01

    This paper presents the application of the two-way fluid-structure interaction method introduced by ANSYS to calculate the dynamic behaviour of a Francis turbine runner under operating condition. This time-dependant calculation directly takes into account characteristics of the flow and particularly the pressure fluctuations caused by the rotor-stator interaction. This formulation allows the calculation of the damping forces of the whole system implicitly. Thereafter, the calculated dynamic stress can be used for a fatigue analysis. A verification of the mechanical and fluid simulations used as input for the fluid-structure interaction calculation is first performed. Subsequently, a connection of these two independent simulations is made. A validation according to the hydraulic conditions is made with the measurements from the scale model testing. Afterwards, the static displacement of the runner under the hydraulic load is compared with the results of a classical static analysis for verification purposes. Finally, the natural frequencies deduced by the post-processing of the dynamic portion of the runner displacement with respect to time are compared with the natural frequencies obtained from a classical acoustic modal analysis. All comparisons show a good agreement with experimental data or results obtained with conventional methods.

  7. Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, F; Sabourin, M, E-mail: frederick.dompierre@power.alstom.co [Alstom Power Systems, Hydro 1350 chemin Saint-Roch, Sorel-Tracy (Quebec), J3R 5P9 (Canada)

    2010-08-15

    This paper presents the application of the two-way fluid-structure interaction method introduced by ANSYS to calculate the dynamic behaviour of a Francis turbine runner under operating condition. This time-dependant calculation directly takes into account characteristics of the flow and particularly the pressure fluctuations caused by the rotor-stator interaction. This formulation allows the calculation of the damping forces of the whole system implicitly. Thereafter, the calculated dynamic stress can be used for a fatigue analysis. A verification of the mechanical and fluid simulations used as input for the fluid-structure interaction calculation is first performed. Subsequently, a connection of these two independent simulations is made. A validation according to the hydraulic conditions is made with the measurements from the scale model testing. Afterwards, the static displacement of the runner under the hydraulic load is compared with the results of a classical static analysis for verification purposes. Finally, the natural frequencies deduced by the post-processing of the dynamic portion of the runner displacement with respect to time are compared with the natural frequencies obtained from a classical acoustic modal analysis. All comparisons show a good agreement with experimental data or results obtained with conventional methods.

  8. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  9. Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics

    Science.gov (United States)

    Moore, Michael; Covrig, Silviu

    2015-04-01

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  10. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  11. Moving interface problems and applications in fluid dynamics

    CERN Document Server

    Khoo, Boo Cheong; Lin, Ping

    2008-01-01

    This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.

  12. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  13. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; De Henau, V. [GEC Alsthom Electromechanical Inc., Tracy, PQ (Canada); Eremeef, R. [GEC Alsthom Neyrpic, Grenoble (France)

    1995-12-31

    The use of computational fluid flow dynamics (CFD) and the Navier Stokes equations by GEC Alsthom for turbine rehabilitation were discussed. The process of runner rehabilitation was discussed from a fluid flow perspective, which accounts for the spiral case-distributor set and draft tube. The Kootenay turbine rehabilitation was described with regard to it spiral case and stay vane. The numerical analysis used to model upstream components was explained. The influence of draft tube effects was emphasized as an important efficiency factor. The differences between draft tubes at Sir Adam Beck 2 and La Grande 2 were discussed. Computational fluid flow modelling was claimed to have produced global performance enhancements in a reasonably short time, and at a reasonable cost. 6 refs., 6 figs., 4 tabs.

  14. Dynamical analysis for a vector-like dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Landim, Ricardo C.G. [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica-Matematica, Sao Paulo, SP (Brazil)

    2016-09-15

    In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barotropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models. (orig.)

  15. Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system

  16. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  17. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey [Alfred Univ., NY (United States)

    2017-04-05

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  18. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  19. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  20. Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Choi, S.Y.; Kim, S.H.; Shim, J.B.; Paek, S.; Kim, I.T.

    2014-01-01

    A computational electrochemo-fluid dynamics model has been developed to describe the electrowinning behavior in an electrolyte stream through a planar electrode cell system. Electrode reaction of the uranium electrowinning process from a molten-salt electrolyte stream was modeled to illustrate the details of the flow-assisted mass transport of ions to the cathode. This modeling approach makes it possible to represent variations of the convective diffusion limited current density by taking into account the concentration profile at the electrode surface as a function of the flow characteristics and applied current density in a commercially available computational fluid dynamics platform. It was possible to predict the conventional current-voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variables, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic electrolysis cell. (author)

  1. Synovial Fluid Analysis

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... is being tested? Synovial fluid is a thick liquid that acts as a lubricant for the body's ...

  2. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  3. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  4. Static, Dynamic, and Thermal Properties of Compressible Fluid Film Journal Bearings

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Morosi, Stefano; Santos, Ilmar

    2011-01-01

    fluid film journal bearing, in order to identify when this type of analysis should be of concern. Load capacity, stiffness, and damping coefficients are determined by the solution of the standard Reynolds equation coupled to the energy equation. Numerical investigations show how bearing geometry......, and work great efficiency. A great deal of literature has concentrated on the analysis and prediction of the static and dynamic performance of gas bearings, assuming isothermal conditions. The present contribution presents a detailed mathematical modeling for nonisothermal lubrication of a compressible...

  5. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  6. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  7. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  8. Fluid dynamics computer programs for NERVA turbopump

    Science.gov (United States)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  9. A review on rising bubble dynamics in viscosity-stratified fluids

    Indian Academy of Sciences (India)

    Kirti Chandra Sahu

    Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.

  10. Role of passive body dynamics in micro-organism swimming in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2016-11-01

    We investigate the role of passive body dynamics in the kinematics of swimming micro-organisms in complex fluids. Asymptotic analysis and linear theory are used to predict shape changes that result as body elasticity and fluid elasticity are varied. The analysis is compared with a computational model of a finite length swimmer in a Stokes-Oldroyd-B fluid. Simulations and theory agree quantitatively for small amplitude motions with low fluid elasticity (Deborah number). This may not be surprising as the theory is expected hold in these two regimes. What is more remarkable is that the predicted shape changes match the computational shape changes quantitatively for large amplitudes, even for large Deborah numbers. Shape changes only tell part of the story. Swimming speed depends on other effects as well. We see that shape changes can predict swimming speed well when either the amplitude is small (including large Deborah number) or when the Deborah number is small (including large amplitudes). It is only in the large De AND large amplitude regime where the theory breaks down and swimming speed can no longer be inferred from shape changes alone.

  11. Multimedia in physics education: teaching videos about aero and fluid dynamics

    International Nuclear Information System (INIS)

    Wagner, Andreas; Altherr, Stefan; Eckert, Bodo; Jodl, Hans Joerg

    2007-01-01

    In a series of letters, we present teaching videos on topics which are difficult to understand for students, or which are difficult to realize experimentally in school, if at all. These videos can be used for quantitative analysis or visualization of phenomena. Here we present videos on aero and fluid dynamics which deal with the Navier-Stokes equation, the continuity equation and Karman's vortex street. (letters and comments)

  12. Fluid dynamics via examples and solutions

    CERN Document Server

    Nazarenko, Sergey

    2014-01-01

    "This is an excellent book for fluid dynamics students. It gives a good overview of the theory through a large set of worthy example problems. After many classical textbooks on the subject, there is finally one with solved exercises. I fully appreciate the selection of topics."-Professor Miguel Onorato, Physics Department, University of Torino.

  13. Modern Fluid Dynamics Intermediate Theory and Applications

    CERN Document Server

    Kleinstreuer, Clement

    2010-01-01

    Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements

  14. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  15. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  16. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  17. Development of the tube bundle structure for fluid-structure interaction analysis model - Intermediate Report -

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong; Lee, Kang Hee; Lee, Young Ho; Kim, Hyung Kyu

    2009-07-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis have been executed as follows. First of all, divide the fluid and structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  18. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  19. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  20. Fluid dynamics applications of the Illiac IV computer

    Science.gov (United States)

    Maccormack, R. W.; Stevens, K. G., Jr.

    1976-01-01

    The Illiac IV is a parallel-structure computer with computing power an order of magnitude greater than that of conventional computers. It can be used for experimental tasks in fluid dynamics which can be simulated more economically, for simulating flows that cannot be studied by experiment, and for combining computer and experimental simulations. The architecture of Illiac IV is described, and the use of its parallel operation is demonstrated on the example of its solution of the one-dimensional wave equation. For fluid dynamics problems, a special FORTRAN-like vector programming language was devised, called CFD language. Two applications are described in detail: (1) the determination of the flowfield around the space shuttle, and (2) the computation of transonic turbulent separated flow past a thick biconvex airfoil.

  1. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  2. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanic

    NARCIS (Netherlands)

    Blocken, B.J.E.; Gualtieri, C.

    2012-01-01

    Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy

  3. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  4. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  5. Dynamic Analysis procedure for fluid kicks in hydrocarbon wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    A method for analyzing fluid kicks in wells during drilling, in order to assess the risk of a blowout, is presented. An automatic data acquisition and processing system is used to analyze pressure data from transient flow regimes of the drill slurries to determine the nature of the fluid in the borehole (gas, liquid, mixture). The method can be used even if the fluid flowing into the borehole is in an horizontal section of the well.

  6. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, H; Kawano, S [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Okitsu, T [Transplantation Unit, Kyoto University Hospital, Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Matsumoto, S [Baylor Research Institute Islet Cell Laboratory, 1400 Eight Avenue, Fort Worth, TX 76104 (United States); Suzuki, T; Kanno, I; Kotera, H [Department of Microengineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shintaku@me.es.osaka-u.ac.jp

    2008-06-07

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications.

  7. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    International Nuclear Information System (INIS)

    Shintaku, H; Kawano, S; Okitsu, T; Matsumoto, S; Suzuki, T; Kanno, I; Kotera, H

    2008-01-01

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications

  8. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    Science.gov (United States)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  9. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    Science.gov (United States)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  10. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  11. Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA

    Directory of Open Access Journals (Sweden)

    Tian Jiande

    2015-01-01

    Full Text Available A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount.

  12. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people....... The guidebook introduces rules for good quality prediction work, and it is the purpose of the guidebook to improve the technical level of CFD work in ventilation.......This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...... who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD. The guidebook is also written for people working with CFD who have to be more aware of how this numerical method is applied in the area of ventilation...

  13. Dynamic simulation of an electrorheological fluid

    International Nuclear Information System (INIS)

    Bonnecaze, R.T.; Brady, J.F.

    1992-01-01

    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure

  14. Optics and Fluid Dynamics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Juul Rasmussen, J.; Hanson, S.G.

    1991-02-01

    Research in the Optics and Fluid Dynamics Department covers plasma physics, fluid dynamics, optics, and neural networks. Plasma physics is concentrated on basic investigations with relevance to fusion plasmas. Both theoretical and experimental work has been performed. Pellet injection systems have been developed. Within the area of fluid dynamics spectral models for studying the dynamcis of coherent structures have been developed. Optical diagnostic methods based on quasi-elastic light scattering have been developed. Beam propagation in random and nonlinear media has been investigated. Spatial and temporal processing schemes, especially for pattern recognition, have been investigated. (author)

  15. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process.

    Science.gov (United States)

    Guo, Ce; Zhu, Xijing

    2018-03-01

    The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in

  16. Nonlinear dynamic behavior of an assembly of tubes under transverse fluid flow

    International Nuclear Information System (INIS)

    Beaufils, B.; Axisa, F.; Antunes, J.

    1989-01-01

    The mechanical vibrations induced by a transverse fluid flow passing through an assembly of cylindrical tubes is investigated. Studies on the numerical modeling of such phenomena are presented. The purpose of the work is to allow the evaluation of the risks induced by the vibrations in industrial heat exchangers. The methods for the analysis of nonlinear problems and numerical calculations of the nonlinear dynamic behavior are performed [fr

  17. Development of a method for analysis for wind turbines horizontal shaft by a method of fluid dynamics computational (CFD)

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In this paper we describe different approaches to solving problems computational fluid dynamics using the finite element method, there is a perspective what are the different problems that must be addressed when choose a path to develop a code that solves the problems of boundary layer and turbulence to simulate the transport equipment and fluid handling. In principle, the turbulent flow is governed by the equations of dynamics fluids. The nonlinearity of the Navier-Stokes equations, make the solution analytical is only possible in a few very specific cases and for senior Reynolds numbers the flow equations become a more complex, for it is necessary to use certain models dependent on some settings, usually obtained experimentally. Existing in the powerful techniques present numerical resolution of these equations such as the direct numerical simulation (DNS) and large eddy simulation or vertices (RES), discussed for use in solving problems flow machines. (author)

  18. Vortex dynamics in the two-fluid model

    International Nuclear Information System (INIS)

    Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.

    2001-01-01

    We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large

  19. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  20. Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Tullio Tucciarelli

    2013-04-01

    Full Text Available In hydropower, the exploitation of small power sources requires the use of small turbines that combine efficiency and economy. Banki-Michell turbines represent a possible choice for their simplicity and for their good efficiency under variable load conditions. Several experimental and numerical tests have already been designed for examining the best geometry and optimal design of cross-flow type machines, but a theoretical framework for a sequential design of the turbine parameters, taking full advantage of recently expanded computational capabilities, is still missing. To this aim, after a review of the available criteria for Banki-Michell parameter design, a novel two-step procedure is described. In the first step, the initial and final blade angles, the outer impeller diameter and the shape of the nozzle are selected using a simple hydrodynamic analysis, based on a very strong simplification of reality. In the second step, the inner diameter, as well as the number of blades and their shape, are selected by testing single options using computational fluid dynamics (CFD simulations, starting from the suggested literature values. Good efficiency is attained not only for the design discharge, but also for a large range of variability around the design value.

  1. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  2. Computational methods for fluid dynamics

    CERN Document Server

    Ferziger, Joel H

    2002-01-01

    In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

  3. Computational fluid dynamics principles and applications

    CERN Document Server

    Blazek, J

    2005-01-01

    Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies. The accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) as well as of grid generators. Provided are also tools for Von Neumann stability analysis of 1-D model equations. Finally, the companion website includes the source code of a dedicated visualisation so...

  4. International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics

    CERN Document Server

    Partridge, P; Boundary Elements in Fluid Dynamics

    1992-01-01

    This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac­ curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi­ neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...

  5. Thermo- and fluid-dynamic studies on fuel rod and absorber bundles

    International Nuclear Information System (INIS)

    Hoffmann, H.; Moeller, R.; Tschoeke, H.; Trippe, G.; Weinberg, D.

    1978-01-01

    The operating safety of a nuclear reactor requires a more reliable strength analysis of the core elements subject to high stresses (fuel, breeding and absorber elements). This is among other things in a decisive way dependent on: - the maximum operating temperatures of the core element components, - the temperature gradients, - the rate of temperature variations. The calculation of these quantities as good as possible is the subject of the thermodynamic and fluid dynamic design of core elements and core. (orig.) [de

  6. Domain decomposition methods for fluid dynamics

    International Nuclear Information System (INIS)

    Clerc, S.

    1995-01-01

    A domain decomposition method for steady-state, subsonic fluid dynamics calculations, is proposed. The method is derived from the Schwarz alternating method used for elliptic problems, extended to non-linear hyperbolic problems. Particular emphasis is given on the treatment of boundary conditions. Numerical results are shown for a realistic three-dimensional two-phase flow problem with the FLICA-4 code for PWR cores. (from author). 4 figs., 8 refs

  7. Optics and fluid dynamics department annual progress report for 1992

    International Nuclear Information System (INIS)

    Lading, L.; Lynov, J.P.; Skaarup, B.

    1993-01-01

    Research in the Optics and FLuid Dynamics Department is performed within two sections. The Optics Section has activities within (a) optical materials, (b) quasielastic light scattering and diagnostics in solids, fluids and plasmas, and (c) optical and electronic information processing. The Continuum Physics Section performs (a) studies of nonlinear dynamical processes in continuum systems, (b) investigations of other problems in fusion plasma physics, and (c) develops pellet injectors for fusion experiments. Most of these activities are done in connection with the Euratom Association. A summary of activities in 1992 is presented. (au) (25 ills., 36 refs.)

  8. Study on dynamic behavior analysis of towed line array sensor

    Directory of Open Access Journals (Sweden)

    Hyun Kyoung Shin

    2012-03-01

    Full Text Available A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

  9. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  10. Heat and fluid dynamic in the primary circuit of a research reactor

    International Nuclear Information System (INIS)

    Gebrin, A.N.

    1986-01-01

    Aiming at the analysis of some thermohydraulic transients that may affect the safety of a reactor core, a FORTRAN program was developed which evaluates the heat and fluid dynamics in the primary circuit of a research reactor. The selection of the pump, the determination of the length and diameter of the pipes, as well as the appropriate arrangement of the pipes and heat exchanger, are determined from the stationary regime. (Author) [pt

  11. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs

  12. STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs

    International Nuclear Information System (INIS)

    Poggi, L.A.; Malizia, A.; Ciparisse, J.F.; Gelfusa, M.; Papa, C. Del; Giovannangeli, I.; Gaudio, P.; Tieri, F.; Murari, A.

    2016-01-01

    Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the 'STARDUST' facility, i.e. 'STARDUST-Upgrade'. STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.

  13. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  14. Fluid dynamics simulation of aqueous humour in a posterior-chamber phakic intraocular lens with a central perforation.

    Science.gov (United States)

    Kawamorita, Takushi; Uozato, Hiroshi; Shimizu, Kimiya

    2012-06-01

    A modified implantable collamer lens (ICL) with a central hole (diameter, 0.36 mm), a "Hole-ICL", was created to improve aqueous humour circulation. The aim of this study was to investigate the fluid dynamic characteristics of aqueous humour in a Hole-ICL using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V5 (Mentor Graphics Corp.). For the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with conventional ICL (Model ICM, STAAR SURGICAL) and a Hole-ICL were used. Both ICLs were -9.0 diopters (D) and 12.0 mm in length, with an optic of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μl/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was also calculated, and trajectory analysis was performed. The flow velocity 0.25 mm in front of the centre of the crystalline lens was 1.52 × 10(-1) mm/sec for the Hole-ICL and 1.21 × 10(-5) mm/sec for the conventional ICL. Outward flow from the hole in the Hole-ICL was confirmed by trajectory analysis. These results suggest that Hole-ICLs improve the circulation of aqueous humour to the anterior surface of the crystalline lens.

  15. SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells

    Science.gov (United States)

    Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.

    2013-05-01

    This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.

  16. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Self-study manual for introduction to computational fluid dynamics

    OpenAIRE

    Nabatov, Andrey

    2017-01-01

    Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and Computational Physics that plays a decent role in modern Mechanical Engineering Design process due to such advantages as relatively low cost of simulation comparing with conduction of real experiment, an opportunity to easily correct the design of a prototype prior to manufacturing of the final product and a wide range of application: mixing, acoustics, cooling and aerodynamics. This makes CFD particularly and Computation...

  18. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  19. Coupling of electromagnetics and structural/fluid dynamics - application to the dual coolant blanket subjected to plasma disruptions

    International Nuclear Information System (INIS)

    Jordan, T.

    1996-01-01

    Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasma disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets' poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs

  20. A parametric study of a solar calcinator using computational fluid dynamics

    International Nuclear Information System (INIS)

    Fidaros, D.K.; Baxevanou, C.A.; Vlachos, N.S.

    2007-01-01

    In this work a horizontal rotating solar calcinator is studied numerically using computational fluid dynamics. The specific solar reactor is a 10 kW model designed and used for efficiency studies. The numerical model is based on the solution of the Navier-Stokes equations for the gas flow, and on Lagrangean dynamics for the discrete particles. All necessary mathematical models were developed and incorporated into a computational fluid dynamics model with the influence of turbulence simulated by a two-equation (RNG k-ε) model. The efficiency of the reactor was calculated for different thermal inputs, feed rates, rotational speeds and particle diameters. The numerically computed degrees of calcination compared well with equivalent experimental results

  1. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  2. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    Science.gov (United States)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  3. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  4. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  5. Viscosity of magnetic fluids must be modified in calculations of dynamic susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.ru

    2017-06-01

    The frequency dependences of dynamic susceptibility were measured for a series of magnetic fluid samples with the same dispersed composition at different temperatures. Coincidence of normalized dynamic susceptibility curves plotted for different concentrations was obtained only after introducing correction for the value of dynamic viscosity of the magnetic fluid. The value of the correction coefficient doesn’t depend on temperature and is the universal function of the hydrodynamic concentration of particles. - Highlights: • Dynamic susceptibility was measured at different temperatures and concentrations. • Coincidence of curves requires a correction of value of viscosity in calculations. • This correction is function of the hydrodynamic concentration of particles. • With this function the rotation of particles are described correctly.

  6. The coupling of fluids, dynamics, and controls on advanced architecture computers

    Science.gov (United States)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  7. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    International Nuclear Information System (INIS)

    Schamel, Hans

    2004-01-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum--as seen in laboratory experiments--is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one

  8. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    Science.gov (United States)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D

  9. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  10. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    Science.gov (United States)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  11. On Computational Fluid Dynamics Tools in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther

    engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...

  12. Improving students’ conceptions on fluid dynamics through peer teaching model with PDEODE (PTM-PDEODE)

    Science.gov (United States)

    Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.

    2018-05-01

    This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.

  13. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  14. Dynamics of a confined dusty fluid in a sheared ion flow

    Energy Technology Data Exchange (ETDEWEB)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-07-15

    Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

  15. Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses

    International Nuclear Information System (INIS)

    Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin

    2007-01-01

    In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity

  16. A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines

    Science.gov (United States)

    Pennacchi, P.; Borghesani, P.; Chatterton, S.

    2015-08-01

    Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system.

  17. Fluid-film bearings: a finite element method of analysis

    International Nuclear Information System (INIS)

    Pururav, T.; Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.

    1995-01-01

    Finite element method (FEM) has become a very popular technique for the analysis of fluid-film bearings in the last few years. These bearings are extensively used in nuclear industry applications such as in moderator pumps and main coolant pumps. This report gives the methodology for the solution of Reynold's equation using FEM and its implementation in FE software LUBAN developed in house. It also deals with the mathematical basis and algorithm to account for the cavitation phenomena which makes these problems non-linear in nature. The dynamic coefficients of bearings are evaluated by one-step approach using variational principles. These coefficients are useful for the dynamic characterisation of fluid-film bearings. Several problems have been solved using this code including two real life problems, a circumferentially grooved journal bearing for which experimental results are available and the bearing of moderator pump of 500 MWe PHWR, have been solved. The results obtained for sample problems are in good agreement with the published literature. (author). 9 refs., 14 figs., 5 tabs., 2 ills

  18. Optics and Fluid Dynamics Department annual progress report for 1996

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs

  19. Optics and Fluid Dynamics Department annual progress report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs.

  20. Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, including containment. Summary report of a technical meeting

    International Nuclear Information System (INIS)

    2003-11-01

    Safety analysis is an important tool for justifying the safety of nuclear power plants. Typically, this type of analysis is performed by means of system computer codes with one dimensional approximation for modelling real plant systems. However, in the nuclear area there are issues for which traditional treatment using one dimensional system codes is considered inadequate for modelling local flow and heat transfer phenomena. There is therefore increasing interest in the application of three dimensional computational fluid dynamics (CFD) codes as a supplement to or in combination with system codes. There are a number of both commercial (general purpose) CFD codes as well as special codes for nuclear safety applications available. With further progress in safety analysis techniques, the increasing use of CFD codes for nuclear applications is expected. At present, the main objective with respect to CFD codes is generally to improve confidence in the available analysis tools and to achieve a more reliable approach to safety relevant issues. An exchange of views and experience can facilitate and speed up progress in the implementation of this objective. Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) believed that it would be advantageous to provide a forum for such an exchange. Therefore, within the framework of the Working Group on the Analysis and Management of Accidents of the NEA's Committee on the Safety of Nuclear Installations, the IAEA and the NEA agreed to jointly organize the Technical Meeting on the Use of Computational Fluid Dynamics Codes for Safety Analysis of Reactor Systems, including Containment. The meeting was held in Pisa, Italy, from 11 to 14 November 2002. The publication constitutes the report of the Technical Meeting. It includes short summaries of the presentations that were made and of the discussions as well as conclusions and

  1. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  2. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    Science.gov (United States)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  3. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  4. APPLICATION OF COMPUTATIONAL FLUID DYNAMICS MODELLING TO A HORIZONTAL SEDIMENTATION TANK IN IRAQ

    OpenAIRE

    Ali Hadi GHAWI

    2017-01-01

    Computational Fluid Dynamics modeling has been applied to examine the hydrodynamic behavior of water treatment sedimentation tanks at Baghdad Water Works, operated by Alkurech Water in Baghdad in Iraq. The existing tanks perform poorly at current flows and flow is unevenly split among online tanks, Therefore, CFD was used to investigate velocity profiles at current and projected loadings for the existing basins. Results from the CFD analysis were used to develop retrofit strategies to improve...

  5. Basic Coandă MAV Fluid Dynamics and Flight Mechanics

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2017-04-01

    Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  6. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  7. Development of real-time visualization system for Computational Fluid Dynamics on parallel computers

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    1998-03-01

    A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)

  8. Non-intuitive fluid dynamics from reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1986-01-01

    One exciting aspect of fluid dynamics is that the subject has many surprises. The surprises can be good, but if not anticipated, they sometimes can be costly and embarrassing. Several non-intuitive fluid responses have emerged from studies in nuclear reactor and containment design. These responses include bubble behavior, blowdown, and waterhammer phenomena. Apologies are extended to those who are not surprised by the results. However, many will find the examples interesting; some have been amazed; a few have declared a personal crisis in their engineering perception

  9. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  10. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-04-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  11. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    International Nuclear Information System (INIS)

    Mimouni, S.; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-01-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune_CFD code. • The model has been validated against 150 tests. • Neptune_CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  12. Coupled Fluid-Solid Interaction Under Shock Wave Loading: Part II - Dynamic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, David Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Christon, Mark Allen [CTO Offce, Dassault Systµemes SIMULIA, Providence, RI (United States); Ingber, Marc Stuart [Univ. of New Mexico, Albuquerque, NM (United States). Department of Mechanical Engineering

    2009-07-01

    This article is the second of two that consider the treatment of fluid-solid interaction problems where the solid experiences wave loading and large bulk Lagrangian displacements. In part-I, we presented the formulation for the edge-based unstructured-grid Euler solver in the context of a discontinuous- Galerkin framework with the extensions used to treat internal fluid-solid interfaces. A super-sampled L2 projection was used to construct level-set data from the Lagrangian interface, and a narrow-band approach was used to identify and construct appropriate ghost data and boundary conditions at the fluid-solid interface. A series of benchmark problems were used to verify the treatment of the fluid-solid interface conditions with a static interface position. In this paper, we consider the treatment of dynamic interfaces and the associated large bulk Lagrangian displacements of the solid.We present the coupled dynamic fluid-solid system, and develop an explicit, monolithic treatment of the fully-coupled system. The conditions associated with moving interfaces and their implementation are discussed. A comparison of moving vs. fixed reference frames is used to verify the dynamic interface treatment. Lastly, a series of two and and three-dimensional projectile and shock-body interaction calculations are presented. Ultimately, the use of the Lagrangian interface position and a super-sampled projection for fast level-set construction, the narrow-band extraction of ghost data, and monolithic explicit solution algorithm has proved to be a computationally efficient means for treating shock induced fluid-solid interaction problems.

  13. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing

    International Nuclear Information System (INIS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2016-01-01

    This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled. (paper)

  14. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  15. What Does Dynamical Systems Theory Teach Us about Fluids?

    International Nuclear Information System (INIS)

    Bosetti, Hadrien; Posch, Harald A.

    2014-01-01

    We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions. (general)

  16. Dynamics of solutions and fluid mixtures by NMR

    International Nuclear Information System (INIS)

    Delpuech, J.J.

    1994-01-01

    After a short introduction to NMR spectroscopy, with a special emphasis on dynamical aspects, an overview on two fundamental aspects of molecular dynamics, NMR relaxation and its relationship with molecular reorientation, and magnetization transfer phenomena induced by molecular rate processes (dynamic NMR) is presented, followed by specific mechanisms of relaxation encountered in paramagnetic systems or with quadrupolar nuclei. Application fields are then reviewed: solvent exchange on metal ions with a variable pressure NMR approach, applications of field gradients in NMR, aggregation phenomena and micro-heterogeneity in surfactant solutions, polymers and biopolymers in the liquid state, liquid-like molecules in rigid matrices and in soft matter (swollen polymers and gels, fluids in and on inorganic materials, food)

  17. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  18. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation

    International Nuclear Information System (INIS)

    Melo, Ana Cristina Bezerra Azedo de

    2004-12-01

    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  19. Optics and Fluid Dynamics Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Michelsen, P.; Skaarup, B.

    1994-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials, (b) quasi-elastic light scattering and diagnostics in solids, fluids, and plasmas, and (c) optical and electronic information processing. Within continuum physics the activities are within (a) studies of non-linear dynamical processes in continuum systems, (b) investigations of problems with relevance to fusion plasma physics. The injection of pellets in fusion experiments has been investigated and pellet injectors to European fusion experiments are manufactured. The department is also responsible for the EURATOM collaboration within fusion plasma physics. A summary of activities in 1993 is presented. (au) (27 ills., 24 refs.)

  20. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics

    International Nuclear Information System (INIS)

    Isoda, Haruo; Sakahara, Harumi; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Alley, Marcus T.; Bammer, Roland; Pelc, Norbert J.; Namba, Hiroki

    2010-01-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to compare hemodynamics of intracranial aneurysms of MR fluid dynamics (MRFD) using 3D cine PC MR imaging (4D-Flow) at 1.5 T and MR-based computational fluid dynamics (CFD). 4D-Flow was performed for five intracranial aneurysms by a 1.5 T MR scanner. 3D TOF MR angiography was performed for geometric information. The blood flow in the aneurysms was modeled using CFD simulation based on the finite element method. We used MR angiographic data as the vascular models and MR flow information as boundary conditions in CFD. 3D velocity vector fields, 3D streamlines, shearing velocity maps, wall shear stress (WSS) distribution maps and oscillatory shear index (OSI) distribution maps were obtained by MRFD and CFD and were compared. There was a moderate to high degree of correlation in 3D velocity vector fields and a low to moderate degree of correlation in WSS of aneurysms between MRFD and CFD using regression analysis. The patterns of 3D streamlines were similar between MRFD and CFD. The small and rotating shearing velocities and higher OSI were observed at the top of the spiral flow in the aneurysms. The pattern and location of shearing velocity in MRFD and CFD were similar. The location of high oscillatory shear index obtained by MRFD was near to that obtained by CFD. MRFD and CFD of intracranial aneurysms correlated fairly well. (orig.)

  1. Dynamics of viscoelastic fluid filaments in microfluidic devices

    Science.gov (United States)

    Steinhaus, Benjamin; Shen, Amy Q.; Sureshkumar, Radhakrishna

    2007-07-01

    The effects of fluid elasticity and channel dimension on polymeric droplet formation in the presence of a flowing continuous Newtonian phase are investigated systematically by using different molecular weight (MW) poly(ethylene oxide) (PEO) solutions and varying microchannel dimensions with constant orifice width (w) to depth (h) ratio (w/h=1/2) and w =25μm, 50μm, 100μm, and 1mm. The flow rate is varied so that the mean shear rate is practically identical for all cases considered. Relevant times scales include inertia-capillary Rayleigh time τR=(Rmax3ρ/σ)1/2, viscocapillary Tomotika time τT=η0Rmax/σ, and the polymer relaxation time λ, where ρ is the fluid density of the dispersed phase, σ is the interfacial tension, η0 is the zero shear viscosity of the dispersed polymer phase, and Rmax is the maximum filament radius. Dimensionless numbers include the elasticity number E =λν/Rmax2, elastocapillary number Ec=λ/τT, and Deborah number, De =λ/τR, where ν =η0/ρ is the kinematic shear viscosity of the fluids. Experiments show that higher MW Boger fluids possessing longer relaxation times and larger extensional viscosities exhibit longer thread lengths and longer pinch-off times (tp). The polymer filament dynamics are controlled primarily by an elastocapillary mechanism with increasing elasticity effect at smaller length scales (larger E and Ec). However, with weaker elastic effects (i.e., larger w and lower MW), pinch-off is initiated by inertia-capillary mechanisms, followed by an elastocapillary regime. A high degree of correlation exists between the dimensionless pinch-off times and the elasticity numbers. We also observe that higher elasticity number E yields smaller effective λ. Based on the estimates of polymer scission probabilities predicted by Brownian dynamics simulations for uniaxial extensional flows, polymer chain scission is likely to occur for ultrasmall orifices and high MW fluids, yielding smaller λ. Finally, the inhibition of

  2. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  3. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  4. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  5. Vibration analysis of pipes conveying fluid by transfer matrix method

    International Nuclear Information System (INIS)

    Li, Shuai-jun; Liu, Gong-min; Kong, Wei-tao

    2014-01-01

    Highlights: • A theoretical study on vibration analysis of pipes with FSI is presented. • Pipelines with high fluid pressure and velocity can be solved by developed method. • Several pipeline schemes are discussed to illustrate the application of the method. • The proposed method is easier to apply compared to most existing procedures. • Influence laws of structural and fluid parameters on FSI of pipe are analyzed. -- Abstract: Considering the effects of pipe wall thickness, fluid pressure and velocity, a developed 14-equation model is presented, which describes the fluid–structure interaction behavior of pipelines. The transfer matrix method has been used for numerical modeling of both hydraulic and structural equations. Based on these models and algorithms, several pipeline schemes are presented to illustrate the application of the proposed method. Furthermore, the influence laws of supports, structural properties and fluid parameters on the dynamic response and natural frequencies of pipeline are analyzed, which shows using the optimal supports and structural properties is beneficial to reduce vibration of pipelines

  6. Computational fluid dynamics a practical approach

    CERN Document Server

    Tu, Jiyuan; Liu, Chaoqun

    2018-01-01

    Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.

  7. Analytical, Computational Fluid Dynamics and Flight Dynamics of Coandă MAV

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2016-11-01

    The paper establishes the basic working relationships among various relevant variables and parameters governing the aerodynamics forces and performance measures of Coandă MAV in hover and translatory motion. With such motivation, capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. To gain better understanding on the principle of Coandă MAV lift generation, a mathematical model for a spherical Coandă MAV is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulation for a Coandă MAV generic model are elaborated using commercial software FLUENT®. In addition, the equation of motion for translatory motion of Coandă MAV is elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  8. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  9. Quantum trajectory analysis of multimode subsystem-bath dynamics.

    Science.gov (United States)

    Wyatt, Robert E; Na, Kyungsun

    2002-01-01

    The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an active mode (the subsystem) with an M-mode harmonic reservoir (the bath). Equations of motion for the position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian (moving with the fluid) picture of quantum hydrodynamics. These fluid elements are coupled through the Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Computational results are presented for three systems involving the interaction on an active mode with M=1, 10, and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum results on some types of open quantum systems that are not amenable to standard quantum approaches involving basis set expansions or Eulerian space-fixed grids.

  10. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  11. Magnetohydrodynamics and fluid dynamics action principles and conservation laws

    CERN Document Server

    Webb, Gary

    2018-01-01

    This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...

  12. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  13. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  14. Issues in computational fluid dynamics code verification and validation

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Blottner, F.G.

    1997-09-01

    A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

  15. The fluid dynamics of the chocolate fountain

    Science.gov (United States)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  16. The fluid dynamics of the chocolate fountain

    International Nuclear Information System (INIS)

    Townsend, Adam K; Wilson, Helen J

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)

  17. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  18. Mathematical problems of the dynamics of incompressible fluid on a rotating sphere

    CERN Document Server

    Skiba, Yuri N

    2017-01-01

    This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

  19. Optics and Fluid Dynamics Department. Annual progress report 1 January - 31 December 1991

    International Nuclear Information System (INIS)

    Juul Rasmussen, J.; Hanson, S.G.

    1992-03-01

    Research in the Optics and Fluid Dynamics Department covers quasi-elastic light scattering, optical and electronic information processing, continuum physics and activities in connection with the Euratom fusion association. A summary of activities in 1991 is presented. Optical diagnostic methods based on quasielastic light scattering have been developed. Beam propagation in random and nonlinear media has been investigated. Spatial and temporal processing schemes, especially for pattern recognition, have been investigated. Within the area of fluid dynamics spectral models for studying the dynamics of coherent structures have been developed. Coherent structures have been investigated in a plasma and are now also investigated in a rotating fluid. Fusion relevant work performed under the Euratom association includes investigations of turbulent transport and the development of diagnostic methods. A special activity is concentrated on the development of pellet injection systems for fusion research. (au) (1 tab., 20 ills., 37 refs.)

  20. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  1. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  2. Optics and Fluid Dynamics Department annual progress report for 1997

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au)

  3. The Effect of the Density Ratio on the Nonlinear Dynamics of the Unstable Fluid Interface

    Science.gov (United States)

    Abarzhi, S. I.

    2003-01-01

    Here we report multiple harmonic theoretical solutions for a complete system of conservation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids with a finite density ratio in the general three-dimensional case. The analysis yields new properties of the bubble front dynamics. In either RTI or RMI, the obtained dependencies of the bubble velocity and curvature on the density ratio differ qualitatively and quantitatively from those suggested by the models of Sharp (1984), Oron et al. (2001), and Goncharov (2002). We show explicitly that these models violate the conservation laws. For the first time, our theory reveals an important qualitative distinction between the dynamics of the RT and RM bubbles.

  4. Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

    National Research Council Canada - National Science Library

    Wendel, Glenn

    2002-01-01

    .... Computational Fluid Dynamics (CFD) analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been...

  5. The real gas dynamics of the fluids of high specific heat

    International Nuclear Information System (INIS)

    Meier, G.E.A.

    1987-01-01

    The gas dynamics of real fluids show several new effects beyond the gas dynamics of ideal substances. Many of these effects rely on phase changes in the flow fields and can be explained with the help of more complicated thermal and caloric state equations of the real fluids. Complete adiabatic liquefaction and evaporation are possible for those substances whose specific heat exceeds a limit of about twenty gas constants. These fluids consisting of great molecules have so much internal energy storage capacity in their numerous vibrational degrees of freedom that the heat of evaporation can be supplied or also stored in the case of condensation. So liquefaction shock waves, which transform a gas completely or partly into a liquid, are possible. The shock front becomes thereby the surface of a liquid. Partial liquefaction with droplet condensation occurs in weaker shock waves. On the other hand a superheated liquid with high specific heat can be changed into a gas or mixture state in expansion waves or flows. (orig.)

  6. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  7. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  8. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  9. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  10. Dynamics of the Gay-Berne fluid

    International Nuclear Information System (INIS)

    de Miguel, E.; Rull, L.F.; Gubbins, K.E.

    1992-01-01

    Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters κ=3 and κ'=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase

  11. The Magnetic Nanoparticle Movement in Magnetic Fluid Characterized by the Laser Dynamic Speckle Interferometry

    Directory of Open Access Journals (Sweden)

    Xijun Wang

    2014-01-01

    Full Text Available A dual scanning laser speckle interferometry experiment was designed to observe the dynamic behavior of the magnetic fluid actuated by a magnetic field. In order to improve the spatial resolution of the dynamic speckle measurement, the phase delay scanning was used to compensate the additional phase variation which was caused by the transverse scanning. The correlation coefficients corresponding to the temporal dynamic speckle patterns within the same time interval scattering from the nanoparticles were calculated in the experiment on nanoscale magnetic clusters. In the experiment, the speckle of the magnetic nanoparticle fluid movement has been recorded by the lens unmounted CCD within the interferometry strips, although the speckle led to the distinguished annihilation of the light coherence. The results have showed that the nanoparticle fluid dynamic properties appeared synergistically in the fringe speckles. The analyses of the nanoparticle's relative speed and the speckle pattern moving amount in the fringes have proved the nanoparticle’s movement in a laminar flow in the experiment.

  12. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    DEFF Research Database (Denmark)

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren

    2009-01-01

    Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat...

  13. Development and verification of coupled fluid-structural dynamic codes for stress analysis of reactor vessel internals under blowdown loading

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.

    1977-01-01

    YAQUIR has been applied to large PWR blowdown problems and compared with LECK results. The structural model of CYLDY2 and the fluid model of YAQUIR have been coupled in the code STRUYA. First tests with the fluid dynamic systems code FLUST have been successful. The incompressible fluid version of the 3D coupled code FLUX for HDR-geometry was checked against some analytical test cases and was used for evaluation of the eigenfrequencies of the coupled system. Several test cases were run with the two phase flow code SOLA-DF with satisfactory results. Remarkable agreement was found between YAQUIR results and experimental data obtained from shallow water analogy experiments. A test for investigation of nonequilibrium twophase flow dynamics has been specified in some detail. The test is to be performed early 1978 in the water loop of the IRB. Good agreement was found between the natural frequency predictions for the core barrel obtained from CYLDY2 and STRUDL/DYNAL. Work started on improvement of the beam mode treatment in CYLDY2. The name of this modified version will be CYLDY3. The fluiddynamic code SING1, based on an advanced singularity method and applicable to a broad class of highly transient, incompressible 3D-problems with negligible viscosity has been developed and tested. It will be used in connection with the planned laboratory experiments in order to investigate the effect of the core structure on the blowdown process. Coupling of SING1 with structural dynamics is on the way. (orig./RW) [de

  14. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  15. Thermal Fluid-Dynamic Study for the thermal control of the new ALICE Central Detectors

    CERN Document Server

    AUTHOR|(CDS)2216237

    The Inner Tracking System Detector of the ALICE Experiment at CERN laboratory will be replaced in 2020 with a new Detector. It will have to provide, among others, higher spatial resolution, higher tracking precision and faster data read-out. These goals will be attained thanks to new pixel sensors chips and new electronic components, which will have a high impact in terms of dissipated heat. Therefore, one of the critical aspects for the success of the Upgrade project is the design of the Detector cooling system. This thesis work has been developed at CERN in Geneva in close contact with the group responsible for the Mechanics and Cooling of the Detector. The aim of the thermal fluid dynamic study devised is to deliver to the group a reliable and accurate description of the air flow inside the New Inner Tracking System Detector. After a first part of problem definition and design study, a Computational Fluid Dynamic (CFD) analysis has been developed with the ANSYS Fluent software. The CFD model built in this ...

  16. The investigation of a two-layer fluid soliton pair using phase plane analysis

    International Nuclear Information System (INIS)

    Momeni, M.; Moslehi-Fard, M.; Alinejad, H.; Mahmoodi, J.

    2004-01-01

    Nonlinear long waves theory in a two-layer fluid system has been studied. The dynamical equations according to the normalized heights in first order are obtained using the reductive perturbation method and the equations of shallow water in each fluid and taking boundary conditions appropriate into account. Conserve energy form by definition a independent variable is found. By definition a Lyapunov function, the condition for stability are shown. A new technique was used to prove stability as well as existence of soliton pair using phase plane analysis. (author)

  17. CFDLIB05, Computational Fluid Dynamics Library

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.

    2007-01-01

    1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method

  18. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    Science.gov (United States)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  19. Optics and Fluid Dynamics Department annual progress report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au) 1 tab., 63 ills., 249 refs.

  20. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  1. Analysis of Void Fraction Distribution and Departure from Nucleate Boiling in Single Subchannel and Bundle Geometries Using Subchannel, System, and Computational Fluid Dynamics Codes

    Directory of Open Access Journals (Sweden)

    Taewan Kim

    2012-01-01

    Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.

  2. Methods and models for accelerating dynamic simulation of fluid power circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aaman, R.

    2011-07-01

    The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation

  3. Analysis of vorticity dynamics for hump characteristics of a pump turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Han, Lei; Wei, Xianzhu; Qin, Daqing [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2016-08-15

    Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  4. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  5. Analysis of fluid dynamics to the riser of a FCC cold pilot plant aided with response surface methodology; Analise da fluidodinamica em um riser de FCC de uma unidade piloto a frio com auxilio da metodologia de superficie de resposta

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Kamylla A.L. dos; Luna-Finkler, Christine L.; Lima Filho, Hilario J.B. de [Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antao, PE (Brazil); Benachour, Mohand; Dantas, Carlos Costa; Santos, Valdemir A. dos [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil)

    2012-07-01

    It was planned and executed the implementation of a Central Composite Rotatable Design (CCRD) to the riser of a FCC (Fluid Catalytic Cracking) cold pilot plant, to identify the basic fluid dynamic characteristics of this type of reactor. The Fluid Catalytic Cracking is the major process in oil refineries in the world. It is realized in a vertical cylindrical reactor called riser, with a short contact time between the cracking catalyst and vacuum gas oil vapors. The constant evolution of the FCC process has required the analysis of fluid dynamics using computational fluid dynamics (CFD) software. However, analysis of images produced by the application of CFD to study of risers requires preliminary concepts of the relationship between response variables and independent variables. With the CCRD implementation was performed a total of 12 experiments, being 4 full factorial, 4 axial points and 4 central points. The dependent variables were the velocities of the components (cracking catalyst and compressed air) and the pressure drop in the riser. There was a great contribution of solids flow rate for the solid phase velocity and for the pressure drop. The effects of interaction between the flow rate phases are considerably senses in pressure drop through the riser, however, for the velocities of both phases this interaction becomes negligible. (author)

  6. On the history of fluid dynamics: Russian scientific schools in the 20th century

    International Nuclear Information System (INIS)

    Betyaev, Stanislav K

    2003-01-01

    The history of designing wind tunnels, an isolated wing, as well as both flying and non-flying machines, is reviewed. An analysis is made of those remarkable aerodynamic ideas which have been practically implemented, as well as of those, no less remarkable, ideas which have - so far - remained unfulfilled. The history of theoretical fluid dynamics in Russia is represented as the history of four scientific schools: those of Zhukovsky, Friedmann, Kolmogorov, and TsAGI. (from the history of physics)

  7. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  8. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  9. Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Amirante, R.; Moscatelli, P.G.; Catalano, L.A.

    2007-01-01

    The aim of this paper is to investigate the fluid dynamic behaviour of a commercial hydraulic proportional valve in order to evaluate and justify its global performances and, in particular, to analyze the effects of some additional design features on the reduction of the force required to maintain the valve open. The proposed analysis has been performed by applying the commercial computational fluid dynamics (CFD) code, Fluent, to the solution of the three dimensional turbulent flow field through a circumferential sector of the entire valve for different spool strokes. The reliability of the employed modelization is demonstrated by the comparison between the computed flow rate curve and the corresponding experimental data provided by the manufacturer. With regard to the metering edge design, it is shown that the cylindrical hole provided on the top of the hemi-spherical notch to improve metering at small valve openings has no influence on the flow force balance. The presented results also demonstrate that compensation techniques based on an adequate spool profiling are effective in balancing the flow forces mainly at medium and large valve openings, thanks to the pressure difference on the compensation profile; which also results in an increased axial momentum at the inlet of the high pressure chamber. The benefits of its presence are amplified by the adoption of two grooves machined on the valve body, which modify the flow field so as both to increase the axial momentum at the inlet of the high pressure chamber and to reduce it at the outlet

  10. Structural priority approach to fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Galford, J.E.

    1981-01-01

    In a large class of dynamic problems occurring in nuclear reactor safety analysis, the forcing function is derived from the fluid enclosed within the structure itself. Since the structural displacement depends on the fluid pressure, which in turn depends on the structural boundaries, a rigorous approach to this class of problems involves simultaneous solution of the coupled fluid mechanics and structural dynamics equations with the structural response and the fluid pressure as unknowns. This paper offers an alternate approach to the foregoing problems. 8 refs

  11. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  12. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  13. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  14. Blending and nudging in fluid dynamics: some simple observations

    Energy Technology Data Exchange (ETDEWEB)

    Germano, M, E-mail: mg234@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States of America (United States)

    2017-10-15

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  15. Blending and nudging in fluid dynamics: some simple observations

    International Nuclear Information System (INIS)

    Germano, M

    2017-01-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  16. Blending and nudging in fluid dynamics: some simple observations

    Science.gov (United States)

    Germano, M.

    2017-10-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.

  17. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  18. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur. Published by Elsevier Inc.

  19. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    Science.gov (United States)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  20. Computational fluid dynamics modelling of displacement natural ventilation.

    OpenAIRE

    Ji, Yingchun

    2005-01-01

    Natural ventilation is widely recognised as contributing towards low-energy building design. The requirement to reduce energy usage in new buildings has rejuvenated interest in natural ventilation. This thesis deals with computer modelling of natural displacement ventilation driven either by buoyancy or buoyancy combined with wind forces. Two benchmarks have been developed using computational fluid dynamics (CFD) in order to evaluate the accuracy with which CFD is able to mo...

  1. A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics

    Science.gov (United States)

    Frisch, Uriel; Grimberg, Gérard; Villone, Barbara

    2017-12-01

    The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."

  2. [Diagnosis: synovial fluid analysis].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  3. Variational approach to nuclear fluid dynamics

    International Nuclear Information System (INIS)

    Da Providencia, J.P.; Holzwarth, G.

    1983-01-01

    A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)

  4. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  5. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Science.gov (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  6. Phase portrait methods for verifying fluid dynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, H.B.

    1989-01-01

    As computing resources become more powerful and accessible, engineers more frequently face the difficult and challenging engineering problem of accurately simulating nonlinear dynamic phenomena. Although mathematical models are usually available, in the form of initial value problems for differential equations, the behavior of the solutions of nonlinear models is often poorly understood. A notable example is fluid dynamics: while the Navier-Stokes equations are believed to correctly describe turbulent flow, no exact mathematical solution of these equations in the turbulent regime is known. Differential equations can of course be solved numerically, but how are we to assess numerical solutions of complex phenomena without some understanding of the mathematical problem and its solutions to guide us

  7. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving...

  8. Numerical simulations of industrial processes involving fluid dynamics, combustion and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ducrocq, J [Air Liquide, Centre de Recherche Claude-Delorme, Jouy-en-Josas (France)

    1998-12-31

    Moving out of the scientific community research laboratories, computational fluid dynamics (CFD) software packages are now allowing industrials to analyse and optimize industrial processes involving the use of gases, liquids and even some two-phase fluids. Their attractiveness and their impact stems out from the opportunity they offer to bring insight into an existing unit, or even at the design stage, by displaying the spatial distribution of process relevant variables such as temperature, concentration. The filling of the spacing in between a two-layer window is a simple example. This new opportunity of visualisation is at times an unique way, when the process environment is an opaque one, such as liquid metal flowing into a tundish or when measurements of flows may be a long and tedious work, such as flows within water treatment basins. This environment we are to investigate in order to optimize can also be a harsh one, due to its high temperature level for example. Such are burners. But then pure fluid flow analysis, such as cold flow water models, has too many shortcomings. The description of combustion processes and of radiation become a necessary feature in order to describe thermal heat transfer or to locate `hot spots`. Such numerical models showing our oxycombustion expertise in glass melting will be presented. (author)

  9. Numerical simulations of industrial processes involving fluid dynamics, combustion and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ducrocq, J. [Air Liquide, Centre de Recherche Claude-Delorme, Jouy-en-Josas (France)

    1997-12-31

    Moving out of the scientific community research laboratories, computational fluid dynamics (CFD) software packages are now allowing industrials to analyse and optimize industrial processes involving the use of gases, liquids and even some two-phase fluids. Their attractiveness and their impact stems out from the opportunity they offer to bring insight into an existing unit, or even at the design stage, by displaying the spatial distribution of process relevant variables such as temperature, concentration. The filling of the spacing in between a two-layer window is a simple example. This new opportunity of visualisation is at times an unique way, when the process environment is an opaque one, such as liquid metal flowing into a tundish or when measurements of flows may be a long and tedious work, such as flows within water treatment basins. This environment we are to investigate in order to optimize can also be a harsh one, due to its high temperature level for example. Such are burners. But then pure fluid flow analysis, such as cold flow water models, has too many shortcomings. The description of combustion processes and of radiation become a necessary feature in order to describe thermal heat transfer or to locate `hot spots`. Such numerical models showing our oxycombustion expertise in glass melting will be presented. (author)

  10. Fluids, superfluids and supersolids: dynamics and cosmology of self-gravitating media

    Energy Technology Data Exchange (ETDEWEB)

    Celoria, Marco [Gran Sasso Science Institute (INFN), Via Francesco Crispi 7, I-67100 L' Aquila (Italy); Comelli, Denis [INFN, Sezione di Ferrara, I-35131 Ferrara (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: comelli@fe.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, I-67010 L' Aquila (Italy)

    2017-09-01

    We compute cosmological perturbations for a generic self-gravitating media described by four derivatively-coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle σ. While perfect fluids and solids are adiabatic with σ constant in time, superfluids and supersolids feature a non-trivial dynamics for σ. Special classes of isentropic media with zero σ can also be found. Tensor modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.

  11. OpenDx programs for visualization of computational fluid dynamics (CFD) simulations

    International Nuclear Information System (INIS)

    Silva, Marcelo Mariano da

    2008-01-01

    The search for high performance and low cost hardware and software solutions always guides the developments performed at the IEN parallel computing laboratory. In this context, this dissertation about the building of programs for visualization of computational fluid dynamics (CFD) simulations using the open source software OpenDx was written. The programs developed are useful to produce videos and images in two or three dimensions. They are interactive, easily to use and were designed to serve fluid dynamics researchers. A detailed description about how this programs were developed and the complete instructions of how to use them was done. The use of OpenDx as development tool is also introduced. There are examples that help the reader to understand how programs can be useful for many applications. (author)

  12. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  13. Techniques for animation of CFD results. [computational fluid dynamics

    Science.gov (United States)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  14. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis.

    Science.gov (United States)

    Gastaldi, Matteo; Zardini, Elisabetta; Franciotta, Diego

    2017-01-01

    Intrathecal B-lymphocyte activation is a hallmark of multiple sclerosis (MS), a multi-factorial inflammatory-demyelinating disease of the central nervous system. Such activation has a counterpart in the cerebrospinal fluid (CSF) oligoclonal IgG bands (OCB), whose diagnostic role in MS has been downgraded within the current McDonald's criteria. With a theoretico-practical approach, the authors review the physiopathological basis of the CSF dynamics, and the state-of-the-art of routine CSF analysis and CSF biomarkers in MS. Areas covered: The authors discuss pros and cons of CSF analysis, including critical evaluations of both well-established, and promising diagnostic and prognostic laboratory tools. New acquisitions on the CSF and cerebral interstitial fluid dynamics are also presented. The authors searched the PubMed database for English-language articles reported between January 2010 and June 2016, using the key words 'multiple sclerosis', 'cerebrospinal fluid', 'oligoclonal bands'. Reference lists of relevant articles were scanned for additional studies. Expert commentary: The availability of performing high-quality, routine CSF tests in specialized laboratories, the emerging potential of novel CSF biomarkers, and the trend for early treatments should induce a reappraisal of CSF analysis for diagnostic and prognostic purposes in MS. Further procedural and methodological improvements seem to be necessary in both research and translational diagnostic CSF settings.

  15. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  16. An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD...

  17. The maximal kinematical invariance group of fluid dynamics and explosion-implosion duality

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.; Sreedhar, V.V.

    2001-01-01

    It has recently been found that supernova explosions can be simulated in the laboratory by implosions induced in a plasma by intense lasers. A theoretical explanation is that the inversion transformation, (Σ:t→-1/t, x→x/t), leaves the Euler equations of fluid dynamics, with standard polytropic exponent, invariant. This implies that the kinematical invariance group of the Euler equations is larger than the Galilei group. In this paper we determine, in a systematic manner, the maximal invariance group G of general fluid dynamics and show that it is a semi-direct product G=SL(2, R) three G, where the SL(2, R) group contains the time-translations, dilations, and the inversion Σ, and G is the static (nine-parameter) Galilei group. A subtle aspect of the inclusion of viscosity fields is discussed and it is shown that the Navier-Stokes assumption of constant viscosity breaks the SL(2, R) group to a two-parameter group of time translations and dilations in a tensorial way. The 12-parameter group G is also known to be the maximal invariance group of the free Schroedinger equation. It originates in the free Hamilton-Jacobi equation which is central to both fluid dynamics and the Schroedinger equation

  18. Complex fluid network optimization and control integrative design based on nonlinear dynamic model

    International Nuclear Information System (INIS)

    Sui, Jinxue; Yang, Li; Hu, Yunan

    2016-01-01

    In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.

  19. Multi-fluid CFD analysis in Process Engineering

    Science.gov (United States)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  20. Riemann solvers and numerical methods for fluid dynamics a practical introduction

    CERN Document Server

    Toro, Eleuterio F

    2009-01-01

    High resolution upwind and centred methods are a mature generation of computational techniques applicable to a range of disciplines, Computational Fluid Dynamics being the most prominent. This book gives a practical presentation of this class of techniques.

  1. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  2. Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions

    Science.gov (United States)

    Nijdam, Justin J.

    2013-01-01

    A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…

  3. Mean field theory for non-abelian gauge theories and fluid dynamics. A brief progress report

    International Nuclear Information System (INIS)

    Wadia, Spenta R.

    2009-01-01

    We review the long standing problem of 'mean field theory' for non-abelian gauge theories. As a consequence of the AdS/CFT correspondence, in the large N limit, at strong coupling, and high temperatures and density, the 'mean field theory' is described by the Navier-Stokes equations of fluid dynamics. We also discuss and present results on the non-conformal fluid dynamics of the D1 brane in 1+1 dim. (author)

  4. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  5. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  6. Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle based complex fluids

    Science.gov (United States)

    Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.

    2018-04-01

    Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.

  7. Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations

    Science.gov (United States)

    Norman, Michael L.

    1997-01-01

    Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.

  8. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  9. Dynamics of two coaxial cylindrical shells containing viscous fluid

    International Nuclear Information System (INIS)

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  10. Handbook of mathematical analysis in mechanics of viscous fluids

    CERN Document Server

    Novotný, Antonín

    2018-01-01

    Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.

  11. On the Schrodinger equation in fluid-dynamical form

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1976-01-01

    The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems

  12. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.

    Science.gov (United States)

    Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A

    2011-04-01

    This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available

  13. Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1996-01-01

    parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain...

  14. Computational Fluid Dynamics Analysis of Cold Plasma Plume Mixing with Blood Using Level Set Method Coupled with Heat Transfer

    Directory of Open Access Journals (Sweden)

    Mehrdad Shahmohammadi Beni

    2017-06-01

    Full Text Available Cold plasmas were proposed for treatment of leukemia. In the present work, conceptual designs of mixing chambers that increased the contact between the two fluids (plasma and blood through addition of obstacles within rectangular-block-shaped chambers were proposed and the dynamic mixing between the plasma and blood were studied using the level set method coupled with heat transfer. Enhancement of mixing between blood and plasma in the presence of obstacles was demonstrated. Continuous tracking of fluid mixing with determination of temperature distributions was enabled by the present model, which would be a useful tool for future development of cold plasma devices for treatment of blood-related diseases such as leukemia.

  15. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  16. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  17. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  18. 3D analysis of thermo-fluid dynamics of a dry storage fuel container in stationary conditions; Analisis 3D de la termo-fluidodinamica de un contenedor de almacenamiento en seco de combustible en condiciones estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, J.; Feria, F.; Herranz, L. E.

    2012-07-01

    Dry storage containers must ensure the cooling of the fuel housing. Compliance with this requirement is of huge importance to preserve the integrity of spent fuel. In this sense, the thermo-fluid dynamics of containers is a point to consider in safety studies of this storage system. The aim of this work is to achieve a three-dimensional model of thermo-fluid dynamics of the HI-STORM 100S container using Fluent code. In addition to the fundamental characterization of the device, we have studied the impact of design variations associated with the input and output channels air. In the future, the model presented here will provide a basis for analysis of transient and accidental conditions.

  19. Probing the Chaotic Dynamics of Fluids using Insights from Coupled Map Lattices

    Science.gov (United States)

    Barbish, Johnathon; Xu, Mu; Paul, Mark

    2017-11-01

    Many difficult fluid challenges exhibit high-dimensional spatiotemporal chaos. Natural examples include the dynamics of the atmosphere and oceans. New insights have been gained by studying canonical fluid problems such as Rayleigh-Bénard convection where significant progress has been made using large-scale computations of the partial differential equations that describe the fluid flow. However, these computations remain very expensive which makes it difficult, if not currently impossible, to explore new ideas that require large sample sets, vast sweeps of parameter space, and long-time statistics. We study these questions using coupled map lattices (CML) in one and two dimensions. We compute the covariant Lyapunov vectors to probe fundamental features of the CML's including the Lyapunov spectrum, fractal dimension, and the principal angle between the stable and unstable manifolds. We are particularly interested in the role of a conservation law on the chaotic dynamics, the use of ideas from equilibrium thermodynamics to yield a coarse-grained representation, and in the development of reduced order models. This work is supported by NSF DMS-1622299.

  20. Optics and fluid dynamics department annual progress report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S G; Lading, L; Lynov, J P; Michelsen, P

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.).

  1. Optics and fluid dynamics department annual progress report for 1994

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Michelsen, P.

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.)

  2. Moving on to the modeling and simulation using computational fluid dynamics

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Muhd Noor Muhd Yunus

    2006-01-01

    The heat is on but not at the co-combustor plant. Using the Computational Fluid Dynamics (CFD), modeling and simulation of an incinerator has been made easy and possible from the comfort of cozy room. CFD has become an important design tool in nearly every industrial field because it provides understanding of flow patterns. CFD provide values for fluid velocity, fluid temperature, pressure and species concentrations throughout a flow domain. MINT has acquired a complete CFD software recently, consisting of GAMBIT, which is use to build geometry and meshing, and FLUENT as the processor or solver. This paper discusses on several trial runs that was carried out on several parts of the co-combustor plant namely the under fire section and the mixing chamber section

  3. Prospects for Computational Fluid Dynamics in Room Air Contaminant Control

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The fluid dynamics research is strongly influenced by the increasing computer power which has been available for the last decades. This development is obvious from the curve in figure 1 which shows the computation cost as a function of years. It is obvious that the cost for a given job will decre...

  4. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse

    International Nuclear Information System (INIS)

    Diniz Filho, Paulo Tasso; Silveira, Jose Luz; Tuna, Celso Eduardo; Lamas, Wendell de Queiroz

    2013-01-01

    This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. -- Highlights: • we develop a methodology to size a fluidized bed gasifier. • we validate this methodology comparing to a fixed bed gasifier values. • we aggregate ecological efficiency to this methodology

  5. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    Science.gov (United States)

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

  6. Fluid-solid boundary conditions for multiparticle collision dynamics

    International Nuclear Information System (INIS)

    Whitmer, Jonathan K; Luijten, Erik

    2010-01-01

    The simulation of colloidal particles suspended in solvent requires an accurate representation of the interactions between the colloids and the solvent molecules. Using the multiparticle collision dynamics method, we examine several proposals for stick boundary conditions, studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries are thermally affected and in motion). In addition, our simulations compare various collision rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally, we generalize these ideas to create partial slip boundary conditions at both stationary and mobile surfaces.

  7. Local-heterogeneous responses and transient dynamics of cage breaking and formation in colloidal fluids.

    Science.gov (United States)

    Nag, Preetom; Teramoto, Hiroshi; Li, Chun-Biu; Terdik, Joseph Z; Scherer, Norbert F; Komatsuzaki, Tamiki

    2014-09-14

    Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter, ψ̄6, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze ψ̄6 in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of ψ̄6 by a Wavelet transform that provides a time-frequency representation of the time series of ψ̄6. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and formation of the

  8. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane.

    Science.gov (United States)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  9. Design and dynamic modeling of electrorheological fluid-based variable-stiffness fin for robotic fish

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.

  10. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  11. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    Science.gov (United States)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  12. Dynamics of albumin in plasma and ascitic fluid in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Siemssen, O; Krintel, J J

    2001-01-01

    BACKGROUND/AIMS: To determine dynamics of albumin in plasma and ascitic fluid of patients with cirrhosis. METHODS: Forty-seven patients were classified in four groups: I--patients without fluid retention; II--patients with ascites not resistant to subsequent diuretic treatment; III......--recompensated patients during diuretic treatment; and IV--patients with diuretic-resistant ascites. Transvascular and transperitoneal albumin transports were quantified by 131I-/125I-labelled human albumin. RESULTS: TER(P) (i.e. the fraction of intravascular albumin (IVM) passing from plasma into the interstitial space...... per hour) was increased in all groups. In group IV patients the transport rate of albumin from plasma into the ascitic fluid (TER(PA)) was significantly higher than the transport rate from the ascitic fluid back into the plasma: TER(AP) (0.45 vs. 0.26% IVM/h, P

  13. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  14. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  15. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling

    International Nuclear Information System (INIS)

    Saw, Lip Huat; Ye, Yonghuang; Tay, Andrew A.O.; Chong, Wen Tong; Kuan, Seng How; Yew, Ming Chian

    2016-01-01

    Highlights: • We designed and analyzed the thermal behavior of the Li-ion battery pack. • We analyzed the heat generation of 38,120 Li-ion cell using ARC. • We validated the simulation results with experimental studies. • We developed the correlations of Nu and Re for the air cooling battery pack. - Abstract: A battery pack is produced by connecting the cells in series and/or in parallel to provide the necessary power for electric vehicles (EVs). Those parameters affecting cost and reliability of the EVs, including cycle life, capacity, durability and warranty are highly dependent on the thermal management system. In this work, computational fluid dynamic analysis is performed to investigate the air cooling system for a 38,120 cell battery pack. The battery pack contained 24 pieces of 38,120 cells, copper bus bars, intake and exhaust plenum and holding plates with venting holes. Heat generated by the cell during charging is measured using an accelerating rate calorimeter. Thermal performances of the battery pack were analyzed with various mass flow rates of cooling air using steady state simulation. The correlation between Nu number and Re number were deduced from the numerical modeling results and compared with literature. Additionally, an experimental testing of the battery pack at different charging rates is conducted to validate the correlation. This method provides a simple way to estimate thermal performance of the battery pack when the battery pack is large and full transient simulation is not viable.

  16. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.

    Science.gov (United States)

    Edison, John R; Monson, Peter A

    2013-06-21

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  17. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  18. ANALYSIS OF EXPECTED PRICE DYNAMICS BETWEEN FLUID MILK FUTURES CONTRACTS AND CASH PRICES FOR FLUID MILK

    OpenAIRE

    T. Randall FORTENBERY; Robert A. CROPP; Hector O. ZAPATA

    1997-01-01

    The objective of this study is to provide an empirical evaluation of the expected relationship between cash and futures prices for fluid milk. This is done using historic cash prices from 1988 to 1995, and making inferences about how futures prices would have behaved if they had traded during this sample period. Futures prices are simulated over the sample period based on two assumptions about futures market behavior for fluid milk. The first is that the futures market will essentially price ...

  19. Some anticipated contributions to core fluid dynamics from the GRM

    Science.gov (United States)

    Vanvorhies, C.

    1985-01-01

    It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.

  20. Self-Propulsion of a Flapping Airfoil Using Cyber-Physical Fluid Dynamics

    Science.gov (United States)

    Young, Jay; Asselin, Daniel; Williamson, C. H. K.

    2017-11-01

    The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of underwater vehicles and micro air vehicles (MAVs). These technologies can provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. However, most laboratory experiments and simulations have been conducted using tethered airfoils with an imposed freestream velocity, which does not necessarily reflect the conditions under which an airfoil employed as a propulsor would operate. Using a closed-loop force-feedback control system, defined as Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, & 2016), we allow a flapping airfoil to fly forward freely, achieving an equilibrium velocity at which thrust and drag are balanced. We study a combination of actively and passively controlled pitching and heaving dynamics in order to find motions that minimize the energy expended per distance traveled by the propulsion system. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  1. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  2. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  3. The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model

    Science.gov (United States)

    Verkley, Wim; Severijns, Camiel

    2014-05-01

    Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy

  4. Derivation of fluid dynamics from kinetic theory with the 14-moment approximation

    International Nuclear Information System (INIS)

    Denicol, G.S.; Molnar, E.; Niemi, H.; Rischke, D.H.

    2012-01-01

    We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case. (orig.)

  5. Biochemical Analysis of Synovial Fluid, Cerebrospinal Fluid and Vitreous Humor at Early Postmortem Intervals in Donkeys

    Directory of Open Access Journals (Sweden)

    Doha Yahia

    2014-01-01

    Full Text Available Biochemical analysis of body fluids after death is a helpful tool in veterinary forensic medicine. Synovial fluid, cerebrospinal fluid (CSF and vitreous humor are easily accessible and well preserved from contamination. Five donkeys (Equus africanus asinus aged 1 - 2 years old were subjected to the study. Samples (Synovial fluid, CSF and vitreous humor were collected before death (antimortem and then at 2, 4, 6, 8, 10 and 12 hours postmortem. Samples were analyzed for glucose, chloride, sodium, magnesium, potassium, enzymes and total protein. Synovial fluid analysis showed that glucose concentration started to decrease at 6 hours postmortem, while magnesium level increased with time. Other parameters were more stable. CSF analysis showed several changes related to time after death as the decrease in glucose and sodium levels, and the increased levels of potassium, magnesium, calcium and total protein. Vitreous analysis revealed a reduction in glucose level and increased potassium and magnesium concentrations. The present study concluded that biochemical analysis of synovial fluid, vitreous humor and CSF can help in determination of time since death in donkeys. This study recommend using CSF for determination of early post-mortem intervals.

  6. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media.

    Science.gov (United States)

    Singh, Kamaljit; Menke, Hannah; Andrew, Matthew; Lin, Qingyang; Rau, Christoph; Blunt, Martin J; Bijeljic, Branko

    2017-07-12

    Understanding the pore-scale dynamics of two-phase fluid flow in permeable media is important in many processes such as water infiltration in soils, oil recovery, and geo-sequestration of CO 2 . The two most important processes that compete during the displacement of a non-wetting fluid by a wetting fluid are pore-filling or piston-like displacement and snap-off; this latter process can lead to trapping of the non-wetting phase. We present a three-dimensional dynamic visualization study using fast synchrotron X-ray micro-tomography to provide new insights into these processes by conducting a time-resolved pore-by-pore analysis of the local curvature and capillary pressure. We show that the time-scales of interface movement and brine layer swelling leading to snap-off are several minutes, orders of magnitude slower than observed for Haines jumps in drainage. The local capillary pressure increases rapidly after snap-off as the trapped phase finds a position that is a new local energy minimum. However, the pressure change is less dramatic than that observed during drainage. We also show that the brine-oil interface jumps from pore-to-pore during imbibition at an approximately constant local capillary pressure, with an event size of the order of an average pore size, again much smaller than the large bursts seen during drainage.

  7. Some fluid dynamical problems in astrophysics

    International Nuclear Information System (INIS)

    Drury, L.O.

    1979-06-01

    Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)

  8. Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.

  9. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    Science.gov (United States)

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  10. Fluid-Induced Vibration Analysis for Reactor Internals Using Computational FSI Method

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jong Sung; Yi, Kun Woo; Sung, Ki Kwang; Im, In Young; Choi, Taek Sang [KEPCO E and C, Daejeon (Korea, Republic of)

    2013-10-15

    This paper introduces a fluid-induced vibration analysis method which calculates the response of the RVI to both deterministic and random loads at once and utilizes more realistic pressure distribution using the computational Fluid Structure Interaction (FSI) method. As addressed above, the FIV analysis for the RVI was carried out using the computational FSI method. This method calculates the response to deterministic and random turbulence loads at once. This method is also a simple and integrative method to get structural dynamic responses of reactor internals to various flow-induced loads. Because the analysis of this paper omitted the bypass flow region and Inner Barrel Assembly (IBA) due to the limitation of computer resources, it is necessary to find an effective way to consider all regions in the RV for the FIV analysis in the future. Reactor coolant flow makes Reactor Vessel Internals (RVI) vibrate and may affect the structural integrity of them. U. S. NRC Regulatory Guide 1.20 requires the Comprehensive Vibration Assessment Program (CVAP) to verify the structural integrity of the RVI for Fluid-Induced Vibration (FIV). The hydraulic forces on the RVI of OPR1000 and APR1400 were computed from the hydraulic formulas and the CVAP measurements in Palo Verde Unit 1 and Yonggwang Unit 4 for the structural vibration analyses. In this method, the hydraulic forces were divided into deterministic and random turbulence loads and were used for the excitation forces of the separate structural analyses. These forces are applied to the finite element model and the responses to them were combined into the resultant stresses.

  11. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  12. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  13. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    Science.gov (United States)

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  14. Distributed interactive graphics applications in computational fluid dynamics

    International Nuclear Information System (INIS)

    Rogers, S.E.; Buning, P.G.; Merritt, F.J.

    1987-01-01

    Implementation of two distributed graphics programs used in computational fluid dynamics is discussed. Both programs are interactive in nature. They run on a CRAY-2 supercomputer and use a Silicon Graphics Iris workstation as the front-end machine. The hardware and supporting software are from the Numerical Aerodynamic Simulation project. The supercomputer does all numerically intensive work and the workstation, as the front-end machine, allows the user to perform real-time interactive transformations on the displayed data. The first program was written as a distributed program that computes particle traces for fluid flow solutions existing on the supercomputer. The second is an older post-processing and plotting program modified to run in a distributed mode. Both programs have realized a large increase in speed over that obtained using a single machine. By using these programs, one can learn quickly about complex features of a three-dimensional flow field. Some color results are presented

  15. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    Science.gov (United States)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  16. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André

    2012-01-01

    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  17. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  18. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  19. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  20. Hydrodynamic instability of compressible fluid in porous medium

    International Nuclear Information System (INIS)

    Argal, Shraddha; Tiwari, Anita; Sharma, P K; Prajapati, R P

    2014-01-01

    The hydrodynamic Rayleigh -Taylor instability of two superposed compressible fluids in porous medium has been studied. The dispersion relation is derived for such a medium by using normal mode analysis. The RT instability is discussed for various simplified configuration. The effect of porosity and dynamic viscosity has been analyzed and it is observed that porosity and dynamic viscosity have stabilizing effect on the Rayleigh- Taylor instability of compressible fluids.

  1. Meniscal Tear Film Fluid Dynamics Near Marx’s Line

    KAUST Repository

    Zubkov, V. S.

    2013-07-03

    Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx\\'s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line. © 2013 Society for Mathematical Biology.

  2. Thermo-fluid-dynamic modelling of a cold store for cheese maturation

    Directory of Open Access Journals (Sweden)

    Ferruccio Giametta

    2013-03-01

    Full Text Available In this study, drying tests on fresh cheeses were carried out in a cold store equipped with a Munters MG90 dehumidifier that controls the humidity of the room air. In this system, the condensation/drainage stage is omitted since the humid room air is directed out of the cold store (process air and the dried air is introduced by the dehumidifier inside the cold store. Eight air temperature probes were introduced in the store; two probes (HOBO U12-012, 1 HOBO – Onset Computer Corporation, Cape Cod, MA, USA were also introduced and used to measure relative humidity and temperature together with an anemometer to analyse any changes in thermal and fluid dynamics in the cell environment. COMSOL multiphysics software (Comsol Group, Stockolm, Sweden was used to simulate the store environment based on the finite elements method. This allowed us to compare and discuss the experimental data collected and the results obtained by the thermo- fluid-dynamic simulation.

  3. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  4. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    Science.gov (United States)

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  5. Available states and available space: Static properties that predict dynamics of confined fluids

    OpenAIRE

    Goel, Gaurav; Krekelberg, William P.; Pond, Mark J.; Mittal, Jeetain; Shen, Vincent K.; Errington, Jeffrey R.; Truskett, Thomas M.

    2009-01-01

    Although density functional theory provides reliable predictions for the static properties of simple fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, molecular simulation studies have shown that the relationship between excess entropy and self diffusivity of a bulk equilibrium fluid changes only mod...

  6. The Efficient Use of Vector Computers with Emphasis on Computational Fluid Dynamics : a GAMM-Workshop

    CERN Document Server

    Gentzsch, Wolfgang

    1986-01-01

    The GAMM Committee for Numerical Methods in Fluid Mechanics organizes workshops which should bring together experts of a narrow field of computational fluid dynamics (CFD) to exchange ideas and experiences in order to speed-up the development in this field. In this sense it was suggested that a workshop should treat the solution of CFD problems on vector computers. Thus we organized a workshop with the title "The efficient use of vector computers with emphasis on computational fluid dynamics". The workshop took place at the Computing Centre of the University of Karlsruhe, March 13-15,1985. The participation had been restricted to 22 people of 7 countries. 18 papers have been presented. In the announcement of the workshop we wrote: "Fluid mechanics has actively stimulated the development of superfast vector computers like the CRAY's or CYBER 205. Now these computers on their turn stimulate the development of new algorithms which result in a high degree of vectorization (sca1ar/vectorized execution-time). But w...

  7. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert [IBACOS Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS Inc., Pittsburgh, PA (United States); Lange, Rich [IBACOS Inc., Pittsburgh, PA (United States)

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  8. Identification and control of factors influencing flow-accelerated corrosion in HRSG units using computational fluid dynamics modeling, full-scale air flow testing, and risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Ronald L. [The Consolidated Edison Company of New York, Inc., New York, NY (United States)

    2010-11-15

    In 2009, Consolidated Edison's East River heat recovery steam generator units 10 and 20 both experienced economizer tube failures which forced each unit offline. Extensive inspections indicated that the primary failure mechanism was flow-accelerated corrosion (FAC). The inspections revealed evidence of active FAC in all 7 of the economizer modules, with the most advanced stages of degradation being noted in center modules. Analysis determined that various factors were influencing and enabling this corrosion mechanism. Computational fluid dynamics and full-scale air flow testing showed very turbulent feedwater flow prevalent in areas of the modules corresponding with the pattern of FAC damage observed through inspection. It also identified preferential flow paths, with higher flow velocities, in certain tubes directly under the inlet nozzles. A FAC risk analysis identified more general susceptibility to FAC in the areas experiencing damage due to feedwater pH, operating temperatures, local shear fluid forces, and the chemical composition of the original materials of construction. These, in combination, were the primary root causes of the failures. Corrective actions were identified, analyzed, and implemented, resulting in equipment replacements and repairs. (orig.)

  9. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model

    DEFF Research Database (Denmark)

    Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.

    2006-01-01

    Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...... simulations. The magnets studied are identical to the capture magnet and filter magnet on MER, though results are more generally applicable. The dust capture process is found to be dependent upon wind speed, dust magnetization, dust grain size and dust grain mass density. Here we develop an understanding...... of how these parameters affect dust capture rates and patterns on the magnets and set bounds for these parameters based on MER data and results from the numerical model. This results in a consistent picture of the dust as containing varying amounts of at least two separate components with different...

  10. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  11. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....

  12. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  13. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2013-11-15

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters.

  14. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto

    2013-01-01

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters

  15. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Eremeef, R.; De Henau, V.

    1995-12-31

    Computational fluid dynamics codes, based on turbulent Navier-Stokes equations, allow evaluation of the hydraulic losses of each turbine component with precision. Using those codes with the new generation of computers enables a wide variety of component geometries to be modelled and compared to the original designs under flow conditions obtained from testing, at a reasonable cost and in a relatively short time. This paper reviews the actual method used in the design of a solution to a turbine rehabilitation project involving runner replacement, redesign of upstream components (stay vanes and wicket gates), and downstream components (draft tubes and runner outlets). The paper shows how computational fluid dynamics can help hydraulic engineers to obtain valuable information not only on performance enhancement but also on the phenomena that produce the enhancement, and to reduce the variety of modifications to be tested.

  16. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  17. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  18. A stochastic differential equation analysis of cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Raman Kalyan

    2011-01-01

    Full Text Available Abstract Background Clinical measurements of intracranial pressure (ICP over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. Methods The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE that accommodates the fluctuations in ICP. Results The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Conclusions Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  19. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  20. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  1. Fluid-structure interaction in tube bundles: homogenization methods, physical analysis

    International Nuclear Information System (INIS)

    Broc, D.; Sigrist, J.F.

    2009-01-01

    It is well known that the movements of a structure may be strongly influenced by fluid. This topic, called 'Fluid Structure Interaction' is important in many industrial applications. Tube bundles immersed in fluid are found in many cases, especially in nuclear industry: (core reactors, steam generators,...). The fluid leads to 'inertial effects' (with a decrease of the vibration frequencies) and 'dissipative effects' (with higher damping). The paper first presents the methods used for the simulation of the dynamic behaviour of tube bundles immersed in a fluid, with industrial examples. The methods used are based on the Euler equations for the fluid (perfect fluid), which allow to take into account the inertial effects. It is possible to take into account dissipative effects also, by using a Rayleigh damping. The conclusion focuses on improvements of the methods, in order to take into account with more accuracy the influence of the fluid, mainly the dissipative effects, which may be very important, especially in the case of a global fluid flow. (authors)

  2. 3D Suspended Polymeric Microfluidics (SPMF3 with Flow Orthogonal to Bending (FOB for Fluid Analysis through Kinematic Viscosity

    Directory of Open Access Journals (Sweden)

    Mostapha Marzban

    2017-10-01

    Full Text Available Measuring of fluid properties such as dynamic viscosity and density has tremendous potential for various applications from physical to biological to chemical sensing. However, it is almost impossible to affect only one of these properties, as dynamic viscosity and density are coupled. Hence, this paper proposes kinematic viscosity as a comprehensive parameter which can be used to study the effect of fluid properties applicable to various fluids from Newtonian fluids, such as water, to non-Newtonian fluids, such as blood. This paper also proposes an ideal microplatform, namely polymeric suspended microfluidics (SPMF3, with flow plane orthogonal to the bending plane of the structure, along with tested results of various fluids covering a wide range of engineering applications. Kinematic viscosity, also called momentum diffusivity, considers changes in both fluid intermolecular forces and molecular inertia that define dynamic viscosity and fluid density, respectively. In this study a 3D suspended polymeric microfluidic system (SPMF3 was employed to detect changes in fluid parameters such as dynamic viscosity and density during fluid processes. Using this innovative design along with theoretical and experimental results, it is shown that, in fluids, the variations of fluid density and dynamic viscosity are not easily comprehensible due to their interconnectivity. Since any change in a fluid will affect both density and dynamic viscosity, measuring both of them is necessary to identify the fluid or process status. Finally, changes in fluid properties were analyzed using simulation and experiments. The experimental results with salt-DI water solution and milk with different fat concentrations as a colloidal fluid show that kinematic viscosity is a comprehensive parameter that can identify the fluids in a unique way using the proposed microplatform.

  3. An Analysis of Reconstituted Fluid Milk Pricing Policy

    OpenAIRE

    Glen D. Whipple

    1983-01-01

    This analysis suggests that alteration of the reconstituted fluid milk pricing provisions of federal and state milk market orders would have a substantial impact on market equilibrium. A reactive programming model of the U.S. milk market was used to simulate the effects of altered reconstituted fluid milk pricing policy. The solutions indicate that reconstituted fluid milk, as a lower cost alternative to fresh fluid milk, would make up a substantial portion of the fluid milk consumption in so...

  4. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions

    NARCIS (Netherlands)

    de Waal, Eric E. C.; Rex, Steffen; Kruitwagen, Cas L. J. J.; Kalkman, Cor J.; Buhre, Wolfgang F.

    Objective: Dynamic preload indicators like pulse pressure variation (PPV) and stroke volume variation (SVV) are increasingly being used for optimizing cardiac preload since they have been demonstrated to predict fluid responsiveness in a variety of perioperative settings. However, in open-chest

  5. Dynamic Variables Fail to Predict Fluid Responsiveness in an Animal Model With Pericardial Effusion.

    Science.gov (United States)

    Broch, Ole; Renner, Jochen; Meybohm, Patrick; Albrecht, Martin; Höcker, Jan; Haneya, Assad; Steinfath, Markus; Bein, Berthold; Gruenewald, Matthias

    2016-10-01

    The reliability of dynamic and volumetric variables of fluid responsiveness in the presence of pericardial effusion is still elusive. The aim of the present study was to investigate their predictive power in a porcine model with hemodynamic relevant pericardial effusion. A single-center animal investigation. Twelve German domestic pigs. Pigs were studied before and during pericardial effusion. Instrumentation included a pulmonary artery catheter and a transpulmonary thermodilution catheter in the femoral artery. Hemodynamic variables like cardiac output (COPAC) and stroke volume (SVPAC) derived from pulmonary artery catheter, global end-diastolic volume (GEDV), stroke volume variation (SVV), and pulse-pressure variation (PPV) were obtained. At baseline, SVV, PPV, GEDV, COPAC, and SVPAC reliably predicted fluid responsiveness (area under the curve 0.81 [p = 0.02], 0.82 [p = 0.02], 0.74 [p = 0.07], 0.74 [p = 0.07], 0.82 [p = 0.02]). After establishment of pericardial effusion the predictive power of dynamic variables was impaired and only COPAC and SVPAC and GEDV allowed significant prediction of fluid responsiveness (area under the curve 0.77 [p = 0.04], 0.76 [p = 0.05], 0.83 [p = 0.01]) with clinically relevant changes in threshold values. In this porcine model, hemodynamic relevant pericardial effusion abolished the ability of dynamic variables to predict fluid responsiveness. COPAC, SVPAC, and GEDV enabled prediction, but their threshold values were significantly changed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  7. Thermo-fluid-dynamics of natural convection around a heated vertical plate with a critical assessment of the standard similarity theory

    Science.gov (United States)

    Guha, Abhijit; Nayek, Subhajit

    2017-10-01

    A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With

  8. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  9. Algorithmic trends in computational fluid dynamics; The Institute for Computer Applications in Science and Engineering (ICASE)/LaRC Workshop, NASA Langley Research Center, Hampton, VA, US, Sep. 15-17, 1991

    Science.gov (United States)

    Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)

    1993-01-01

    The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.

  10. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    Science.gov (United States)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  11. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    Science.gov (United States)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  12. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    Science.gov (United States)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  13. Computational fluid dynamic (CFD) analysis on ALUDRA SR-10 UAV with parachute recovery system

    Science.gov (United States)

    Saim, R.; Mohd, S.; Shamsudin, S. S.; Zulkifli, M. F.; Omar, Z.; Subari@Rahmat, Z.; Masrom, M. F. Mohd; Zaki, Y.

    2017-09-01

    In an operation, belly landing is mostly applied as recovery method especially on research Unmanned Aerial Vehicle (UAV) such as Aludra SR-10. This type of landing method may encounter tough landing on hard soil and gravel which create high impact load on the aircraft. The impact may cause structural or system damage which costly to be repaired. Nowadays, Parachute Recovery System (PRS) recently used in numerous different tasks such as landing purpose to replace belly landing technique. Parachute use in this system to slow down flying or falling UAV to a safe landing by opening the canopy to increase aerodynamic drag. This paper was described the Computational Fluid Dynamic (CFD) analysis on ALUDRA SR-10 model with two different conditions i.e. the UAV equipped with and without parachute in order to identify the changes of aerodynamic characteristics. This simulation studies using solid models of aircraft and hemisphere parachute and was carried out by using ANSYS 16.0 Fluent under steady and turbulent flow and was modelled using the k-epsilon (k-ε) turbulence model. This simulation was limited to determine the drag force and drag coefficient. The obtained result showed that implementation of parachute increase 0.25 drag coefficient of the aircraft that is from 0.93 to 1.18. Subsequent to the reduction of descent rate caused by the parachute, the drag force of the aircraft increase by 0.76N. These increasing of drag force of the aircraft will produce lower terminal velocity which is expected to reduce the impact force on the aircraft during landing.

  14. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  15. Self-propagating exothermic reaction analysis in Ti/Al reactive films using experiments and computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Seema, E-mail: seema.sen@tu-ilmenau.de [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Lake, Markus; Kroppen, Norman; Farber, Peter; Wilden, Johannes [Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Schaaf, Peter [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-28

    Highlights: • Development of nanoscale Ti/Al multilayer films with 1:1, 1:2 and 1:3 molar ratios. • Characterization of exothermic reaction propagation by experiments and simulation. • The reaction velocity depends on the ignition potentials and molar ratios of the films. • Only 1Ti/3Al films exhibit the unsteady reaction propagation with ripple formation. • CFD simulation shows the time dependent atom mixing and temperature flow during exothermic reaction. - Abstract: This study describes the self-propagating exothermic reaction in Ti/Al reactive multilayer foils by using experiments and computational fluid dynamics simulation. The Ti/Al foils with different molar ratios of 1Ti/1Al, 1Ti/2Al and 1Ti/3Al were fabricated by magnetron sputtering method. Microstructural characteristics of the unreacted and reacted foils were analyzed by using electronic and atomic force microscopes. After an electrical ignition, the influence of ignition potentials on reaction propagation has been experimentally investigated. The reaction front propagates with a velocity of minimum 0.68 ± 0.4 m/s and maximum 2.57 ± 0.6 m/s depending on the input ignition potentials and the chemical compositions. Here, the 1Ti/3Al reactive foil exhibits both steady state and unsteady wavelike reaction propagation. Moreover, the numerical computational fluid dynamics (CFD) simulation shows the time dependent temperature flow and atomic mixing in a nanoscale reaction zone. The CFD simulation also indicates the potentiality for simulating exothermic reaction in the nanoscale Ti/Al foil.

  16. The fluid dynamics of deep-sea mining

    Science.gov (United States)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  17. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  18. Longwave instabilities and patterns in fluids

    CERN Document Server

    Shklyaev, Sergey

    2017-01-01

    This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems.  Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics. .

  19. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-10-28

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  20. Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-06-01

    Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...