WorldWideScience

Sample records for fluence neutron irradiation

  1. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  2. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  3. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  4. EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

    Directory of Open Access Journals (Sweden)

    WOO SEOG RYU

    2013-04-01

    Full Text Available Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7−28 × 1019n/cm2 (E>0.1MeV at 250°C, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at 250°C did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1% at fluences of (0.7∼28 × 1019n/cm2 (E>0.1MeV.

  5. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    International Nuclear Information System (INIS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-01-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180°C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380 to 790°C was estimated to be ∼1 × 10 -5 [MPa -1 dpa -1 ] at ∼0.1 dpa and 1 × 10 -7 to 1 × 10 -6 [MPa -1 dpa -1 ] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380–790°C to 0.01–0.11 dpa. (author)

  6. Retrospective Reactor Dosimetry for Neutron Fluence, Helium, and Boron Measurements

    International Nuclear Information System (INIS)

    Greenwood, Lawrence R.; Oliver, Brian M.

    2003-01-01

    Neutron fluences can be measured and radiation damage parameters determined by analyzing the neutron reaction products in very small samples removed from components of an operating power research reactor. This process, known as retrospective reactor dosimetry, provides precise neutron exposure parameters for establishing or validating calculations of neutron fluences, helium generation, and radiation damage to reactor materials. Correlation of the neutron fluence and helium data helps to establish and validate models of radiation damage and helium production that are needed to address important issues such as irradiation assisted stress corrosion cracking, void swelling, and weld repair of cracks. Results are presented for samples recently obtained from several operating reactors

  7. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  8. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  9. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Pirfo Barroso, S.; Kobayashi, S.

    2013-01-01

    Roč. 265, DEC (2013), s. 201-209 ISSN 0029-5493 Institutional support: RVO:68378271 Keywords : neutron irradiation * steel degradation * nuclear reactor pressure vessel * magnetic NDT * magnetic minor hysteresis loops * Magnetic Barkhausen Emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.972, year: 2013 http://www.sciencedirect.com/science/article/pii/S0029549313004664

  10. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  11. Fuels and materials research under the high neutron fluence using a fast reactor Joyo and post-irradiation examination facilities

    International Nuclear Information System (INIS)

    Soga, Tomonori; Ito, Chikara; Aoyama, Takafumi; Suzuki, Soju

    2009-01-01

    The experimental fast reactor Joyo at Oarai Research and Development Center (ORDC) of Japan Atomic Energy Agency (JAEA) is Japan's sodium-cooled fast reactor (FR). In 2003, this reactor's upgrade to the 140MWt MK-III core was completed to increase the irradiation testing capability. The MK-III core provides the fast neutron flux of 4.0x10 15 n/cm 2 s as an irradiation test bed for improving the fuels and material of FR in Japan. Three post-irradiation examination (PIE) facilities named FMF, MMF and AGF related to Joyo are in ORDC. Irradiated subassemblies and core components are carried into the FMF (Fuel Monitoring Facility) and conducted nondestructive examinations. Each subassembly is disassembled to conduct some destructive examinations and to prepare the fuel and material samples for further detailed examinations. Fuel samples are sent to the AGF (Alpha-Gamma Facility), and material samples are sent to the MMF (Materials Monitoring Facility). These overall and elaborate data provided by PIE contribute to investigate the irradiation effect and behavior of fuels and materials. This facility complex is indispensable to promote the R and D of FR in Japan. And, the function and technology of irradiation test and PIE enable to contribute to the R and D of innovative fission or fusion reactor material which will be required to use under the high neutron exposure. (author)

  12. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    Loevestam, Goeran; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas; Tagziria, Hamid; Vanhavere, Filip; Wieslander, J.S. Elisabeth

    2009-01-01

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm -2 s -1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm -2 s -1 , again, a good agreement with the assumed spectrum was achieved

  13. Neutron fluence spectrometry using disk activation

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy); Vanhavere, Filip [SCK-CEN, Boeretang, 2400 Mol (Belgium); Wieslander, J.S. Elisabeth [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyvaeskylae (Finland)

    2009-01-15

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm{sup -2} s{sup -1}, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm{sup -2} s{sup -1}, again, a good agreement with the assumed spectrum was achieved.

  14. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  15. Comparison of relevant parameters of multi-pixel sensors for tracker detectors after irradiation with high proton and neutron fluences

    International Nuclear Information System (INIS)

    Bergholz, Matthias

    2016-03-01

    The further increase of the luminosity of the Large Hadron Collider (LHC) at CERN requires new sensors for the tracking detector of the Compact Muon Soleniod (CMS) experiment. These sensors must be more radiation hard and of a finer granularity to lower the occupancy. In addition the new sensor modules must have a lower material budget and have to be self triggering. Sensor prototypes, the so called ''MPix''-sensors, produced on different materials were investigated for their radiation hardness. These sensors were fully characterized before and after irradiation. Of particular interest was the comparison of different bias methods, different materials and the influence of various geometries. The degeneration rate differs for the different sensor materials. The increase of the dark current of Float-Zone-Silicon is stronger for thicker sensors and less than for Magnetic-Czochralski-Silicon sensors. Both tested bias structures are damaged by the irradiation. The poly silicon resistance increases after irradiation by fifty percent. The Punch-Through-Structure is more effected by irradiation. The punch-through voltage increase by a factor of two. Due to the higher pixel current, the working point of the sensor is shifted to smaller differential resistances.

  16. The response of dispersion-strengthened copper alloys to high fluence neutron irradiation at 415 degrees C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Newkirk, J.W.; Garner, F.A.; Hamilton, M.L.; Nadkarni, A.; Samal, P.

    1993-01-01

    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415 degrees C in the Fast Flux Test Facility (FFTF). The Al 2 O 3 -strengthened GlidCop TM alloys, followed closely by a HfO 2 -strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO 2 -strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content results in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr 2 O 3 -strengthened alloy showed poor resistance to radiation

  17. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  18. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  19. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  20. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  1. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields.

    Science.gov (United States)

    Fujibuchi, Toshioh; Tanabe, Yu; Sakae, Takeji; Terunuma, Toshiyuki; Isobe, Tomonori; Kawamura, Hiraku; Yasuoka, Kiyoshi; Matsumoto, Tetsuro; Harano, Hideki; Nishiyama, Jun; Masuda, Akihiko; Nohtomi, Akihiro

    2011-11-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field.

  2. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  3. Optical absorption characteristics of neutron irradiated heavy metal fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.S.; Banerjee, P.K.; Pereira, J.M.T.; Gedam, S.G.

    1987-10-15

    Samples of ZBLA and HBLA glasses were subjected to various fluences of neutron irradiation, and the spectral dependence of optical absorption was measured before and after irradiation. The IR edge was found to be unaffected by neutron irradiation for the fluences used. However, a red shift occurred at the UV edge which slightly recovered after three weeks.

  4. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  5. Neutron fluence effect on the IASCC susceptibility of AISI 304 stainless steel under simulated BWR conditions

    International Nuclear Information System (INIS)

    Navas, M.; Castano, M.L; Gomez-Briceno, D.; Karlsen, T.

    2004-01-01

    Full text: Neutron irradiation modifies the stress corrosion cracking (SCC) resistance of AISI 304 stainless steel in high temperature water. The microstructure and the microchemistry of materials change with the increasing of dose, inducing Radiation Hardening and Radiation Induced Segregation (RIS). SCC behaviour of irradiated material is influenced by these changes, leading to a value of threshold neutron fluence which could depend on different variables. Therefore, fully understanding of the IASCC material susceptibility implies the study of the effect of critical parameters like accumulated neutron fluence, material composition and water chemistry. Experimental work is being carried out in collaboration with the Halden Reactor Project and it includes the performance of Constant Extension Rate Tests (CERT) at CIEMAT laboratories in out-of-pile loops that simulate BWR operating conditions. The main objective is to determine the influence of neutron fluence on the SCC susceptibility of austenitic steels. A test matrix was defined to test unirradiated and irradiated specimens fabricated from tubes used previously in the Crack Initiation Test (IFA 618) performed at the Halden Reactor Project. According to the irradiation periods of IFA 618, three materials (Annealed and thermally-sensitised AISI 304 and AISI 316L) with three different accumulated neutron fluences are available. This paper presents the results obtained with annealed and thermally sensitised AISI 304 SS tested in different environments. (Author)

  6. Extension of CASCADE.04 to estimate neutron fluence and dose ...

    Indian Academy of Sciences (India)

    Two different methods, 'track length estimator' and 'collision estimator' are adapted for the estimation of neutron fluence rate needed to calculate the ambient dose rate. For the validation of the methods, neutron dose rates are experimentally measured at different locations of a 5Ci Am–Be source, shielded in Howitzer-type ...

  7. Extension of CASCADE.04 to estimate neutron fluence and dose ...

    Indian Academy of Sciences (India)

    Capability to compute neutron dose rate is introduced for the first time in the new version of the CASCADE.04 code. Two different methods, `track length estimator' and `collision estimator' are adapted for the estimation of neutron fluence rate needed to calculate the ambient dose rate. For the validation of the methods, ...

  8. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  9. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  10. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  11. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  12. Neutron fluence produced in medical accelerators

    International Nuclear Information System (INIS)

    Castro, R.C.; Silva, A.X. da; Crispim, V.R.

    2004-01-01

    Radiotherapy with photon and electron beams still represents the most diffused technique to control and treat tumour diseases. To increase the treatment efficiency, accelerators of higher energy are used, the increase of electron and photon energy is joined with generation of undesired fast neutron that contaminated the therapeutic beam and give a non-negligible contribution to the patient dose. In this work we have simulated with the MCNP4B code the produced neutron spectra in the interaction between the beam and the head to the accelerator and estimating the equivalent dose for neutrons by x-ray dose for aims far from the targets. (author)

  13. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  14. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    Science.gov (United States)

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  15. Neutron fluence in antiproton radiotherapy, measurements and simulations

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael H.; Petersen, Jørgen B.B.

    2010-01-01

    A significant part of the secondary particle spectrum from antiproton annihilation consists of fast neutrons, which may contribute to a significant dose background found outside the primary beam. Using a polystyrene phantom as a moderator, we have performed absolute measurements of the thermalized...... part of the fast neutron spectrum using Lithium-6 and -7 Fluoride TLD pairs. The experimental results are found to be in good agreement with simulations using the Monte Carlo particle transport code FLUKA. The thermal neutron kerma resulting from the measured thermal neutron fluence is insignificant...... compared to the contribution from fast neutrons. The results are found to be similar to values calculated for pion treatment, however exact modeling under more realistic treatment scenarios is still required to quantitatively compare these treatment modalities....

  16. Evaluation of the Neutron Fluence at a Baffle-Former Zone in an Operating Reactor

    International Nuclear Information System (INIS)

    Lee, S. L.; Yoo, C. S.; Hwang, S. S.

    2008-01-01

    Neutron fluence evaluation has been performed on a reactor vessel in an operating nuclear power plant in order to evaluate the radiation embrittlement which is directly related to plant safety as well as a plant operating license, based on the operating history. Because, as the operating years increase, damage may occur in the internal structures such as a baffle former bolt due to various reasons, and one of these reasons comes from the neutron fluence, so called an irradiation assisted stress corrosion cracking, thus resulting in the shutdown of a plant and the replacement of a structure which has an economic disadvantage as well as a severe effect in the integrity of a plant. Neutron flux and fluence calculations for the baffle area for one of the reactors operating in Korea have been performed for all the operating cycles from the start of the reactor using real plant operating conditions such as the operating temperature, pressure and fuel loading pattern in order to evaluate any possibility that may cause a stress corrosion cracking due to the excessive neutron irradiation

  17. Positron annihilation studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Liszkay, L.; Molnar, B.

    1988-01-01

    Several annealing studies by positron annihilation (Doppler broadening, lifetime) on neutron irradiated Cr-Mo-V reactor pressure vessel steels (Soviet type 15Kh2MFA) regarding the influences of irradiation temperature, fluence of fast neutrons as well as different impurity contents are presented and discussed. A possibility of explaining the positron annihilation data by irradiation induced carbide formation is proposed. (author)

  18. Development of highly efficient proton recoil counter telescope for absolute measurement of neutron fluences in quasi-monoenergetic neutron calibration fields of high energy

    International Nuclear Information System (INIS)

    Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro

    2010-01-01

    Precise calibration of monitors and dosimeters for use with high energy neutrons necessitates reliable and accurate neutron fluences being evaluated with use of a reference point. A highly efficient Proton Recoil counter Telescope (PRT) to make absolute measurements with use of a reference point was developed to evaluate neutron fluences in quasi-monoenergetic neutron fields. The relatively large design of the PRT componentry and relatively thick, approximately 2 mm, polyethylene converter contributed to high detection efficiency at the reference point over a large irradiation area at a long distance from the target. The polyethylene converter thickness was adjusted to maintain the same carbon density per unit area as the graphite converter for easy background subtraction. The high detection efficiency and thickness adjustment resulted in efficient absolute measurements being made of the neutron fluences of sufficient statistical precision over a short period of time. The neutron detection efficiencies of the PRT were evaluated using MCNPX code at 2.61x10 -6 , 2.16x10 -6 and 1.14x10 -6 for the respective neutron peak energies of 45, 60 and 75 MeV. The neutron fluences were determined to have been evaluated at an uncertainty of within 6.5% using analysis of measured data and the detection efficiencies. The PRT was also designed so as to be capable of simultaneously obtaining TOF data. The TOF data also increased the reliability of neutron fluence measurements and provided useful information for use in interpreting the source of proton events.

  19. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO 3 ) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10 18 n/cm 2 , which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  20. NEUTRON IRRADIATION EFFECTS ON SPARK PLASMA SINTERED BORON CARBIDE

    OpenAIRE

    Buyuk, Bulent; Cengiz, Meral; Tugrul, A. Beril

    2015-01-01

    In this study, spark plasma sintered boron carbide (B4C) was examined against neutrons. The specimens were irradiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x1021n m-2. Thermal and fast neutrons cause swelling by different interactions with boron (10B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and ...

  1. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F; Iglesias, A [Departamento de Fisica de Particulas, Universidad de Santiago, 15782-Santiago (Spain); Doblado, F Sanchez [Hospital Universitario Virgen Macarena, Radiofisica and Departamento de Fisiologia Medica y Biofisica, Facultad de Medicina, Universidad de Sevilla (Spain)], E-mail: faustino.gomez@usc.es

    2010-02-21

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  2. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  3. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 × 107 neutrons/cm2 h from 252Cf neutron source of fluence, 2.5 × 107 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at ...

  4. Verification of neutron irradiation on S/G tube materials

    International Nuclear Information System (INIS)

    Kang, Byoung Hwi; Lee, S. K.; Jang, D. Y.; Jo, K. H.

    2010-12-01

    The fluence monitors were fabricated with metal wires of the purity ≥ 99.9%, whose dimensions were 0.1mm diameter, about 3mm length, and around 150-200 μg mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position. The measured neutron fluences were compared to the calculated ones. (Errors ≤ 35%)

  5. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility.

    Science.gov (United States)

    Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  6. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...

  7. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    1967-01-01

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  8. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  9. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    Science.gov (United States)

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Swelling in simple ferritic alloys irradiated to high fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Meinecke, R.L.

    1984-01-01

    A series of Fe-Cr-C-Mo simple alloys has been measured for density change as a function of irradiation in EBR-II over the temperature range 400 to 650 0 C to fluences as high as 2.13 x 10 23 n/cm 2 (E > 0.1 MeV) or 105 dpa. The highest swelling was found in a Fe-12Cr binary alloy, 4.72 percent, after 1.87 x 10 23 n/cm 2 or 95 dpa at 425 0 C, which corresponds to a swelling rate of 0.06%/dpa. This peak swelling rate value can be used to define swelling predictions for commercial ferritic alloys to 40 MWy/m 2

  11. Test of Fibre Bragg Gratings samples under High Fast Neutrons Fluence

    Science.gov (United States)

    Cheymol, G.; Remy, L.; Gusarov, A.; Kinet, D.; Mégret, P.; Laffont, G.; Blanchet, T.; Morana, A.; Marin, E.; Girard, S.

    2018-01-01

    Optical fibre sensors (OFS) are worthy of interest for measurements in nuclear reactor thanks to their unique features, particularly compact size and remote multi-point sensing for some of them. But besides non negligible constraints associated with the high temperature environment of the experiments of interest, it is well known that the performances of OFS can be severely affected by high level of radiations. The Radiation Induced Attenuation (RIA) in the fibre is probably most known effect, which can be to some extent circumvented by using rad hard fibres to limit the dynamic loss. However, when the fast neutron fluence reaches 1018 to 1019 n/cm2, the density and index variations associated to structural changes may deteriorate drastically the performances of OFS even if they are based on rad hard fibres, by causing direct errors in the measurements of temperature and/or strain changes. The aim of the present study is to access the effect of nuclear radiations on the Fabry Perot (FP) and of Fibre Bragg Grating (FBG) sensors through the comparison of measurements made on these OFS - or part of them - before and after irradiation [1]. In the context of development of OFS for high irradiation environment and especially for Material Testing Reactors (MTRs), Sake 2 experiment consists in an irradiation campaign at high level of gamma and neutron fluxes conducted on samples of fibre optics - bare or functionalised with FBG. The irradiation was performed at two levels of fast neutron fluence: 1 and 3.1019 n/cm2 (E>1MeV), at 250°± 25°C, in the SCK•CEN BR2 reactor (Mol Belgium). An irradiation capsule was designed to allow irradiation at the specified temperature without active control. The neutron fluence was measured with activation dosimeters and the results were compared with MCPN computations. Investigation of bare samples gives information on the density changes, while for the FBGs both density and refractive index perturbation are involved. Some results for

  12. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs

  13. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-07-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs.

  14. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  15. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  16. Neutron fluence in a 18 MeV Electron Accelerator for Therapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    2001-01-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm 2 were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the accelerator

  17. Effects of fluence and fluence rate of proton irradiation upon magnetism in Fe65Ni35 Invar alloy

    Science.gov (United States)

    Matsushita, Masafumi; Wada, Hideki; Matsushima, Yasushi

    2015-11-01

    Curie temperature, TC, of the Fe-Ni Invar alloys increase due to irradiation with electron and some kinds of ions. In this study, proton irradiation effects upon magnetism in an Fe65Ni35 alloy have been investigated. It is found that the increment of TC, ∆TC, increases with increasing fluence. The magnetic hysteresis curve of the alloy was found to be unaffected by irradiation. Comparing ∆TC and the calculated energy transfer from the ions to the sample, it seemed that ∆TC was found to be related to the number of vacancies formed in nuclear collision events. In addition, ∆TC was influenced by the fluence rate, i.e., the deposited energy per unit time.

  18. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    Energy Technology Data Exchange (ETDEWEB)

    Remy, L.; Cheymol, G. [CEA, French Nuclear Energy Commission, Nuclear Energy Division, DPC/SEARS/LISL Bat 467 CEA Saclay 91191 Gif/Yvette Cedex (France); Gusarov, A. [SCK.CEN - Belgian Nuclear Research center, Boeretang 200 2400 Mol (Belgium); Morana, A.; Marin, E.; Girard, S. [Universite de Saint-Etienne, Laboratoire Hubert Curien, UMR CNRS5516, 18, rue du Pr. Lauras, F-42000 Saint-Etienne (France)

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison

  19. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  20. The measurement of the fluence rate of accelerator fusion neutrons by using the associated particle method

    International Nuclear Information System (INIS)

    Wang Dalun; Li Yijun; Jiang Li

    1998-11-01

    The associated particle method is normally used to measure the fluence rate of accelerator fusion neutron. The principle, set-up and technical points are standardized. The measurement error is up to 1%∼1.5%

  1. Extended use of alanine irradiated in experimental reactor for combined gamma-and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of C-14 by LSC

    Czech Academy of Sciences Publication Activity Database

    Bartoníček, B.; Kučera, Jan; Světlík, Ivo; Viererbl, L.; Lahodová, Z.; Tomášková, Lenka; Cabalka, M.

    2014-01-01

    Roč. 93, NOV (2014), s. 52-56 ISSN 0969-8043 R&D Projects: GA TA ČR TA02010218 Institutional support: RVO:61389005 Keywords : reactor rediation * alanine/ESR dosimeter * C-14 * LSC simultaneous gamma * neutron dose * assessment Subject RIV: JF - Nuclear Energetics Impact factor: 1.231, year: 2014

  2. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  3. Determination of the neutron fluence spectra in the neutron therapy room of KIRAMS.

    Science.gov (United States)

    Kim, B H; Kim, J S; Kim, J L; Kim, Y S; Yang, T G; Lee, M Y

    2007-01-01

    High energy proton induced neutron fluence spectra were determined at the Korea Institute of Radiological and Medical Sciences (KIRAMS) using an extended Bonner Sphere (BS) set from the Korea Atomic Energy Research Institute (KAERI) in a series of measurements to quantify the neutron field. At the facility of the MC50 cyclotron of KIRAMS, two Be targets of different thicknesses, 1.0 and 10.5 mm, were bombarded by 35 and 45-MeV protons to produce six kinds of neutron fields, which were classified according to the measurement position and the use or no use of a beam collimator such as the gantry of the neutron therapy unit. In order to obtain a priori information to unfold the measured BS data the MCNPX code was used to calculate the neutron spectrum, and the influence of the surrounding materials for cooling the target assembly were also reviewed through this calculation. Some dosimetric quantities were determined by using the spectra determined in this measurement. Dose equivalent rates of these neutron fields ranged from 0.21 to 5.66 mSv h(-1)nA(-1) and the neutron yields for a thick Be target were 3.05 and 4.77% in the case of using a 35 and a 45-MeV proton, respectively.

  4. Determination of the neutron fluence spectra in the neutron therapy room of KIRAMS

    International Nuclear Information System (INIS)

    Kim, B. H.; Kim, J. S.; Kim, J. L.; Kim, Y. S.; Yang, T. G.; Lee, M. Y.

    2007-01-01

    High energy proton induced neutron fluence spectra were determined at the Korea Inst. of Radiological and Medical Sciences (KIRAMS) using an extended Bonner Sphere (BS) set from the Korea Atomic Energy Research Inst. (KAERI) in a series of measurements to quantify the neutron field. At the facility of the MC50 cyclotron of KIRAMS, two Be targets of different thicknesses, 1.0 and 10.5 mm, were bombarded by 35 and 45-MeV protons to produce six kinds of neutron fields, which were classified according to the measurement position and the use or no use of a beam collimator such as the gantry of the neutron therapy unit. In order to obtain a priori information to unfold the measured BS data the MCNPX code was used to calculate the neutron spectrum, and the influence of the surrounding materials for cooling the target assembly were also reviewed through this calculation. Some dosimetric quantities were determined by using the spectra determined in this measurement. Dose equivalent rates of these neutron fields ranged from 0.21 to 5.66 mSv h -1 nA -1 and the neutron yields for a thick Be target were 3.05 and 4.77% in the case of using a 35 and a 45-MeV proton, respectively. (authors)

  5. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  6. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  7. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  8. Neutron irradiation studies of avalanche photodiodes using californium-252

    Science.gov (United States)

    Reucroft, S.; Rusack, R.; Ruuska, D.; Swain, J.

    1997-02-01

    Californium-252 is a convenient and copious source of neutrons of energies around 1 MeV, and provides many advantages over reactors for neutron irradiation studies of detector components. We describe here an experimental setup at Oak Ridge National Laboratory which has been constructed to study the performance of avalanche photodiodes in neutron fluences up to 10 13 neutrons/cm 2, similar to what is expected in parts of the CMS detector at the LHC. An irradiation study of some avalanche photodiodes is discussed, followed by a brief summary of results obtained.

  9. Diamond amorphization in neutron irradiation

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Gordeev, V.G.

    1996-01-01

    The paper presents the results on neutron irradiation of the diamond in a nuclear reactor. It is shown that the neutron irradiation stimulates the diamond transition to the amorphous state. At a temperature below 750 o K the time required for the diamond-graphite transition decreases with decreasing irradiation temperature. On the contrary, in irradiation at higher temperatures the time of diamond conversion into the amorphous state increases with decreasing but always remains shorter than in the absence of irradiation. (author)

  10. The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased sup 1 sup 0 B-coated high-purity epitaxial GaAs thermal neutron detectors

    CERN Document Server

    Gersch, H K; Simpson, P A

    2002-01-01

    High-purity epitaxial GaAs sup 1 sup 0 B-coated thermal neutron detectors advantageously operate at room temperature without externally applied voltage. Sample detectors were systematically irradiated at fixed grid locations near the core of a 2 MW research reactor to determine their operational neutron dose threshold. Reactor pool locations were assigned so that fast and thermal neutron fluxes to the devices were similar. Neutron fluences ranged between 10 sup 1 sup 1 and 10 sup 1 sup 4 n/cm sup 2. GaAs detectors were exposed to exponential fluences of base ten. Ten detector designs were irradiated and studied, differentiated between p-i-n diodes and Schottky barrier diodes. The irradiated sup 1 sup 0 B-coated detectors were tested for neutron detection sensitivity in a thermalized neutron beam. Little damage was observed for detectors irradiated at neutron fluences of 10 sup 1 sup 2 n/cm sup 2 and below, but signals noticeably degraded at fluences of 10 sup 1 sup 3 n/cm sup 2. Catastrophic damage was appare...

  11. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  12. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.

    Science.gov (United States)

    Miri Hakimabad, H; Rafat Motavalli, L; Karimi Shahri, K

    2009-03-01

    Neutron fluence to absorbed dose conversion coefficients have been evaluated for the analytical ORNL modified adult phantom in 21 body organs using MCNP4C Monte Carlo code. The calculation used 20 monodirectional monoenergetic neutron beams in the energy range 10(-9)-20 MeV, under four irradiation conditions: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT) and right-lateral (RLAT). Then the conversion coefficients are compared with the data reported in ICRP publication 74 for mathematical MIRD type phantoms and by Bozkurt et al for the VIPMAN voxel model. Although the ORNL results show fewer differences with the ICRP results than the Bozkurt et al data, one can deduce neither complete agreement nor disparity between this study and other data sets. This comparison shows that in some cases any differences in applied Monte Carlo codes or simulated body models could significantly change the organ dose conversion factors. This sensitivity should be considered for radiological protection programmes. For certain organs, the results of two models with major differences can be in a satisfactory agreement because of the similarity in those organ models.

  13. Absolute neutron fluence measurements between 0.5 and 3 MeV and their intercomparisons

    International Nuclear Information System (INIS)

    Wu, M.W.; Guung, T.C.; Pei, C.C.; Yang, T.N.; Hwang, W.S.; Thomas, D.J.

    1999-01-01

    Primary standards of monoenergetic neutron fluences for 0.565, 1.5 and 2.5 MeV neutrons produced by the 7 Li(p,n) 7 Be reaction have been developed for the calibration of neutron dosimeters and spectrometers. The fluences for 0.565 MeV neutrons were measured using both H 2 and CH 4 proton recoil proportional counters with the measured spectra fitted to the modified SPEC-4 Monte Carlo simulations for the subtraction of gamma and recoil carbons. The fluences for 1.5 and 2.5 MeV neutrons were determined with vacuum-type proton recoil telescopes. Various uncertainties for each detector are analyzed and its overall uncertainty is 3.1% for gas counter and less than 3% for the telescope. These neutron fluence standards have been intercompared with those of the National Physical Laboratory of the United Kingdom by the use of two transfer instruments: a long counter and a 3 He detector. The comparison results will be presented and discussed

  14. Effects of the neutronic irradiation on the impact tests

    International Nuclear Information System (INIS)

    Lapena, J.; Perosanz, F.J.; Hernandez, M.T.

    1993-01-01

    The changes that the Charpy curves suffer when steel is exposed to neutronic fluence are studied. Three steels with different chemical composition were chosen, two of them (JPF and JPJ) being treated at only one neutronic fluence, while the last one (JRQ) was irradiated at three fluences. In this way, it was possible to compare the effect of increasing the neutronic dose, and to study the experimental results as a function of the steel chemical composition. Two characteristic facts have been observed: the displacement of the curve at higher temperatures, and decrease of the upper shelf energy (USE). The mechanical recovery of the materials after two different thermal treatments is also described, and a comparation between the experimental results obtained and the damage prediction formulas given by different regulatory international organisms in the nuclear field is established. Author. 11 refs

  15. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  16. Impact of neutron irradiation on thermal helium desorption from iron

    Science.gov (United States)

    Hu, Xunxiang; Field, Kevin G.; Taller, Stephen; Katoh, Yutai; Wirth, Brian D.

    2017-06-01

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 1018 He/m2. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  17. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  18. Scanning tunneling spectroscopy on neutron irradiated MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, Roberto [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy)], E-mail: rdicapua@na.infn.it; Salluzzo, Marco; Vaglio, Ruggero [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy); Ferdeghini, Carlo [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Ferrando, Valeria [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Pennsylvania State University, University Park, PA 16802 (United States); Putti, Marina [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Xi Xiaoxing [Pennsylvania State University, University Park, PA 16802 (United States); Aebersold, Hans U. [Paul Scherrer Institut, Villigen CH-5232 (Switzerland)

    2007-09-01

    Neutron irradiation was performed on MgB{sub 2} thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the {pi} gap with increasing disorder was found.

  19. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  20. Determination of neutron fluence and radiation brittleness temperature of WWER-440 and WWER-1000 pressure vessels in Kozloduy NPP

    International Nuclear Information System (INIS)

    Ilieva, K.; Apostolov, T.; Belousov, S.; Petrova, T.; Antonov, S.; Ivanov, K.; Prodanova, R.

    1993-01-01

    In Units 1-4 of Kozloduy NPP (WWER-440/230), the weld 4 of RPV undergoes the most severe irradiation embrittlement. Neither witness-samples, nor detectors are designed for these reactors. Transport calculations of fast neutron fluence on WWER-440 RPV and ex-vessel measurements by threshold activation detectors are the primary means for adequate assessment of metal state and for prognosis concerning the reactor life span. In WWER-1000 reactors (Units 5-6) the maximum neutron fluence occurs on the weld 3. The systematical observation of metal state is performed through witness-samples and threshold activation detectors ( 54 Fe (n,p), 63 Cu (n,α), 93 Nb (n,n')) placed above the reactor top edge and at the first vessel ring level. There are big differences in energy spectrum and integral neutron flux falling onto the weld 3, the RPV base metal and the staff detectors. This requires additional neutron measurements in the air gap between the RPV and the thermal insulation. (author)

  1. Neutron irradiation effects on spark plasma sintered boron carbide

    International Nuclear Information System (INIS)

    Buyuk, B.; Cengiz, M.; Tugrul, A.; Ozer, S.; Yucel, O.; Goller, G.; Sahin, F.C.; Lastovski, S.B.

    2015-01-01

    In this study, spark plasma sintered boron carbide (B 4 C) was examined against neutrons. The specimens were ir-radiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x10 21 n*m -2 . Thermal and fast neutrons cause swelling by different interactions with boron ( 10 B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and unit cell volumes were calculated for the samples. The swelling percentages were calculated to be within a range of 0.49-3.80 % (average 1.70 %) for the outer surface of the materials for applied neutron irradiation doses. (authors)

  2. The plasma focus as a large fluence neutron source

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Long, J.; Luce, J.; Sahlin, H.

    1977-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. With I 5 scaling, predicted from analysis of existing machines, yields of 10 16 -10 17 neutrons per pulse are postulated. The average power consumption, which has become a major issue as a result of the energy crisis is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (Auth.)

  3. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  4. Standard Test Method for Measuring Neutron Fluence Rate by Radioactivation of Cobalt and Silver

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a suitable means of obtaining the thermal neutron fluence rate, or fluence, in well moderated nuclear reactor environments where the use of cadmium, as a thermal neutron shield as described in Method E262, is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium. 1.2 This test method describes a means of measuring a Westcott neutron fluence rate (Note 1) by activation of cobalt- and silver-foil monitors (See Terminology E170). The reaction 59Co(n,γ)60Co results in a well-defined gamma emitter having a half-life of 1925.28 days (1). The reaction 109Ag(n,˙γ) 110mAg results in a nuclide with a complex decay scheme which is well known and having a half-life of 249.76 days (1). Both cobalt and silver are available either in very pure form or alloyed with other metals such as aluminum. A reference source of cobalt in aluminum alloy to serve as a neutron fluence rate monitor wire standard is available from the National Institute ...

  5. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    Martinez C, E.

    2011-01-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm 2 s, at a height H 4 (239.07 cm) and angle 32.236 o in the core shroud and 4.00 E + 09 n/cm 2 s at a height H 4 and angle 35.27 o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  6. Energy spectra and fluence of the neutrons produced in deformed space-time conditions

    Science.gov (United States)

    Cardone, F.; Rosada, A.

    2016-10-01

    In this work, spectra of energy and fluence of neutrons produced in the conditions of deformed space-time (DST), due to the violation of the local Lorentz invariance (LLI) in the nuclear interactions are shown for the first time. DST-neutrons are produced by a mechanical process in which AISI 304 steel bars undergo a sonication using ultrasounds with 20 kHz and 330 W. The energy spectrum of the DST-neutrons has been investigated both at low (less than 0.4 MeV) and at high (up to 4 MeV) energy. We could conclude that the DST-neutrons have different spectra for different energy intervals. It is therefore possible to hypothesize that the DST-neutrons production presents peculiar features not only with respect to the time (asynchrony) and space (asymmetry) but also in the neutron energy spectra.

  7. Study of natural diamond detector spectrometric properties under neutron irradiation

    CERN Document Server

    Alekseyev, A B; Kaschuck, Y; Krasilnikov, A; Portnov, D; Tugarinov, S

    2002-01-01

    Natural diamond detector (NDD) performance was studied up to a neutron fluence of 10 sup 1 sup 5 neutron/cm sup 2. The variations of the NDD spectrometric response to incident alpha-particles from sup 2 sup 4 sup 1 Am source after exposure to fast neutron fluences up to 3x10 sup 1 sup 6 n/cm sup 2 were examined. No significant variations up to the level of 10 sup 1 sup 4 n/cm sup 2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3x10 sup 1 sup 6 n/cm sup 2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under gamma-rays, beta-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm

  8. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  9. Experimental results of neutron fluence outside an iron shield in the forward direction

    International Nuclear Information System (INIS)

    Torres, M.M.C.; Elwyn, A.J.; Fein, D.; James, E.; Johns, K.; Davis, W.; Ciampa, D.P.; Mierkiewicz, E.

    1996-09-01

    Analyses of both lateral shielding measurements and Monte Carlo calculations for beam stop geometry for incident hadrons at energies between 10 GeV and 10 TeV suggests that the dose equivalent can be represented by the expression H = H 0 (E)e -r/λ /r 2 where H, is the source term, r is the radial distance to the point of interest in the shield, and λ is the effective interaction length, or absorption mean free path. However, unlike the lateral shielding case, there is no similarly simple analytical expression that can be used to describe the on-axis longitudinal cascade development. In this study the results from the measurement in the forward direction of neutron fluence spectra (and the derived quantity dose equivalent) for 25 to 150 GeV pions incident on an iron beam stop as a function of thickness of iron are presented. The observed dependence of both fluence and dose equivalent on shield thickness and hadron energy was then quantified in terms of an expression in which a build up factor as well as an attenuation term was included. On the basis of this analysis the conversion factor from fluence to dose equivalent was also determined for these forward going neutrons. This work represents the first systematic study at an high energy accelerator of the depth dependence of neutron fluence in longitudinal shielding

  10. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  11. Preliminary Results from in Situ Quartz Fiber Neutron Irradiations

    CERN Document Server

    Akchurin, Nural; Ayan, S; Ayan, S; Bencze, Gyorgy; Dumano, I; Fenyvesi, Andras; Hauptman, John M; Merlo, Jean-Pierre; Miller, Michael; Önel, Y M; McCliment, Edward; Schwellenbach, D

    1998-01-01

    Optical transmission characteristics of multi-mode synthetic silica-core fibers between 325 nm and 800 nm were studied in situ while irradiated with neutrons. In one case, fiber samples were placed in the core of a 10-kWatt reactor; in the other, fast neutrons generated by p ( 18 MeV) + Be reaction in a cyclotron, irradiated the fibers. The neutron fluence in both studies totaled ~10^15 n/cm2. Both of these initial studies indicate that in the sensitivity region of bialkiline PMTs, the irradiation induced loss is ~1dB/m. These initial experiments are aimed at establishing a fiber testing methodology for assessing the expected degradation of the CMS forward calorimeter at the LHC due to large neutron backgrounds.

  12. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  13. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  14. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  15. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    Science.gov (United States)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  16. High fluence proton irradiation of GaAs detectors at room temperature and at -8 C

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, W.J.; Albertz, D.; Braunschweig, W.; Chu, Z.; Karpinski, W.; Krais, R.; Kubicki, T.; Luebelsmeyer, K.; Rente, C.; Syben, O.; Tenbusch, F.; Toporowski, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.

    1998-02-01

    Semi-insulating GaAs detectors processed in Aachen using Freiberger compound material with low carbon content (FCM-LC) have been irradiated with protons (23 GeV) at eleven different fluences up to 6.3 x 10{sup 14} p/cm{sup 2} at room temperature. The detectors have been characterized in terms of macroscopic quantities like I-V characteristic curves and the signal response for incident minimum ionizing particles before and after irradiation. At the temperature of -8 C three other GaAs detectors have been irradiated with protons at fluences of about 6 x 10{sup 13} p/cm{sup 2}. After the irradiation they are warmed up at room temperature. The behaviour of the detectors before and after the warming up period has been studied. (orig.). 8 refs.

  17. A new method for the determination of unknown neutron fluence for 14.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Fariha [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan)]. E-mail: fariha@pinstech.org.pk; Khan, Ehsan U. [Department of Physics, CIIT, Islamabad (Pakistan); Qureshi, Imtinan [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Husaini, Syed N. [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Ahmad, Waqar [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Rajput, Usman [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Raza, Qaiser [Applied Physics Division, PINSTECH, Nilore, Islamabad (Pakistan)

    2006-11-15

    Measuring the correct neutron fluence in various energy intervals in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In this paper, we present a new method for the measurement of the fluence of mono-energetic neutrons having the energy of 14.0 MeV. The samples exposed to neutrons from the 14.0 MeV neutron generator at PINSTECH with various fluence values ranging from 10{sup 7} to 10{sup 10} n cm{sup -2} were etched for 10 min in 6 N NaOH at 70.0{+-}1.0 {sup o}C and the transmittance of UV radiation was measured using a spectrophotometer. This procedure was repeated 20 times after etching the same sample each time for increasing time intervals till the stage when transmittance reached the constant minimum value. An exponential decay of the transmittance has been observed with respect to the increasing etching time interval in each of the samples exposed to various neutron fluence. Further, it has also been observed that there is a linear relationship between the transmittance decay constant and neutron fluence. Hence, the linear graph can be used as a calibration for measuring the unknown fluence of 14.0 MeV neutrons.

  18. Small-angle scattering from neutron-irradiated amorphous Pd80Si20

    International Nuclear Information System (INIS)

    Doi, K.; Kayano, H.; Masumoto, T.

    1978-01-01

    Small-angle scattering intensities were observed for amorphous Pd 80 Si 20 which was irradiated by fast neutrons to a fluence of 5 X 10 20 neutrons cm -2 . A broad hump was observed at 2 sin theta/lambda = 0.05 A -1 . The structure inhomogeneities produced by the neutron irradiation are discussed with the aid of the results of wide-angle scattering measurements. (Auth.)

  19. An estimation of fast neutron fluence on the KMRR core wall

    International Nuclear Information System (INIS)

    Lee, Byung-Chul; Lee, Ji-Bok; Kang, Chang-Soon.

    1991-01-01

    The fast neutron fluence (E > 1 MeV) hitting the KMRR core wall of zircaloy-4 was calculated using a two-dimensional discrete ordinates transport computer code DOT4.2. For the nuclear data base, 171 neutron groups of the DLC-41C/VITAMIN-C library were collapsed into 21 groups, of which the highest 8 groups had E > 1 MeV, using an one-dimensional discrete ordinates transport computer code ANISN. To construct a three-dimensional flux, a leakage correction factor was introduced for axial leakage treatment. The leakage correction factor was obtained from ANISN cylinder and DOT(r,z) calculations. The calculated fast neutron fluence was compared with that of the three-dimensional simulation using a Monte Carlo transport computer code MCNP. Assuming a 30-yr reactor lifetime with 80% capacity factor, the maximum fast neutron fluence on the KMRR core wall is expected to be 9.80 x 10 22 n/cm 2 . (author)

  20. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  1. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  2. Research Reactor Application for Materials under High Neutron Fluence. Proceedings of an IAEA Technical Meeting (TM-34779)

    International Nuclear Information System (INIS)

    2011-05-01

    Research reactors (RRs) have played, and continue to play, a key role in the development of the peaceful uses of nuclear energy and technology. The role of the IAEA is to assist Member States in the effective utilization of these technologies in various domains of research such as fundamental and applied science, industry, human health care and environmental studies, as well as nuclear energy applications. In particular, material testing reactors (MTRs), serve as unique tools in scientific and technological development and they have quite a wide variety of applications. Today, a large range of different RR designs exist when compared with power reactors and they also have different operating modes, producing high neutron fluxes, which may be steady or pulsed. Recently, an urgent need has arisen for the development of new advanced materials, for example in the nuclear industry, where RRs offer capacities for irradiation programmes. Besides the scientific and research activities and commercial applications, RRs are also used extensively for educational training activities for scientists and engineers. This report is a compilation of outputs of an IAEA Technical Meeting (TM-34779) held on Research Reactor Application for Materials under High Neutron Fluence. The overall objective of the meeting was to review typical applications of small and medium size RRs, such as material characterization and testing, neutron physics and beam research, neutron radiography and imaging as well as isotope production and other types of non-nuclear applications. Several issues were discussed during the meeting, in particular: (1) recent development of irradiation facilities, specific irradiation programmes and their implementation; (2) effective and optimal RR operation regimes for irradiation purposes; (3) sharing of best practices and existing technical knowledge; and (4) fostering of advanced or innovative technologies, e.g. information exchange and effective collaboration. This

  3. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  4. Change in properties of superconducting magnet materials by fusion neutron irradiation

    International Nuclear Information System (INIS)

    Nishimura, Arata; Nishijima, Shigehiro; Takeuchi, Takao; Nishitani, Takeo

    2007-01-01

    A fusion reactor will generate a lot of high energy neutron and much energy will be taken out of the neutrons by a blanket system. Since some neutrons will stream out of a plasma vacuum vessel through neutral beam injection ports and penetrate a blanket system, a superconducting magnet system, which provides high magnetic field to confirm high energy particles, will be irradiated by a certain amount of neutrons. By developing the new NBI system or by reducing the penetration, the neutron fluence to the superconducting magnet will be able to be reduced. However, it is not easy to achieve the lower streaming and penetration at the present. Therefore, investigations on irradiation behavior of superconducting magnet materials are desired and some novel researches have been performed from 1970s. In general, the critical current of the superconducting wire increases under fast neutron environment comparing with that of the non-irradiated wire, and then decreased to almost zero as an increase of neutron fluence. On the other hand, the critical temperature of the wire starts to get down around 10 22 n/m 2 of neutron fluence and the temperature margin will be decreased during the operation by the neutron irradiation. In this paper, some aspects of irradiated materials will be overviewed and general tendency will be discussed focussing on knock-on effect of fast neutron and long range ordering of A15 compounds

  5. Neutron fluence measurement in the cavity of Balakovo nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Baard, J.H.; Paardekooper, A.; Nolthenius, H.J.

    1996-12-01

    An international benchmark exercise has been organized by the Russian GOSATOMNADZOR. The aim was to reduce the uncertainty of fluence measurements in Nuclear Power Plants in particular VVER-1000 reactors. The benchmark was set up in the cavity of the Balakovo NPP 3. Eight institutes were involved. This report presents the results obtained by ECN. From this report, it can be concluded that the results of the relative large monitor set (13 different reaction rates with overlapping response regions) point to possible imperfections in the calculated neutron spectra. However the experimental information is not powerful enough to reduce the uncertainty of the neutron fluence rate especially in the energy region between 0.1 and 0.5 MeV below 50 percent. (orig.)

  6. Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.; Garcia, G.; Olivares, J.

    2005-01-01

    A thermal-spike model has been applied to characterize the damage structure of the latent tracks generated by high-energy ion irradiations on LiNbO 3 through electron excitation mechanisms. It applies to ions having electronic stopping powers both below and above the threshold value for lattice amorphization. The model allows to estimate the defect concentrations in the heavily damaged (preamorphized) regions that have not reached the threshold for amorphization. They include the halo and tail surrounding the core of a latent track. The existence of the preamorphized regions accounts for a synergy between successive irradiations and predicts a dependence of the amorphization threshold on previous irradiation fluence. The predicted dependence is in accordance with irradiation experiments using N (4.53 MeV), O (5.00 MeV), F (5.13 MeV), and Si (5 and 7.5 MeV). For electronic stopping powers above the threshold value the model describes the generation of homogeneous amorphous layers and predicts the propagation of the amorphization front with fluence. A theoretical expression, describing this propagation, has been obtained that is in reasonable agreement with silicon irradiation experiments at 5 and 7.5 MeV. The accordance is improved by including in a simple phenomenological way the velocity effect on the threshold. At the highest fluences (or depths) a significant discrepancy appears that may be attributed to the contribution of the nuclear collision damage

  7. Neutronic Modelling in Support of the Irradiation Programmes

    International Nuclear Information System (INIS)

    Koonen, E.

    2005-01-01

    Irradiation experiments are generally conducted to determine some specific characteristics of the concerned fuels and structural materials under well defined irradiation conditions. For the determination of the latter the BR2 division has an autonomous reactor physics cell and has implemented the required computational tools. The major tool used is a three-dimensional full-scale Monte Carlo model of the BR2 reactor developed under MCNP-4C for the simulation of irradiation conditions. The objectives of work performed by SCK-CEN are to evaluate and adjust irradiation conditions by adjustments of the environment, differential rod positions, axial and azimuthal positioning of the samples, global power level, ...; to deliver reliable, well defined irradiation condition and fluence data during and after irradiation; to assist the designer of new irradiation devices by simulations and neutronic optimisations of design options; to provide computational support to related projects as a way to valorise the capabilities that the BR2 reactor can offer

  8. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  9. Stability of the Hall sensors performance under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Hron, M.; Stockel, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Praha (Czech Republic); Viererbl, L.; Vsolak, R.; Cerva, V. [Nuclear Research Institute plc (Czech Republic); Bolshakova, I.; Holyaka, R. [Lviv Polytechnic National Univ. (Ukraine); Vayakis, G. [ITER International Team, Naka Joint Work Site, Naka, Ibaraki (Japan)

    2004-07-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10{sup 16} n/cm{sup 2} in IBR-2 reactor. Increasing the total neutron fluence up to 3.10{sup 17} n/cm{sup 2} resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  10. Evolution of the microstructure of a French reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.F.; Radiguet, B.; Pareige, P. [Groupe de physique des materiaux, UMR CNRS 6634, Universite et INSA de Rouen, avenue de l' Universite, 76801 Saint Etienne du Rouvray (France); Todeschini, P. [EDF, Materials and Mechanics of Component Department, Site des Renardieres-Ecuelles, 77818 Moret-sur-Loing cedex (France); Chas, G. [EDF, Production and Engineering Branch, CEIDRE/DLAB, CNPE de Chinon, BP 23, 37420 Avoine (France)

    2011-07-01

    The microstructure of a low copper French reactor pressure vessel steel, neutron irradiated within the frame of the EDF Surveillance Program of a production reactor, was characterised by atom probe tomography. Specimens were irradiated at low flux (2*10{sup 15} m{sup -2}/s), at 4 different fluences up to 7.6*10{sup 23} m{sup -2}. Atom Probe experiments have revealed the presence of roughly spherical clusters enriched in nickel, manganese, silicon and, in a lesser extent, phosphorus and copper at all irradiation fluences. The chemical composition of these clusters shows no evolution with fluence, as well as their diameter, close to 3 nm. On the contrary, their number density increases linearly with the neutron fluence. Continuous segregation of the elements found in the clusters is also observed along dislocation lines, with similar enrichments. (authors)

  11. The multifunction neutron irradiator (MNI)

    International Nuclear Information System (INIS)

    Zhou, Yongmao; Li, Shenzhi

    1994-01-01

    The Multifunction Neutron Irradiator (MNI) presented is a small-type neutron source reactor, for usage in the Boron Neutron Capture Therapy for human brain glioblastoma, Instrumental Neutron Activation Analysis (INAA), short-lived radioisotope production, and some fundamental researches. The reactor core is designed to have passive safety and the process control of the reactor operations is fully computerized. There are two operational modes: The routine operation mode with reactor power 20 ∼ 30 kW and flux 1 x 10 12 n · cm -2 · s -1 and the enhanced power operation mode for medical use. The irradiator can be located in a medical centre, research institute or university. 4 refs., 1 tab., 1 fig

  12. Results on neutron and gamma-ray irradiation of electrolytic tiltmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Fuentes, J.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high-precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, and neutrons, up to a maximum fluence of 1.5x10 14 cm -2 . The effect of the irradiation on their performance is discussed

  13. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  14. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  15. Neutron irradiation effects on plasma facing materials

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Roedig, M.; Snead, L.L.; Wu, C.H.

    2000-01-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed

  16. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  17. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  18. Effects of neutron irradiation on resistivity of reactor pressure vessel steel

    Science.gov (United States)

    Li, Chengliang; Shu, Guogang; Liu, Yi; Huang, Yili; Chen, Jun; Duan, Yuangang; Liu, Wei

    2018-02-01

    The embrittlement of reactor pressure vessel (RPV) steel owing to fast-neutron irradiation is one of its primary failure mechanisms. In this work, neutron irradiation tests were performed on an RPV steel at a high temperature (565 K) using a neutron irradiation test reactor. In addition, resistivity measurements were performed on the RPV steel both before and after irradiation in a hot laboratory using the four-probe method. The results showed that the resistivity of the RPV steel exhibits nonlinear behaviour with respect to the radiation fluence and that the nonlinearity becomes more pronounced with an increase in the radiation fluence. For instance, when the radiation fluence is 0.1540 dpa and the excitation current is increased from 0.2 mA to 200 mA, the resistivity of the RPV steel decreases by as much as 67.12%. During irradiation embrittlement, the resistivity increases with the fluence. When the radiation fluence is greater than 0.116 dpa, the increase in the resistivity accelerates. When the radiation fluence is less than 0.116 dpa and when an excitation current of 2 mA or 20 mA is used, the relationship between the resistivity and the radiation fluence for the RPV steel is a quadratic one, whereas that between the rate of change in the resistivity and the radiation fluence is a linear one. Thus, the resistivity of RPV steel can be used to characterise its degree of irradiation embrittlement, and resistivity measurements can be employed as a nondestructive evaluation technique for monitoring the degree of irradiation damage experienced by in-service RPV steel.

  19. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dalton, J.H.

    1978-01-01

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage [af

  20. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  1. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C. [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  2. Effects of neutron irradiation on a superconducting metallic glass

    International Nuclear Information System (INIS)

    Kramer, E.A.; Johnson, W.L.; Cline, C.

    1979-06-01

    The effects of fast neutron irradiation on a superconducting metallic glass (Mo 6 Ru 4 ) 82 B 18 have been studied. Following irradiation to a total fluence of 10 19 n/cm 2 , T/sub c/ increases from 6.05 K to 6.19 K, and the width of the transition decreases sharply. The density of the material decreases by 1.5%, and the x-ray scattering intensity maxima are broadened. An improvement in the ductility of the samples is observed which together with the other observations suggests the production of defects having atomic scale dimensions and characterized by excess volume

  3. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Richer, J.P. [IRSN, PRP-HOM, SDE, LMDN, 13115 Saint Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D. [CNRS/IN2P3-UJF-INPG, LPSC, 38000 Grenoble (France)

    2015-07-01

    reconstruction of neutron energy and fluence, simultaneously, at 27.2 keV in a continuous irradiation mode. (authors)

  4. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  5. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Science.gov (United States)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  6. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Energy Technology Data Exchange (ETDEWEB)

    Haušild, Petr, E-mail: petr.hausild@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Materna, Aleš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Kytka, Miloš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Nuclear Research Institut, ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec (Czech Republic)

    2015-04-15

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  7. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  8. Fast neutron fluence evaluation of the smart reactor pressure vessel by using the GEOSHIELD code

    International Nuclear Information System (INIS)

    Kim, K.Y.; Kim, K.S.; Kim, H.Y.; Lee, C.C.; Zee, S.Q.

    2007-01-01

    In Korea, the design of an advanced integral reactor system called SMART has been developed by KAERI to supply energy for seawater desalination as well as an electricity generation. A fast neutron fluence distribution at the SMART reactor pressure vessel was evaluated to confirm the integrity of the vessel by using the GEOSHIELD code. The GEOSHIELD code was developed by KAERI in order to prepare an input list including a geometry modeling of the DORT code and to process results from the DORT code output list. Results by a GEOSHIELD code processing and by a manual processing of the DORT show a good agreement. (author)

  9. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Tohru, E-mail: tobita.tohru@jaea.go.jp; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-15

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 10{sup 24} n/m{sup 2} at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic–plastic fracture toughness (J{sub Ic}) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low J{sub Ic} values at high temperatures.

  10. Effects of irradiation fluence and creep on fracture toughness of 347/348 stainless steel

    International Nuclear Information System (INIS)

    Haggag, F.M.; Server, W.L.; Reuter, W.G.; Beeston, J.M.

    1984-01-01

    The postirradiation fracture toughness of Type 347/348 stainless steel was investigated using 5.08-mm thick three-point bend specimens tested at 427 0 C. The J/sub Ic/ values were determined using the single-specimen unloading compliance technique in accordance with ASTM E 813-81. Equivalent values of plane strain fracture toughness, K/sub Ic/, were computed from experimentally determined J/sub Ic/ values for several fluence levels ranging from 2.3 to 4.8 x 10 22 n/cm 2 (E > 1.0 MeV) and for irradiation creep of 0.0, 0.6, 1.1, and 1.8%. The test matrix involved four variables: fluence, creep, helium content, and heat-to-heat variation. Results show that an interpolated trend exists, i.e., K/sub Ic/ decreases with increasing combinations of fluence, creep, and helium content. These results also suggest that irradiation creep has less effect on reducing K/sub Ic/ than has been suggested previously

  11. Neutron and γ-irradiation of bacteriophage M13 DNA

    International Nuclear Information System (INIS)

    Singh, S.P.; Lavin, M.F.; Cohen, D.; Dytlewski, N.; Houldsworth, J.

    1990-01-01

    We describe here the use of the Van de Graaff accelerator as a source of high energy neutrons for biological irradiation. Single-stranded bacteriophage M13 DNA was chosen as the system to determine the relative biological effectiveness of monoenergetic neutrons. A Standard Neutron Irradiation Facility (SNIF) was established using a 3 MV Van de Graaff accelerator. The 2 D (d,n) 3 He nuclear reaction was used to produce neutron fluxes of 3 x 10 8 cm -2 sec -1 yielding dose rates as high as 50 Gy h -1 . A detailed description of the neutron source, neutron fluence measurement, dose calculation and calibration are included. Exposure of single-stranded bacteriophage M13 DNA to 90 Gy of neutrons reduced survival to 0.18% of the unirradiated value. Five hundred Gy of γ-rays were required for the same level of killing, and RBE was estimated at 6 based on Do values. Determination of the extent of DNA damage after exposure to cleavage using gel electrophoresis, gave RBE values of 6-8 which was very similar to that observed for bacteriophage survival. The facility described here provides a reproducible source of high energy monoenergetic neutrons and dose levels suitable for experiments designed to measure DNA damage and effects on DNA synthesis. (author)

  12. Effects of fluence and fluence rate of proton irradiation upon magnetism in Fe{sub 65}Ni{sub 35} Invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Masafumi, E-mail: matsushita.masafumi.me@ehime-u.ac.jp [Department of Mechanical Engineering, Ehime University, 3-Bunkyocho, Matsuyama 790-8977 (Japan); Wada, Hideki [Department of Mechanical Engineering, Ehime University, 3-Bunkyocho, Matsuyama 790-8977 (Japan); Matsushima, Yasushi [Department of Physics, Okayama University, 2-naka-tsushima, Kitaku, Okayama 700-8530 (Japan)

    2015-11-15

    Curie temperature, T{sub C}, of the Fe-Ni Invar alloys increase due to irradiation with electron and some kinds of ions. In this study, proton irradiation effects upon magnetism in an Fe{sub 65}Ni{sub 35} alloy have been investigated. It is found that the increment of T{sub C,} ∆T{sub C}, increases with increasing fluence. The magnetic hysteresis curve of the alloy was found to be unaffected by irradiation. Comparing ∆T{sub C} and the calculated energy transfer from the ions to the sample, it seemed that ∆T{sub C} was found to be related to the number of vacancies formed in nuclear collision events. In addition, ∆T{sub C} was influenced by the fluence rate, i.e., the deposited energy per unit time. - Highlights: • Proton irradiation effect on T{sub C} of Fe{sub 65}Ni{sub 35} was investigated. • Increment of T{sub C}, ∆T{sub C}, was confirmed in ion passed through and stopped samples. • The relationships among ∆T{sub C} and the deposited energy and vacancies were discussed. • It was reasonable to consider that ∆T{sub C} was related to the number of vacancies. • ∆T{sub C} was influenced by fluence rate, i.e. the energy deposition rate.

  13. Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 °C

    Science.gov (United States)

    Cockeram, B. V.; Smith, R. W.; Leonard, K. J.; Byun, T. S.; Snead, L. L.

    2011-11-01

    Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 °C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 × 10 22 and 2.9 × 10 25 n/m 2 ( E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 × 10 25 n/m 2) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 × 10 23 and 1.1 × 10 24 n/m 2 was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower loop number density values than those generally reported in literature for irradiations at 260-326 °C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence.

  14. Small-angle neutron and X-ray scattering studies of supraatomic structure of synthetic quartz irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Lebedev, V.M.; Lebedev, V.T.; Orlov, S.P.; Golubkov, V.V.; Pevzner, B.Z.; Tolstikhin, I.N.

    2008-01-01

    Quartz nanostructures have been simulated for the investigation into diffusion of gases in the Earth crust. The nanostructure of synthetic quartz irradiated by fast neutrons with energy E n >0.1 MeV was studied by neutron and X-ray small-angle scattering. The range of neutron fluence is of 10 17 cm -2 up to 2x10 -2 0 cm -2 . In the irradiated samples the different kinds of defects such as point-like, extended linear (dislocations) and globular (size ∼100 nm, amorphous phase nuclei) were observed. The density of highly irradiated quartz (fluence 2x10 20 cm -2 ) is shown to decrease by 0.39 g/cm 2 and reach the magnitude of 2.260 g/cm 2 corresponding to 100% metamict phase. The first results of model structures helium saturation have been received [ru

  15. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    Science.gov (United States)

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  16. Simulation of Sark Current Increase in Si PIN Photodiode Induced by Neutron Irradiation

    International Nuclear Information System (INIS)

    Wang Zujun; Chen Wei; Zhang Yong; Tang Benqi; Xiao Zhigang; Huang Shaoyao; Liu Minbo; Liu Yinong

    2010-01-01

    The mechanism of dark current increase in Si PIN photodiode induced by neutron irradiation was analyzed. The device physics and neutron irradiation models were presented to simulate dark current in Si PIN photodiode by MEDICI software. The primary regularity of dark current increase in Si PIN photodiode was concluded by neutron irradiation with the energy of 1 MeV and at the fluence of 10 10 -10 14 cm -2 . The simulation results are in agreement with the experimental results from relevant literature. (authors)

  17. A constitutive equation of irradiation creep and swelling under neutron irradiation

    International Nuclear Information System (INIS)

    Murakami, Sumio; Mizuno, Mamoru; Okamoto, Toshiaki.

    1990-01-01

    A constitutive equation of irradiation creep for irradiated materials applicable to structural analyses in a multiaxial state of stress was developed. After reviewing microscopic mechanisms of irradiation creep and swelling, the relevant theories proposed from the view point of metallurgical physics and their applicability were discussed first. Then a constitutive model was developed by assuming that irradiation creep can be decomposed into irradiation-enhanced creep and irradiation-induced creep. By taking account of the SIPA (Stress Induced Preferential Absorption) mechanism, the irradiation-induced creep was represented by an isotropic tensor function of order one and zero with respect to stress, which is, at the same time, the function of neutron flux and neutron fluence. The volumetric part of the irradiation-induced creep was identified with swelling. The irradiation-enhanced creep was described by modifying Kachanov-Rabotnov creep damage theory by incorporating the effect of irradiation. Finally the irradiation creep and swelling of type 316 stainless steel at elevated temperatures were predicted by the proposed constitutive equation, and the numerical results were compared with the corresponding experimental results. (author)

  18. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi 990-9585 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-08-15

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  19. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Shtechman, A.; Cotler, C.; Dahan, S. [Nuclear Res. Center-Negev, Beer-Sheva (Israel); Talianker, M. [Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Science

    1998-01-01

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 x 10{sup 25} thermal neutrons/m{sup 2} (E < 0.625 eV). The temperature ranged between 41 and 52 C. The tensile specimens were then tensioned till fracture in an Instron tensiometer with strain rate of 2 x 10{sup -3} s{sup -1}. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52 C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation. (orig.). 23 refs.

  20. Mechanical testings on hydrurated Zr, Zry-4 and Zr-2.5 Nb under neutronic irradiation

    International Nuclear Information System (INIS)

    Vazquez, Carolina A.; Fortis, Ana M.

    2007-01-01

    In this work the measurements of irradiation hardening made on hydrurated and irradiated Zr and Zr alloys are presented. The irradiations were carried out in the RA-1 reactor at neutron fluences below those were the inhomogeneities of the deformation occur. It is observed an important difference in the mechanical behavior between the alloys according to the thermal treatments and the hydrogen contents. (author) [es

  1. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    Science.gov (United States)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50-70 °C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5 × 1025 m-2 to reach the total ion fluence of 1 × 1026 m-2 in order to investigate the near-surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate the irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near-surface (<5 µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near-surface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.3 dpa) at 500 °C cases even in the relatively low ion fluence of 1026 m-2.

  2. Dependence of the thermal neutron fluence at the size installations radiotherapy bunker; Dependencia de la fluencia termica de neutrones en el tamano del bunquer en instalaciones de radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Soto, X.; Amgarou, K.; Langares, J. L.; Exposito, M. R.; Gomez, F.; Domingo, C.; Sanchez-Doblado, F.

    2011-07-01

    The project aims to infer the dose deposited by neutrons in the patient treated by radiation therapy, from a measurement of the thermal neutron fluence at a selected point within the treatment room. These thermal neutrons are created when fast neutrons produced in the linac head are moderate, mainly in the walls of the bunker, and its yield depends on both the volume of the room and its geometry.

  3. Characterization of the New n_TOF Neutron Beam: Fluence, Profile and Resolution

    CERN Document Server

    Guerrero, C; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Variale, V; Quinones, J; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Goncalves, I F; Martin-Fuertes, F; Cerutti, F; Pina, G; Mosconi, M; Tagliente, G; Duran, I; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    After a halt of four years, the n\\_TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and efficient cooling. The first measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated fission chambers, the n\\_TOF Silicon Monitor, a MicroMegas detector with (10)B and (235)U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron fluence. The spatial profile of the beam has been studied with a specially designed ``X-Y{''} MicroMegas which provided a 2D image of the beam as a function of neutron energy. Both properties have been compared with simulations performed. with the FLUKA code. The characterization of the resolution function is based on results from simulations which have been verified by the study of narrow capture...

  4. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Science.gov (United States)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-10-01

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  5. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    Science.gov (United States)

    Lange, J.; Carulla, M.; Cavallaro, E.; Chytka, L.; Davis, P. M.; Flores, D.; Förster, F.; Grinstein, S.; Hidalgo, S.; Komarek, T.; Kramberger, G.; Mandić, I.; Merlos, A.; Nozka, L.; Pellegrini, G.; Quirion, D.; Sykora, T.

    2017-05-01

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 1015 neq/cm2. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 1015 neq/cm2, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  6. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  7. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  8. Neutron irradiation effects on in situ Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Hirano, Y.; Fukumoto, M.; Kodaka, H.; Nishijima, S.; Okada, T.; Yoshida, H.

    1985-01-01

    Three types of ''in situ'' Nb 3 Sn conductors have been studied to determine the detrimental effects of neutron irradiation on critical temperature, critical current and AC losses. It was found that at fluences of 10 18 n/cm 2 , the critical temperature is degraded by approximately 10%. Degradation of AC loss is discussed in comparison with that of critical current density

  9. Rare-gas analyses on neutron irradiated Apollo 12 samples.

    Science.gov (United States)

    Alexander, E. C., Jr.; Davis, P. K.; Reynolds, J. H.

    1972-01-01

    Argon, krypton, and xenon from stepwise heating of five Apollo 12 rocks that had been irradiated to a neutron fluence of about 10 to the 19th neutrons/sq cm were analyzed mass-spectrometrically. The Ar40-Ar39 ages were determined and range from 3.18 plus or minus 0.06 x 10 to the 9th years to 3.32 plus or minus 0.06 x 10 to the 9th years. Trace elements Ba, Br, I, and U were measured via the neutron-induced reactions that produce isotopes of krypton and xenon. The following concentration ranges were observed: Ba, 46 to 70 ppm; Br, 48 to 146 ppb; I, 16 to 73 ppb; and U, 170 to 247 ppb.

  10. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  11. Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation

    Science.gov (United States)

    Basha, Mohammad Ahmad-Fouad; Hassan, Mohamed Ahmed

    2018-05-01

    Blends of polyvinylpyrrolidone and gelatin were prepared in three different concentrations to study the modifications in their structural and optical properties induced by neutron irradiations with different neutron fluence values from 108 up to 1011 neutron/cm2. X-ray spectroscopy revealed that the irradiation has induced a recrystallization phenomenon in the studied blends and the crystallinity index increased by increasing the neutron fluence due to the breaking of the crystallites. Fourier-transform infrared spectroscopy came to confirm the existence of interactions between interchain groups and a higher compatibility for the irradiated blends. The irradiation induced defects inside the material were responsible for the change in their optical and structural properties. The creation of free radicals or ions inside the conduction bands has led to the increase in the number of carriers on localized states; this has caused the increase in optical conductivity of the irradiated blends as a result of decreasing the energy gaps by increasing the neutron fluence. Results may widen the applications of the gelatin based blends to include optoelectronic devices, organic light emitting devices, solar selective and anti-reflectance bio-coatings, optical organic glass and lenses.

  12. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  13. Simultaneous measurement of gamma-rays and neutron fluences using a HPGE detector

    International Nuclear Information System (INIS)

    Alfassi, Z.B.; Zlatin, T.; German, U.

    2006-01-01

    A simultaneous determination of gamma and neutron fluences in a mixed neutron + gamma field can be achieved by gamma-ray spectrometry, optimizing the moderator-converter-detector assembly and measuring both the direct gamma-lines and the neutron induced prompt gammas. For the prompt gamma-lines a combination of high efficiency and low background is the goal, and it can be best achieved if the gamma-energy is in the range above about 1 MeV up to 2.5 MeV. The optimal moderator-converter thickness can be determined experimentally. Most converter elements produce gamma-rays in the low energy range. If chlorine is used as a converter, the 1164.7 keV peak and the 1950-1960 keV peaks seems to be a good choice. A very practical material containing chlorine is PVC. It is an efficient moderator, it is solid, common, and can be handled easily. (author)

  14. Characterization of neutron irradiated, low-resistivity silicon detectors

    International Nuclear Information System (INIS)

    Angarano, M.M.; Bilei, G.M.; Ciampolini, P.P.; Giorgi, M.; Mihul, A.; Militaru, O.; Passeri, D.; Scorzoni, A.

    2002-01-01

    A complete electrical characterization of silicon detectors fabricated using low- (≅1.5 kΩ cm) and high- (>5 kΩ cm) resistivity substrates has been carried out. Measurements have been performed before and after neutron irradiation at several different fluences, up to 3x10 14 n cm -2 (1 MeV eq.). Experimental results have been compared with CAD-based simulations. A good agreement has been found, thus validating the CAD model predictions. The adoption of low-resistivity devices appears to have some definite advantages in terms of depletion voltage, which in turn results in better interstrip capacitance and interstrip resistance

  15. Characterization of neutron irradiated, low-resistivity silicon detectors

    CERN Document Server

    Angarano, M M; Giorgi, M; Bilei, G M; Mihul, A; Militaru, O; Passeri, D; Scorzoni, A

    2000-01-01

    A complete electrical characterization of silicon detectors fabricated using low-( ~ 1.5 kOhm cm) and high-( > 5 kOhm cm) resistivity substrates has been carried out. Measurements have been performed before and after neutron irradiation at several different fluences, up to 3x10^14 n cm^-2 ( 1 MeV eq.). Experimental results have been compared with CAD based simulations. A good agreement has been found, thus validating the CAD model predictions. The adoption of low resistivity devices appears to have some definite advantages in terms of depletion voltage, which in turn results in better interstrip resistance.

  16. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  17. Stress dependence of the critical currents in neutron irradiated (RE)BCO coated conductors

    Science.gov (United States)

    Emhofer, J.; Eisterer, M.; Weber, H. W.

    2013-03-01

    The application of HTS coated conductors in future fusion or accelerator magnets is currently of increasing interest. High Lorentz forces and therefore high hoop stresses act on the conductors in large coils. The conductor is furthermore exposed to neutron radiation in fusion or accelerator magnets. The expected neutron fluence over the desired lifetime of such magnets can be simulated by irradiation experiments in a fission reactor. The coated conductors were characterized in the pristine state and after irradiation to a fast neutron fluence of 1 × 1022 m-2 (ITER design fluence). The sensitivity of the critical currents to applied stress was measured in liquid nitrogen. The cold part of the setup was positioned within a rotatable split coil electro-magnet to assess the Ic-anisotropy up to 1.4 T under maximum Lorentz force configuration. The Ic-sensitivity to applied stress changed significantly in the GdBCO/IBAD conductor after irradiation, whereas nearly no change was observed in the YBCO/RABiTS conductor. Furthermore, Ic and Tc were strongly reduced in the GdBCO/IBAD sample after irradiation. The angular dependence of Ic changed for both samples in different ways after the irradiation, but no change in the angular dependence was observed upon applying stress. The high neutron capture cross-section of Gd and the resulting strong reduction of Tc seem to be responsible for the different stress dependences of Ic in irradiated Gd-123 coated conductors.

  18. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  19. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  20. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  1. Irradiation test of HAFM and tag gas samples at the standard neutron field of 'YAYOI'

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    1997-03-01

    To check the accuracy of helium accumulation neutron fluence monitors (HAFM) as new technique for fast reactor neutron dosimetry and the applicability of tag gas activation analysis to fast reactor failed fuel detection, their samples were irradiated at the standard neutron field of the fast neutron source reactor 'YAYOI' (Nuclear Engineering Research Laboratory, University of Tokyo). Since October in 1996, the HAFM samples such as 93% enriched boron (B) powders of 1 mg and natural B powders of 10 mg contained in vanadium (V) capsule were intermittently irradiated at the reactor core center (Glory hole: Gy) and/or under the leakage neutron field from the reactor core (Fast column: FC). In addition, new V capsules filled with enriched B of 40 mg and Be of 100 mg, respectively, were put into an experimental hole through the blanket surrounding the core. These neutron fields were monitored by the activation foils consisting of Fe, Co, Ni, Au, 235 U, 237 Np etc., mainly to confirm the results obtained from 1995's preliminary works. In particular, neutron flux distributions in the vicinity of irradiated samples were measured in more detail. At the end of March in 1997, the irradiated neutron fluence have reached the goal necessary to produce the detectable number of He atoms more than ∼10 13 in each HAFM sample. Six kinds of tag gas samples, which are the mixed gases of isotopically adjusted Xe and Kr contained in SUS capsules, were separately irradiated three times at Gy under the neutron fluence of ∼10 16 n/cm 2 in average. After irradiation, γ-ray spectra were measured for each sample. Depending on the composition of tag gas mixtures, the different patterns of γ-ray peak spectra from 79 Kr, 125 Xe, etc. produced through tag gas activation were able to be clearly identified. These experimental data will be very useful for the benchmark test of tag gas activation calculation applied to the fast reactor failed fuel detection. (author)

  2. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  3. Effect of neutron irradiation on Mo-Si amorphous alloys

    International Nuclear Information System (INIS)

    Ito, Fumitake; Hasegawa, Masayuki; Suzuki, Kenji; Honda, Toshihisa; Fukunaga, Toshiharu.

    1982-01-01

    The irradiation effects on Mo-Si amorphous alloys were investigated by means of X-ray diffraction and positron annihilation, and their electric resistance at low temperature was measured to examine the superconductivity of the alloys. The specimens of Mo 68 Si 32 and Mo 45 Si 55 were irradiated with the neutron fluence (E > 1 MeV) of about 9 x 10 18 n/cm 2 without temperature control in the Japanese Material Testing Reactor (JMTR). For these irradiated specimens, the X-ray diffraction experiment was performed to examine the irradiation effects on the radial distribution function, and the angular correlation curves for the positron annihilation were also measured. Both experiments showed that there was almost no irradiation effect. However, the width of the superconductive transition measured in Mo 68 Si 32 became extremely narrow due to neutron irradiation, and the transition temperature rose from 6.89 K to 7.03 K. On the other hand, in Mo 45 Si 55 , the width showed a tendency to become somewhat narrow, but the transition temperature shifted to the lower side. (Asami, T.)

  4. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  5. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Billy Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  6. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sprouster, D.J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.K.; Wells, P.; Stan, T.; Almirall, N.; Odette, G.R.; Ecker, L.E.

    2016-01-01

    Massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that grows with dose (fluence), as manifested by an increasing ductile-to-brittle fracture transition temperature. Extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with beyond 60 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize highly embrittling nm-scale Mn–Ni–Si precipitates that develop in the irradiated steels at high fluence. These precipitates lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementary techniques has, for the very first time, successfully identified the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  7. Neutron irradiation effects on AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Lü Ling; Zhang Jin-Cheng; Xue Jun-Shuai; Ma Xiao-Hua; Zhang Wei; Bi Zhi-Wei; Zhang Yue; Hao Yue

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 10 15 cm −2 . The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance—voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. There was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Neutron irradiation effects on AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Lü, Ling; Zhang, Jin-Cheng; Xue, Jun-Shuai; Ma, Xiao-Hua; Zhang, Wei; Bi, Zhi-Wei; Zhang, Yue; Hao, Yue

    2012-03-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 1015 cm-2. The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance—voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. There was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices.

  9. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor; Estimacion de la fluencia de neutrones rapidos en probetas de acero tipo Laguna Verde en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO{sub 3}) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10{sup 18} n/cm{sup 2}, which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  10. neutron spectrum parameters in two irradiation channels

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Jun 1, 2010 ... spectrum parameters in one inner and one outer irradiation channels were determined using the ... the determination of neutron flux parameters required .... Qo,i = Io/σo the ratio of resonance integral to thermal neutron capture cross section at neutron velocity of 2200 m/s for the ith monitor. Experimental.

  11. On the relation between strength properties of carbon materials and total porosity following neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Makarchenko, V.G.

    1981-01-01

    Correlation of compression strength and flexural strength and dynamic elastic modulus with the general porosity of carbon materials irradiated with neutrons is considered. The syntactic foam and fine-grain graphite on the base of non-calcinated oil coke with pitch binding have been used as samples for investigations. The irradiation is carried out by neutron fluence of 1.3x10 21 neutr/cm 2 . It is shown that the above correlation as well as in non-irradiated materials is approximated satisfactorily by the exponential equation. Besides the character of the interaction of filler grains between themselves and with the binding, has not changed [ru

  12. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [ORNL; Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Steinbeck, John [ORNL

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  13. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao, E-mail: shihc@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Katoh, Yutai, E-mail: katohy@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Snead, Lance L., E-mail: sneadll@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Steinbeck, John, E-mail: jws@psicorp.com [Physical Science Inc., Andover MA (United States)

    2013-08-15

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  14. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Science.gov (United States)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-08-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  15. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    International Nuclear Information System (INIS)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material

  16. Neutron fluence effects on SLOWPOKE-2 beryllium reflector composition and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Francesc, E-mail: fpuig@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Dennis, Haile, E-mail: haile.dennis02@uwimona.edu.jm [International Centre for Environmental and Nuclear Sciences, 2 Anguilla Close, University of the West Indies, Mona, Kingston 7 (Jamaica)

    2016-08-15

    Highlights: • SLOWPOKE-2 reflector composition evolution estimated using two different methods. • Reactivity effects of reflector composition changes calculated using MCNP5. • Impurities depletion dominates over poisons buildup, increasing reactivity. • Results contradict previously published behavior estimates for MNSR reactors. • Identified main factors explaining the observed prediction discrepancies. - Abstract: Within the scope of the conversion process from HEU to LEU of the Jamaican SLOWPOKE-2 reactor (JM-1), the effects of the neutron fluence on the beryllium reflector composition, and the corresponding effect on reactivity throughout the life of the reactor core, have been studied. Two different methods have been used and compared involving MCNP5, ORIGEN2.2, ORIGEN-S and COUPLE codes, reaching excellent agreement between them. The neutron flux profile and energy spectrum specific to the beryllium reflectors of this reactor design have been taken into account to analyze several scenarios, comprising both real and hypothetical conditions and involving different initial reflector compositions and reactor burnups. The analysis has been extended to provide estimates for the similar MNSR reactor design and compared with previously published predictions for the Syrian MNSR. The results show small overall reactivity effects in most cases, being dominated by impurity depletion as opposed to poison buildup, contrarily to what generally occurs in beryllium reflected reactors of far higher power and to MNSR predictions. The resulting reactivity increases are typically of less than 0.4 mk for usual impurity levels and maximum HEU core burnup achievable.

  17. Neutron fluence effects on SLOWPOKE-2 beryllium reflector composition and reactivity

    International Nuclear Information System (INIS)

    Puig, Francesc; Dennis, Haile

    2016-01-01

    Highlights: • SLOWPOKE-2 reflector composition evolution estimated using two different methods. • Reactivity effects of reflector composition changes calculated using MCNP5. • Impurities depletion dominates over poisons buildup, increasing reactivity. • Results contradict previously published behavior estimates for MNSR reactors. • Identified main factors explaining the observed prediction discrepancies. - Abstract: Within the scope of the conversion process from HEU to LEU of the Jamaican SLOWPOKE-2 reactor (JM-1), the effects of the neutron fluence on the beryllium reflector composition, and the corresponding effect on reactivity throughout the life of the reactor core, have been studied. Two different methods have been used and compared involving MCNP5, ORIGEN2.2, ORIGEN-S and COUPLE codes, reaching excellent agreement between them. The neutron flux profile and energy spectrum specific to the beryllium reflectors of this reactor design have been taken into account to analyze several scenarios, comprising both real and hypothetical conditions and involving different initial reflector compositions and reactor burnups. The analysis has been extended to provide estimates for the similar MNSR reactor design and compared with previously published predictions for the Syrian MNSR. The results show small overall reactivity effects in most cases, being dominated by impurity depletion as opposed to poison buildup, contrarily to what generally occurs in beryllium reflected reactors of far higher power and to MNSR predictions. The resulting reactivity increases are typically of less than 0.4 mk for usual impurity levels and maximum HEU core burnup achievable.

  18. Measurements on HV-CMOS Active Sensors After Irradiation to HL-LHC fluences

    CERN Document Server

    Ristic, B

    2015-01-01

    During the long shutdown (LS) 3 beginning 2022 the LHC will be upgraded for higher luminosities pushing the limits especially for the inner tracking detectors of the LHC experiments. In order to cope with the increased particle rate and radiation levels the ATLAS Inner Detector will be completely replaced by a purely silicon based one. Novel sensors based on HV-CMOS processes prove to be good candidates in terms of spatial resolution and radiation hardness. In this paper measurements conducted on prototypes built in the AMS H18 HV-CMOS process and irradiated to fluences of up to $2\\cdot10^{16}\\,\\text{n}_\\text{eq}\\text{cm}^{-2}$ are presented.

  19. Studies of neutron irradiation of avalanche photodiodes using sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Musienko, Y; Ruuska, D; Swain, J D

    2000-01-01

    Results on the radiation hardness of photodiodes to fast neutrons are presented. Four photodiodes (three avalanche photodiodes from two manufacturers, and one PIN photodiode) were exposed to neutrons from a sup 2 sup 5 sup 2 Cf source at Oak Ridge National Laboratory. The effects of this radiation on many parameters such as gain, intrinsic dark current, quantum efficiency, noise, capacitance, and voltage and temperature coefficients of the gain for these devices for fluences up to approx 2x10 sup 1 sup 3 neutrons/cm sup 2 are shown and discussed. While degradation of APDs occurred during neutron irradiation, they remained photosensitive devices with gain.

  20. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  1. Study on neutron irradiation behavior of beryllium as neutron multiplier

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo

    1998-01-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  2. Effect of neutron irradiation on response of reinforced concrete members for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoungsoo; Kim, Hyung-Tae [Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kwon, Tae-Hyun, E-mail: taekwonkr@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Eunsoo [Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791 (Korea, Republic of)

    2016-12-15

    Highlights: • Effects of long-term irradiation on reinforced concrete (RC) structures were investigated. • Responses of irradiated RC members were numerically investigated in terms of ductility. • Results demonstrated that energy dissipation capacity decreased under radiation environment. • Level of neutron radiation could be critical for RC structures during operation. - Abstract: In this study, the effects of long-term irradiation on the behaviors of reinforced concrete (RC) members were investigated to obtain a better understanding of the behaviors of RC structures under an irradiation environment, which include the biological shield walls and reactor vessel support structures of nuclear power plants (NPPs). The behaviors of three RC members were examined (a beam, beam-column section, and column under cyclic loading) by considering the changes in the constituent material properties due to neutron irradiation. The load capacity generally increases for a tension failure member with an increase in neutron irradiation because neutron irradiation increases the yield stress of reinforcing steel. However, the load capacity of a compression failure member decreases with a decrease in the compressive strength of concrete when the fluence of neutron radiation increases. Additionally, RC member analysis results demonstrate that the energy dissipation capacity, which is a critical factor in seismic design, decreases significantly when the fluence of neutron radiation is greater than 1.0 × 10{sup 17} n/cm{sup 2}. Therefore, the level of neutron irradiation could be critical for RC structures over the long-term operation of NPPs, and thus the effects of neutron irradiation on RC structures should be considered as age-related damage.

  3. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  4. Neutron irradiation breeding of antibiotics and orange

    International Nuclear Information System (INIS)

    Zhang Bufa; Lin Xuefeng; Zhang Jiafu

    1985-01-01

    14 MeV neutron beam was used to irradiate gentamycin, medemycin and orange. The yield antibiotics increased by 3% to 20% after irradiation; by irradiation of orange seed, pollen and branch improvement of rate of germination, fruit seed number and scion survival rate were observed and a number of new variety were developed by mutation

  5. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  6. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  7. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    International Nuclear Information System (INIS)

    Chen, J.; Wang, Z.; Rong, C.; Lovestam, G.; Plompen, A.; Puglisi, N.; Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S.; Kudo, K.; Uritani, A.; Harano, H.; Takeda, N.; Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P.; Moisseev, N.N.; Kharitonov, I.A.; Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D.

    2007-01-01

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  8. Effects of high temperature neutron irradiation on the physical, chemical and mechanical properties of fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Matsuo, H.; Nomura, S.; Imai, H.; Oku, T.; Eto, M.

    1987-01-01

    Effects of neutron irradiation on the dimensional change, coefficient of thermal expansion(CTE), thermal conductivity, corrosion rate, Young's modulus and strengths were studied for the candidate graphite material IG-110 of the experimental very high temperature gas-cooled reactor(VHTR) after irradiation at 585 - 1273 deg C to neutron fluences of up to about 3 x 10 25 n/m 2 (E > 29 fJ) in the JMTR and JRR-2, and to about 7 x 10 25 n/m 2 (E > 29 fJ) in the HFR. The results were compared with the irradiation behaviors of other graphites. Dimensional shrinkage was observed in the whole irradiation temperature range, showing lower value than 2 %. The shrinkage rate showed the minimum in the irradiation temperature of around 850 deg C, followed by the increase for the samples irradiated at higher temperatures. The dimensional stability of the material was clarified to be almost the same with that of H451 graphite. The CTE, thermal resistivity and Young's modulus increased in the early stage of irradiation and then only the CTE decreased while the thermal resistivity and Young's modulus levelled off with further irradiation. The neutron fluence showing the maximum CTE shifted to the lower fluence with increasing irradiation temperature. The increases of both thermal resistivity and Young's modulus were remarkable for the samples irradiated at lower temperatures. Compressive and bending strengths measured at room temperature increased after irradiation as well. The corrosion rate with water-vapor of 0.65 % in helium at high temperatures decreased owing to irradiation and the reduction was independent of irradiation temperature and neutron fluence. The activation energy for the reaction was estimated to be the same before and after irradiation. (author)

  9. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-08-01

    The objective of this effort is to determine whether MgAl 2 O 4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl 2 O 4 spinel single crystals irradiated to high neutron fluences [>5·10 26 n/m 2 (E n > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg 2+ ions on tetrahedral sites and Al 3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg 2+ and Al 3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  10. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  11. Measurement of AC electrical conductivity of single crystal Al2O3 during spallation-neutron irradiation

    International Nuclear Information System (INIS)

    Kennedy, J.C. III; Farnum, E.H.; Sommer, W.F.; Clinard, F.W. Jr.

    1993-01-01

    Samples of single crystal Al 2 O 3 , commonly known as sapphire, and polycrystalline Al 2 O 3 were irradiated with spallation neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) under various temperature conditions and with a continuously applied alternating electric field. This paper describes the results of measurements on the sapphire samples. Neutron fluence and flux values are estimated values pending recovery and analysis of dosimetry packages. The conductivity increased approximately with the square root of the neutron flux at fluences less than 3 x 10 21 n/m 2 . The increase in conductivity reached saturated levels as high as 2 x 10 -2 (ohm-m) -1 at fluences as low as 2 x 10 22 n/m 2 . Frequency swept impedance measurements indicated a change in the electrical properties from capacitive to resistive behavior with increasing fluence

  12. The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers

    Science.gov (United States)

    Fischer, D. X.; Prokopec, R.; Emhofer, J.; Eisterer, M.

    2018-04-01

    Superconductors are essential components of future fusion power plants. The magnet coils responsible for producing the field required for confining the fusion plasma are exposed to considerable neutron radiation. This makes irradiation studies necessary for understanding the radiation response of the superconductor. High temperature superconductors are promising candidates as magnet coil materials. YBCO and GdBCO tapes of several manufacturers were irradiated to fast neutron fluences of up to 3.9 × 1022 m-2 in the research reactor at the Atominstitut. Low energy neutrons contribute to the fission reactor spectrum but not to the expected spectrum at the fusion magnets. Low energy neutrons have to be shielded in irradiation experiments to avoid their substantial effect on the superconducting properties of tapes containing gadolinium. The critical current (I c) of the tapes in this study was examined at fields of up to 15 T and down to a temperature of 30 K. I c first increases upon irradiation and reaches a maximum at a certain fluence, which depends highly on temperature, being highest at low temperature. I c declines at high fluences and eventually degrades with respect to its initial value. Tapes with artificial pinning centers (APCs) degrade at lower fluences than tapes without them. The n-values decrease in all types of tapes after irradiation even when the critical currents are increased. The field dependence of the volume pinning force differs in pristine tapes with and without APCs but shows the same behavior after irradiation.

  13. Performance of n-in-p pixel detectors irradiated at fluences up to $5x10^{15} n_{eq}/cm^{2}$ for the future ATLAS upgrades

    CERN Document Server

    INSPIRE-00219560; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first result...

  14. Electrical resistivity of fast neutron irradiated bismuth

    International Nuclear Information System (INIS)

    Quelard, G.

    1975-01-01

    The production and recovery of fast neutron radiation damage in bismuth, at 20K has been studied by means of electrical resistivity. Results are independent of crystallographic orientation and indicate a creation of carriers during irradiation [fr

  15. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  16. Irradiation hardening of pure tungsten exposed to neutron irradiation

    Science.gov (United States)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-11-01

    Pure tungsten samples have been neutron irradiated in HFIR at 90-850 °C to 0.03-2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (0.6 dpa). The precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  17. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  18. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  19. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  20. Contribution to the prompt fission neutron spectrum modeling. Uncertainty propagation on a vessel fluence calculation

    International Nuclear Information System (INIS)

    Berge, Leonie

    2015-01-01

    these uncertainties on the calculated spectrum, and obtaining realistic uncertainties without having to artificially raise them, as it is sometimes necessary in Bayesian adjustments. The experimental uncertainty propagation also impacts the spectrum correlation matrix. We present the result for thermal neutron-induced fission of 235 U and 239 Pu. For the Madland-Nix model with constant inverse cross-section, the prompt neutron mean energy is 1.979 MeV for 235 U and 2.087 MeV for 239 Pu. The last aspect of this work is the calculation of the impact of the PFNS and its covariance matrix on a reactor vessel flux. This calculation is of major importance, since the vessel fluence estimation determines the vessel integrity, and therefore determines the reactor lifetime. We observe the importance of the PFNS correlation terms, to compute in particular the vessel flux uncertainty above 1 MeV, which is of the order of 6% (uncertainty only due to PFNS). (author) [fr

  1. Neutron irradiation of sputtered NbN films

    International Nuclear Information System (INIS)

    Weber, H.W.; Gregshammer, P.; Gray, K.E.; Kampwirth, R.T.

    1989-01-01

    In addition to the excellent high-field superconducting properties of NbN, it is the strain and radiation tolerance, measured in bulk NbN, which makes the material so attractive for large high-field magnets, especially for fusion applications. The authors report neutron irradiation experiments on sputtered NbN films, up to a fluence of 10/sup 23/ m/sup -2/ (E > 0.1 MeV), which prove that NbN films are also extremely radiation-hard high-field superconductors. Both the transition temperatures, T/sub c/, and the normal state resistivities show only small changes with neutron fluence. Concerning the critical current densities, j/sub c/, degradations by as much as 30% are observed at low fields, whereas in an intermediate field range (11-15 T) virtually no change of j/sub c/ and at high fields near 20 T even an increase of j/sub c/ are found. The latter observation is ascribed to a radiation-induced increase of the upper critical field, B/sub c2/, and to the occurence of peak effects near B/sub c2/

  2. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  3. Spallation and 14-MeV neutron irradiation of stabilized NbTi superconductors

    International Nuclear Information System (INIS)

    Hahn, P.; Brown, B.S.; Weber, H.W.; Guinan, M.W.

    1983-08-01

    The results on 5 K irradiation available so far may be summarized as follows. (1) Increases of j/sub c/ following neutron irradiation occur only in conductors which are far from the optimal metallurgical treatments. (2) The changes of j/sub c/ following neutron irradiation and a thermal cycle to room temperature are small and in most cases comparable to the results obtained after 77 K irradiation. (3) The data available so far indicate that the degradation of j/sub c/ at 8 T is larger by about 5 to 10% than the corresponding changes at 5 T at a neutron fluence of 1.3 x 10 22 m -2 (E > 0.1 MeV). (4) The increase of Cu-resistivity is significant even after a thermal cycle to room temperature and requires design changes for a stable magnet operation

  4. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    Science.gov (United States)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  5. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  6. Three-dimensional Monte Carlo calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement and comparisons with measurements

    International Nuclear Information System (INIS)

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties

  7. Absorption and photoluminescence study of Al 2O 3 single crystal irradiated with fast neutrons

    Science.gov (United States)

    Izerrouken, M.; Benyahia, T.

    2010-10-01

    Colour centers formation in Al 2O 3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation's were performed at 40 °C, up to fast neutron ( E n > 1.2 MeV) fluence of 1.4 × 10 18 n cm -2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F + center starts to aggregate to F center clusters (F 2, F 2+ and F22+). These aggregates disappear completely above 650 °C whereas the F and F + centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F 2 center and interstitial Ali+ ions.

  8. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  9. A neutron irradiator applied to cancer treatment

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Andrade, Ana P. de

    2000-01-01

    Cancer and the way of treating it with neutron capture therapy are addressed. This paper discusses also the type of neutron facilities used to treat cancer around the world, as follow: discrete neutron sources, accelerators, and nuclear reactors. The major features of an epithermal neutron irradiation facility applied to BNCT treatment are addressed. The main goal is to give another choice of neutron irradiators to be set in a hospital. The irradiation facility embeds a set of 252 Cf neutron source coupled with a homogeneous mixture of uranium-zirconium hydride alloy containing 8.4 wt % uranium enriched to 20% U 235 . The facility delivers an epithermal neutron beam with low background of fast neutron and gamma rays. The N particle transport code (MCNP-4A) has been used during the simulation in order to achieve the desired configurations and to estimate the multiplication factor, k eff . The present facility loaded with 30 mg of 252 Cf neutron source generates an external beam with an intensity of 10 7 n/cm 2 .s on the spectrum of 4 eV to 40 KeV. The 252 Cf - facility coupled with fissile material was able to amplify the epithermal flux to 10 8 n/cm 2 .s, maintaining the figure-of-merits represented by the ratios of the fast dose and gamma dose in air per epithermal neutron flux closed to those values presented by BMRR, MITR-II and Petten Reactor. The medical irradiation facility loaded with 252 Cf- 235 U can be a choice for BNCT. (author)

  10. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  11. Influence of neutron irradiation at 550C on the properties of austenitic stainless steels

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Maziasz, P.J.

    1981-01-01

    Types 316 and 316 + 0.23 wt % Ti stainless steels and 16-8-2 weldment were irradiated in HFIR at 55 0 C to fluences up to 1.35 x 10 26 neutrons/m 2 ( 0 C strength properties, with the weldments the weakest of the materials. The ductility of all materials was reduced by the irradiation, the uniform elongation to only 0.4% in the cold-worked material. Tests at temperatures above the irradiation temperature showed an approach to unirradiated properties as the temperature was increased from 200 to 600 0 C. Helium embrittlement at 700 0 C severely reduced elongation

  12. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  13. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  14. Neutronics analysis of International Fusion Material Irradiation Facility (IFMIF). Japanese contributions

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji; Kosako, Kazuaki.

    1997-10-01

    In fusion reactor development for demonstration reactor, i.e., DEMO, materials tolerable for D-T neutron irradiation are absolutely required for both mechanical and safety point of views. For this requirement, several kinds of low activation materials were proposed. However, experimental data by actual D-T fusion neutron irradiation have not existed so far because of lack of fusion neutron irradiation facility, except fundamental radiation damage studies at very low neutron fluence. Therefore such a facility has been strongly requested. According to agreement of need for such a facility among the international parties, a conceptual design activity (CDA) of International Fusion Material Irradiation Facility (IFMIF) has been carried out under the frame work of the IEA-Implementing Agreement. In the activity, a neutronics analysis on irradiation field optimization in the IFMIF test cell was performed in three parties, Japan, US and EU. As the Japanese contribution, the present paper describes a neutron source term as well as incident deuteron beam angle optimization of two beam geometry, beam shape (foot print) optimization, and dpa, gas production and heating estimation inside various material loading Module, including a sensitivity analysis of source term uncertainty to the estimated irradiation parameters. (author)

  15. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration

    International Nuclear Information System (INIS)

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Zheng, Jisi; Liu, Bo

    2014-01-01

    Highlights: • The removal of naphthalene follows first order kinetics in seawater. • Irradiance and temperature are the most influential factors. • An increase in irradiance can linearly promote photodegradation. • High salinity suppresses the photodegradation of naphthalene. - Abstract: A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries

  16. Influence of neutron irradiation on magnetic field sensors

    CERN Document Server

    Karpukhin, A V; Makoveev, V K; Zamiatin, N I; Bolshakova, I A; Bolshakov, M M; Matkovski, A O; Moskovets, T A

    2000-01-01

    Parameters of modern experimental set-ups depend on the precision of the magnetic field monitoring under real experimental conditions. As a rule, the conditions of modern experiments (ATLAS, CMS, ALICE, LHC- B) have their special requirements to radiation hardness of the magnetometric apparatus. Specialized magnetic-calibration stands have been manufactured to investigate magnetic field sensors for radiation hardness at the Joint Institute for Nuclear Research (JINR) and at the State University "Lviv Politechnic" (SULP). Characteristics of different magnetic field sensors were studied before and after exposure. The sensors were irradiated at the IBR-2 reactor, JINR, by fast neutrons with the mean energy =1.35 MeV up to the fluence of 10/sup 19/ n/m/sup 2/. (3 refs).

  17. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  18. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  19. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, D. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: david.bravo@uam.es; Lagomacini, J.C. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, M.; Martin, P. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, A. [Department Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, F.J. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Ibarra, A. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain)

    2009-06-15

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 fused silica irradiated with neutrons at fluences 10{sup 21} and 10{sup 22} n/m{sup 2}, and gamma-ray doses up to 12 MGy. The effects of post-irradiation thermal annealing treatments, up to 850 deg. C, have also been investigated. Paramagnetic oxygen-related defects (POR and NBOHC) and E'-type defects have been identified and their concentration has been measured as a function of neutron fluence, gamma dose and post-irradiation annealing temperature. It is found that neutrons at the highest fluence generate a much higher concentration of defects (mainly E' and POR, both at concentrations about 5 x 10{sup 18} spins/cm{sup 3}) than gamma irradiations at the highest dose (mainly E' at a concentration about 4 x 10{sup 17} spins/cm{sup 3}). Moreover, for gamma-irradiated samples a lower treatment temperature (about 400 deg. C) is required to annihilate most of the observed defects than for neutron-irradiated ones (about 600 deg. C)

  20. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  1. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  2. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  3. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  4. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  5. Effects of the neutronic irradiation on the impact tests. Efectos de la irradiacion neutronica sobre los ensayos de resiliencia

    Energy Technology Data Exchange (ETDEWEB)

    Lapea, J.; Perosanz, F.J.; Hernandez, M.T.

    1993-01-01

    The changes that the Charpy curves suffer when steel is exposed to neutronic fluence are studied. Three steels with different chemical composition were chosen, two of them (JPF and JPJ) being treated at only one neutronic fluence, while the last one (JRQ) was irradiated at three fluences. In this way, it was possible to compare the effect of increasing the neutronic dose, and to study the experimental results as a function of the steel chemical composition. Two characteristic facts have been observed: the displacement of the curve at higher temperatures, and decrease of the upper shelf energy (USE). The mechanical recovery of the materials after two different thermal treatments is also described, and a comparation between the experimental results obtained and the damage prediction formulas given by different regulatory international organisms in the nuclear field is established. Author. 11 refs.

  6. Neutron irradiation effects on graphite cloth

    International Nuclear Information System (INIS)

    Gray, W.J.

    1976-01-01

    A series of cloth and fiber samples has been irradiated to fluences of 3.5, 7.3, and 10 x 10 21 cm -2 EFF* at 470 0 C. Data from the first set of samples show large shrinkages relative to that found for typical nuclear graphites. Nevertheless, all but one of the 2-dimensional cloths were unchanged except for the shrinkage. The 3-dimensional cloths, on the other hand, have deteriorated apparently because these types of weaves are less able to accommodate the large axial fiber shrinkages

  7. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  8. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    International Nuclear Information System (INIS)

    Regan, Thomas M.; Harris, Daniel C.; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D.

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10 22 /m 2 increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of ∼2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation

  9. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    International Nuclear Information System (INIS)

    Tanimura, Y.; Iida, T.

    1998-01-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector. (orig.)

  10. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    Science.gov (United States)

    Tanimura, Yoshihiko; Iida, Toshiyuki

    1998-10-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector.

  11. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  12. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Science.gov (United States)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm2 to 1 mJ/cm2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  13. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-01-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm 2 to 1 mJ/cm 2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  14. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cucci, Costanza [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy); Fornacelli, Cristina [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Gomoiu, Ioana [National University of Art, Bucharest (Romania); Lognoli, David [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Mohanu, Dan [National University of Art, Bucharest (Romania); Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy)

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm{sup 2} to 1 mJ/cm{sup 2} and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  15. Annealing of neutron damage in graphite irradiated and stored at room temperature

    International Nuclear Information System (INIS)

    Gray, W.J.; Thrower, P.A.

    1979-01-01

    Annealing of neutron radiation damage in graphite at the same temperature at which it was irradiated is reported. Highly oriented pyrolytic graphite samples were irradiated to fluences in the range 0.44 to 153 x 10 15 /cm 2 at room temperature using three different neutron sources with average energies of 1.5, 5.5, and 15 MeV, respectively. Following these irradiations, the C 44 elastic constants of the samples were measured several times over periods up to two years during which time sample temperatures never exceeded 30 0 C. The C 44 constants were observed to slowly decrease toward their unirradiated values with up to 40% of the irradiation-induced changes eventually annealing out

  16. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  17. Flux dependence of cluster formation in neutron-irradiated weld material

    International Nuclear Information System (INIS)

    Bergner, F; Ulbricht, A; Hein, H; Kammel, M

    2008-01-01

    The effect of neutron flux on the formation of irradiation-induced clusters in reactor pressure vessel (RPV) steels is an unresolved issue. Small-angle neutron scattering was measured for a neutron-irradiated RPV weld material containing 0.22 wt% impurity Cu. The experiment was focused on the influence of neutron flux on the formation of irradiation-induced clusters at fixed fluence. The aim was to separate and tentatively interpret the effect of flux on the characteristics of the cluster size distribution. We have observed a pronounced effect of neutron flux on cluster size, whereas the total volume fraction of irradiation-induced clusters is insensitive to the level of flux. The result is compatible with a rate theory model according to which the range of applied fluxes covers the transition from a flux-independent regime at lower fluxes to a regime of decelerating cluster growth. The results are confronted with measured irradiation-induced changes of mechanical properties. Despite the observed flux effect on cluster size, both yield stress increase and transition temperature shift turned out to be independent of flux. This is in agreement with the volume fraction of irradiation-induced clusters being insensitive to the level of flux

  18. The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Gorokhov, V.A.; Vlasov, V.V.; Kovalev, A.M.; Chakin, V.P.

    2004-01-01

    The effect of neutron irradiation condition on tritium release from beryllium is described in this paper. Beryllium samples were irradiated in the SM reactor with neutron fluence (E > 0.1 MeV) of (0.37-2.0) x 10 22 cm -2 at 70-100degC and 650-700degC. Mass-spectrometer technique was used in out of tritium release experiments during stepped-temperature anneal within a temperature range from 250 to 1300degC. The total amount of helium accumulated in irradiated beryllium samples varied from 521 appm to 3061 appm. The first signs of tritium release were detected at temperature of 406-553degC. It was shown that irradiation temperature and helium generation level significantly affect the tritium release. A fraction of 44 - 74 % of tritium content in samples irradiated at low temperature (70 - 100degC) is release from beryllium at an annealing temperature below 800degC, whereas for samples after high temperature irradiation (650 - 700 degC) tritium release did not exceed 14 %. Majority of tritium (∼68%) is released within a temperature range from 800 to 920 degC. The increase of helium generation from 521 appm to 3061 appm results in lowering the temperature of maximal tritium release rate and the upper temperature of tritium release from beryllium by 100-130degC and 200-240degC, correspondingly. On the basis of data obtained, the diffusion coefficients of tritium in beryllium were calculated. (author)

  19. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  20. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  1. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.

    Science.gov (United States)

    Olsher, R H; McLean, T D; Justus, A L; Devine, R T; Gadd, M S

    2010-03-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations 20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks slab phantom.

  2. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  3. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  4. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1984-05-01

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb 3 Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 10 9 n/cm 2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 10 18 n/cm 2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb 3 Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.) [de

  5. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  6. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  7. Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti

    International Nuclear Information System (INIS)

    Umm-i-Kalsoom; Ali, Nisar; Husinsky, Wolfgang; Nathala, Chandra S R; Bashir, Shazia; Shahid Rafique, M; Makarov, Sergey V; Begum, Narjis

    2016-01-01

    Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum and O 2 ) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the O 2 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano and micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to O 2 . Furthermore, the O 2 environment reduces the ablation threshold. XRD data reveal that for the O 2 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (Al) is reduced. The irradiation in the O 2 environment results in 15% atomic diffusion of oxygen. (paper)

  8. Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Li, Meimei; Snead, L.L.

    2008-01-01

    Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 +/- 10 degrees C. Neutron fluences ranged from 2 x 10(21) to 8 x 10......(24) n/m(2) (E > 0.1 MeV), corresponding to displacement damage levels in the range from 7.2 x 10(-5) to 2.8 x 10(-1) displacements per atom (dpa). A high density of submicroscopic cavities was observed in the neutron-irradiated Mo and their size distributions were estimated. Cavities were detected even...... at a very low-dose of similar to 10(-4) dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo...

  9. Low-temperature irradiation of niobium with 15-MeV neutrons

    International Nuclear Information System (INIS)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Sekula, S.T.

    1978-01-01

    Niobium was irradiated at 4.2 K with high energy d-Be neutrons to a fluence of 3.7x10 15 n/cm 2 . The neutrons were generated at the Oak Ridge Isochronous Cyclotron by the breakup reaction of 40-MeV deuterons in a thick Be target. The resulting neutron energy spectrum was broadly peaked near 15 MeV. The 0.012-cm-diameter wire sample (RRR=200) was situated in a uniform transverse magnetic field. The critical current, flux flow resistance, and normal state resistance were measured by using a standard four-terminal technique. The critical current density and the flux flow resistivity were observed to increase with irradiation and to decrease toward the preirradiation values with subsequent isochronal annealing between 4.2 K and 360 K. Using recent theories of flux line lattice deformation, the elementary pinning force is deduced and the result is compared to theoretical calculations. (Auth.)

  10. Changes in Mechanical Properties of SA508 Gr.4N Model Alloys with Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The mechanical properties and irradiation embrittlement behavior of SA508 Gr.4N low alloy steel were evaluated. The yield strength and tensile strength were increased with an increase in fluence level, but there is no drastic increase in strength. A significant increase in the transition temperature shifts from the Charpy impact test and fracture toughness test was not observed in SA508 Gr.4N model alloy. The overall irradiation embrittlement behavior of SA508 Gr.4N low alloy steel is almost similar to that of SA508 Gr.3 low alloy steel, and an increase in Ni content by a few percentage points in SA508 Gr.4N model alloys compared to SA508 Gr.3 low alloy steel did not result in an increased embrittlement of these alloys. The yield strength was increased with an increase in the neutron fluence level, and the amount of strength increase was comparable to commercial SA508 Gr.3 low alloy steel.

  11. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  12. Neutron irradiation of rat embryos in utero

    International Nuclear Information System (INIS)

    Vogel, H.H. Jr.

    1978-01-01

    In the rat radiation is most effective in producing congenital anomalies during the organ-forming period (days 9 to 13), which is approximately equivalent to the 14th to 50th days of human pregnancy. We have exposed female Sprague--Dawley rats on the 18th day of pregnancy to single whole-body doses of fission neutrons (20 to 150 rads). After 20 rads there was a small decrease in body weight which lasted from birth to weaning. During this period 9% of the irradiated rats died compared with 4% of the controls. After 50 rads, 65/275 (23.6%) of the rats died between birth and weaning, and the body-weight loss of the survivors was increased. After 100 rads, 62/133 (47%) died at birth or day 1 and 103/133 (77.4%) died before weaning. A large and significant decrease in body weight persisted in the survivors. After 150 rads of fission neutrons, all 95 rats died within 48 hr of birth. From cross-fostering experiments, we believe this is a direct effect of radiation on the embryos and not an indirect action through the mother or her milk. The LD 50 for the period from birth to weaning is approximately 75 rads of fission neutrons. Studies of organ weight were conducted daily for the first week after birth in an attempt to find the cause of radiation mortality. Body weight of the irradiated animals averaged only about one-half that of the controls. The liver, kidney, brain, and testes of the neutron-irradiated rats weighed significantly less than those of the controls. The weights of the spleen, lungs, duodenum, and stomach were decreased but not significantly. The bone marrow appeared depleted in the irradiated long bones, but the spleen maintained active hematopoiesis 1 to 2 months after neutron exposure

  13. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagomacini, Juan C., E-mail: jc.lagomacini@uam.es [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Bravo, David [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, Monica; Martin, Piedad; Ibarra, Angel [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, Agustin [Dept. Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, Fernando J. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)

    2011-10-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10{sup 21} and 10{sup 22} n/m{sup 2}. Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  14. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    International Nuclear Information System (INIS)

    Lagomacini, Juan C.; Bravo, David; Leon, Monica; Martin, Piedad; Ibarra, Angel; Martin, Agustin; Lopez, Fernando J.

    2011-01-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10 21 and 10 22 n/m 2 . Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  15. NGI-9 pulsed neutron generator with a fluence to 1010 n/s

    International Nuclear Information System (INIS)

    Allakhverdov, A.Sh.; Ogarkin, V.I.; Silicheva, G.P.; Timofeev, Yu.I.

    1975-01-01

    A neutron pulse generator with 14 MeV energy used for the activation analysis, is described. Its functional diagram and the technical characteristics are presented. The studies of the generator that resulted in determination of the effect of the accelerating voltage amplitude, the delay in the ion source firing with respect to the pulse of the accelerating voltage, the amount of operating ion sources and the energy imparted to them on the neutron flux magnitude are conducted. It is confirmed by the studies that the neutron generator operating in the nominal regime makes it possible to obtain a neutron flux of 5x10 9 -10 10 neutr./s. The dependence of the neutron flux variation on the frequency of pulse sequence for various ion sources is shown

  16. Surface damage on polycrystalline $\\beta$-SiC by xenon ion irradiation at high fluence

    OpenAIRE

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar-Sawa, L; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-01-01

    International audience; Nano-grained $\\beta$-silicon carbide ($\\beta$-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.10$^{15}$ and 1.10$^{17}$ cm$^{-2}$. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidat...

  17. Direct observation of defects in A15 compounds produced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Pande, C.S.

    1979-01-01

    The nature of defect or defect complexes produced in superconducting compounds Nb 3 Sn, Nb 3 Pt, and V 3 Si by high energy (E greater than or equal to 1 MeV) neutron irradiation is investigated by transmission electron microscopy. The newly developed technique of superlattice reflection imaging is used whereby the regions of reduced long range order are directly imaged. Unlike metals these regions were found in general not to collapse into dislocation loops. The size and the volume fraction of these disordered regions are obtained for fluences ranging from 10 17 neutrons/cm 2 to 3 x 10 19 neutrons/cm 2 . The size ranges from 20A to 60A. Typical volume fraction for 10 18 neutrons/cm 2 is over 1%

  18. Determination of the damage-energy cross section of 14-MeV neutrons from critical-property changes in irradiated Nb3Sn

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Parkin, D.M.; Guinan, M.W.; Van Konynenburg, A.

    1976-01-01

    Short samples of single-core and 19-core multifilament wires in bronze jackets have been irradiated with 14-MeV neutrons to a total fluence of 2 x 10 18 n/cm 2 using the Livermore Rotating Target Neutron source. At fluences of 1 and 2 x 10 18 n/cm 2 the critical temperature was measured, and also the critical current as a function of applied transverse magnetic field up to 175 kG to ascertain the radiation-induced changes in these properties. Measurements as a function of fluence of identical samples following reactor-neutron irradiation established the baseline for comparison of the 14-MeV results. By comparing the changes observed and relating them to the spectrum-averaged damage-energy cross section for the HFBR neutrons, a value for the damage-energy cross section for 14-MeV neutrons has been deduced of 313 +50 /sub -80/ bkeV. Comparison of the critical current vs applied field for the two types of irradiation indicates that the flux-pinning characteristics are different for equal damage energies. This can be explained by a larger cascade region produced by the 14-MeV neutrons relative to those produced by fission-reactor neutrons with a coupled reduced resistivity increase for 14-MeV neutrons with respect to fission-reactor neutrons for equivalent damage energies

  19. Neutron Spectrum Measurements from Irradiations at NCERC

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchens, Gregory Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  20. Development and application of a detector for absolute measurement of neutron fluence rate in MeV region

    International Nuclear Information System (INIS)

    Silva Dias, M. da.

    1988-01-01

    The development and performance of the DTS (Dual Thin Scintillator) for the absolute measurement of the neutron fluence rate between 1 and 15 MeV is decribed. The DTS detector consists of a pair of organic scintillators in a dual configuration, where the incident produces a proton-recoil which is detected in a 2Π geometry therefore avoiding the effect of the escape of protons. Thin scintillators are used resulting in small multiple scattering corrections. The theoretical caluclations of detector efficiency and proton-recoil spectrum were performed by means of a Monte Carlos code - CARLO DTS. The calculated efficiency was compared to the experimental one at two neutron energies namely 2.446 MeV and 14.04 MeV applying the Time Correlated Associated Particle technique. The theoretical and experimental efficiencies agreed within the experimental uncertainties of 1.44% and 0.77%, respectively. The performance of the DTS has been verified in an absolute 235 U(n,f) cross section measurement between 1 and 6 MeV neutron energy. The cross section results were compared to those obtained replacing the DTS detector by the NBS (National Bureau of Standards, USA) Black Neutron Detector. The agreement was excellent in the overlapping energy interval of the two experiments (between 1 and 3 MeV), within the estimated uncertainly in the range of 1,0 to 1,7%. The agreement with the most recent evaluation from the ENDF/B-VI was excellent in almost all the energy range between 1 and 6 MeV. The 235 U(n,f) cross section, average over the 252 Cf fission neutron spectrum has been evaluated. The result including the cross section values of the present work was 1220 mb, in excellent agreement with the average value among the most recent measurements, 1227 +- 12 mb, and with the value 1213 mb, using the ENDF/B-VI data. (author) [pt

  1. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Gambarini, G.; Valente, M.; Moss, R.L.; Daquino, G.G.; Nievaart, V.A.; Mariani, M.; Vanossi, E.; Carrara, M.

    2006-01-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  2. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    Science.gov (United States)

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  3. Biological effects and RAPD analysis of alfalfa (medicago sativa L.) irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Han Weibo; Zhang Yuexue; Tang Fenglan; Liu Jielin; Liu Fengqi; Shang Chen; Kong Fuquan; Wang Xiao; Liu Luxiang

    2011-01-01

    Dry seeds of alfalfa variety Zhaodong were irradiated by fast neutrons generated by linear accelerator with three fluences, 3.60 × 10 11 , 7.10 × 10 11 and 3.54 × 10 12 /cm 2 respectively. Seed germination, growth, and RAPD analysis on the mutation were reported in this study. The results showed that germination vigor and germination rate of irradiated seeds were higher than those of control, but seedling height and root length were reduced with the increase of fluences. When the dosages reached 3.54 × 10 12 /cm 2 , seedling root length decreased by 81.63% compared with the control, but the seedling didn't grow any true leaves except for cotyledon. 36 primers were used in RAPD analysis, and the results showed that the RAPD polymorphic loci rate was 7.25%, 6.52% and 5.80% among the 3.60 × 10 11 /cm 2 , 7.10 × 10 11 /cm 2 and 3.54 × 10 12 /cm 2 treated M 1 plants. RAPD polymorphic loci rate in the 3.60 × 10 11 /cm 2 treated plants was the highest among three treatment. It is concluded that 3.60 × 10 11 /cm 2 could be on optimum fluences for a alfalfa mutation by fast neutrons. (authors)

  4. Neutron irradiation effects in quartz: optical absorption and electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Guzzi, M.; Pio, F.; Spinolo, G.; Vedda, A.

    1992-01-01

    Optical absorption measurements in the 3-9 eV energy range and electron paramagnetic resonance (EPR) have been performed at 300 K and at 80 K on Sawyer PQ quartz. Both as-received and neutron-irradiated samples (neutron fluences up to 3 x 10 18 neutrons cm -2 ) have been studied. The absorption spectra have been analysed in terms of a sum of elementary Gaussian components. The effect of the neutron irradiation is to induce the presence of absorption bands at 7.6 eV (E band), at 7.1 eV (D band) and at 6 eV (E' region). The most intense peak of all the spectra is the E band (7.6 eV); its shape is complex and the existence of a double structure can be suggested. The D band is evidenced for the first time in neutron-irradiated synthetic quartz; our measurements show that this structure is correlated with the 6.0 eV band. The 'E'' region is complex; in fact, at the highest neutron fluence the optical absorption spectrum reveals the existence of four structures, at 4.7, 5.2, 5.6 and 6.0 eV, where the 4.7 eV band has the same characteristics as the D o band, which is present in amorphous silica. The comparison between the results of EPR measurements and the analysis of the complex structure of this absorption indicates that the correlation between optical absorption bands in this region and the EPR E' -centre signals suggested previously must be re-examined. (Author)

  5. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  6. Restoration properties of neutron irradiated Ti-Ni shape memory alloys

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Takada, Fumiki; Omi, Masao; Goto, Ichiro; Ando, Hiroei

    1992-01-01

    Transformation properties and deformation behavior of Ti-Ni shape memory alloys which were irradiated at 323 and 520 K up to a maximum fast neutron fluence of 10 25 m -2 and subsequently annealed above 523 K, were examined by electrical resistance measurements and tensile tests. When irradiation was performed at 323 K, M s temperature of irradiated specimens abruptly decreased at a dose over 10 -2 dpa. This shows that the irradiation has a great influence on transformation properties of specimens. After post-irradiation annealing above 523 K, the M s temperature of specimens which were irradiated with a dose of 10 -1 dpa, increased to that of unirradiated ones. When irradiation was performed at 520 K, the decrease in M s temperature was negligibly small regardless of the magnitude of damage. It is clear that at irradiation temperature of 520 K the irradiation has no influence on transformation properties of Ti-Ni alloys. In the Ti-Ni alloys two conflicting processes take place during irradiation: disordering and ordering. The migration of vacancies is enhanced by thermal activation and ordering becomes predominant over the disordering and restoration phenomena occur. The phenomena can be described as a function of temperature, displacement and displacement rate by the theory of order-disorder transformation under irradiation. It is confirmed that the threshold temperature at which the restoration phenomena take place is about 520 K. (author)

  7. Calculation of the neutron flux and fluence in the covering of the nucleus and the vessel of a BWR; Calculo del flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor nuclear BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: evalle@esfm.ipn.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the main objectives related with the safety in any nuclear power plant, including the nuclear power plant of Laguna Verde, is to guarantee the structural integrity of the pressure vessel of the reactor. To identify and quantifying the damage caused be neutron irradiation in the vessel of any nuclear reactor, is necessary to know as much the neutron flux as the fluence that it has been receiving during their time of operation life, since the observables damages by means of tests mechanics are products of micro-structural effects, induced by neutron irradiation, therefore, is important the study and prediction of the neutron flux to have a better knowledge of the damage that are receiving these materials. In our calculation the code DORT was used, which solves the transport equation in discreet coordinates and in two dimensions (x-y, r-{theta} and r-z), in accord to the regulator guide, it requires to make and approach of the neutron flux in three dimensions by means of the Synthesis Method. Whit this method is possible to achieve a representation of the flux in 3D combining or synthesizing the calculated fluxes by DORT code in r-{theta}, r-z and r. In this work the application of the Synthesis Method is presented, according to the Regulator Guide 1.190, to determine the fluxes 3D in the interns of a BWR using three different space meshes. (Author)

  8. Study of supersaturation of defects under neutron irradiation by Zener relaxation

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Justus, Francisco J.W.

    2004-01-01

    Vacancy supersaturation in dynamic equilibrium under fast neutron irradiation could be determined by anelastic relaxation. This phenomenon is particularly noticeable in some substitutional binary alloys. Relaxation is due to the reordering of atoms pairs under a stress, being a local reordering at the atomic scale. Relaxation time (τ) is inversely proportional to the vacancy concentration (Cv) and decreases under irradiation because a dynamical equilibrium of vacancy concentration, higher than thermodynamic equilibrium, is established. Theoretical models allow estimating the magnitude of that supersaturation. Determinations of τ at different temperatures, with and without fast neutron irradiations, were made with an 'in situ' device placed in the high temperature loop in the RA1 CAC-CNEA reactor. An alloy Au-30% Ni was used, since it presents an appreciable Zener effect. The measurements were performed in a spring-shaped specimen in order to minimize temperature and flux gradients. An Arrhenius plot of τ was obtained, and it was observed that for temperatures lower than 220 C degrees a vacancy supersaturation exists. The lowest temperature of our experiments was 190 C degrees. A value of τ at this temperature was three times lower under irradiations. A plot of τ vs. fast neutron fluence (φ f t) at the irradiation temperature T= 203 C degrees was obtained. An increase of τ was observed. After an annealing at T = 280 C degrees, the value of τ recovers the value corresponding to the unirradiated case. This fact suggests that the loops produced by irradiation act as defect sinks. (author) [es

  9. Measurement of low neutron fluences with polycarbonate foils electrochemically etched with methyl alcohol-KOH solution

    International Nuclear Information System (INIS)

    Kumamoto, Y.

    1982-01-01

    Electrochemical etching of polycarbonate foils was performed using a KOH solution with a high concentration of methyl alcohol under different conditions of field strength, frequency, temperature and etching time. These studies showed that the highest neutron sensitivity relative to the inherent background in the foil was obtained under the following etching conditions: 52 kV/cm, 1 kHz, 30 0 C, 30 min in a solution of 45 gm KOH + 80 cc CH 3 OH + 20 cc H 2 O. Under these conditions, 100 mrem of neutrons from a Ra-Be source gave 70 pits per cm 2 while background was 7 +- 3 pits per cm 2 (10 +- 5 mrem). The pit diameters were about 90 μm. This sensitivity (giving lowest measurable dose of 15 mrem) is quite sufficient for personnel neutron dosimetry applications and the size of the pits is large enough for easy counting using a microscope at magnification of 40X. (author)

  10. Neutron Spectra, Fluence and Dose Rates from Bare and Moderated Cf-252 Sources

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-01

    A new, stronger 252Cf source (serial number SR-CF-3050-OR) was obtained from Oak Ridge National Laboratory (ORNL) in 2014 to supplement the existing 252Cf sources which had significantly decayed. A new instrument positioning track system was designed and installed by Hopewell Designs, Inc. in 2011. The neutron field from the new, stronger 252Cf source in the modified calibration environment needed to be characterized as well as the modified neutron fields produced by the new source and seven different neutron moderators. Comprehensive information about our 252Cf source, its origin, production, and isotopic content and decay characteristics needed to be compiled as well. This technical report is intended to address these issues.

  11. Measurement of the fluence flux of monoenergetic neutrons on the Van de Graaff accelerator at Cadarache

    International Nuclear Information System (INIS)

    Szabo, Imre.

    1976-12-01

    This report is a compilation of the different fast neutron flux measurements performed by the Section d'Etudes et de Mesures en Neutrons Rapides (S.E.M.N.R.-CADARACHE) in the energy range extending from 10keV to 14.8 MeV. The facilities used and the methods developed are described. The analysis of the calibrations made during the last few years, led to a final set of values for the efficiency of the ''directional counter''. This counter was used as a reference for microscopic data measurements and also for neutron flux measurements carried out in other laboratories. The accuracy obtained in the 10keV-14MeV range varied from 2 to 3.5% (one standard deviation) [fr

  12. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  13. Neutron irradiation studies on low density pan fiber based carbon/carbon composites

    Science.gov (United States)

    Venugopalan, Ramani; Sathiyamoorthy, D.; Acharya, R.; Tyagi, A. K.

    2010-09-01

    Carbon has been extensively used in nuclear reactors and there has been growing interest to develop carbon-based materials for high-temperature nuclear and fusion reactors. Carbon-carbon composite materials as against conventional graphite material are now being looked into as the promising materials for the high temperature reactor due their ability to have high thermal conductivity and high thermal resistance. Research on the development of such materials and their irradiation stability studies are scant. In the present investigations carbon-carbon composite has been developed using polyacrylonitrile (PAN) fiber. Two samples denoted as Sample-1 and Sample-2 have been prepared by impregnation using phenolic resin at pressure of 30 bar for time duration 10 h and 20 h respectively, and they have been irradiated by neutrons. The samples were irradiated in a flux of 10 12 n/cm 2/s at temperature of 40 °C. The fluence was 2.52 × 10 16 n/cm 2. These samples have been characterized by XRD and Raman spectroscopy before and after neutron irradiation. DSC studies have also been carried out to quantify the stored energy release behavior due to irradiation. The XRD analysis of the irradiated and unirradiated samples indicates that the irradiated samples show the tendency to get ordered structure, which was inferred from the Raman spectroscopy. The stored energy with respect to the fluence level was obtained from the DSC. The stored energy from these carbon composites is very less compared to irradiated graphite under ambient conditions.

  14. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  15. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  16. The influence of neutron-irradiation at low temperatures on the dielectric parameters of 3C-SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Deyzel, G.; Minnaar, E.G.; Goosen, W.E.; Rooyen, I.J. van

    2014-01-01

    3C-SiC wafers were irradiated with neutrons of various fluences and at low (200–400 °C) irradiation temperatures. Fourier transform infrared (FTIR) reflectance spectra were obtained for the samples, and the spectra used to extract the dielectric parameters for each specimen, using statistical curve-fitting procedures. Analysis of all data revealed trends in reflectance peak heights as well as in the dielectric parameters. The surface roughness of the irradiated samples was measured by atomic force spectroscopy (AFM) and certain trends could be ascribed to surface roughness.

  17. A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial and variable states of stress

    International Nuclear Information System (INIS)

    Murakami, Sumio; Mizuno, Mamoru.

    1992-01-01

    A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial non-steady states of stress is developed. In the formulation of the constitutive equation, the creep under irradiation was divided into irradiation-affected thermal creep and irradiation-induced creep. Then the irradiation-affected thermal creep was formulated by extending the creep-hardening surface model to include the effects of neutron-irradiation and material damage. The Bailey-Norton creep law and Kachanov-Rabotnov creep-damage theory were employed. The effect of irradiation on thermal creep was described by expressing the material functions of the constitutive equation as functions of neutron flux φ and neutron fluence Φ. The constitutive equation of irradiation-induced creep was formulated by taking account of SIPA and CCG mechanisms and by representing the creep rate as a function of stress of order zero and one. Creep of 316 stainless steel under various conditions of irradiation and variable stress was analyzed in order to elucidate the validity and the utility of the proposed constitutive equation. (author)

  18. Treating Breast Cancer by Radiation with a Fluence of Thermal Neutrons & Nanotechnology

    International Nuclear Information System (INIS)

    Askouri, N.A.; Abbas, S.K.

    2015-01-01

    In this study we mention one of the treatments to cure cancer. It is considered one of the promissing methods nowadays. It includes the use of Boron as a nano material to improve the radiation sensitivity inside the breast. These are treated with low energy thermal neutrons (0.025 eV) resulting in high alpha linear energy transporter and Lithium nucleus 7 Li in addition to Gamma photon with (0.48 MeV). The energy of these products (2.31 MeV) which destroy the cancer cells in the tissue.This treatment checks several physical factors related to the effectively of using Boron to improve the treatment with radiation. The physical factors include the amount of the falling thermal neutrons and the time of exposure and the concentration of the nano Boron material and the amount of the falling thermal neutrons.In this study the concentrations of used nano Boron were (5, 10, 15, 20, 25, 30, 35, 40, 45, 50) ng, and each concentration was a target for the thermal neutrons of (0.025 eV) energy interaction. The times of exposure (1800) s , while the other factors were kept fixed.The results showed a great improvement in the received dose and improvement in the number of the destroyed cancer cells. The increase is due to two reasons:First : the selective accumulation of stableB10 in the cells of the tumor only and not the healthy tissue.Second : 10 B tendency towards thermal neutrons (0.025 eV) interaction. The resultant from this interaction is unstable 11 B causing the production of high linear energy transporter represented by alpha particle ( 1.47 MeV) and 7 Li nucleus (0.84 MeV), as well as Gamma photon (0.48 MeV).The energy of both products is deposited within (5-9 μm) of the tissue which is close to the cells diameter and it spreads in two opposite directions in destroying the DNA chain responsible for regenerating new cells, therefore, the possibility of destroying cancer cells is high

  19. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  20. Neutron and X-ray irradiation of silicon based Mach-Zehnder modulators

    Science.gov (United States)

    El Nasr-Storey, S. S.; Détraz, S.; Olanterä, L.; Sigaud, C.; Soós, C.; Pezzullo, G.; Troska, J.; Vasey, F.; Zeiler, Marcel

    2015-03-01

    We report on our recent investigation into the potential for using silicon-based Mach-Zehnder modulators in the harshest radiation environments of the High-Luminosity LHC. The effect of ionizing and non-ionizing radiation on the performance of the devices have been investigated using the 20 MeV neutron beam line at the Cyclotron Resource Centre in Louvain-La-Neuve and the X-ray irradiation facility in the CERN PH department. The devices were exposed to a total fluence and ionizing dose of 1.2×1015 n cm-2 and 1.3 MGy respectively.

  1. Time structure of charge signals and noise studies of GaAs detectors irradiated by neutrons and protons

    International Nuclear Information System (INIS)

    Braunschweig, W.; Chu, Z.H.; Karpinski, W.; Kubicki, Th.; Lubelsmeyer, K.; Rente, C.; Syben, O.; Tenbusch, F.; Toporowsky, M.; Wittmer, B.; Xiao, W.J.

    1996-01-01

    Semiconductor detectors processed in Aachen using Si GaAs from different manufactures have been irradiated with neutrons (peak energy ∼ 1 MeV) up to 4.0·10 14 n/cm 2 and protons (energy 24 GeV) up to 8.2·10 13 p/cm 2 . All detectors work well after the exposure. The leakage current density at 200 V of detectors made of AXT material increases by a factor of four after the highest neutron fluence and a factor of three after the maximal proton fluence. For the FEW-LC material the leakage current decreases significantly after irradiation. No significant difference can be observed between biased and non-biased detectors during the exposure to neutrons. The equivalent noise charged (ENC) calculated from the noise density spectra agrees well with that extracted from the pedestal width for the different neutron and proton fluences. Before irradiation the charge signals for minimum ionizing particles (MIPs) increase with the peaking time in the range of 40 ns to 2 μs, while this dependence cannot be observed after the exposure to neutrons or protons. The reason for this behaviour is the different time structure of the charge signals before and after irradiation. For AXT material the charge signals for MIPs correspond to 7100 electrons after 4.0·10 14 n/cm 2 and of 4300 electrons after 8.2·10 13 p/cm 2 are obtained. For FEW-LC material the signals at 200 V are reduced from 15700 electrons before irradiation to 6000 electrons after 8.2·10 13 p/cm 2 for this peaking time

  2. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  3. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  4. Elevated temperature annealing behaviors of bulk resistivity and space charge density (Neff) of neutron irradiated silicon detectors and materials

    International Nuclear Information System (INIS)

    Li, Z.

    1996-01-01

    The bulk resistivity of neutron irradiated detector grade silicon material has been measured under the condition of no or low electrical filed (electrical neutral bulk or ENB condition) after elevated temperature (T=110 C) anneals (ETA). The ENB resistivity (ρ) for as-irradiated silicon material increases with neutron fluence at low fluences (Φ n 13 n/cm 2 ) and starts to saturate at a value between 300-400 kΩ cm at high fluences (Φ n >10 13 n/cm 2 ). The saturation of the ENB resistivity near the intrinsic value can be explained by the near perfect compensation of all neutron induced deep donors and acceptors in the ENB. After ETA, it has been observed that ρ increases with annealing time for silicon materials irradiated below the saturation and decreases with annealing time for those irradiated after saturation. For those irradiated near the saturation point, ρ increases with annealing time initially and decreases thereafter. This ETA behavior of ρ may be explained by the increase of net acceptor-like deep levels in silicon during the anneal, qualitatively consistent with the observed reverse annealing effect of the space charge density (N eff ) in silicon detectors which is an increase of negative space charge density (acceptors) after long term room temperature (RTA) anneal and/or ETA. However, the amount of the increase of net hole concentration (p) of about 5 x 10 11 cm -3 , corresponding to 20 hours of ETA at 110 C for a fluence of 1.5 x 10 14 n/cm 2 , is still much less than the corresponding increase of N eff of about 1.5 x 10 13 cm -3 . This suggests that while the ETA restores some of the free carrier concentration (namely holes), there is still a large degree of compensation. The space charge density is still dominated by the deep levels and N eff ≠p. (orig.)

  5. Development of a TPC for energy and fluence references in low energies neutronic fields (from 8 keV to 5 MeV)

    International Nuclear Information System (INIS)

    Maire, Donovan

    2015-01-01

    In order to judge the measurement reliability, metrology requires to measure quantities with their uncertainties, in relation to a reference through a documented and unbroken chain of calibrations. In neutron radiation field, instrument response has to be known as a function of the neutron energy. Then detector calibrations are required using reference neutron fields. In France, primary reference neutron fields are held by the LNE-IRSN, at the Laboratory for Neutron Metrology and Dosimetry (LMDN). In order to improve reference neutron field characterization, the LNE-IRSN MIMAC μTPC has been developed. This detector is a Time Projection Chamber (TPC), using a gas at low pressure (30 mbar abs. to 1 bar abs.). Nuclear recoils are generated by neutron elastic scattering onto gas atoms. By measuring the nuclear recoil energy and scattering angle, the μTPC detector is able to measure the energy distribution of the neutron fluence between 8 keV and 5 MeV. The main challenge was to perform accurate spectrometry of neutron fields in the keV range, following a primary procedure. First of all, a metrological approach was followed in order to master every physical process taking part in the neutron detection. This approach led to develop the direct and inverse models, representing the detector response function and its inverse function respectively. Using this detailed characterization, the energy distribution of the neutron fluence has been measured for a continuous neutron field of 27 keV. The reconstructed energy is 28,2 ± 4,5 keV, the difference between μTPC integral fluence measurement and other measurement methods is less than 6%. The LNE-IRSN MIMAC μTPC system becomes the only one system able to measure simultaneously energy and fluence at energies lower than 100 keV, following a primary procedure. The project goal is then reached. These measurements at energies lower than 100 keV shows also a non-linearity between the ionization charge and the ion kinetic energy

  6. A Project for High Fluence 14 MeV Neutron Source

    CERN Document Server

    Pillon, Mario; Pizzuto, Aldo; Pietropaolo, Antonino

    2014-01-01

    The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA , reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D - T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating target s . NSFS produces about 1 x10 13 n cm - 2 s - 1 over about 50 cm 3 . The NSFS facility will use the ion source and accelerating system technology developed for the Positive Ion Injectors (PII) used to heat the plasma in the fusion experiments,. NSFS, to be intended as an European facility, may be realized in a few years, once provided a preliminary technological program devote to study the operation of the ion source in continuous mode, target h eat loading/ removal, target and tritium handling, inventory as well as ...

  7. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  8. Photoluminescence and optical absorption in neutron-irradiated crystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, A.; Crivelli, B.; Martini, M.; Spinolo, G.; Vedda, A. [Istituto Nazionale Di Fisica Della Materia, Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milano (Italy)

    1996-04-01

    Optical absorption measurements in the 3.5{endash}6.5 eV spectral range and photoluminescence spectra, excited in the 4{endash}8 eV range have been performed on neutron irradiated synthetic crystalline quartz as a function of temperature and of neutron fluence. The Gaussian deconvolution of the radiation-induced absorption spectrum in the 4.5{endash}6 eV region reveals a complex structure: five distinct components, peaking at 4.85, 5.06, 5.35, 5.62, and 5.96 eV are detected. The complexity of the absorption pattern finds a correspondence in photoluminescence spectra excited in the 5 eV region: a detailed analysis of the emission spectra as a function of excitation energy indicates the presence of three emission bands centered at 3.91, 4.23, and 4.46 eV, excited at 5.25, 4.83, and 5.03 eV respectively. Excitation in the 5.62 and 5.96 eV absorption peaks does not produce emission. The features of the 4.23 eV and of the 4.46 eV bands are very similar to those of the {alpha}{sub intrinsic} emission, already well studied in amorphous SiO{sub 2}: this suggests a possible correlation between these bands and the {alpha}{sub intrinsic} center. The 3.91 eV band does not find a correspondence in amorphous SiO{sub 2}, and so the responsible defect appears specifically related to the crystalline structure. The emission spectra excited in the E absorption band ({approx_equal}7.6 eV) present a weak band centered at 4.83 eV: its dependence on neutron irradiation dose suggests the attribution to an intrinsic center different from those responsible for the emission in the 3.8 {endash} 4.5 eV region. {copyright} {ital 1996 The American Physical Society.}

  9. Photoluminescence and optical absorption in neutron-irradiated crystalline quartz

    International Nuclear Information System (INIS)

    Corazza, A.; Crivelli, B.; Martini, M.; Spinolo, G.; Vedda, A.

    1996-01-01

    Optical absorption measurements in the 3.5 endash 6.5 eV spectral range and photoluminescence spectra, excited in the 4 endash 8 eV range have been performed on neutron irradiated synthetic crystalline quartz as a function of temperature and of neutron fluence. The Gaussian deconvolution of the radiation-induced absorption spectrum in the 4.5 endash 6 eV region reveals a complex structure: five distinct components, peaking at 4.85, 5.06, 5.35, 5.62, and 5.96 eV are detected. The complexity of the absorption pattern finds a correspondence in photoluminescence spectra excited in the 5 eV region: a detailed analysis of the emission spectra as a function of excitation energy indicates the presence of three emission bands centered at 3.91, 4.23, and 4.46 eV, excited at 5.25, 4.83, and 5.03 eV respectively. Excitation in the 5.62 and 5.96 eV absorption peaks does not produce emission. The features of the 4.23 eV and of the 4.46 eV bands are very similar to those of the α intrinsic emission, already well studied in amorphous SiO 2 : this suggests a possible correlation between these bands and the α intrinsic center. The 3.91 eV band does not find a correspondence in amorphous SiO 2 , and so the responsible defect appears specifically related to the crystalline structure. The emission spectra excited in the E absorption band (≅7.6 eV) present a weak band centered at 4.83 eV: its dependence on neutron irradiation dose suggests the attribution to an intrinsic center different from those responsible for the emission in the 3.8 endash 4.5 eV region. copyright 1996 The American Physical Society

  10. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  11. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    NARCIS (Netherlands)

    El-Atwani, O.; Gonderman, S.; Efe, M.; De Temmerman, G.; Morgan, T.; Bystrov, K.; D. Klenosky,; Qiu, T.; Allain, J. P.

    2014-01-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental

  12. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  13. Current Amplification Characteristics of BJT on Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Hani [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    BJT (Bipolar Junction Transistor) is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. Fast neutron irradiation incurs lattice damage in bulk Si. The recombination rate of minority carriers and register are increased by the lattice damage. This study will investigate the current amplification characteristics of a pnp Si BJT through fast neutron irradiation experiments. In this paper, the current amplification characteristics of a pnp Si BJT were investigated for fast neutron irradiation. The experimental results show that base-tocollector current amplification ratio is decreased with an increase in the fast neutron irradiation. These indicate that the lattice damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistor.

  14. Test of Fibre Bragg Gratings samples under High Fast Neutrons Fluence

    Directory of Open Access Journals (Sweden)

    Cheymol G.

    2018-01-01

    The measurements show that for nearly all gratings the Bragg peak remains visible after the irradiation, and that Radiation Induced Bragg Wavelength Shifts (RI-BWSs vary from few pm (equivalent to an error of less than 1°C for a temperature sensor to nearly 1 nm (equivalent to 100°C depending of the FBG types. High RI-BWSs could indeed be expected when considering the huge refractive index variation and compaction of the bare fibre samples that have been measured by other techniques. Post writing thermal annealing is confirmed as a key parameter in order to obtain a more radiation tolerant FBG. Our results show that specific annealing regimes allow making FGBs suitable to perform temperature measurements in a MTR experiment.

  15. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  16. Design of fast neutron channels for topaz irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com; Gaheen, M.A.

    2016-12-15

    Highlights: • This work aims to design fast neutron irradiation channels for topaz irradiation. • The irradiation boxes are shielded using a martial contains B-10. • Calculations of neutron flux and heat generation were carried out using the MCNPX code and the effect on the reactor reactivity has been considered. • Experimentally, the worker exposure has been reduced to less than one-tenth and a decrease of 12 months in the release time of the treated topaz has been achieved. - Abstract: The aim of this work is to design fast neutron irradiation channels for topaz irradiation at Egypt Second Research Reactor (ETRR-2) by shielding the aluminum boxes, used for topaz irradiation, with B{sub 4}C (boron carbide) or manufacturing the irradiation boxes from aluminum contains boron. This in turn suppresses the thermal neutrons inside the box resulting in reduction of the residual radioactivity in topaz which decreases the worker exposure and release time. Simulation of the fast irradiation channels using the code: MCNPX showed that the thermal neutron component can be suppressed to less than one-tenth. ETRR-2 has many irradiation positions. The fast neutron flux distributions along the irradiation positions and the required irradiation times were calculated. The limiting conditions for safe operation of movable experiments are considered in the selection of the irradiation positions. That is the change in reactor reactivity due to the B-10 shield is below the reactivity limit for safe irradiation experiments. Heat generated during irradiation in topaz and in the material that contains boron was considered, as well. Experimentally, the worker exposure has been reduced to less than one-tenth and a decrease of 12 months in the release time of the irradiated topaz has been achieved. Also adequate cooling of the shielded box during irradiation has been demonstrated.

  17. The study of creep in stainless steel irradiated with fast neutron and alpha particles

    International Nuclear Information System (INIS)

    Correa, D.A.C.

    1985-01-01

    The objective of the present work is to study the creep behavior of the 316 type stainless steel 50% cold worked in different conditions of temperature and applied stress, after neutron radiation and Alfa particles implantation. For this experiment, non-irradiated samples, samples irradiated in the research reactor IEA-R1 with fast neutron (E≥ MeV) up to a fluence of 8.6.10 17 n/cm 2 , and samples implanted with Alfa particles in the cyclotron CV-28 with Helium concentrations of 5 and 26 appm, were creep tested with applied stresses of the 200-300 MPa at temperatures between 650 0 C and 700 0 C. The deformation versus time curves were plotted and it was observed tha the second stage is not well defined, with the creep rate increasing continuously until the occurrence of failure of the material. The study of the effect of increase from 200 MPa to 300 MPa at the same temperature was performed. It can be concluded that this increase produces an approximately 70% reductions in the fracture time of the material, with practically no influence in the total deformation. Samples were tested at different temperatures (650, 675 and 700 0 C) at a same applied stress (200 MPa). It has been observed that a temperature of 50 0 C produces 98,9% of reduction in the fracture time and almost doubles the total deformation. On neutron irradiated samples, creep tests were performed at the same temperature and stress of the non irradiated samples. Comparing the results obtained a tendency of embrittlement due to the neutron irradiation can be observed; no remarkable structure changes were detected due to small fast neutron. Microstructural and metalographic observations were performed before and after each creep test. (author) [pt

  18. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  19. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  20. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States); Almirall, Nathan [Univ. of California, Santa Barbara, CA (United States); Robertson, Janet [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Server, W. L. [ATI Consulting, Pinehurst, NC (United States); Yamamoto, T. [Univ. of California, Santa Barbara, CA (United States); Wells, Peter [Univ. of California, Santa Barbara, CA (United States)

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  1. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    International Nuclear Information System (INIS)

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-01-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  2. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    Science.gov (United States)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  3. Response of neutron-irradiated RPV steels to thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  4. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu

    2014-01-01

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al 27 , C 12 , B 11 , B 10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B 10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B 10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B 10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B 10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10 10 order, however, usual neutron flux from spent fuel is 10 8 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B 10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  5. Radiation damage induced in Al{sub 2}O{sub 3} single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Zirour, H. [Faculty of Physics, USTHB, BP. 32, El-Alia, Bab-Ezzouar, Algiers (Algeria); Izerrouken, M., E-mail: izerrouken@yahoo.com [Centre de Recherche Nucléaire de Draria, BP. 43, Sebbala, Draria, Algiers (Algeria); Sari, A. [Centre de Recherche Nucléaire de Berine, BP. 108, Ain-Oussara, Djelfa (Algeria)

    2016-06-15

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al{sub 2}O{sub 3} single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al{sub 2}O{sub 3} samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al{sub 2}O{sub 3} samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 10{sup 13} Xe/cm{sup 2}). It can be assigned to the formation of new lattice plane.

  6. Evaluation of neutron irradiation embrittlement in the Korean reactor pressure vessel steels(I) (1st progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Lee, Bong Sang; Park, Duck Gun; Byun, Tak Sang; Kim, Joo Hag; Oh, Yong Jun; Yoon, Ji Hyun; Chi, Sei Hwan; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The SA508-3 reactor pressure vessel materials degrade due to the application at high temperature, high pressure, and neutron irradiation. In the present study it is planned to examine the effects of neutron irradiation on the properties for assessing the integrity of domestic reactors. The key tests are the Charpy impact test, tensile test, static and dynamic fracture toughness test, J-R test. The additional tests for obtaining basic material properties, such as micro-hardness, microstructural properties, small punch energy etc., are also performed. The irradiation tests are being performed at HANARO of KAERI through the instrumented capsules designed by KAERI and the post-irradiation tests are being performed at IMEF(Irradiated Material Evaluation Facility) of material (UCN-4), Si+Al (YGN-5), UCN-4 weld metal, and UCN-4 HAZ. In the irradiation test the temperature should be controlled in the range of 290 {+-} 10 deg C and the test materials would be irradiated to 2 to 3 neutron fluence levels including the end-of-life fluence. The status of performing this project is that (1) the key data on mechanical properties, mainly related to the fracture toughness, of the unirradiated materials have been obtained, (2) the irradiation of the 1st instrumented capsule, a preliminary test capsule containing miniature specimens, has been completed and is being stored for testing in IMEF, and (3) the 2nd instrumented capsule is being manufactured and will be irradiated in the beginning or 1999. This report includes mainly the experimental methods and results. The status of the design and manufacturing of the instrumented capsules and specimens was also briefly described. (author). 13 refs., 15 figs., 10 tabs.

  7. Emulation of neutron irradiation effects with protons: validation of principle

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L.

    2002-01-01

    This paper presents the results of the irradiation, characterization and irradiation assisted stress corrosion cracking (IASCC) behavior of proton- and neutron-irradiated samples of 304SS and 316SS from the same heats. The objective of the study was to determine whether proton irradiation does indeed emulate the full range of effects of in-reactor neutron irradiation: radiation-induced segregation (RIS), irradiated microstructure, radiation hardening and IASCC susceptibility. The work focused on commercial heats of 304 stainless steel (heat B) and 316 stainless steel (heat P). Irradiation with protons was conducted at 360 deg. C to doses between 0.3 and 5.0 dpa to approximate those by neutron irradiation at 275 deg. C over the same dose range. Characterization consisted of grain boundary microchemistry, dislocation loop microstructure, hardness as well as stress corrosion cracking (SCC) susceptibility of both un-irradiated and irradiated samples in oxygenated and de-oxygenated water environments at 288 deg. C. Overall, microchemistry, microstructure, hardening and SCC behavior of proton- and neutron-irradiated samples were in excellent agreement. RIS analysis showed that in both heats and for both irradiating particles, the pre-existing grain boundary Cr enrichment transformed into a 'W' shaped profile at 1.0 dpa and then into a 'V' shaped profile between 3.0 and 5.0 dpa. Grain boundary segregation of Cr, Ni, Si, and Mo all followed the same trends and agreed well in magnitude. The microstructure of both proton- and neutron-irradiated samples was dominated by small, faulted dislocation loops. Loop size distributions were nearly identical in both heats over a range of doses. Saturated loop size following neutron irradiation was about 30% larger than that following proton irradiation. Loop density increased with dose through 5.0 dpa for both particle irradiations and was a factor of 3 greater in neutron-irradiated samples vs. proton-irradiated samples. Grain boundary

  8. Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zeid, S.Abu; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbruck, G.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M.A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M.T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C.S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A.T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J.; I.I.I.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 $\\mu$m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to $3 \\cdot 10^{15}$ neq/cm$^2$. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes...

  9. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  10. Mechanical properties and tritium release behavior of neutron irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    Ishitsuka, E.; Kawamura, H.

    2000-01-01

    Beryllium pebbles are expected as a neutron multiplier of a fusion reactor blanket. Mechanical properties and tritium release behaviors of the neutron irradiated beryllium pebbles were tested as a post irradiation examination (PIE). Two kinds of beryllium specimens (diameter:1 mm, grain size: about 0.5 mm), which were fabricated by the rotating electrode method (REM) and by the Mg reduction method (MRM), were irradiated with a total fast neutron fluence of 1.6 x 10 22 n/cm 2 (E>0.1 MeV) at 673, 773 and 873 K. The estimated helium concentration and dpa value were about 1 x 10 3 appmHe and 10 dpa, respectively. Compression tests were carried out at the room temperature in the Beryllium PIE facility of JMTR (Japan materials testing reactor) hot laboratory. Compression speed was 0.2 mm/min in ten tests for each specimen. From the results of compression test, no significant difference in the compression strength was observed between two kinds of beryllium pebbles. Additionally, it was clear that not only helium concentration but also dpa value was an important factor on the mechanical properties, because the compression strength of the high dpa specimens (10 dpa) was smaller than that of the low dpa specimens (6 dpa) with similar helium concentration (about 1 x 10 3 appmHe). Also, the tritium release experiment will be carried out for these specimens, and results will be presented in this workshop. (orig.)

  11. Interministerial decree of 10 February 1988 fixing the derived limits of the air concentration and the annual intake limit and the values of the quality factor and the neutron fluence rate

    International Nuclear Information System (INIS)

    1988-01-01

    This decree establishes the derived concentration limits in the air and annual inhalation limits for the radioisotopes and the values of the quality factors and the conversion factors fluence/dose equivalent for neutrons and protons

  12. Neutron irradiation damage of a stress relieved TZM alloy

    International Nuclear Information System (INIS)

    Abe, K.; Masuyama, T.; Satou, M.; Hamilton, M.L.

    1992-01-01

    The objective of this work is to study defect microstructures and irradiation hardening in a stress relieved TZM alloy after irradiation in the Fast Flux Test Facility (FFTF) using the Materials Open Test Assembly (MOTA). Disk specimens of the molybdenum alloy TZM that had been stress relieved at 1199 K (929 C) for 0.9 ks (15 min.) were irradiated in the FFTF/MOTA 1F at 679, 793 and 873 K (406, 520, and 600 C) to a fast fluence of ∼9.6 x 10 22 n/cm 2 . Microstructures were observed in a transmission electron microscope (TEM). Dislocation structures consisted of isolated loops, aggregated loops (rafts) and elongated dislocations. The size of the loops increased with the irradiation temperature. Void swelling was about 1 and 2% at 793 and 873 K (520 and 600 C), respectively. A void lattice was developed in the body centered cubic (bcc) structure with a spacing of 26 - 28 nm. The fine grain size (0.5 - 2 μm) was retained following high temperature irradiation, indicating that the stress relief heat treatment may extend the material's resistance to radiation damage up to high fluence levels. Microhardness measurements indicated that irradiation hardening increased with irradiation temperature. The relationship between the microstructure and the observed hardening was determined

  13. Fusion neutron irradiation induced ordering and defect production in Cu3Au at high temperatures

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Kirk, M.A.; Hahn, P.A.

    1987-08-01

    We irradiate three Cu 3 Au alloys different degrees of initial long-range order at temperatures between 300K and 434K. The resistivity of samples is monitored during irradiation and related to the long-term order parameter by the Muto relation. The results show that the ordering rate, which is proportional to the concentration of freely migrating vacancies, increases at the beginning and then decreases later with fluence. The decrease is a result of the continuous production of sinks in the form of dislocation loops. The effect of sinks on vacancy annihilation in some cases causes a reversed temperature dependence of ordering rate. The free vacancy production rate and the rate of sink production are determined using an ordering kinetics theory. The results of the 14 MeV neutron irradiations are compared to those obtained in other neutron spectra and particle irradiations. The estimated free vacancy production rate is also compared to the primary defect production rate measured at 4.2K in disordered samples

  14. Effect of irradiation in a spallation neutron environment on tensile properties and microstructure of aluminum alloys 5052 and 6061

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, J.A.; Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Borden, M.J.; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The Accelerator Production of Tritium (APT) and the Accelerator Transmutation of Waste (ATW) programs require structural materials which retain good mechanical properties when exposed in a spallation neutron irradiation environment. One group of materials likely to withstand the environment anticipated for these systems is the aluminum alloy series. To characterize this class of materials in a prototypical irradiation environment, AL5052 (Al-2.7Mg) and Al6061 (Al-1.1Mg-0.5Si) in hardened and annealed conditions were irradiated to a fluence of 4.2 {times} 10{sup 20} neutrons/cm{sup 2} at {approximately} 100 C in a spallation neutron source. Following irradiation, tensile tests and post-test examinations were performed to determine the influence of irradiation and test temperature on mechanical properties and fracture mode. It was found that, the properties of these two aluminum alloys were not significantly affected by the irradiation exposure conditions examined here. Thus these materials may be acceptable as structural materials for APT and ATW applications. This conclusion is based on limited mechanical properties testing, supported by other information in the literature on the performance of these materials in other irradiation environments.

  15. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  16. Study of damages by neutron irradiation in lithium aluminates

    International Nuclear Information System (INIS)

    Palacios G, O.

    1999-01-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  17. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  18. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  19. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  20. A study of rates of (n, f), (n, γ), and (n, 2n) reactions in natU and 232Th produced by the neutron fluence in the graphite set-up (gamma-3) irradiated by 2.33 GeV deuteron beam

    International Nuclear Information System (INIS)

    Adam, J.; Chitra Bhatia; Katovskij, K.

    2011-01-01

    Spallation neutrons produced in a collision of 2.33 GeV deuteron beam with the large lead target are moderated by the thick graphite block surrounding the target and used to activate the radioactive samples of nat U and Th put at the three different positions, identified as holes 'a', 'b' and 'c' in the graphite block. Rates of the (n, f), (n, γ), and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. Ratio of the experimental reaction rates, R(n, 2n)/R(n, f) for the 232 Th and nat U are estimated in order to understand the role of reactions of (n, xn) type in Accelerator Driven Subcritical Systems. For the Th-sample, the ratio is ∼ 54(10)% in case of hole 'a' and ∼ 95(57)% in case of hole 'b' compared to 1.73(20)% for the hole 'a' and 0.710(9)% for the hole 'b' in case of the nat U sample. Also the ratio of fission rates in uranium to thorium, nat U(n, f)/ 232 Th(n, f), is ∼ 11.2(17) in case of hole 'a' and 26.8(85) in hole 'b'. Similarly, ratio 238 U(n, 2n)/ 232 Th(n, 2n) is 0.36(4) for the hole 'a' and 0.20(10) for the hole 'b' showing that 232 Th is more prone to the (n, xn) reaction than 238 U. All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of LA150 library of cross sections. The experimental and calculated rates of all the three reactions are in good agreement. The transmutation power of the set-up is estimated using the rates of (n, γ) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the 'Energy plus Transmutation' set-up and TARC experiment

  1. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  2. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  3. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 µm (0⋅7874 and 1⋅5748 mil) with two different areas, 01 and.

  4. Refractometry characteristics of α-quartz after neutron irradiation

    International Nuclear Information System (INIS)

    Abdkadyrova, I.Kh.

    1997-01-01

    Lattice structure distortions in irradiated crystalline quartz were studied by refractometry methods. The refractometry constants of α-quartz for the flux of fast neutrons 10 18 - 10 21 neutron/cm 2 were calculated. The critical kinetics of this constants at the phase transformation is observed.(author). 5 refs., 1 fig

  5. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 m (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm2.

  6. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  7. Fatigue performance of copper and copper alloys before and after irradiation with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    1997-05-01

    The fatigue performance of pure copper of the oxygen free, high conductivity (OFHC) grade and two copper alloys (CuCrZr and CuAl-25) was investigated. Mechanical testing and microstructural analysis were carried out to establish the fatigue life of these materials in the unirradiated and irradiated states. The present report provides the first information on the ability of these copper alloys to perform under cyclic loading conditions when they have undergone significant irradiation exposure. Fatigue specimens of OFHC-Cu, CuCrZr and CuAl-25 were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of ∼2.5 x 10 17 n/m 2 s (E > 1 MeV) to fluence levels of 1.5 - 2.5 x 10 24 n/m 2 s (E > 1 MeV) at ∼47 and 100 deg. C. Specimens irradiated at 47 deg. C were fatigue tested at 22 deg. C, whereas those irradiated at 100 deg. C were tested at the irradiation temperature. The major conclusion of the present work is that although irradiation causes significant hardening of copper and copper alloys, it does not appear to be a problem for the fatigue life of these materials. In fact, the present experimental results clearly demonstrate that the fatigue performance of the irradiated CuAl-25 alloy is considerably better in the irradiated than that in the unirradiated state tested both at 22 and 100 deg. C. This improvement, however, is not so significant in the case of the irradiated OFHC-copper and CuCrZr alloy tested at 22 deg. C. These conclusions are supported by the microstructural observations and cyclic hardening experiments. (au) 4 tabs., 26 ills., 10 refs

  8. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  9. Fluence and ion dependence of amorphous iron-phase-formation due to swift heavy ion irradiation in electrodeposited iron thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stichleutner, S. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Kuzmann, E., E-mail: kuzmann@ludens.elte.h [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Havancsak, K.; Huhn, A. [Department of Materials Physics, Eoetvoes University, Budapest (Hungary); El-Sharif, M.R.; Chisholm, C.U.; Doyle, O. [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom); Skuratov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Homonnay, Z. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Vertes, A. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary)

    2011-03-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, XRD and AFM measurements were used to study the radiation effect of 246 MeV Kr, 470 MeV Xe and 710 MeV Bi ions on electrochemically deposited iron thin films. It was found that, in the irradiated electrochemically deposited crystalline ferromagnetic {alpha}-Fe coatings, partial amorphisation of Fe took place. The relative amount of the ferromagnetic amorphous phase increased with both ion energy and ion mass as well as with the fluence of irradiation.

  10. Reflection and photoemission studies of neutron-irradiated graphite

    International Nuclear Information System (INIS)

    Fukutani, Hirohito; Yamada, Akio; Yagi, Kazutoshi; Ooe, Satoshi; Higashiyama, Kazuyuki; Kato, Hiroo; Iwata, Tadao.

    1990-01-01

    Neutron-irradiated graphites were studied by reflectivity and photoemission (UPS, ARUPS, XPS) measurements. The π-band reflectivity peak of graphite, located at 5 eV, changed significantly and a small absorption band ascribed to vacancies produced by neutron bombardment was found to grow around 3 eV. Modification of the valence band by neutron irradiation was studied by ARUPS. The π-valence band shifts to lower binding energy towards the Fermi level and its band width becomes smaller. These results were also confirmed by the optical joint density of states obtained from K-K analysis of the reflectivity. (author)

  11. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  12. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  13. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  14. The effect of neutron irradiation on the mechanical properties of precipitation hardened copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.

    1997-01-01

    The effects of neutron irradiation on strength and ductility properties of precipitation hardened (PH) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH alloys irradiated in the mixed spectrum reactor SM-2 to fluences of 3.7-5.5 x 10 25 n/m 2 (E>0.1 MeV), corresponding to NRT displacement dose levels of 2.6-3.8 dpa. At irradiation temperatures of 100-285 C the processes of radiation hardening and reduction in the uniform elongation are the major effects. Irradiation at temperatures higher than 300 C causes a dramatic softening and improvement in uniform elongation of the Cu-Cr-Zr and Cu-Cr-Zr-Mg alloys. The threshold softening temperature for the PH alloys is shown to be about 300 C at a dose of 4.5 x 10 25 n/m 2 (E>0.1 MeV). The effect of the irradiation dose and temperature on the shift of the threshold temperature of PH copper-alloys softening is also considered. (orig.)

  15. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation

    Science.gov (United States)

    Cockeram, B. V.; Smith, R. W.; Hashimoto, N.; Snead, L. L.

    2011-11-01

    TEM examinations and swelling measurements were performed on commercially available wrought Low Carbon Arc Cast (LCAC), La-oxide Oxide Dispersion Strengthened (ODS), and TZM molybdenum alloys following irradiation in the High Flux Isotope Reactor (HFIR) at 300 °C, 600 °C, and 900 °C to neutron fluences between 1.05 and 24.7 × 10 25 n/m 2 ( E > 0.1 MeV), or 0.6-13.1 dpa. The defect structure, hardening, and swelling were shown to be strongly dependent on irradiation temperature and starting microstructure. Irradiation at 300 °C results in the formation of a high number density of fine loops and voids (˜1 nm) that produce significant hardening and low swelling that is comparable for all alloys. Irradiation at 600 °C-784 °C produces a high number density of larger voids (5-6 nm) that results in significant hardening with the highest swelling. A low number density of the largest void sizes (8-30 nm) are formed for the 900 °C irradiation that result in low hardening and less swelling than observed for the 600 °C irradiation. The fine grain size of ODS Mo results in a higher concentration of denuded zones along grain boundaries and improved ductile-laminate toughening that results in improved resistance to irradiation embrittlement for the 600 °C irradiations. Irradiation-induced formation of precipitates rich in transmutation products is observed at the highest dose, and it is likely that these features exert an influence on subsequent void growth.

  16. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation

    International Nuclear Information System (INIS)

    Ruiz, T; Mendez, A; Carrascosa, M; Carnicero, J; GarcIa-Cabanes, A; Olivares, J; Agullo-Lopez, F; GarcIa-Navarro, A; GarcIa, G

    2007-01-01

    Proton-exchange LiNbO 3 planar optical waveguides have been irradiated with swift ions (Cl 30 MeV) at very low fluences in the range 5 x 10 10 -5 x 10 12 cm -2 . Large modifications in the refractive index profiles, and therefore in the optical performance, have been obtained due to the generation of amorphous nano-tracks by the individual ion impacts. Moreover, a fine tuning of the refractive index can be achieved by a suitable control of the fluence (δn/δφ ∼ 10 -14 cm 2 or δn ∼ 10 -5 for δφ = 10 9 cm -2 ). An effective medium approach has been used to account for those changes and determine the amorphous fraction of material. The results have been compared with information extracted from complementary RBS channelling experiments. From the calculated amorphous fractions a radius of ∼2 nm for the amorphous tracks have been estimated

  18. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  19. Experimental Study of Fast Neutron Irradiation on Si Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Ha ni; Jin, Seong Bok; Hoang, Sy Minh Tuan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Bipolar junction transistors (BJTs) are applied in many industrial fields. BJT is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. These two operations, amplification and switching, are the basis of a host of electronic functions. This study will investigate the electrical characteristics of a p-n-p BJT, such as the base current and collector current for fast neutron irradiation. Fast neutron irradiation can cause displacement damage in the Si bulk. In this paper, the electrical characteristics of a p-n-p BJT such as a base current and collector current are investigated for fast neutron irradiation. The experimental results show that the base current is increased and the collector current is decreased after fast neutron irradiation. These results indicate that the displacement damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistors.

  20. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    Science.gov (United States)

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  1. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  2. Comparison of pressure vessel neutron fluences for the Balakovo-3 reactor with measurements and investigation of the influence of neutron cross sections and number of groups on the results

    Energy Technology Data Exchange (ETDEWEB)

    Barz, H.U.; Boehmer, B.; Konheiser, J.; Stephan, I.

    1998-10-01

    The general methodical questions of experimental and theoretical determination of neutron fluences have been described in connection with the measurements and 3-D Monte Carlo calculation for the Rovno-3 reactor. The same calculation and measurement methods were applied for the Balakovo-3 reactor. In the first part, the results of the comparison for Balakovo will be given and discussed. However, for this reactor the main attention was focussed on investigations of the accuracy of the calculation. In this connection an important question is the influence of neutron data on the results. With this respect not only the source of the data but also the number of energy groups is important. (orig.)

  3. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  4. Desorption of tritium and helium from high dose neutron irradiated beryllium

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Vlasov, V. V.; Kovalev, A. M.; Chakin, V. P.

    2007-08-01

    The effect of high dose neutron irradiation on tritium and helium desorption in beryllium is described. Beryllium samples were irradiated in the SM and BOR-60 reactors to a neutron fluences ( E > 0.1 MeV) of (5-16) × 10 22 cm -2 at 70-100 °C and 380-420 °C. A mass-spectrometry technique was used in out of pile tritium release experiments during stepped annealing in the 250-1300 °C temperature range. The total amount of helium accumulated in irradiated beryllium samples varied from 6000 to 7200 appm. The first signs of tritium and helium release were detected at temperature of 312-445 °C and 500-740 °C, respectively. It is shown that most tritium (˜82%) from sample irradiated at 70-100 °C releases in temperature range of 312-700 °C before the beginning of helium release (740 °C). In the case of beryllium sample irradiated at 380-420 °C, tritium release starts at a higher temperature ( Ts > Tann = 445 °C) and most of the tritium (˜99.8%) is released concurrently with helium which could be considered as evidence of co-existence of partial amounts of tritium and helium in common bubbles. Both the Be samples differ little in the upper temperatures of gas release: 745 and 775 °C for tritium; 1140 and 1160 °C for helium. Swelling of beryllium starts to play a key role in accelerating tritium release at Tann > 600 °C and in helium release - at Tann > 750 °C.

  5. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing

  6. Behavior under irradiation of super-mirror for neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-10-01

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  7. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  8. Behavior of fluorine 18 in neutron irradiated zeolites

    International Nuclear Information System (INIS)

    Estevez Lopez, D.R.

    1992-01-01

    The transformation of Li-exchanged H-Y zeolite has been investigated at 300, 550, 850 and 1050 Centigrade degree, formation of quartz structure in addition to an amorphous phase, was nited. The Li-aluminosilicate obtained was neutron irradiated and the chemical behavior of 18 F produced by the reaction sequence 6 Li (n, α) 3 H, 16 O ( 3 H, n) 18 F, was studied. The neutron irradiated material was purged with argon-hydron gas streams. It was found that the amount of released 18 F depends on the temperature used (Author)

  9. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  10. Neutron irradiation effects on carbon and graphite cloths and fibers

    International Nuclear Information System (INIS)

    Gray, W.J.

    1977-08-01

    A series of cloth and fiber samples were irradiated to fluences of 3.5, 7.3, and 10 x 10 21 cm -2 at 470 0 C. Dimensional changes of the fibers in the radial direction ranged from -19% to +33% and in the axial direction from -18% to -27%, roughly ten times greater than dimensional changes found for typical nuclear graphites. Despite these large dimensional changes, all but one of the 2-dimensional cloths remained essentially unchanged in overall physical appearance. The 3-dimensional cloths, on the other hand, deteriorated apparently because these types of weaves were less able to accommodate the large axial fiber shrinkages

  11. Neutron flux optimization in irradiation channels at NUR research reactor

    International Nuclear Information System (INIS)

    Meftah, B.; Zidi, T.; Bousbia-Salah, A.

    2006-01-01

    Optimization of neutron fluxes in experimental channels is of great concern in research reactor utilization. The general approach used at the NUR research reactor for neutron flux optimization in irradiation channels is presented. The approach is essentially based upon a judicious optimization of the core configuration combined with the improvement of reflector characteristics. The method allowed to increase the thermal neutron flux for radioisotope production purposes by more than 800%. Increases of up to 60% are also observed in levels of useful fluxes available for neutron diffraction experiments (small angle neutron scattering (SANS), neutron reflectometry, etc.). Such improvements in the neutronic characteristics of the NUR reactor opened new perspectives in terms of its utilization. More particularly, it is now possible to produce at industrial scales major radio-isotopes for medicine and industry and to perform, for the first time, material testing experiments. The cost of the irradiations in the optimized configuration is generally small when compared to those performed in the old configuration and an average reduction factor of about of 10 is expected in the case of production of Molybdenum-99 (isotope required for the manufacturing of Technetium-99 medical kits). In addition to these important results, safety analysis studies showed that the more symmetrical nature of the core geometry leads to a more adequately balanced reactivity control system and contributes quite efficiently to the operational safety of the NUR reactor. Results of comparisons between calculations and measurements for a series of parameters of importance in reactor operation and safety showed good agreement

  12. Behavior under irradiation of super-mirror for neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N' Guy-Marechal, K

    1997-10-15

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  13. Aging under irradiation of super-mirrors used in neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N`Guy-Marechal, K

    1997-10-16

    The aim of this work is to study the aging of NiC{sub x}/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author) 62 refs.

  14. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  15. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Science.gov (United States)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  17. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  18. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Science.gov (United States)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  19. Promoting growth of fry and adult fish by irradiating fish embryos with low-dose of Ra-Be neutron source

    International Nuclear Information System (INIS)

    Yu Yongcheng; Zhang Yuhua; Wu Jilan

    1994-01-01

    Proper neutron dose can stimulate fries to grow. The optimum neutron fluence is from 9.2 x 10 5 cm -2 to 18 x 10 5 cm -2 . The yield of fries is increased by 16%-24% (silver carp fries) and 6%-30% (carp fries). The cultivated period of the treated silver carp fries is shortened by 28-45 days (1/3 to 1/2 period). The irradiated embryos of silver carp and carp are reared and produced for commercial adult fish in 1992

  20. Deformation modes of proton and neutron irradiated stainless steels

    Science.gov (United States)

    Bailat, C.; Gröschel, F.; Victoria, M.

    2000-01-01

    AISI 304 and 316 stainless steels of two purity levels that have been irradiated with high energy protons up to 0.3 dpa and neutrons in a high flux reactor up to 7.5 dpa were investigated in terms of irradiation induced mechanical properties and microstructural changes. The stress-strain relationships were obtained at room temperature. The deformation, grain, twinning and irradiation defect microstructures were investigated using both transmission and scanning electron microscopy. The results are discussed in terms of deformation mechanisms linked with the radiation induced defect microstructure.

  1. Neutron fluence at the reactor pressure vessel wall - a comparison of French and German procedures and strategies in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, N. [Institut de Radioprotection et de Surete Nucleaire, IRSN/DES/SECCA, 92 - Fontenay aux Roses (France); Jendrich, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2003-01-01

    While the neutrons within the core may take part in the chain reaction, those neutrons emitted from the core are basically lost for the energy production. This 'neutron leakage' represents a loss of fuel efficiency and causes neutron embrittlement of the reactor pressure vessel (RPV) wall. The latter raises safety concerns, needs to be monitored closely and may necessitate mitigating measures. There are different strategies to deal with these two undesirable effects: The neutron emission may be reduced to some extent all around the core or just at the 'hot spots' of RPV embrittlement by tailored core loading patterns. A higher absorption rate of neutrons may also be achieved by a larger water gap between the core and the RPV. In this paper the inter-relations between the distribution of neutron flux, core geometry, core loading strategy, RPV embrittlement and its surveillance are discussed at first. Then the different strategies followed by the German and French operators are described. Finally the conclusions will highlight the communalities and differences between these strategies as different approaches to the same problem of safety as well as economy. (authors)

  2. Irradiation system for neutron capture therapy using the small accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tooru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Tanaka, Kenichi [Kyoto Univ. (Japan). Graduate School of Engineering; Nakagawa, Yoshinobu [Kagawa Children' s Hospital, Zentsuji (Japan); Hoshi, Masaharu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-09-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions {sup 10}B(n, {alpha}{gamma}) {sup 7}Li and {sup 7}Li (p, n) {sup 7}Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction {sup 7}Li (p, n) {sup 7}Be. The system devoted to the NCT is awaited in future. (K.H.)

  3. Comparison of initial damage rates using neutron and electron irradiations

    International Nuclear Information System (INIS)

    Goldstone, J.A.R.

    1978-08-01

    The purpose of this experiment was twofold: (1) The number of interstitials that pin dislocations was studied as a function of neutron energy. (2) By comparison with electron irradiations on the sample, a correlation between the predicted and measured numbers of defects was found. All irradiations were performed on the same high purity copper sample. The sample was machined in the form of a cantilever beam with a flexural resonant frequency of 770 Hz. Changes in Young's modulus at constant strain amplitude were monitored continuously through changes in the resonant frequency of the sample. These changes in the modulus can be related to the number of pinning points added to dislocation lines, which are in turn related to the number of free interstitials produced. Neutron energy dependence experiments were done from 2 to 24 MeV on the copper sample and at 14 MeV on a gold sample. By equating pinning rates from electron and neutron irradiations and using the free interstitial production rate obtained from electron irradiations, an estimate of the free interstitial production cross section for neutrons of 2 to 24 MeV was made

  4. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  5. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  6. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    Science.gov (United States)

    Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.

    1998-10-01

    Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.

  7. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    International Nuclear Information System (INIS)

    Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.

    1998-01-01

    Effects of neutron irradiation to fluence of 2.0 x 10 24 n/m 2 (E > 0.5 MeV) in temperature range 70-300 C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1% C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 x 10 24 n/m 2 (E ≥ 0.5 MeV) at 280 C the ΔDBTT does not exceed 25 C. The shift in DBTT increased from 35 C to 110 C for the 8Cr-1.5 WV steel at a decrease in irradiation temperature from 300 C to 70 C. The CCT diagrams are presented for several reduced-activated steels. (orig.)

  8. Neutron small angle scattering of irradiated aluminium-silicon alloys

    International Nuclear Information System (INIS)

    Kostorz, G.

    1976-01-01

    Technically pure aluminium and aluminium-silicon alloys (0.43, 0.83 and 1.2% Si, also containing 0.11 to 0.14 at. % Fe) were investigated by slow neutron small angle scattering after irradiation with fast neutrons at low temperatures. Different irradiation levels, ageing at room temperature and at 60/70 0 C had no measurable effect upon small angle scattering cross-sections. From the experimental precision upper limit for the amount of Si involved in clustering after irradiation can be given. The observed small angle scattering shows a strong dependence on scattering angles and is attributed to large precipitates of Al 12 Fe 3 Si. A surface layer on the as-received samples is identified as another source of low-intensity small angle scattering. (orig.) [de

  9. s-process studies in the light of new experimental cross sections: Distribution of neutron fluences and r-process residuals

    International Nuclear Information System (INIS)

    Kaeppeler, F.; Beer, H.; Wisshak, K.; Clayton, D.D.; Macklin, R.L.; Ward, R.A.

    1981-08-01

    A best set of neutron-capture cross sections has been evaluated for the most important s-process isotopes. With this data base, s-process studies have been carried out using the traditional model which assumes a steady neutron flux and an exponential distribution of neutron irradiations. The calculated sigmaN-curve is in excellent agreement with the empirical sigmaN-values of pure s-process nuclei. Simultaneously, good agreement is found between the difference of solar and s-process abundances and the abundances of pure r-process nuclei. We also discuss the abundance pattern of the iron group elements where our s-process results complement the abundances obtained from explosive nuclear burning. The results obtained from the traditional s-process model such as seed abundances, mean neutron irradiations, or neutron densities are compared to recent stellar model calculations which assume the He-burning shells of red giant stars as the site for the s-process. (orig.) [de

  10. Mechanical properties of Mo and TZM alloy neutron-irradiated at high temperatures

    International Nuclear Information System (INIS)

    Ueda, Kazukiyo; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori

    1997-01-01

    This work reports the mechanical properties of irradiated molybdenum (Mo) and its alloy, TZM. Recrystallized and stress-relieved specimens were irradiated at five temperatures between 373 and 800degC in FFTF/MOTA to fluence levels of 6.8 to 34 dpa. Irradiation embrittlement and hardening were evaluated by three-point bend test and Vickers hardness test, respectively. Stress-relieved materials showed the enough ductility even after high fluence irradiation. The role of layered structure of stress-relieved specimen was discussed. (author)

  11. Effect of thermal neutron irradiation on personal photon dosemeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1984-01-01

    Since radiation protection dosemeters are often in use in mixed neutron-gamma fields it appeared desirable to the Commission of the European Communities to include in the intercomparison study a small measuring programme for investigating the influence of slow neutrons on personal photon dosemeters. Film dosemeters and TLD badges were sent to the PTB to be irradiated at the Thermal Neutron Reference Beam of the Research and Measuring Reactor Braunschweig, and were then sent back for evaluation. Institutes participating in this particular programme were: CEA, Fontenay-aux-Roses, CEGB, Berkeley, CNEN, Bologna, GSF, Neuherberg, TNO, Arnhem. The results for film dosemeters obtained in this intercomparison show that a careful calibration of every type of dosemeter with thermal neutrons, preferentially with low photon contamination, is desirable to achieve the appropriate corrections for the assessment of photon equivalent in a mixed field

  12. Determination of the spectral neutron fluence rate onboard aircraft by means of a passive Bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2002-01-01

    Full text: Initiated by the recommendations of the International Commission on Radiological Protection (ICRP), the exposure of aircraft crew to cosmic radiation has been included as occupational exposure in the European Council directive 96/29/Euratom. Of the complex mixed radiation field at aviation altitudes the neutron component can contribute more than 50 % to the biologically relevant dose equivalent and is, therefore, of great importance. Applying the multi-sphere moderation technique, Bonner sphere spectrometers (BSS) are currently the only instruments providing a sufficient response over several orders of energy up to GeV. As could be demonstrated by extensive experiments in a variety of reference radiation fields, charged particles significantly contribute to the count rate of active detectors such as 6 LiI-scintillators or 3 He-proportional counters, which are commonly employed as thermal neutron detectors inside the spheres. This limitation can be overcome with a passive BSS, which uses different types of thermoluminescent dosemeters (TLDs): the thermal neutron-sensitive TLD-600 ( 6 LiF) and the thermal neutron-insensitive TLD-700 ( 7 LiF). Assuming identical responses of both types for the other radiation components, subtraction of the TLD-700 signal from the TLD-600 signal reveals a net signal from thermal neutrons. The passive BSS was calibrated in the CERN-EU High-Energy Reference Field (CERF), which provides a neutron spectrum in reasonable agreement with that occurring at aviation altitudes. Measurements onboard aircraft were performed during a series of eight north-bound flights originating from Cologne. The results are compared with calculations of the neutron spectrum by means of the well-established Monte Carlo code FLUKA. (author)

  13. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  15. SPECTER: neutron damage calculations for materials irradiations

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Smither, R.K.

    1985-01-01

    Neutron displacement damage-energy cross sections have been calculated for 41 isotopes in the energy range from 10 -10 to 20 MeV. Calculations were performed on a 100-point energy grid using nuclear cross sections from ENDF/B-V and the DISCS computer code. Elastic scattering is treated exactly including angular distributions from ENDF/B-V. Inelastic scattering calculations consider both discrete and continuous nuclear level distributions. Multiple (n,xn) reactions use a Monte Carlo technique to derive the recoil distributions. The (n,d) and (n,t) reactions are treated as (n,p) and (n, 3 He) as (n, 4 He). The (n,γ) reaction and subsequent β-decay are also included, using a new treatment of γ-γ coincidences, angular correlations, β-neutrino correlations, and the incident neutron energy. The Lindhard model was used to compute the energy available for nuclear displacement at each recoil energy. The SPECTER computer code has been developed to simplify damage calculations. The user need only specify a neutron energy spectrum. SPECTER will then calculate spectral-averaged displacements, recoil spectra, gas production, and total damage energy (Kerma). The SPECTER computer code package is readily accessible to the fusion community via the National Magnetic Fusion Energy Computer Center (NMFECC) at Lawrence Livermore National laboratory

  16. Effect of neutron irradiation on the microstructure of the stainless steel electroslag weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Onizawa, K. [Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Suzuki, M. [Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2013-11-15

    Microstructural changes in the stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation with a fluence of 7.2 × 10{sup 23} n m{sup −2} (E > 1 MeV) and a flux of 1.1 × 10{sup 17} n m{sup −2} s{sup −1} at 290 °C were investigated by atom probe tomography. The results showed a difference in the microstructural changes that result from neutron irradiation and thermal aging. Neutron irradiation resulted in the slight progression of Cr spinodal decomposition and an increase in the fluctuation of the Si, Ni, and Mn concentrations in the ferrite phases, with formation of γ′-like clusters in the austenite phases. On the other hand, thermal aging resulted in the considerable progression of the Cr spinodal decomposition, formation of G-phases, and a decrease in the Si and an increase in the Ni and Mn concentration fluctuations at the matrix in the ferrite phases, without the microstructural changes in the austenite phases.

  17. European Fusion Programme. ITER task T23: Beryllium characterisation. Progress report. Tensile tests on neutron irradiated and reference beryllium

    International Nuclear Information System (INIS)

    Moons, F.

    1996-02-01

    As part of the European Technology Fusion Programme, the irradiation embrittlement characteristics of the more ductile and isotopic grades of beryllium manufactured by Brush Wellman has been investigated using modern powder production and consolidation techniques . This study was initiated in support of the development and evaluation of beryllium as a neutron multiplier for the solid breeder blanket design concepts proposed for a DEMO fusion power reactor. Four different species of beryllium: S-200 F (vacuum hot pressed, 1.2 wt% BeO), S-200FH (hot isostatic pressed, 0.9 wt% BeO), S-65 (vacuum hot pressed, 0.6 wt% BeO), S-65H (hot isostatic pressed, 0.5 wt% BeO) have been compared. Three batches of the beryllium have been investigated, a neutron batch, a thermal control batch and a reference batch. Neutron irradiation has been performed at temperatures between 175 and 605 degrees Celsius up to a neutron fluence of 2.1 10 25 n.m -2 (E> 1 MeV) or 750 appm He. The results of the tensile tests are summarized

  18. Damage development and hardening in 14 MeV neutron irradiation of copper alloys at 250C

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Panayotou, N.F.

    1981-07-01

    Copper and copper alloyed with five atom percent of either aluminum, nickel or manganese were irradiated at 25 0 with 14 MeV neutrons to fluences up to 7.5 x 10 17 n/cm 2 (0.003 dpa). The radiation-induced microstructure of these materials was characterized by the coupled use of electron microscopy and microhardness. The irradiation-induced microhardness changes were found to be independent of alloy identity and the magnitude of the solute-induced hardening. It appears that at least 70% of the defect clusters are smaller than resolvable by microscopy (approx. 1 nm). The point defects at 25 0 C which survive recombination and aggregate in either visible or invisible clusters constitute at least 8% of those produced in the cascades

  19. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  20. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  1. The recovery of irradiation damage for Zircaloy-2 and Zircaloy-4 following low dose neutron irradiation at nominally 358 °C

    Science.gov (United States)

    Cockeram, B. V.; Leonard, K. J.; Byun, T. S.; Snead, L. L.; Hollenbeck, J. L.

    2015-06-01

    The recovery of irradiation damage in wrought Zircaloy-2 and Zircaloy-4 was determined following a series of post-irradiation anneals at temperatures ranging from 343 °C to 510 °C and for time periods ranging from 1-h to 500 h. The materials had been irradiated at nominally 358 °C in the High Flux Isotope Reactor (HFIR) at neutron fluences of nominally 3 × 1025 n/m2 (E > 1 MeV). Irradiation at nominally 358 °C resulted in a coarser distribution of loops that result in a 25-45% lower irradiation hardening than reported in the literature for irradiations at 260-326 °C. The irradiation hardening and recovery were determined using tensile testing at room-temperature. Post-irradiation annealing at 343-427 °C was shown to result in an increase in irradiation hardening to values even higher than for the as-irradiated material in the first 1-10 h of annealing. This Radiation Anneal Hardening (RAH) was followed by a relatively slow recovery of the irradiation damage. Much faster recovery with no RAH was observed for post-irradiation annealing at temperatures of 454-510 °C. Irradiation at 358 °C was shown to result in different recovery kinetics than observed in the literature for irradiation at 260-326 °C. While the general trend described above is true for the four materials tested (alpha-annealed and beta-treated Zircaloy-2 and Zircaloy-4), notable and yet unexplained differences in RAH and in recovery are observed between the materials that might be a result of differing solute effects. Examinations of microstructure using Transmission Electron Microscopy were used to investigate the RAH and recovery mechanisms. Agreement between the measured and calculated irradiation hardening using a generalized Orowan hardening model to account for the observed loop structure was not as close for the post irradiation annealed condition as for the as-irradiated condition, which can likely be attributed to unaccounted for changes in the configuration of the loops to

  2. Study of the behaviour under neutron irradiation of hafnium diboride; Etude du comportement sous irradiation neutronique du diborure d`hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Cheminant-Coatanlem, P

    1998-12-31

    Owing to its good neutron cross section and to its high melting point, hafnium diboride is a potential candidate for a use as neutron absorbing material in control rod of pressurized water reactor of the next generation. The main causes of damage under neutron irradiation in this ceramic are due to the {sup 10}B(n,{alpha}){sup 7}Li reaction that introduces in the crystal structure new atoms and point defects. The materials under consideration are the stoichiometric HfB{sub 2} compound and the HfB{sub 2} + 10 vol. % Hf compound. They are been irradiated with neutrons at several fluences and temperatures. Electron irradiations, helium and lithium implantations have been carried out in order to simulate the creation of point defects and/or fission products. Transmission and scanning electron microscopy have been used to determine damage mechanisms in HfB{sub 2}. At a low temperature (<500 deg C), irradiation defects precipitate in dislocation loops of both nature, interstitial and vacancy. Those loops have a particular organisation in the HfB{sub 2} lattice: vacancy loops are lying in the basal plane and interstitial loops in planes perpendicular to basal planes. This induces anisotropic deformation of grains that originates internal stress development. These stresses are associated with the dislocation staking and consequently with the cavity formation at grain boundaries. At a higher temperature (>700 deg C), the same dislocation loops are observed. But, in addition, the irradiation defects diffuse to grain boundaries where helium bubbles are formed. The damage caused by this latter mechanism becomes predominant. The HfB{sub 2} + 10 vol. % Hf materials is more resistant under neutron irradiation than the HfB{sub 2} pellets that display a very damaged surface. This result is explained by the fact that, on the one band, the HfB{sub 2} + 10 vol. % Hf pellets have a higher toughness than the HfB{sub 2} pellets and, on the other hand, the HfB{sub 2} + 10 vol. % Hf

  3. Characterization of the neutron sources storage pool of the Neutron Standards Laboratory, using Montecarlo Techniques

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The development of irradiation damage resistant materials is one of the most important open fields in the design of experimental facilities and conceptual nucleoelectric fusion plants. The Neutron Standards Laboratory aims to contribute to this development by allowing the neutron irradiation of materials in its calibration neutron sources storage pool. For this purposes, it is essential to characterize the pool itself in terms of neutron fluence and spectra due to the calibration neutron sources. In this work, the main features of this facility are presented and the characterization of the storage pool is carried out. Finally, an application is shown of the obtained results to the neutron irradiation of material.

  4. Multi-nuclear NMR study of polytype and defect distribution in neutron irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Brigden, C.T., E-mail: ctb26@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Farnan, I., E-mail: if203@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Hania, P.R., E-mail: hania@nrg.eu [Nuclear Research Group (NRG), Westerduinweg 3, NL-1755LE Petten (Netherlands)

    2014-01-15

    Silicon carbide containing 92% β-SiC has been irradiated in a material test reactor at a fast neutron fluence (>0.1 MeV) of 3.39 × 10{sup 21} n cm{sup −2} at an average temperature of 796 °C, and subsequently studied by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. A small amount of structural alteration was measured with the α-SiC polytypes increasing from around 8–14%. Based on the assumption that the primary dominant defect is the paramagnetic Si{sub V}{sup -} defect. The defect concentration has been measured in both the irradiated and unirradiated sample using spin lattice relaxation time (T{sub 1}) data obtained via a saturation-recovery experiment and was found to increase from 4.6 × 10{sup 18} cm{sup −3} to 1.5 × 10{sup 20} cm{sup −3}. A case is presented to show that a small residual internuclear dipolar coupling contribution (at 3.80 × 10{sup −6}% of its total value) towards the T{sub 1} in the unirradiated reference sample significantly modifies the relaxation time from a value based solely on the dominant nuclear defect coupling mechanism.

  5. Neutron irradiation and compatibility testing of Li2O

    International Nuclear Information System (INIS)

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Walters, L.C.; Tetenbaum, M.

    1983-01-01

    A study was made of the neutron-irradiation behavior of 6 Li-enriched Li 2 O material in EBR-II. In addition, a stress-corrosion study was performed ex-reactor to test compatibility of Li 2 O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li 2 O (approx. 89% dense) lessened with neutron exposure. Helium and tritium retention appear to approach steady-state after approx. 1% 6 Li burnup. The stress-corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2 O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time, greatly reducing corrosion rates

  6. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  7. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    International Nuclear Information System (INIS)

    El-Atwani, O.; Gonderman, Sean; Allain, J.P.; Efe, Mert; Klenosky, Daniel; Qiu, Tian; De Temmerman, Gregory; Morgan, Thomas; Bystrov, Kirill

    2014-01-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental Energy Research (DIFFER) in Nieuwegein, the Netherlands. The He flux on the tungsten samples ranged from 1.0 × 10 23 –2.0 × 10 24  ions m −2  s −1 , the sample bias ranged from a negative (20–65) V, and the sample temperatures ranged from 600–1500 °C. SEM analysis of the exposed samples clearly shows that ultrafine-grained tungsten materials have a greater fluence threshold to the formation of fuzz by an order or magnitude or more, supporting the conjecture that grain boundaries play a major role in the mechanisms of radiation damage. Pre-fuzz damage analysis is addressed, as in the role of grain orientation on structure formation. Grains of (1 1 0) and (1 1 1) orientation showed only pore formation, while (0 0 1) oriented grains showed ripples (higher structures) decorated with pores. Blistering at the grain boundaries is also observed in this case. In situ TEM analysis during irradiation revealed facetted bubble formation at the grain boundaries likely responsible for blistering at this location. The results could have significant implications for future plasma-burning fusion devices given the He-induced damage could lead to macroscopic dust emission into the fusion plasma. (paper)

  8. Effect of neutron irradiation on select MAX phases

    International Nuclear Information System (INIS)

    Tallman, Darin J.; Hoffman, Elizabeth N.; Caspi, El’ad N.; Garcia-Diaz, Brenda L.; Kohse, Gordon; Sindelar, Robert L.; Barsoum, Michel W.

    2015-01-01

    Herein we report on the effect of neutron irradiation – of up to 0.1 displacements per atom at 360(20) °C or 695(25) °C – on polycrystalline samples of Ti 3 AlC 2 , Ti 2 AlC, Ti 3 SiC 2 and Ti 2 AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti 3 AlC 2 and Ti 3 SiC 2 phases, most prominently in the former. Ti 2 AlN also showed an increase in TiN content, as well as Ti 4 AlN 3 after irradiation. In contrast, Ti 2 AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti 2 AlC and Ti 3 AlC 2 after irradiation at 360(20) °C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20) °C, but only by 25% after 695(25) °C, providing evidence for the MAX phases’ dynamic recovery at temperatures as low at 695(25) °C. Based on these preliminary results, it appears that Ti 2 AlC and Ti 3 SiC 2 are the more promising materials for high-temperature nuclear applications

  9. Development of a simple neutron irradiation facility utilizing the stray neutron field of a medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    1995-01-01

    During the routine isotope production schedule at the Australian National Medical Cyclotron thick copper plate, electroplated with enriched target materials, are bombarded with 30 MeV protons with an average beam current of 200μA. As a result an intense high-energy, prompt neutron flux of the order of 1.72 x 10 13 neutrons·cm -2 · -1 is generated in the immediate vicinity of the target. The stray fast neutrons were moderated using a water-filled PVC bucket placed on the target station. A maximum thermal neutron flux of 3.88 x 10 9 neutrons·cm -2 ''centrdot'' s -1 was measured in the bucket using cobalt activation discs. The thermal neutrons from this irradiation facility has been used for the neutron activation analysis of trace elements in archaeological artefacts. It has also been planned to utilize the fast neutron flux by varying the geometry of the water moderator in order to estimate oxygen concentrations in high-temperature superconductors and aluminium and silicon in ceramics. (Author)

  10. Morphological Profiles of Neutron and X-Irradiated Small Intestine

    OpenAIRE

    K.E., CARR; S.P., HUME; A.C., NELSON; O., O'SHEA; R.A., HAZZARD; J.S., McCULLOUGH; School of Biomedical Science_Anatomy, Medical Biology Centre; MRC Cyclotron Unit, Hammersmith Hospital; Centre for Bioengineering, University of Washington; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile ...

  11. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  12. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  13. Neutron irradiation effects on high Nicalon silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.C.; Steiner, D.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  14. Neutron irradiation effects on high Nicalon silicon carbide fibers

    International Nuclear Information System (INIS)

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-01-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon trademark fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized

  15. Characterization of the National Low-Temperature Neutron Irradiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1986-02-01

    The National Low-Temperature Neutron Irradiation Facility (NLTNIF) is now operating at the Bulk Shielding Reactor at ORNL. The facility provides high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. A general description and major specifications of the NLTNIF are presented along with the results of performance tests. In addition, the hardware and other considerations required to perform experiments in the NLTNIF are described.

  16. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  17. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  18. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  19. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  20. Application of damage functions to CTR component fluence limit predictions

    International Nuclear Information System (INIS)

    Simons, R.L.; Doran, D.G.

    1975-01-01

    Material behavior observed under irradiation conditions in test reactors is not always directly applicable to the design of reactor components such as CTR first wall because of differences in the damage effectiveness of test reactor and service spectra. The interpolation and, under some conditions, extrapolation of material property change data from test conditions to different neutron spectra in service conditions can be accomplished using semi-empirical damage functions. The derivation and application of damage functions to CTR conditions is reviewed. Since limited amounts of data are available for applications to CTR design spectra, considerable attention is placed on the effectiveness of various available and proposed neutron sources in determining a damage function and subsequent fluence limit prediction. Neutron sources included in this study were EBR-II, HIFR, LAMPF (Be and Cu targets), high energy deuterons incident on Be (D-Be), and 14 MeV neutrons (D-T)

  1. Neutron diffraction analysis of Cr–Ni–Mo–Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    International Nuclear Information System (INIS)

    Voronin, V.I.; Valiev, E.Z.; Berger, I.F.; Goschitskii, B.N.; Proskurnina, N.V.; Sagaradze, V.V.; Kataeva, N.F.

    2015-01-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr–15Ni–3Mo–1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson–Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown

  2. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  3. Desing study of high voltage plasma focus for a large fluence neutron source by using a water capacitor bank

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Isao; Kobata, Tadasuke (Tokyo Univ. (Japan). Faculty of Engineering)

    1983-03-01

    A new possibility for high intensity neutron source (HINS) would be opened by the plasma focus device if we have a high voltage capacitor bank. A scaling law of neutron yield for D-T gas discharge in plasma focus device is obtained after Imshennik, Filippov and Filippova. The resulting scaling law shows the realizability of the D-T HINS by the use of plasma focus, provided that the device is operated under a high voltage condition. Until now, it has been difficult to construct the high voltage capacitor bank of long life, for example with V/sub 0/=300kV, C/sub 0/=200..mu..F and L/sub 0/--5nH necessary in the level of HINS. It becomes possible to design this capacitor bank by using the coaxial water capacitor which has been developed for the electron and ion beam accelerator. The size of a capacitor designed for V/sub 0/=300kV, C/sub 0/=1..mu..F is phi5m x 22m. Two hundred capacitors are used in parallel in order to get the 200..mu..F.

  4. Neutron metrology in the HFR. Irradiation of Low Activation Steel Specimens R285-04 (ILAS). Evaluation report

    International Nuclear Information System (INIS)

    Ketema, D.J.

    1998-06-01

    ECN is working on the assessment of low temperature irradiation hardening and embrittlement of ferritic/martensitic alloys, developed for fusion application. The irradiation of specimen holder R285-04 (ILAS) in the HFR in Petten, Netherlands, loaded with tensile specimens manufactured from four types of stainless steel alloys, is part of this programme. The R285-04 assembly was irradiated in channel 3 of a TRIO type facility in HFR core-position D2 up to a target dose level of approximately 2.5 dpa (displacements per atom) in stainless steel at a nominal temperature of about 325C. This report presents the final metrology results obtained from activation monitor sets situated in one of the specimen channels inside the specimen holder, including detailed information concerning an estimation of the fluence dose received by each specimen separately and its temperature during irradiation. The total number of displacements per atom (dpa), the generated helium content and the activity values after irradiation for several waiting times are also given for each specimen. Additionally the metrology results were cross-checked with calculations by means of the KENO-Va Monte Carlo code, giving a very good agreement on the centre-line of the specimen holder, and larger deviations on the top and bottom positions of the assembly. The main results of the thermal and fast neutron fluence measurements, indicate that the obtained damage levels in the steel specimens loaded in this specimen holder vary from 2.1 to 3.5 dpa. Detailed data are presented. 28 refs

  5. Neutron irradiation effects on magnetic properties of some Heusler alloys

    International Nuclear Information System (INIS)

    Onodera, Hideya; Shinohara, Takeshi; Yamamoto, Hisao; Watanabe, Hiroshi

    1975-01-01

    The neutron irradiation effects were studied with measurements of temperature dependence of magnetization in ordered and disordered Heusler alloys. The irradiation was carried out in JMTR with a total flux of fast neutrons of 10 20 nvt. Fully ordered Cu 2 MnIn, partially ordered Cu 2 MnAl and completely disordered Cu 2 MnSn were prepared with various temperature treatments. The magnetization-temperature curves of each specimen were measured before and after irradiation. In the irradiated Cu 2 MnIn, the disordering by the irradiation gave rise to a decrease of magnetization, and the temperature dependence of magnetization showed that the disordered region contained various regions with different degrees of disorder. For the distribution of the disordered region, the calculation based on the theory of temperature spike by Seitz and Koekler gave a feasible result that a disordered region comprised a central core with a radius of 5.4 A which was completely disordered and a periphery of 3.3 A thickness which was partially disordered. From the magnetization-temperature curves of Cu 2 MnAl, it was considered that the disordered regions induced by the irradiation had different properties from those induced by the heat treatment. The former were the localized and comprised regions corresponding to various degrees of disorder, while the latter spread spatially in a wide range with a certain degree of disorder. The ordering by enhanced diffusion occurred simultaneously to an extent comparable to the disordering, and so it played an important role in the magnetization in the partially disordered Cu 2 MnAl. In the disordered Cu 2 MnSn, however, the ordering effect was very small. It is supposed to be difficult for the A2 structure to transform into the L2 1 structure by the enhanced diffusion. (auth.)

  6. Effects of neutron irradiation on polymer matrix composites at 5 K and at room temperature. Pt. 1

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.

    1987-01-01

    The spatial distribution of absorbed dose in a composite specimen irradiated in the Intense Pulsed Neutron Source (IPNS) was calculated for four kinds of cloth-filled polymer-matrix composites (filler: E-glass or carbon fiber; matrix: epoxy or polyimide resin). This calculation was performed by taking into account the range of recoil particles and the array of fibers in the composite. The average ratio of the energy of recoils protons deposited in a matrix of a composite to that deposited in an infinite matrix is 0.55-0.79, depending on the IPNS neutron spectra and on the kinds of composite materials. For E-glass fiber composites which have a 10 B(n, α) 7 Li reaction taking place in the fiber, the average ratio of the energy of α and 7 Li particles deposited in the matrix to that deposited in an infinite fiber material is about 0.79. On the basis of these ratios, the conversion factor from total neutron fluence to absorbed dose for a matrix of a composite is calculated for composite materials irradiated in IPNS. (orig.)

  7. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  8. Microstructure and mechanical properties of titanium aluminum carbides neutron irradiated at 400–700 °C

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shih, Chunghao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); General Atomics, San Diego, CA (United States); Silva, Chinthaka [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-23

    Here, this work reports the first mechanical properties of Ti3AlC2-Ti5Al2C3 materials neutron irradiated at ~400, 630 and 700 °C at a fluence of 2 × 1025 n m-2 (E > 0.1 MeV) or a displacement dose of ~2 dpa. After irradiation at ~400 °C, anisotropic swelling and loss of 90% flexural strength was observed. After irradiation at ~630–700 °C, properties were unchanged. Microcracking and kinking-delamination had occurred during irradiation at ~630–700 °C. Further examination showed no cavities in Ti3AlC2 after irradiation at ~630 °C, and MX and A lamellae were preserved. However, disturbance of (0004) reflections corresponding to M-A layers was observed, and the number density of line/planar defects was ~1023 m-3 of size 5–10 nm. HAADF identified these defects as antisite TiAl atoms. Finally, Ti3AlC2-Ti5Al2C3 shows abrupt dynamic recovery of A-layers from ~630 °C, but a higher temperature appears necessary for full recovery.

  9. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    Science.gov (United States)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  10. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  11. Thermal Conductivity of Diamond - Effect of Neutron Irradiation on Gyrotron Windows for use in Fusion Reactors. Final Report

    International Nuclear Information System (INIS)

    White, Douglas P.

    2005-01-01

    The development of dielectric materials for transmission windows in electron cyclotron resonance heating (ECRH) systems for fusion reactors has recently focused on chemical-vapor-deposited (CVD) diamond. Advances in CVD-diamond processing have made it possible to manufacture gyrotron windows with sufficient thickness (5mm or more) to provide the mechanical strength necessary for this application. A theoretical description of the thermal conductivity changes expected in neutron irradiated diamond at high temperature using the Callaway method is presented. Phonon scattering by radiation induced vacancies and regions of disordered carbon are considered. In addition scattering by boundaries, isotopes and three-phonon normal and umklapp processes are considered. It was found that the higher thermal conductivity advantage gained by isotopically enriching the diamond to 0.1% 13 C, a 32% increase at 300K, was reduced to a 5% increase at 300K upon irradiation to 3.0 x 10 20 n/m 2 . It was found that diamond with the naturally occurring isotope concentration of 1.1% 13 C will experience an 84% decrease in thermal conductivity at 300K and a 62% decrease at 700K upon irradiation to a neutron fluence of 4.5 x 10 22 n/m 2 .

  12. Impact of neutron irradiation on the structural and optical properties of PVP/gelatin blends doped with dysprosium (III) chloride

    Science.gov (United States)

    Basha, Ahmad Fouad; Basha, Mohammad Ahmad-Fouad

    2017-12-01

    Polymer composites of a system of Polyvinylpyrrolidone (PVP)/gelatin/DyCl3.6H2O were prepared in three groups that have different concentrations of PVP/gelatin contents to study the effect of neutron irradiation on their structural and optical properties. Results showed that the interaction of neutrons led to various complex phenomena, mainly bond breaking, main chain scission and intermolecular cross-linking. These processes introduced defects inside the material that were responsible for the changes in their optical and structural properties. All the calculated parameters were found to be dependent on the irradiation fluence in a uniform manner that makes these materials excellent candidates in the applications of dosimetry and radiology. Moreover, the sensitivity of the three groups of composites to the irradiation doses was found to be different. The variation in the structure of the composite group that contains the least PVP content was found to be less significant; hence, these materials were more stable against high doses that make them suitable for high radiation dose applications.

  13. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  14. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  15. Effect of Fast Neutron Irradiation on the Properties of a Superconducting (Bi-2223+0.8% 238U)/Ag-Tape

    CERN Document Server

    Goncharov, I N; Voloshin, I F; Kalinov, A V; Fisher, L M

    2001-01-01

    The critical current density (J_c) of a high temperature superconductor doped with uranium can be significantly increased due to neutron irradiation which results in the production of fission fragment tracks. The disadvantages of such a method in case of enriched U introducing into the Bi-2223/Ag-tape are analysed in this paper. The main of them is a high level of long-lived radioactivity after thermal neutron irradiation. The alternative method, in which unenriched uranium introduced into HTS is irradiated with fast neutrons of a>1.4 MeV energy has been checked experimentally. There was a very small fraction of slow neutrons in the reactor beam. At liquid nitrogen temperatures, increasing J_c was found to be observed only at B>0.5 T and for low enough fluences F_n (as compared with the calculated optimum one). For higher F_n, the values of J_c degraded at any B though the radioactivity level is much lower than in the method, where thermal neutrons are used.

  16. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-01-01

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w R and w T , respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w R with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  17. Decommissioning of an Irradiator MPX-γ - 25M and a neutron Irradiator

    International Nuclear Information System (INIS)

    Soguero, Dania; Guerra, Mercedes; Prieto, Enrique; Desdin, Luis

    2013-01-01

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44·10 11 Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 10 12 Bq, self-shielded of category I, model MPX - γ - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators

  18. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    Science.gov (United States)

    Tang, S. M.; Tay, T. S.

    1999-04-01

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ( 46Sc, 51Cr, 54Mn and 59Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of 46Sc, 51Cr and 59Fe would only fall to this safe limit after 15 months and that of 54Mn could remain above this limit for several years.

  19. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  20. Fast neutron irradiation for locally advanced pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.P. (Georgetown Univ. Medical Center, Washington, DC); Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-11-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials.

  1. Fast neutron irradiation for locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Smith, F.P.; Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-01-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials

  2. The changes of the structural, magnetic, and mechanical properties in a reactor pressure vessel steel neutron-irradiated at 70 .deg. C

    CERN Document Server

    Park, D G; Jang, K S; Jung, M M; Kim, G M

    1999-01-01

    The irradiation embrittlement of reactor-pressure-vessel steel has been one of the main safety concerns in nuclear power plants. In the present study, an SA508-3 RPV steel was irradiated by neutrons with various fluences up to 10 sup 1 sup 8 n/cm sup 2 (E>=1MeV) at a temperature of approximately 70 .deg. C. The irradiation responses of the structural, the magnetic, and the mechanical properties of the steel were investigated by means of X-ray diffraction, Moessbauer spectroscopy, magnetic Barkhausen noise, and micro-Vickers hardness measurements. The transitions of all of these parameters occurred above a neutron does of 10 sup 1 sup 6 n/cm sup 2. The results of the X-ray and the Moessbauer experiments revealed that neutron irradiation led to the possibility of partial amorphization in the investigated RPV steel. The changes of the physical and the mechanical properties were discussed in terms of irradiation-induced cascade damage of crystalline materials.

  3. Gamma and neutron irradiation tests on commercial IC op amps

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Morris, A.C. Jr.; Su, D.K.

    1985-01-01

    Experimental results of gamma and neutron irradiation tests on 30 types of integrated-circuit operational amplifiers from 11 manufacturers are presented. All units were low-cost, commercial-grade devices. Op amps were evaluated for changes in offset voltage, input bias current, power supply current, open-loop gain, gain-bandwidth product, slew rate, power-supply and common-mode rejection ratios. Bipolar transistor op amps with resistive collector load resistors for the input stage indicated the best radiation hardness

  4. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    High-purity (99. 999%) and fully annealed copper specimens have been irradiated in the DR-3 reactor at Riso to doses of 1 multiplied by 10**2**2 and 5 multiplied by 10**2**2 neutrons (fast)m** minus **2(2 multiplied by 10** minus **3 dpa and 1 multiplied by 10** minus **2 dpa, respectively...... were distributed between these walls. The dislocation walls were practically free of voids and generally had a void-denuded zone along them. The density of dislocations (loops and segments) was very low in the region containing voids (i. e. between the dislocation walls). Even with this low dislocation...

  5. Positron lifetime study of neutron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Kumakura, Hiroaki; Doyama, Masao; Shiraishi, Kensuke.

    1978-01-01

    Annealing behavior of fast-neutron-irradiated molybdenum was studied by means of positron lifetime technique. It was found that Stage III annealing can be mainly identified as the vacancy migration process from the detailed analyses of data. The void growth after successive high temperature annealings was clearly detected through the changes of positron lifetime parameters. An attempt to analyse the size distribution of voids from positron lifetime spectra was presented, and discussions on the evaluation of void concentration from positron data are also given. (author)

  6. Ion irradiation used as surrogate of neutron irradiation in graphite: Consequences on 14C and 36Cl behavior and structural evolution

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2018-04-01

    the rate at which atoms are displaced can be increased in comparison to reactor conditions. Dose rates can thus be much higher than under neutron irradiation allowing for higher amounts of displacements per atoms (dpa) to be reached within some days instead of months or years. Moreover, because there is no sample activation, the samples are not radioactive [5-11]. During neutron irradiation, the neutrons interact with the matter both by collision with the atom nuclei (i.e. ballistic damage) and by nuclear reactions. The first atoms hit by neutrons are caused to move, thus starting a cascade of atomic collisions leading to electronic excitation as they go through the matter and on the path of the atoms they displace (recoil atoms). The ballistic damage can be evaluated using the nuclear stopping power and can be denoted by the number of displacements per atom (dpa). The effect of electronic excitation can be quantified using the electronic stopping power. The experimental simulation of neutron irradiation in a reactor can be done by irradiation of the graphite samples with different ions of different energies. The choice of these parameters enables the study of the damage effects with or without electron excitation or ballistic damage. Thus, knowing that the impinging neutrons induce mainly ballistic damage into the graphite matrix but that part of the recoil carbon energy is also transferred through electronic excitation, it is interesting to use ion irradiation because both ballistic damage and electronic excitation effects can be studied coupled or decoupled according to the nature of the ion, its energy and the fluence. It is possible to cover a wide range of electronic and nuclear stopping powers by working with different particle accelerators. Thus, we simulated the effects of these different irradiation regimes using ion irradiation by varying the Sn(nuclear)/Se(electronic) stopping power ratio as well as the irradiation temperature (from room temperature up to

  7. Preparation of 227Ac by neutron irradiation of 226Ra

    International Nuclear Information System (INIS)

    Kukleva, E.; Kozempel, J.; Vlk, M.; Micolova, P.; Vopalka, D.

    2015-01-01

    Radium-223 is prospective alpha-emitting therapeutic radionuclide for targeted radionuclide therapy. Although 223 Ra is formed naturally by the decay of 235 U, for practical reasons its preparation involves neutron irradiation of 226 Ra. The α-decay of the 227 Ra (T 12 = 43 min.) produced via 226 Ra(n,γ) 227 Ra reaction leads to 227 Ac, a mother nuclide of 227 Th and 223 Ra subsequently. Irradiation target radium material is generally available in multi-gram quantities from historical stock. Main aim of this study was to experimentally and theoretically evaluate and verify available literature data on production of 223 Ra. According to data obtained from γ-spectra, the approximate yield values were determined and effective cross-section for the 223 Ra production was calculated. (authors)

  8. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R.; Bosch, P.

    2003-01-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10 8 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  9. Indium antimonide crystal defects formed by fast neutron irradiation

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Dolgolenko, A.P.; Mashovets, T.V.; Oganesyan, O.V.

    1979-01-01

    It is shown, that indium antimonide irradiation with fast neutrons of reactor results in the formation of disorded regions with a mean radius of approximately 130 A surrounded with space charge regions forming barriers for main carriers. But the found values of defect cluster depolarization coefficient (Lsub(x)sup(n)=0.18 and Lsub(x)sup(p)=0.29) show, that the clusters have marked conductivity for main charge carriers. The found position of the Fermi level in the disorded regions Esub(F)=Esub(c)-0.085 eV does not depend on the impurity type and its concentration in an initial material. The disorded regions play the main part in charge carrier scattering at low temperatures and markedly contribute to the change of mobility at 80 K. It is found, that irradiation temperature change in the range from 77 to 300 K does not effect practically on the disorded region parameters

  10. Effect of neutron irradiation on creep, fatigue and tensile properties of stainless steel type DIN 1.4948 (similar to AISI 304)

    International Nuclear Information System (INIS)

    Elen, J.D.; Vries, M.I. de; Schaff, B. van der; Staal, H.U.

    1978-03-01

    As a contribution to the German-Belgian-Dutch fast breeder project SNR-300 a mechanical testing programme is being performed at ECN to determine the effects of neutron irradiation on the mechanical properties of the DIN 1.4948 construction steel of the SNR-300 reactor vessel and internal components. Irradiations of plate and weld samples were performed at 723 K and 823 K to thermal neutron fluences of 6 x 10 18 n.cm -2 and 2 x 10 20 n.cm -2 in core positions of the High Flux Reactor at Petten at thermal to fast flux density ratios of about 0.6. Postirradiation testing comprises tensile testing at strain rates from 6 x 10 -6 s -1 to 6 s -1 , creep measurements up to 10.000 h rupture time and low cycle fatigue at strain ranges from 0.6% to 2% and a strain rate of 3 x 10 -3 s -1 . The major effect observed is high temperature embrittlement due to helium produced by the 10 B (n,α) 7 Li reaction in the 14 ppm boron containing steel used for the experiments. The creep rupture time of plate material at 823 K is reduced to 10% of its original value by irradiation to the lower fluence and the creep strength is decreased by 60 MN.m -2 . The total creep strain of weld samples is reduced to values of 0.3% to 1.5%

  11. Neutron flux and annealing effects on irradiation hardening of RPV materials

    Science.gov (United States)

    Chaouadi, R.; Gérard, R.

    2011-11-01

    This paper aims to examine an eventual effect of neutron flux, sometimes referred to as dose rate effect, on irradiation hardening of a typical A533B reactor pressure vessel steel. Tensile tests on both low flux (reactor surveillance data) and high flux (BR2 reactor) were performed in a large fluence range. The obtained results indicate two features. First, the surveillance data exhibit a constant (˜90 MPa) higher yield strength than the high flux data. However, this difference cannot be explained from a flux effect but most probably from differences in the initial tensile properties. The hardening kinetic of both low and high flux is the same. Annealing at low temperature, 345 °C/40 h, to eventually reveal unstable matrix damage did not affect both BR2 and surveillance specimens. This is confirmed by other annealing experimental data including both tensile and hardness measurements and tensile data on A508 forging and weld. It is suggested that the absence of flux effect on the tensile properties while different radiation-induced microstructures can be attributed to thermal ageing effects.

  12. Phase instability of alloys caused by transmutation effects during neutron irradiation

    International Nuclear Information System (INIS)

    Platov, Yu.M.; Pletnev, M.N.

    1994-01-01

    A theory of the phase changes in a two-phase binary A-B alloy in the coarsening condition caused by burnout of solute B due to nuclear reactions is presented. It is shown that this burnout process introduces diffusion redistribution of solute between second phase precipitates and solid solution. The burnout induced solute flux away from second phase precipitates to solid solution maintaining the concentration of element B in the vicinity to its solubility limit and stimulates, thus, the second phase particle dissolution. This occurs in addition to a process decreasing their sizes as a result of direct burnout of atoms B in the precipitates. In the framework of the theory developed here, analytical expressions describing time evolution of the precipitate size distributions, changes of mean radius and number density of the precipitates, and second phase dissolution times are obtained. On the basis of these results and numerical calculations for aluminium-scandium alloy, it is shown that the burnout processes can induce essential phase changes, and thus cause significant changes of the properties of irradiated materials at high neutron fluences. ((orig.))

  13. Hydrides formation In Zircaloy-4 irradiated with neutrons

    International Nuclear Information System (INIS)

    Vizcaino, P; Flores, A V; Vicente Alvarez, M A; Banchik, A.D; Tolley, A; Condo, A; Santisteban, J R

    2012-01-01

    Under reactor operating conditions zirconium components go through transformations which affect their original properties. Two phenomena of significant consequences for the integrity of the components are hydrogen uptake and radiation damage, since both contribute to the material fragilization. In the case of the Atucha I nuclear power reactor, the cooling channels, Zircaloy-4 tubular structural components about 6 meters long, were designed to withstand the entire lifetime of the reactor. Inside them, fuel elements 5.3 meters long are located. The fuel elements are cooled by a heavy water flow which circulates from the bottom (250 o ) to the top of the reactor (305 o C). The channels are affected by a fast neutron flux (En>1 Mev), increasing from a nominal value of 1.35 x 10 13 neutrons/cm 2 sec at the bottom to 1.69 x 10 13 neutrons/cm 2 sec at the top, reaching a maximum value of 3.76 x 10 13 neutrons/cm 2 sec at the center of the channels. However, due to the reactor operating conditions, they are replaced after about 10 effective full power years, time at which they reach 10 22 neutrons/cm 2 at the most neutronically active regions of the reactor. Studies on cooling channels are meaningful from many points of view. The channels are structural components which do not work under internal pressure or any other type of structural stress. The typical temperature of the cladding tubes in the reactor is about 350 o C, at which many types of irradiation defects are annealed [1]. The temperature range of the cooling channels lies between 200 o C-235 o C (outer foil of the channels) and 260 o C-300 o C (internal tube), a difference which makes the defect recovery kinetics slower. In the present context, following the program developed in the research contract 15810, we continue with the work started on the effects of the radiation on the hydride formation focusing on the dislocation loops in the zirconium matrix and its possible role as preferential sites for hydride

  14. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  15. Investigation of microstructure and mechanical properties of low dose neutron irradiated HT-9 steel

    International Nuclear Information System (INIS)

    Sarkar, A.; Alsabbagh, A.H.; Murty, K.L.

    2014-01-01

    Highlights: • Neutron irradiation has been carried out on HT-9 steel. • Microstructure of the irradiated HT-9 steel has been investigated using XRD. • There is an increase in dislocation density in the irradiated sample. • Tensile tests have been carried out to determine the changes in mechanical properties due to irradiation. • Yield stress and strain rate sensitivity increased due to irradiation. - Abstract: HT-9 steel samples have been irradiated with fast neutrons (E > 0.1 MeV) to a low dose (1.2 × 10 −3 dpa). Microstructure of the unirradiated and irradiated samples has been characterized by X-ray diffraction line profile analysis using different model-based approaches. The domain size and density of dislocations of the irradiated steel have been estimated. Different types of tensile tests have been carried out at room temperature to assess the changes in mechanical properties of HT-9 steel due to neutron irradiation

  16. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  17. Boron neutron capture irradiation: setting up a clinical programme in Nice; Irradiation par capture de neutrons: mise en place d`un programme clinique a Nice

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Chauvel, P.; Courdi, A.; Iborra-Brassart, N.; Frenay, M.; Herault, J.; Bensadoun, R.J.; Milano, G.; Demard, F. [Centre de Lutte Contre le Cancer Antoine Lacassagne, 06 - Nice (France); Paquis, P.; Lonjon, M.; Lebrun-Frenay, C.; Grellier, P.; Chatel, M. [Hopital Pasteur, 06 - Nice (France); Nepveu, F.; Patau, J.P. [Toulouse-3 Univ., 31 (France); Breteau, N. [Hopital de la Source, 45 - Orleans (France)

    1996-12-31

    Neutron capture irradiation aims to selectively destroy tumor tumor cell using {sup 10}B(n,{alpha}){sup 7}Li nuclear reactions produced within themselves. Following the capture reaction, an {alpha} particle and a, {sup 7}Li ion are emitted. Carrying an energy of 2.79 MeV, they destroy all molecular structures along their path close to 10 {mu}m. These captures, used exclusively with a `slow` neutron irradiation, provide a neutron capture therapy (BNCT). If they are used in addition to a fast neutron beam irradiation, they provide a neutron capture potentiation (NCP). The Centre Antoine-Lacassagne in Nice is actively involved in the European Demonstration project for BNCT of grade IV glioblastomas (GBM) after surgical excision and BSH administration. Taking into account the preliminary results obtained in Japan, work on an `epithermal` neutron target compatible with various cyclotron beams is in progress to facilitate further developments of this technique. For NCP, thermalized neutron yield has been measured in phantoms irradiated in the fast neutron beam of the biomedical cyclotron in Nice. A thermal peak appears after 5 cm depth in the tissues, delayed after the fast neutron peak at 1.8 cm depth. Thus, a physical overdosage of 10 % may be obtained if 100 ppm of {sup 10}B are assumed in the tissues. Our results using CAL 58 GBM cell line demonstrate a dose modification factor (DMF) of 1.19 when 100 ppm of boric acid are added to the growth medium. Thus for the particles, issued from neutron capture, a biological efficiency at least twice that of fast neutrons can be derived. These results, compared with historical data on fast neutron irradiation of glioblastoma, suggest that a therapeutic window may be obtained for GBM. (author). 26 refs.

  18. The effect of neutron irradiation on silicon carbide fibers

    International Nuclear Information System (INIS)

    Newsome, G.A.

    1997-01-01

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon trademark CG, Tyranno, Hi-Nicalon trademark, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers

  19. Tritium release from neutron irradiated lithium-aluminium oxides

    International Nuclear Information System (INIS)

    Guggi, D.; Ihle, H.R.; Kurz, U.

    1976-01-01

    The release of tritium from neutron irradiated Li 5 AlO 4 (low temperature phase α-Li 5 AlO 4 ; high temperature phase: β-Li 5 AlO 4 ) and Li 2 O powders was studied. Some measurements were also carried out with γ-LiAlO 2 (samples from fused materials) in order to investigate the effect of grain size on the release of tritium. The results on the tritium release from neutron irradiated powdered α- and β-Li 5 AlO 4 and Li 2 O expressed as time constant tau=r 2 /D.π 2 as a function of temperature are given by the following equations: α-Li 5 AlO 4 :ln(1/tau)=-(4460+-720)/T-(1.13+-0.14); β-Li 5 AlO 4 :ln(1/tau)=-(9000+-1200)/T+(6.06+-0.13); Li 2 O:ln(1/tau)=-(3460+-470)/T-(2.48+-0.12). From these equations it is seen that at elevated temperature, e.g. at 600 0 C tritium is released at a much higher rate from β-Li 5 AlO 4 than from α-Li 5 AlO 4 and Li 2 O

  20. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    . The distributions of helium prior to fission neutron irradiation were determined by a combination of transmission electron microscopy (TEM) and positron annihilation techniques (PAT). These specimens, together with pure copper, were then irradiated with fission neutrons in a single capsule in fast flux test...

  1. Genes involved in yeast survival after irradiation with fast neutrons

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M.J.

    2001-01-01

    Life on the Earth has evolved against a continuous background of ionizing radiation. It would be expected, therefore, that all possible mutations have been produced at some time or another; man-made radiation from medical or industrial sources will not result in any new types of mutation but will simply increase the whole spectrum of mutations that occur spontaneously. Any such lesion can be mutagenic and, in principle, lethal. To counteract the consequences of DNA damage, evolution has equipped all living cells with an intricate network of defense and repair systems. Together, these systems act as a kind of nuclear 'immune system' that is able to recognize and eliminate many types of DNA lesions. In the case of the yeast Saccharomyces cerevisiae, in these processes over 30 RAD genes participate. We tested the survival of haploid and diploid rad1 yeast mutant strains at a dose of 15 Gy of γ or fast neutron radiation. We demonstrated that the lethality of rad1 mutants both haploid and diploid are significantly higher after fast neutron irradiation. The results indicate to the role and position of these genes in the DNA repair of damages specifically induced by fast neutrons. (authors)

  2. Shielding of a neutron irradiator with {sup 241}Am-Be source

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X., E-mail: koliveira@con.ufrj.b, E-mail: verginia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Fonseca, E.S., E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The equivalent dose rates at 1.0 cm from the outer surface of the shielding of a neutron irradiation system that uses {sup 241}Am-Be source with activity of 185 GBq (5 Ci) were determined. A theoretical-experimental approach including case studies, through computer simulations with MCNP code was employed to calculate the best shielding thickness. Following the construction of the neutron irradiator, dose measurements were conducted in order to validate data obtained from simulation. The neutron irradiator shielding was designed in such a way to allow transport of the neutron radiography system for in loco inspections ensuring workers' radiologic safety. (author)

  3. DNA-repair after irradiation of cells with gamma-rays and neutrons

    International Nuclear Information System (INIS)

    Altmann, H.

    1975-11-01

    The structural alterations of calf thymus DNA produced by neutron or gamma irradiation were observed by absorption spectra, sedimentation rate and viscosity measurements. Mixed neutron-gamma irradiation produced fewer single and double strand breaks compared with pure gamma irradiation. RBE-values for mixed neutron-gamma radiation were less than 1, and DNA damage decreased with increasing neutron dose rate. Repair processes of DNA occuring after irradiation were measured in mouse spleen suspensions and human lymphocytes using autoradiographic methods and gradient centrifugations. The number of labelled cells was smaller after mixed neutron-gamma irradiation than after gamma irradiation. The rejoining of strand breaks in alkaline and neutral sucrose was more efficient after gamma irradiation than after mixed neutron-gamma irradiation. Finally, the effect of detergents Tween 80 and Nonident P40 on unscheduled DNA synthesis was studied by autoradiography after mixed neutron-gamma irradiation (Dn=5 krad). The results showed that the DNA synthesis was inhibited by detergent solutions of 0.002%

  4. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  5. Neutron Field Characterization of Irradiation Locations Applied to the Slovenian TRIGA Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Breaud, Stephane; Destouches, Christophe; Villard, Jean-Francois; Snoj, Luka; Stancar, Ziga; Radulovic, Vladimir; Trkov, Andrej

    2013-06-01

    This work deals with several neutron flux measurement instruments and particle transport calculations combined in a method to assess the neutron field in experimental locations in nuclear reactor core or reflector. First test of this method in the TRIGA Mark II of Slovenia led to the assessment of three energy groups neutron fluxes in central irradiation locations within reactor core. (authors)

  6. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    CERN Document Server

    Adam, J; Bradnova, V

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small sup 1 sup 3 sup 9 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction sup 1 sup 3 sup 9 La(n, gamma) sup 1 sup 4 sup 0 La (tau sub 1 sub / sub 2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of sup 1 sup 4 sup 0 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity ...

  7. Study of gem materials by neutron irradiation: characterization of impurities and color centers

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Menezes, Maria A.B.C.; Brito, Walter de; D'Urco, Ana F.A.; Felix, Marcia C.; Krambrock, Klaus; Ferreira, Ana F.

    2005-01-01

    Since one-century laboratory irradiation techniques are applied to the color enhancement of gem minerals. Its actual status and applications are discussed. Many different colors in a variety of gem minerals can be produced by gamma, electron and neutron irradiation combined with thermal treatments, however, many color centers and coloration processes are not known in detail. In this work we present examples of neutron irradiation applied to colorless topaz, spodumene and diamond. Topaz and diamond turned blue, spodumene orange. All color centers produced by neutron irradiation are stable to elevated temperatures and can be considered as color enhancing processes. (author)

  8. Research on measurement of neutron flux in irradiation channels of research reactor

    International Nuclear Information System (INIS)

    Yin Zhitao; Lv Zheng; Wang Yulin; Zheng Wuqin

    2014-01-01

    Relative distribution of thermal neutron flux in the irradiation channel is measured by classical activation foil method. After that, on a representative point in the irradiation channel, neutron temperature and absolute neutron flux are also measured. Cadmium ratio correction method is used to check the experiment result in the end. Comparative analysis shows that the results from two different methods are agreed pretty well, which adds the credibility of experiment results. (authors)

  9. Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500 °C

    Science.gov (United States)

    Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo

    2018-04-01

    The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.

  10. Property changes in graphite irradiated at changing irradiation temperature

    International Nuclear Information System (INIS)

    Price, R.J.; Haag, G.

    1979-07-01

    Design data for irradiated graphite are usually presented as families of isothermal curves showing the change in physical property as a function of fast neutron fluence. In this report, procedures for combining isothermal curves to predict behavior under changing irradiation temperatures are compared with experimental data on irradiation-induced changes in dimensions, Young's modulus, thermal conductivity, and thermal expansivity. The suggested procedure fits the data quite well and is physically realistic

  11. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles.

    Science.gov (United States)

    Lin, Yu-Fen; Nagasawa, Hatsumi; Little, John B; Kato, Takamitsu A; Shih, Hung-Ying; Xie, Xian-Jin; Wilson, Paul F; Brogan, John R; Kurimasa, Akihiro; Chen, David J; Bedford, Joel S; Chen, Benjamin P C

    2014-01-01

    We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.

  12. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Paul, S.; Tripathy, S.P.; Sharma, S.C.; Jena, S.; Rout, S.; Joshi, D.S.; Bandyopadhyay, T.

    2014-01-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735 cm −1 (C=O stretching), 1230 cm −1 (C–O–C stretching), and 783 cm −1 (=C–H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. - Highlights: • CR-39 optical absorbance measurements can be used for neutron dosimetry instead of track counting. • The technique is particularly useful for measuring high doses. • Effects of neutron irradiations on various properties of CR-39 have been characterized

  13. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    Science.gov (United States)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  14. Preliminary study on 2-dimensional distributions of 10B reaction rate in a water phantom with boron-doped CR-39 for 7Li(p, n)7Be neutrons by 1.95 MeV protons

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Tanaka, K.; Tsuruta, T.

    2000-01-01

    In an Accelerator-based neutron irradiation field using 7 Li(p, n) 7 Be neutrons by 1.95 MeV protons, the distributions of 10 B reaction rates and thermal neutron fluence in a water phantom were measured using Boron-doped CR-39 and Au activation analysis, respectively. Comparing the results of the measurements, we discussed the validity of the evaluation method of 10 B reaction rate using thermal neutron fluence. (author)

  15. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  16. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  17. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  18. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  19. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Terry Lee [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat Cex, the thermal conductivity κ the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for Cex, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured Cex, κ, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.

  20. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  1. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  2. Presence of interleukin 6 at the cutaneous level after in vivo neutron irradiation

    International Nuclear Information System (INIS)

    Agay, D.; Pradeau, P.; Edgard, L.; Van Uye, A.; Mestries, J.C.

    1994-01-01

    In this study we investigated the in situ localization of IL-6 in mixed neutron-gamma irradiated baboons belly skin. Using immunohistochemical methods, we demonstrated the presence of IL-6 as early as the first day after the irradiation day. However experimental conditions did not allow us to conclude to a causality relation between irradiation and IL-6 cutaneous presence. (author)

  3. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  4. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  5. Modeling of the frequency dependent C-V characteristics of neutron irradiated p+-n silicon detectors after the type inversion in the space charge region

    International Nuclear Information System (INIS)

    Li, Z.

    1994-01-01

    The modeling of the frequency dependent C-V characteristics of neutron irradiated p + -n silicon detectors is extended to the case of high neutron fluences (Φ > 8 x 10 12 n/cm 2 ) where the effective doping concentration N eff in the space charge region (SCR) exhibits a net acceptor state (or ''p'' type), while the resistivity in the electrical neutral bulk (ENB) approaches intrinsic due to the perfect compensation of all deep levels in the condition of no band bending (or no field) and therefore no Fermi level crossing for any deep levels. The C-V characteristics are still frequency dependent, but the deep level that is responsible for it may be different from the one before the type inversion in the SCR. N eff in the SCR may be dominated by an acceptor level, such as V-V - , whose concentration is proportional to the neutron fluence. The contribution of the high resistivity ENB to the frequency dependence have also been discussed

  6. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  7. Property change mechanism in tungsten under neutron irradiation in various reactors

    Science.gov (United States)

    Hasegawa, Akira; Tanno, Takashi; Nogami, Shuhei; Satou, Manabu

    2011-10-01

    Neutron irradiation data for the hardness and electrical resistivity of W and W-Re was obtained by JOYO, JMTR and HFIR irradiation experiments. The irradiation damage levels and temperature range were 0.15-1.0 dpa at around 500-600 °C. The effects of irradiation temperature, damage level and Re content on hardening and electrical resistivity are discussed. In the case of HFIR irradiated specimen, large irradiation hardening and an increase in electrical resistivity were observed, however, the trend for the electrical resistivity was different from previous work. The property change mechanism is discussed considering the irradiated microstructure and solute elements.

  8. Micro-Raman and photoluminescence studies of neutron-irradiated gallium nitride epilayers

    International Nuclear Information System (INIS)

    Wang, R.X.; Xu, S.J.; Fung, S.; Beling, C.D.; Wang, K.; Li, S.; Wei, Z.F.; Zhou, T.J.; Zhang, J.D.; Huang Ying; Gong, M.

    2005-01-01

    GaN epilayers grown on sapphire substrate were irradiated with various dosages of neutrons and were characterized using Micro-Raman and photoluminescence. It was found that the A 1 (LO) peak in the Raman spectra clearly shifted with neutron irradiation dosage. Careful curve fitting of the Raman data was carried out to obtain the carrier concentration which was found to vary with the neutron irradiation dosage. The variation of the full width at half maximum height of the photoluminescence was consistent with the Raman results. The neutron irradiation-induced structural defects (likely to be Ge Ga ) give rise to carrier trap centers which are responsible for the observed reduction in carrier concentration of the irradiated GaN

  9. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR

    Science.gov (United States)

    Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira; Tanaka, Teruya

    2014-12-01

    The microstructural development of pure tungsten (W) and tungsten-rhenium (Re) alloys due to neutron irradiation in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, TN, USA, was investigated in this work. The irradiation conditions were ∼1 displacements per atom (dpa) at 500 and 800 °C. After the neutron irradiation, microstructural observations were performed using a transmission electron microscope (TEM). Large amounts of precipitates identified as sigma- and chi-phases were observed in not only the W-Re alloys but also in the pure W after the neutron irradiation. The precipitates observed in the pure W were coarse and larger than those in the W-Re alloys. This was considered to be caused by the transmutation products of W and Re, namely, Re and osmium (Os), respectively, under irradiation in the HFIR with a higher contents of thermal neutron flux.

  10. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  11. Fusion neutron damage to a charge coupled device camera

    OpenAIRE

    Amaden, Christopher Dean

    1997-01-01

    Approved for public release; distribution is unlimited A charge coupled device (CCD) camera's performance has been degraded by damage produced by 14 MeV neutrons (n) from the Rotating Target Neutron Source. High energy neutrons produce atomic dislocation in doped silicon electronics. This thesis explores changes in Dark Current (J), Charge Transfer Inefficiency (CTI), and Contrast Transfer Function (CTF) as measures of neutron damage. The camera was irradiated to a fluence, Phi, of 6.60 x ...

  12. Neutron-Irradiated Samples as Test Materials for MPEX

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Rapp, Juergen

    2015-01-01

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility

  13. Hot atom reactions in neutron irradiated solid iron group metallocenes

    International Nuclear Information System (INIS)

    Yassine, T.; Blackburn, R.

    1990-01-01

    Investigation of the hot reactions of the recoil metal nuclides in neutron irradiated solid ferrocene, ruthenocene and osmocene shows that the retention decreases from ferrocene to osmocene. This observation is ascribed to the effects of recoil energy and the size of the hot zone. The large isotope effect observed between osmium isotopes and between ruthenium isotopes are explained as resulting from the effect of the Auger ionisation produced by internal conversion which takes place in Os-185 and Ru-97 to a greater degree than in their other isotopes. Irradiation of solid metallocenes diluted with an inert solid (silica) showed that the retention in ruthenocene is high and only slightly less than for the pure case whilst the retention of osmocene is very small and the retention of ferrocene is almost zero. The high retention in solid diluted ruthenocene was tentatively attributed to a combination of primary retention resulting from γ cancellation and uptake of recoil momentum by the solid lattice. (author) 15 refs. 5 tabs. 2 figs

  14. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Garcia H, F.

    1995-01-01

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 10 12 -10 13 n/cm 2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H 2 that with Ar plus 0.1 % H 2 . This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  15. Measurements of 36Cl production rates from Cl, K, and Ca in concrete at the 500-MeV neutron irradiation facility of KENS

    International Nuclear Information System (INIS)

    Aze, T.; Fujimura, M.; Matsumura, H.; Masumoto, K.; Nakao, N.; Kawai, M.; Matsuzaki, H.; Nagai, H.

    2005-01-01

    In high-energy accelerator facilities, concrete components around beam lines are exposed to secondary neutrons having various energies during machine operation. The neutrons produce the various long half-life radionuclides, such as 3 H, 36 Cl, 60 Co, and 152 Eu, in the concrete. Most of the nuclides mainly produced by thermal neutron-capture reactions and their specific activities are important from the viewpoint of accelerator clearance. In previous work, the specific activities of the 36 Cl in the concretes at the various accelerator facilities have been measured and it was suggested that the 36 Cl in the concrete is useful as an indicator for thermal neutron fluence because of a characteristic of very long half life (301 kyr). However, in the concretes of the accelerator facilities over several hundreds of MeV, the 36 Cl are considerably produced by spallation from other concrete components, such as K and Ca, in addition to the thermal neutron capture of 35 Cl. The contribution of the 36 Cl productions from the spallation is unclear due to the lack of the cross sections for the neutron-induced reactions. In this work, therefore, we measured the 36 Cl production rates in concrete from Cl, K, and Ca targets in irradiation with secondary neutrons, which were produced by a bombardment of primary 500-MeV protons with W targets, at high-energy neutron-irradiation course of KENS. Samples of NaCl, K2CO 3 , and CaCO 3 were set into 7. irradiation spaces located on the depth raging from O to 320 cm from the concrete surface and irradiated for approximately one week. After the irradiation, separations of Cl from the samples were carried out radiochemically and the production rates of 36 Cl were determined by the AMS. The production rates from Cl, K, and Ca exponentially decreased with an increase of the depth from the concrete surface, and the profiles were very similar each other. Although the production rates from Cl were two orders higher than those from Ca in the same

  16. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.; Faber, J. Jr.

    1989-11-01

    Uranium silicides have been considered for use as reactor fuels in both high power and low enrichment applications. However, U 3 Si was found to become amorphous under irradiation and to become mechanically unstable to rapid growth by plastic flow. U 2 Si 2 appears to be stable against amorphization at low displacement rates, but the extent of this stability is uncertain. Although the mechanisms responsible for plastic flow in U 3 Si and other amorphous systems are unknown, as is the importance of crystal structure for amorphization, it may not be surprising that these materials amorphize, in light of the fact that many radioactive nuclide - containing minerals are known to metaminctize (lose crystallinity) under irradiation. The present experiment follows the detailed changes in the crystal structures of U 3 Si and U 3 Si 2 introduced by neutron bombardment and subsequent uranium fission at room temperature. U-Si seems the ideal system for a neutron diffraction investigation since the crystallographic and amorphous forms can be studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering of the non-crystalline scattering component

  17. Electron-microscopic investigation of a pressure vessel steel after neutron irradiation

    International Nuclear Information System (INIS)

    Klaar, H.J.

    1975-01-01

    As an introduction, changes in the mechanical properties of pressure vessel steels on neutron irradiation and the causes of radiation embrittlement are discussed. After this, the author describes his own experiments with steel of the composition 0.19% C; 3.88% Ni; 1.57% Cr; 0.51% Mo; 0.2% V. Samples of this material were irradiated in-pile at 300 0 C with various neutron doses. To study the influence of neutron dose, irradiation temperature, and heat treatment on the mechanical properties, tensile tests, notched bar impact bending tests, hardness tests and structural analyses were carried out. The findings are reported. (GSC) [de

  18. Effects of fast neutron irradiation on the fracture behavior of stainless steel

    International Nuclear Information System (INIS)

    Huang, F.H.; Fish, R.L.

    1982-03-01

    In designing against premature fracture, the characteristics of materials must be measured and design criteria developed. The reduction in ductility for irradiated stainless steels has been observed, but little work has been conducted on evaluating the effects of notches on these materials. A reduction in notch ductility has been investigated in Charpy-V impact tests of irradiated Type 304 and Type 316 stainless steel; in irradiated Type 304 stainless steel, notch effects were not observed at 232 and 317 0 C, but as the test temperature was increased from 538 to 593 0 C, the material irradiated to a fluence of 3 X 10 22 n/cm 2 exhibited a notch weakening. Recently, similar experiments were performed on irradiated 20% cold worked Type 316 stainless steel to determine the effects of irradiation on the fracture behavior of this alloy

  19. Response to annealing and reirradiation of AISI 304L stainless steel following initial high-dose neutron irradiation in EBR-II

    International Nuclear Information System (INIS)

    Porter, D.L.; McVay, G.L.; Walters, L.C.

    1980-01-01

    The object of this study was to measure the stability of irradiation-induced microstructure upon annealing and, by selectively annealing out some of these features and reirradiating the material, it was expected that information could be gained concerning the role of microstructural changes in the void swelling process. Transmission electron microscopic examinations of isochronally annealed (200 to 1050 0 C) AISI 304L stainless steel, which had been irradiated at approximately 415 0 C to a fast (E > 0.1 MeV) neutron fluence of approximately 5.1 x 10 26 n/m 2 , verified that the two-stage hardness recovery with temperatures was related to a low temperature annealing of dislocation structures and a higher temperature annealing of voids and solute redistribution

  20. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  1. Viability of the ESS-Bilbao neutron source for irradiation of nuclear fusion materials

    Energy Technology Data Exchange (ETDEWEB)

    Páramo, A.R., E-mail: angel.rodriguez.paramo@upm.es [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain); Sordo, F. [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain); Consorcio ESS-Bilbao, Edificio Cosimet, Paseo Landabarri, 2 1a planta, 48940 Leioa (Spain); Perlado, J.M.; Rivera, A. [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain)

    2014-01-15

    The ESS-Bilbao neutron source, currently under construction, is conceived as a multipurpose facility. It will offer a fast neutron beam line for materials irradiation. In this paper we discuss the viability of ESS-Bilbao for experimental studies of fusion materials. Making use of the already designed target station we have calculated the neutron spectrum expected in the fast neutron line. Then, we have studied the neutron irradiation effects in two model materials: iron and silica. We have calculated the expected PKA (primary knock-on atom) spectra and light species production as well as the damage production in these materials. Regarding structural materials, we conclude that the ESS-Bilbao neutron irradiation facility will play a minor role due to the resulting low neutron fluxes (about two orders of magnitude lower than in fusion reactors). On the other hand, ESS-Bilbao turns out to be relevant for studies of final lenses in laser fusion power plants. A comparison with the conditions expected for HiPER final lenses shows that the fluxes will be only a factor 5 smaller in ESS-Bilbao and the PKA spectra will be very similar. Taking into account, in addition, that relevant effects on lenses occur from the onset of irradiation, we conclude that an appropriate irradiation cell with in situ characterisation techniques will make ESS-Bilbao very attractive for applied neutron damage studies of laser fusion final lenses. Finally, we compare ESS-Bilbao with other facilities.

  2. Viability of the ESS-Bilbao neutron source for irradiation of nuclear fusion materials

    Science.gov (United States)

    Páramo, A. R.; Sordo, F.; Perlado, J. M.; Rivera, A.

    2014-01-01

    The ESS-Bilbao neutron source, currently under construction, is conceived as a multipurpose facility. It will offer a fast neutron beam line for materials irradiation. In this paper we discuss the viability of ESS-Bilbao for experimental studies of fusion materials. Making use of the already designed target station we have calculated the neutron spectrum expected in the fast neutron line. Then, we have studied the neutron irradiation effects in two model materials: iron and silica. We have calculated the expected PKA (primary knock-on atom) spectra and light species production as well as the damage production in these materials. Regarding structural materials, we conclude that the ESS-Bilbao neutron irradiation facility will play a minor role due to the resulting low neutron fluxes (about two orders of magnitude lower than in fusion reactors). On the other hand, ESS-Bilbao turns out to be relevant for studies of final lenses in laser fusion power plants. A comparison with the conditions expected for HiPER final lenses shows that the fluxes will be only a factor 5 smaller in ESS-Bilbao and the PKA spectra will be very similar. Taking into account, in addition, that relevant effects on lenses occur from the onset of irradiation, we conclude that an appropriate irradiation cell with in situ characterisation techniques will make ESS-Bilbao very attractive for applied neutron damage studies of laser fusion final lenses. Finally, we compare ESS-Bilbao with other facilities.

  3. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  4. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    International Nuclear Information System (INIS)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p + ) and back (n + ) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N eff . The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N eff distortions among various detectors irradiated by different neutron fluences are compared

  5. A fluence device for precise radiation dosimetry

    International Nuclear Information System (INIS)

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  6. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  7. The microstructure and hardness changes of neutron irradiated weld joint of vanadium alloy

    Science.gov (United States)

    Watanabe, H.; Yoshida, N.; Nagasaka, T.; Muroga, T.

    2011-10-01

    Effects of neutron irradiation on YAG laser welded V-4Cr-4Ti alloy were irradiated in High Flux Isotope Reactor (HFIR). The samples were irradiated in Li environment at 723 K and 873 K up to the dose of 3.7 dpa. After the irradiation, the microstructure and Vickers hardness of the welded samples were compared of the base metal, which were simultaneously irradiated at the same irradiation cycle. At 723 K, very high density of dislocations was formed. But prominent Ti(CON) formation, which was commonly observed in He gas and vacuum environment condition, was not detected

  8. A radiomodifying effect of acute hypoxia on neutron-irradiated mice and dogs

    International Nuclear Information System (INIS)

    Sverdlov, A.G.; Kalmykova, G.I.; Timoshenko, S.I.; Nikanorova, N.G.

    1986-01-01

    Anoxia increased the survival of neutron irradiated mice with DMF=1.66. As to haemopoietic stem cells neutron irradiated in vivo, DMF was 1.8. With X-irradiation DMF was 2.49 and 2.94, respectively. Anoxia decreased the damage of the intestinal mucous membrane after a whole-body neutron irradiation with a dose 3.0 Gy. A protective effect of acute hypoxia was demonstrated on dogs exposed to fast neutrons (4.0 Gy). Breathing of 10% gas hypoxic mixture protected more than half of the exposed animals from death and provided the development of a light form of radiation sickness instead on a serious one. (orig.) [de

  9. Resistivity damage rates in fusion-neutron-irradiated metals at 4.2 K

    International Nuclear Information System (INIS)

    Guinan, M.W.; Kinney, J.H.

    1981-01-01

    Changes in electrical resistivity at liquid helium temperature have been used to monitor the production of damage in dilute alloys of vanadium, niobium and molybdenum, and pure tungsten, aluminum and copper irradiated with high energy neutrons. The neutrons were produced at the Livermore rotating-target neutron sources (RTNS-I and RTNS-II). Further experiments on V, Nb and Mo were carried out with 30 MeV d-Be neutrons and slightly degraded fission-spectra neutrons. The results for all six materials are compared to those obtained in a pure fission spectrum. The relative damage production rates are in agreement with predictions based on damage energy calculations

  10. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  11. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  12. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  13. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for