WorldWideScience

Sample records for fluctuating compound ceirsb

  1. Temperature effects in the valence fluctuation of europium intermetallic compounds

    International Nuclear Information System (INIS)

    Menezes, O.L.T. de; Troper, A.; Gomes, A.A.

    1978-03-01

    A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested

  2. Influence of Al-atoms on the spin fluctuation scattering in R(Co,Al)2 compounds

    International Nuclear Information System (INIS)

    Duc, N.H.; Hung, D.T.; Kim-Ngan, N.H.; Sechovsky, V.

    1992-01-01

    The resistivity and magnetisation have been measured for the R(Co 1-x Al x ) 2 compounds with R=Nd, Gd, Tb, Dy, Ho, Er and Lu. For x=0.2 the resistivity enhancement is observed below T c , however, for the compounds with R=Lu-Tb only. The results are discussed in terms of the spin fluctuation scattering and indicate that the enhancement of the spin fluctuation scattering is strongly related to the lattice parameter. (orig.)

  3. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  4. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  5. Structural Fluctuation and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    2003-01-01

    The objectives of the project is to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs and to study the fundamental heterophase fluctuations phenomena in these melts by: 1) Conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts such as viscosity, electrical conductivity, thermal diffusivity and density as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) Performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed similar relaxation behavior as the measured diffusivity. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previous reported.

  6. Thermal and electron transport studies on the valence fluctuating compound YbNiAl4

    Science.gov (United States)

    Falkowski, M.; Kowalczyk, A.

    2018-05-01

    We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.

  7. Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats

    International Nuclear Information System (INIS)

    Quiroz-González, Salvador; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Pereira-Venegas, Javier; Lopez-Gomez, Rosa Estela; Jiménez-Estrada, Ismael

    2016-01-01

    Highlights: • Fractal analysis of compound action potentials (CAP) evoked in diabetic nerves. • Diabetic rats showed an increment in the chaotic behavior of CAP responses. • Diabetes provokes impaired transmission of sensory information in rats. - Abstract: The electrophysiological alterations in nerves due to diabetes are classically studied in relation to their instantaneous frequency, conduction velocity and amplitude. However, analysis of amplitude variability may reflect the occurrence of feedback loop mechanisms that adjust the output as a function of its previous activity could indicate fractal dynamics. We assume that a peripheral neuropathy, such as that evoked by diabetes, the inability to maintain a steady flow of sensory information is reflected as a breakdown of the long range power-law correlation of CAP area fluctuation from cutaneous nerves. To test this, we first explored in normal rats whether fluctuations in the trial-to-trial CAP area showed a self-similar behavior or fractal structure by means of detrended fluctuations analysis (DFA), and Poincare plots. In addition, we determine whether such CAP fluctuations varied by diabetes induction. Results showed that CAP area fluctuation of SU nerves evoked in normal rats present a long term correlation and self-similar organization (fractal behavior) from trial to trial stimulation as evidenced by DFA of CAP areas. However, CAPs recorded in diabetic nerves exhibited significant reductions in area, larger duration and increased area variability and different Poincare plots than control nerves. The Hurst exponent value determined with the DFA method from a series of 2000 CAPs evoked in diabetic SU nerves was smaller than in control nerves. It is proposed that in cutaneous nerves of normal rats variability of the CAP area present a long term correlation and self-similar organization (fractal behavior), and reflect the ability to maintain a steady flow of sensory information through cutaneous nerves

  8. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  9. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations; Etude de la transition resistive sur des composes supraconducteurs a haute temperature critique le role des fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, V

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that`s incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity.

  10. Magnetic fluctuations in UNi4B

    DEFF Research Database (Denmark)

    Mentink, S.A.M.; Mason, T.E.; Buyers, W.J.L.

    1997-01-01

    We investigate the magnetic fluctuation spectrum of the geometrically frustrated antiferromagnetic compound UNi4B, which partially orders below T-N = 20 K. An overdamped spin excitation is observed at the AF wave vector around 2.4 meV. Low-frequency, weakly Q-dependent inelastic scattering...

  11. Electronic structure, superconductivity, and spin fluctuations in the A15 compounds A3B: A = V, Nb; B = Ir,Pt,Au

    International Nuclear Information System (INIS)

    Jarlborg, T.; Junod, A.; Peter, M.

    1983-01-01

    The electronic structure of six A15 compounds V 3 Ir, V 3 Pt, V 3 Au, Nb 3 Ir, Nb 3 Pt, and Nb 3 Au has been determined by means of self-consistent semirelativistic linear muffin-tin orbital band calculations. Parameters related to superconductivity such as electron-phonon coupling, transition temperature, electronic specific heat, and magnetic exchange enhancement are derived from the electronic-structure results. Generally the results obtained agree well with experimental values, with the exception of Nb 3 Pt and V 3 Au. In the former compound the density of states (DOS) has a sharp increase at E/sub F/ making the exact DOS value uncertain. In V 3 Au the high calculated T/sub c/ and the Stoner factor indicate that spin fluctuations may be limiting the T/sub c/. .AE

  12. Numerical simulations for width fluctuations in compound elastic and inelastic scatteringat low energies

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Talou, Patrick

    2012-01-01

    The statistical theories - the Hauser-Feshbach model with the width fluctuation correction - play a central role in studying nuclear reactions in the fast energy region, hence the statistical model codes are essential for the nuclear data evaluations nowadays. In this paper, we revisit issues regarding the statistical model calculations in the fast energy range, such as the inclusion of the direct channels, and the energy averaged cross sections using different statistical assumptions. Although they have been discussed for a long time, we need more precise quantitative investigations to understand uncertainties coming from the models deficiencies in the fast energy range. For example, the partition of compound formation cross section into the elastic and inelastic channels depends on the elastic enhancement factor calculated from the statistical models. In addition, unitarity of S-matrix constrains this partition when the direct reactions are involved. Practically some simple assumptions, which many nuclear reaction model codes adopt, may work reasonably for the nuclear data evaluations. However, the uncertainties on the evaluated cross sections cannot go lower than the model uncertainty itself. We perform numerical simulations by generating the resonances using the R-matrix theory, and compare the energy (ensemble) averaged cross sections with the statistical theories, such as the theories of Moldauer, HRTW (Hofmann, Richert, Tepel, and Weidenmueller), KKM (Kawai-Kerman-McVoy), and GOE (Gaussian orthogonal ensemble).

  13. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    Science.gov (United States)

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  14. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    International Nuclear Information System (INIS)

    Hussein, M. S.

    2008-01-01

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials

  15. Human migration activities drive the fluctuation of ARGs: Case study of landfills in Nanjing, eastern China.

    Science.gov (United States)

    Sun, Mingming; Ye, Mao; Schwab, Arthur P; Li, Xu; Wan, Jinzhong; Wei, Zhong; Wu, Jun; Friman, Ville-Petri; Liu, Kuan; Tian, Da; Liu, Manqiang; Li, Huixin; Hu, Feng; Jiang, Xin

    2016-09-05

    Landfills are perfect sites to study the effect of human migration on fluctuation of antibiotic resistance genes (ARGs) as they are the final destination of municipal waste. For example, large-scale human migration during the holidays is often accompanied by changes in waste dumping having potential effects on ARG abundance. Three landfills were selected to examine fluctuation in the abundance of fifteen ARGs and Intl1 genes for 14 months in Nanjing, eastern China. Mass human migration, the amount of dumped waste and temperature exerted the most significant effects on bimonthly fluctuations of ARG levels in landfill sites. As a middle-sized cosmopolitan city in China, millions of college students and workers migrate during holidays, contributing to the dramatic increases in waste production and fluctuation in ARG abundances. In line with this, mass migration explained most of the variation in waste dumping. The waste dumping also affected the bioaccessibility of mixed-compound pollutants that further positively impacted the level of ARGs. The influence of various bioaccessible compounds on ARG abundance followed the order: antibiotics>nutrients>metals>organic pollutants. Concentrations of bioaccessible compounds were more strongly correlated with ARG levels compared to total compound concentrations. Improved waste classification and management strategies could thus help to decrease the amount of bioaccessible pollutants leading to more effective control for urban ARG dissemination. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Fluctuation model of organic superconductivity: Internal inconsistencies and contradictory experimental evidence

    International Nuclear Information System (INIS)

    Kwak, J.F.

    1983-01-01

    Internal inconsistencies in the scheme of large superconducting fluctuations, as applied to the superconducting (TMTSF) 2 X compounds (ditetramethyltetraselenafulvalenium salts), are discussed. In particular, it is shown that the assumption of very small interchain coupling is self-contradictory. These materials are actually best regarded as (anisotropic) three-dimensional superconductors. The fluctuation scheme does not provide a consistent interpretation of the data, but is in fact contradicted by many key measurements, including the thermal conductivity, heat capacity, conductivity anisotropy, and critical-field anisotropy

  17. Valence fluctuations between two magnetic configurations

    International Nuclear Information System (INIS)

    Mazzaferro, J.O.

    1982-01-01

    The subject of this work is the study of a microscopic model which describes TmSe through its most important feature, i.e.: the valence fluctuations between two magnetic configurations. Chapter I is a general review of the most important physical properties of rare-earth systems with intermediate valence (I.V.) and a general description of experimental results and theoretical models on Tm compounds. In Chapter II the Hamiltonian model is discussed and the loss of rotational invariance is also analyzed. Chapter III is devoted to the study of non-stoichiometric Tsub(x)Se compounds. It is shown that these compounds can be considered as a mixture of TmSe (I.V. system) and Tm 3+ 0.87Se. Chapter IV is devoted to the calculation of spin-and charge susceptibilities. The results obtained permit to explain the essential features of the neutron scattering spectrum in TmSe. In Chapter V, an exactly solvable periodic Hamiltonian is presented. From the experimental results, some fundamental features are deduced to describe TmSe as an intermediate valence system whose two accessible ionic configurations are magnetic (degenerated fundamental state). (M.E.L) [es

  18. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  19. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  20. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  1. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  2. Effects of the layered structure of YBa2Cu3O7-δ on the superconducting fluctuations

    International Nuclear Information System (INIS)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs

  3. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  4. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  5. Effects of the layered structure of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} on the superconducting fluctuations; Influence de la structure lamellaire sur les fluctuations supraconductrices dans YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs.

  6. The effect of background absorption on the compound cross-section in resonance scattering

    International Nuclear Information System (INIS)

    Frenkel, A.

    1976-01-01

    The effect of channel-channel correlations in the compound cross-section is studied in a model of a resonance above a compound background characterized by equal absorption in all open channels. A general rule which cannot be derived from unitarity alone is proved for the fluctuating cross-section. It provides new understanding of level-level correlations in scattering through compound nucleus states. (author)

  7. Meta-orbital transition in heavy-fermion systems. Analysis by dynamical mean field theory and self-consistent renormalization theory of orbital fluctuations

    International Nuclear Information System (INIS)

    Hattori, Kazumasa

    2010-01-01

    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)

  8. Magnetic properties of the LaCu5-xCox compounds

    International Nuclear Information System (INIS)

    Crisan, V.; Popescu, V.; Vernes, A.; Andreica, D.; Cristea, S.; Koepe, B.

    1996-01-01

    Magnetic moments and Curie temperatures of the intermetallic compounds LaCu 5-x Co x (x = 5) are calculated using a recursion method in the framework of the spin-fluctuation theory of Mohn and Wohlfarth. (orig.)

  9. Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l

  10. Fluctuations of nuclear cross sections in the region of strong overlapping resonances and at large number of open channels

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    On the basis of the symmetrized Simonius representation of the S matrix statistical properties of its fluctuating component in the presence of direct reactions are investigated. The case is considered where the resonance levels are strongly overlapping and there is a lot of open channels, assuming that compound-nucleus cross sections which couple different channels are equal. It is shown that using the averaged unitarity condition on the real energy axis one can eliminate both resonance-resonance and channel-channel correlations from partial r transition amplitudes. As a result, we derive the basic points of the Epicson fluctuation theory of nuclear cross sections, independently of the relation between the resonance overlapping and the number of open channels, and the validity of the Hauser-Feshbach model is established. If the number of open channels is large, the time of uniform population of compound-nucleus configurations, for an open excited nuclear system, is much smaller than the Poincare time. The life time of compound nucleus is discussed

  11. Applicability of a valence fluctuation model to the observed physical property response of actinide materials

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1978-01-01

    It is shown that the physical property behavior of the light actinide elements, U, Np, and Pu, and certain of their alloys, is like that of known mixed-valence, R.E. metallic compounds. It is inferred that interconfiguration fluctuation (ICF) theory should also be applicable to actinide materials

  12. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  13. Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study

    Science.gov (United States)

    Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.

  14. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  15. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  16. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  17. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  18. Calorimetric study of the intermetallic compounds UAl2 and PuAl2

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Knapp, G.S.

    1975-01-01

    Results of low temperature specific heat measurements are presented on the strongly paramagnetic intermetallic compounds UAl 2 and PuAl 2 in the temperature intervals 0.9 to 20 0 K, respectively. These compounds are characterized by very narrow 5f bands near the Fermi energy. The low-temperature properties of UAl 2 and PuAl 2 are dominated by long lived spin fluctuations within these narrow bands. In UAl 2 a nearly field-independent T 3 logT contribution dominates the specific heat below 10 0 K, consistent with the predictions of ferromagnetic spin-fluctuation theory. The specific heat, static susceptibility, and electrical resistivity are mutually consistent with T/sub sf/ = 25 +- 10 0 K, where T/sub sf/ is the characteristic spin-fluctuation temperature of the system. Below 20 0 K, the specific heat of PuAl 2 contains a very large linear term, C greater than or approximately equal to 260T (mJ/mole- 0 K), which is approximately four times the magnitude of the measured susceptibility, when both quantities are expressed in the same units. The specific heat of PuAl 2 exhibits no anomalous behavior below 10 0 K, where a resistivity anomaly has been previously obser []ed. The properties of PuAl 2 are qualitatively discussed in terms of antiferromagnetic spin fluctuations. (auth)

  19. Local order and concentration fluctuations in K-Pb and Rb-Pb alloys

    International Nuclear Information System (INIS)

    Akinlade, O.

    1992-08-01

    The concentration fluctuations in the long wavelength limit S cc (0), short range order parameter and free energy of mixing of K-Pb and Rb-Pb alloys have been studied within the framework of the quasi-chemical theory. It is observed that the simple model could be used to shed more insight into the nature of chemical ordering that exists in such strongly compound forming binary alloys. (author). 19 refs, 6 figs, 1 tab

  20. Non-Gaussian conductivity fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2010-01-01

    A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).

  1. Statistical point of view on nucleus excited states and fluctuations of differential polarization of particles emitted during nuclear reactions

    International Nuclear Information System (INIS)

    Dumazet, Gerard

    1965-01-01

    As previous works notably performed by Ericson outlined the fact that the compound nucleus model resulted in variations of efficient cross sections about average values and that these variations were not negligible at all as it had been previously admitted, this research thesis aims at establishing theoretical predictions and at showing that Ericson's predictions can be extended to polarization. After having qualitatively and quantitatively recalled the underlying concepts used in the compound nucleus and direct interaction models, the author shows the relevance of a statistical point of view on nuclei which must not be confused with the statistical model itself. Then, after a recall of results obtained by Ericson, the author reports the study of the fluctuations of differential polarization, addresses the experimental aspect of fluctuations, and shows which are the main factors for this kind of study [fr

  2. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  3. Electron-phonon and spin-phonon coupling in NaV2O5 : Charge fluctuations effects

    NARCIS (Netherlands)

    Sherman, E.Ya.; Fischer, M.; Lemmens, P; Loosdrecht, P.H.M. van; Güntherodt, G.

    1999-01-01

    We show that the asymmetric crystal environment of the V site in the ladder compound NaV2O5 leads to a strong coupling of vanadium 3d electrons to phonons. This coupling causes fluctuations of the charge on the V ions, and favors a transition to a charge-ordered state at low temperatures. In the low

  4. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  5. Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores.

    Directory of Open Access Journals (Sweden)

    Gaku Fukunaga

    Full Text Available The ability to ascertain the extent of product sale fluctuations for each store and locality is indispensable to inventory management. This study analyzed POS data from 158 convenience stores in Kawasaki City, Kanagawa Prefecture, Japan and found a power scaling law between the mean and standard deviation of product sales quantities for several product categories. For the statistical domains of low sales quantities, the power index was 1/2; for large sales quantities, the power index was 1, so called Taylor's law holds. The value of sales quantities with changing power indixes differed according to product category. We derived a Poissonian compound distribution model taking into account fluctuations in customer numbers to show that the scaling law could be explained theoretically for most of items. We also examined why the scaling law did not hold in some exceptional cases.

  6. Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores.

    Science.gov (United States)

    Fukunaga, Gaku; Takayasu, Hideki; Takayasu, Misako

    2016-01-01

    The ability to ascertain the extent of product sale fluctuations for each store and locality is indispensable to inventory management. This study analyzed POS data from 158 convenience stores in Kawasaki City, Kanagawa Prefecture, Japan and found a power scaling law between the mean and standard deviation of product sales quantities for several product categories. For the statistical domains of low sales quantities, the power index was 1/2; for large sales quantities, the power index was 1, so called Taylor's law holds. The value of sales quantities with changing power indixes differed according to product category. We derived a Poissonian compound distribution model taking into account fluctuations in customer numbers to show that the scaling law could be explained theoretically for most of items. We also examined why the scaling law did not hold in some exceptional cases.

  7. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  8. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis

    International Nuclear Information System (INIS)

    Telesca, Luciano; Colangelo, Gerardo; Lapenna, Vincenzo; Macchiato, Maria

    2004-01-01

    We analyzed fluctuations in the time dynamics of nonstationary geoelectrical data, recorded in a seismic area of southern Italy, by means of the multifractal detrended fluctuation analysis (MF-DFA). The multifractal character of the signal depends mostly on the different long-range properties for small and large fluctuations. The time variation of indices, denoting the departure from monofractal behaviour, reveals an enhancement of the multifractality of the signal prior seismic occurrences

  9. Photoinduced second harmonic generation of LaFe4Sb12near spin fluctuated critical points

    International Nuclear Information System (INIS)

    Nouneh, K.; Viennois, R.; Kityk, I.V.; Terki, F.; Charar, S.; Benet, S.; Paschen, S.

    2004-01-01

    The temperature dependence of the resistivity, the Seebeck coefficient and photoinduced second harmonic generation (PISHG) are studied near the quantum critical point in the skutterudite compound LaFe 4 Sb 12 , possessing increased spin fluctuations. We observed a large maximum of the PISHG at a temperature of about 15 K. The PISHG signal increases substantially below 35 K. We found a correlation between the temperature dependences of PISHG, resistivity and Seebeck coefficient. We proposed a phenomenological explanation for the occurrence of the PISHG signal in LaFe 4 Sb 12 implying strong spin fluctuations exist in this system, which may present some interest for the study of other spin fluctuation systems. Physical insight into the phenomenon observed is grounded in the participation of anharmonic electron-phonon and electron-paramagnon interactions stimulated by inducing light in the interactions with the photoexcited dipole moments. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  11. Magnetic fluctuations near a quantum phase transition in CeCu5.9Au0.1

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Bucher, E.

    1998-01-01

    We present inelastic cold neutron scattering measurements on a single crystal of the heavy-fermion compound CeCu5.9Au0.1, where non-Fermi-liquid behavior near a quantum phase transition was found in the specific heat and resistivity. This compound shows strongly correlated magnetic fluctuations......, most intense at wave vectors Q(1), near(1,0,0), close to the magnetic ordering vector found at higher Au-concentration. The energy dependence can be best described by a modified quasielastic Lorentzian with power alpha = 0.7. Down to the lowest temperature of 0.07 K the relaxation rate Gamma remains...

  12. Ground state and elementary excitations of a model valence-fluctuation system

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1979-01-01

    The nature of the valence fluctuation problem is described, and motivations are given for an Anderson-lattice model Hamiltonian. A simple trial wave function is posed for the ground state, and the variational problem is solved. This demonstrates clearly that there is no Kondo-like divergence; the present concentrated Kondo problem is thus more simple mathematically than the sngle-impurity problem. Elementary excitations are studies by the Green's function techniques of Zubarev and Hubbard. Quenching of local moments and a large specific heat are found at low temperatures. The quasi-particle spectrum exhibits a gap, but epsilon/sub F/ does not lie in this gap. The insulation-like feature of SmB 6 , SmS, and TmSe at very low temperatures is explained in terms of a strongly reduced mobility for states near the gap, and reasons are given why this feature is not observed in other valence-fluctuation compounds. 73 references

  13. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  14. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  15. Meal pattern analysis for effects of compound feed formulation in mid to late lactating dairy cows fed hay and compound feed both ad libitum

    NARCIS (Netherlands)

    Leen, F.; Navarro-Villa, A.; Fowers, R.; Martin-Tereso, J.; Pellikaan, W.F.

    2014-01-01

    The Kempen System is a dairy feeding system allowing ad libitum access to pelleted compound feed (CF) and hay. This system allows high DM intake (DMI) up to 30 kg DM (80% CF), but small and frequent CF meals are essential to reduce negative ruminal pH fluctuations. Little is known about feed intake

  16. Multi-step compound contribution to the pre-equilibrium cross section

    International Nuclear Information System (INIS)

    Mcvoy, K.W.; Hussein, M.S.

    1980-03-01

    We show that the fluctuation cross section for the generalized-exciton or nested-doorway model can be obtained explicitly and exactly in the limit that doorways of successive classes have very different widths, γ sub(n)>> γ sub(n+1), and that doorways of a given class are overlapping, γ sub(n) > D sub(n). The result is given in terms of experimentally observable quantities, and explicitly separates the compound and pre-compound contributions. It contains the results of previous, more specialized, models a limiting cases. (Author) [pt

  17. Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    French, J.B.; Pandey, A.; Smith, J.

    1987-01-01

    The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab

  18. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  19. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  20. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  1. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  2. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  3. Evidence for fluctuations in statistical model cross sections from the study of {sup 27}Al(d,{alpha}) {sup 25}Mg reaction; Mise en evidence des fluctuations de sections efficaces du modele statistique par l'etude de la reaction {sup 27}Al(d,{alpha}) {sup 25}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Papineau born Heller, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    A complete set of experimental data has been obtained for the reaction {sup 27}Al(d, {alpha}){sup 25}Mg for excitation energies in the compound nucleus {sup 29}Si between 19.7 and 27.4 MeV, in order to compare with the theoretical predictions of the statistical model of nuclear reactions including fluctuations. Numerical calculations of the theoretical cross sections were made and contributions to methods of analysis of fluctuating excitation functions are given. The results confirm strong evidence for statistical fluctuations in nuclear cross sections. (author) [French] On a obtenu un ensemble complet de donnees experimentales de la reaction {sup 27}Al(d, {alpha}){sup 25}Mg pour des energies d'excitation du noyau compose {sup 29}Si comprises entre 19,7 et 27,4 MeV, permettant la comparaison avec les previsions theoriques du modele statistique des reactions nucleaires dans sa version complete comprenant les fluctuations. Des calculs numeriques de sections efficaces theoriques ont ete effectues et des contributions ont ete apportees aux methodes d'analyse de fonctions d'excitation presentant des fluctuations. Les resultats ont clairement confirme l'existence de fluctuations statistiques de sections efficaces. (auteur)

  4. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  5. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  6. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  7. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  8. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  9. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  10. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  11. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  12. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-12-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  13. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  14. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  15. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Hamada, Y.; Nagashima, Y.; Nishizawa, A.; Kawasumi, Y.; Miura, Y.; Hoshino, K.; Ogawa, H.; Shinohara, K.; Kamiya, K.; Kusama, Y.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k r ) of 0.94 ± 0.05 (cm -1 ), that is corresponds to k r ρ i = 0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  16. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Miura, K.; Hoshino, K.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k γ ) of 0.94±0.05 (cm -1 ), that is corresponds to k γ ρ i =0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  17. Measuring shape fluctuations in biological membranes

    International Nuclear Information System (INIS)

    Monzel, C; Sengupta, K

    2016-01-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)

  18. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  19. Effect of spin fluctuations in magnetocaloric and magnetoresistance properties of Dy10Co20Si70 alloy

    Science.gov (United States)

    Rashid, T. P.; Arun, K.; Curlik, Ivan; Ilkovic, Sergej; Reiffers, Marian; Dzubinska, Andrea; Nagalakshmi, R.

    2017-09-01

    Systematic investigations on the structure, magnetic, thermodynamic, magnetocaloric and magnetoresistance (MR) properties of the arc melted Dy10Co20Si70 alloy are presented. The Dy10Co20Si70 alloy crystallizes in tetragonal BaNiSn3-type DyCoSi3 (space group = I4mm; No. 107) as a major phase and CaF2-type CoSi2 (space group = Fm-3m; No. 225) and C-type Si (space group = Fd-3m; No. 227) as minor phases. The title compound exhibits multiple magnetic transitions having antiferromagnetic ordering at temperatures, viz., T1 = 10.8 K, T2 = 8.8 K and T3 = 3.3 K. The magnetic and thermodynamic studies confirm these magnetic anomalies in the compound. The large value of maximum magnetic entropy change, -ΔSMM a x = 16.4 and 26.6 J/kg K for the field change ΔH of 50 and 90 kOe, respectively, observed in the compound is associated with field induced magnetic transitions. Asymmetric broadening of the magnetic entropy change peaks above the ordering temperatures resulting in significant refrigerant capacities of 361 and 868 J/kg for ΔH = 50 and 90 kOe, respectively, in the compound is due to the spin fluctuation effect. The sign reversal in MR measurements is attributed to the field induced antiferromagnetic to ferromagnetic transition. A large positive MR (42% in 90 kOe) is observed at 2 K. The H2 dependence of both the magnetocaloric effect (MCE) and MR in the paramagnetic regime indicates the role of the applied magnetic field in suppressing the spin fluctuations. The large MCE and MR together with no thermal or magnetic hysteresis establish this new compound as an attractive multifunctional magnetic material.

  20. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  1. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  2. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  3. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  4. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  5. An Objective Fluctuation Score for Parkinson's Disease

    Science.gov (United States)

    Horne, Malcolm K.; McGregor, Sarah; Bergquist, Filip

    2015-01-01

    Introduction Establishing the presence and severity of fluctuations is important in managing Parkinson’s Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system. Methods The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm. Results This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations. Conclusion The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges. PMID:25928634

  6. Scaling properties for the first RE-like mixed valence examples in uranium compounds: U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2006-01-01

    The present study was motivated by the scaling characterization of the first example of mixed valence (MV) RE-like behaviour found recently among intermetallic ternary uranium compounds. The χ(T) function for both title compounds has been fitted to the interconfigurational fluctuation (ICF) model of Sales and Wohlleben in order to determine the characteristic fluctuation temperatures T sf and interconfigurational excitation energies E ex . A good scaling, with similar values of T sf like from those derived from the ICF model, has been achieved for both these ternaries by plotting Tχ(T)/C against the reduced T/T sf . Moreover, this scaling follows almost exactly those found earlier in a number of MV- RE compounds

  7. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, É lisabeth; Hinch, John

    2011-01-01

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations

  8. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  9. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  10. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  11. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  12. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  13. Analysis of dynamic multiplicity fluctuations at PHOBOS

    Science.gov (United States)

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  14. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  15. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  16. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  17. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  18. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  19. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  20. Stability and fluctuations in black hole thermodynamics

    International Nuclear Information System (INIS)

    Ruppeiner, George

    2007-01-01

    I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition

  1. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  2. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  3. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  4. Charge Fluctuations in Nanoscale Capacitors

    NARCIS (Netherlands)

    Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with

  5. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...

  6. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  7. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  8. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  9. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  10. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  11. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  12. Magnetic fluctuation measurements in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    LaPointe, M.A.

    1990-09-01

    Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations

  13. Relaxation phenomena and host exchange parameters in Tm van Vleck compounds

    International Nuclear Information System (INIS)

    Zevin, V.; Levin, R.; Shaltiel, D.; Baberschke, K.; Davidov, D.

    1977-01-01

    The ESR linewidth of Gd in TmP (measured by Sugawara et al (Phys. Rev.; B11 (1975)) TmSb and TmBi (measured in the present work and by Davidov and Baberschke (Phys. Lett.; A51:144 (1975)) exhibits an appreciable temperature dependence. This behaviour is attributed to the fluctuation spectra of the host Tm ions. The previous theory (Davidov et al (Phys. Rev.; B15:2771 (1977)) for impurity relaxation in weakly coupled van Vleck paramagnets based on the Bloch-Redfield kinetic equation is extended here and applied to the interpretation of the ESR linewidth in the Tm pnictides. In particular the second moment calculation of the host fluctuation spectra has been extended to include both pair correlation and autocorrelation contributions. Explicit expressions are given for Tm and Pr cubic van Vleck compounds. Using the crystalline field as extracted from independent neutron scattering techniques and the Gd-Tm exchange from the ESR g shift, the Tm-Tm host exchange has been estimated by fitting theory to the experimental results. The host exchange parameter in TmSb is very small confirming previous studies on this compound. (author)

  14. Fluctuation traits of Litchi wholesale price in China

    Science.gov (United States)

    Yan, F. F.; Qi, W. E.; Ouyang, X.

    2017-07-01

    This paper chose the wholesale price of litchi as research object based on the daily data of 11 main sales markets in China -- Beijing, Chengdu, Guangzhou, Hefei, Jiaxing, Nanjing, Shanghai, Shenyang, Changsha, Zhengzhou and Chongqing from April 1, 2012 to September 30, 2016. After analyzing the fluctuation characteristics with BP filter method and H-P filter method, and the fluctuation trends of litchi wholesale price in China obtained by BP filter are roughly consistent with the trends obtained by H-P filter. The main conclusions are as follows: there is strong cyclicality in the fluctuation of litchi wholesale price; the period of fluctuations of litchi wholesale prices are not repeatable; litchi wholesale price fluctuates asymmetrically in one fluctuation cycle.

  15. Fluctuation characteristics in detached recombining plasmas

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Tanaka, Naoyuki; Takamura, Shuichi; Budaev, Viatcheslav

    2002-01-01

    Fluctuation in detached recombining plasmas has been investigated experimentally in the linear divertor plasma simulator, NAGDIS-II. As increasing neutral gas pressure, floating potential fluctuation of the target plate installed at the end of the NADIS-II device becomes larger and bursty negative spikes are observed in the signal associated with a transition from attached to detached a plasmas. The fluctuation property has been analyzed by using Fast Fourier Transform (FFT), probability distribution function (PDF) and wavelet transform. The PDF of the floating potential fluctuation in the attached plasma condition obeys the Gaussian distribution function, on the other hand, the PDF in detached plasma shows a strong deviation from the Gaussian distribution function, which can be characterized by flatness and skewness. Comparison of the fluctuation properties between the floating potential and the optical emission from the detached plasma has been done based on the wavelet transform to show that a strong correlation between them, which could indicate bursty transport of energetic electrons from upstream to downstream region along the magnetic field. (author)

  16. Thermal fluctuations in a hyperscaling-violation background

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)

    2017-08-15

    In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)

  17. Fluctuating Asymmetry of Human Populations: A Review

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2016-12-01

    Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.

  18. Investigations of the isospin in the highly excited compound nuclei 52Cr and 58Co

    International Nuclear Information System (INIS)

    Roth, K.

    1978-01-01

    The influence of T states excited by p bombardment on the quantities in the correlation function is investigated by means of a fluctuation analysis of the excitation function in the p and α decay channels of the compound nuclei 52 Cr and 58 Co. (AH) [de

  19. Fluctuations in the multiparticle dynamics

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1993-01-01

    The appearance and properties of intermittent fluctuations in physical systems, in particular the formation of rare structures in transport phenomena are discussed. The distribution of fluctuations approaches a limiting log-normal statistical distribution. The log-normal distribution is introduced as a simple parametrization of the energy fluctuations leading to the subthreshold production of particles in nuclear collisions, and it is shown that it fits all available data both for total π 0 production cross section as well as the π 0 kinetic energy spectra for E/A < 90 MeV. It is suggested that the same universal distribution should also describe the subthreshold production of other hadrons like η and K. (author) 36 refs., 11 figs

  20. Fluctuations, dynamical instabilities and clusterization processes

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, Ph.; Randrup, J.

    1992-01-01

    Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs

  1. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  2. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  3. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  4. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  5. Quantum horizon fluctuations of an evaporating black hole

    International Nuclear Information System (INIS)

    Roura, Albert

    2007-01-01

    The quantum fluctuations of a black hole spacetime are studied within a low-energy effective field theory approach to quantum gravity. Our approach accounts for both intrinsic metric fluctuations and those induced by matter fields interacting with the gravitational field. Here we will concentrate on spherically symmetric fluctuations of the black hole horizon. Our results suggest that for a sufficiently massive evaporating black hole, fluctuations can accumulate over time and become significant well before reaching Planckian scales. In addition, we provide the sketch of a proof that the symmetrized two-point function of the stress-tensor operator smeared over a null hypersurface is actually divergent and discuss the implications for the analysis of horizon fluctuations. Finally, a natural way to probe quantum metric fluctuations near the horizon is briefly described

  6. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  7. Multiscale fluctuations in nuclear response

    International Nuclear Information System (INIS)

    Lacroix, D.; Chomaz, Ph.

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author)

  8. Multiscale fluctuations in nuclear response

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Chomaz, Ph

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author) 25 refs.

  9. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  10. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  11. Statistical fluctuations of the number of neutrons in a pile; Fluctuations statistiques du nombre de neutrons dans une pile

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [French] La theorie des fluctuations statistiques est etendue au cas local et donne les fluctuations du nombre de neutrons dans une cellule situee dans le coeur ou le reflecteur de la pile. Ce nombre evolue au cours du temps sous l'influence de phenomenes aleatoires qui sont la capture, la diffusion, les sources et les neutrons secondaires de fission. L'emission simultanee de plusieurs neutrons distingue ce phenomene des precedents qui n'affectent qu'un neutron individuellement. L'importance de ce phenomene sur la loi de fluctuation depend des dimensions de la cellule par rapport a la longueur de ralentissement. Quand ces dimensions sont petites, le caractere particulier de ce phenomene disparait. (auteur)

  12. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  13. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  14. Approximations for the single-product production-inventory problem with compound Poisson demand and service-level constraints

    NARCIS (Netherlands)

    Kok, de A.G.; Tijms, H.C.; Duyn Schouten, van der F.A.

    1984-01-01

    We consider a production-inventory problem in which the production rate can be continuously controlled in order to cope with random fluctuations in the demand. The demand process for a single product is a compound Poisson process. Excess demand is backlogged. Two production rates are available and

  15. Superconductivity and fluctuations in Ba_1_–_pK_pFe_2As_2 and Ba(Fe_1_–_nCo_n)_2As_2

    International Nuclear Information System (INIS)

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Technical University of Munich, Garching

    2016-01-01

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe_2As_2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22), we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A_1_g and B_1_g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.

  16. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  17. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  18. Fluctuation microscopy: a probe of medium range order

    International Nuclear Information System (INIS)

    Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I

    2005-01-01

    Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique

  19. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  20. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  1. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  2. Effects of limited spatial resolution on fluctuation measurements

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1994-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical - not only does it reduce the measured fluctuation amplitude and correlation length (as does an extent perpendicular to the propagation direction), but also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  3. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  4. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  5. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  6. Multi moment cancellation of participant fluctuations

    OpenAIRE

    Begun, Viktor; Mackowiak-Pawlowska, Maja

    2017-01-01

    We summarize the new method for the correction of participant fluctuations in high energy nucleus-nucleus collisions. It allows to estimate a fluctuation baseline in comparison to a useful signal. In particular cases of a weak signal compared to baseline, it allows to cancel the baseline contribution from participants.

  7. Phase space fluctuations and dynamics of fluctuations of collective variables

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. (Lab. de Physique Nucleaire, IN2P3/CNRS, 44 - Nantes (France) Nantes Univ., 44 (France)); Hernandez, E.S. (Dept. de Fisica, Ciudad Universitaria, Buenos Aires (Argentina))

    1992-08-03

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.).

  8. Phase space fluctuations and dynamics of fluctuations of collective variables

    International Nuclear Information System (INIS)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Hernandez, E.S.

    1992-01-01

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.)

  9. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  10. Event-by-Event Elliptic Flow Fluctuations from PHOBOS

    Science.gov (United States)

    Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  11. Number fluctuations of cold, spatially split bosonic objects

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.

    2011-01-01

    We investigate the number fluctuations of spatially split many-boson systems employing a theorem about the maximally and minimally attainable variances of an observable. The number fluctuations of many-boson systems are given for different numbers of lattice sites and both mean-field and many-body wave functions. It is shown which states maximize the particle number fluctuations, both in lattices and double wells. The fragmentation of the states is discussed, and it is shown that the number fluctuations of some fragmented states are identical to those of fully condensed states.

  12. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  13. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  14. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  15. Mercury exposure may influence fluctuating asymmetry in waterbirds

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  16. Singlet ground-state fluctuations in praseodymium observed by muon spin relaxation in PrP and PrP0.9

    International Nuclear Information System (INIS)

    Noakes, D R; Waeppling, R; Kalvius, G M; Jr, M F White; Stronach, C E

    2005-01-01

    Muon spin relaxation (μSR) in the singlet ground-state compounds PrP and PrP 0.9 reveals the unusual situation of a Lorentzian local field distribution with fast-fluctuation-limit strong-collision dynamics, a case that does not show motional narrowing. Contrary to publications by others, where PrP 0.9 was asserted to have vacancy-induced spin-glass freezing, no spin-glass freezing is seen in PrP 0.9 or PrP down to ≤100mK. This was confirmed by magnetization measurements on these same samples. In both compounds, the muon spin relaxation rate does increase as temperature decreases, demonstrating increasing strength of the paramagnetic response. A Monte Carlo model of fluctuations of Pr ions out of their crystalline-electric-field singlet ground states into their magnetic excited states (and back down again) produces the strong-collision-dynamic Lorentzian relaxation functions observed at each individual temperature but not the observed temperature dependence. This model contains no exchange interaction, and so predicts decreasing paramagnetic response as the temperature decreases, contrary to the temperature dependence observed. Comparison of the simulations to the data suggests that the exchange interaction is causing the system to approach magnetic freezing (by mode softening), but fails to complete the process

  17. Novikov Engine with Fluctuating Heat Bath Temperature

    Science.gov (United States)

    Schwalbe, Karsten; Hoffmann, Karl Heinz

    2018-04-01

    The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

  18. Joint probability distributions and fluctuation theorems

    International Nuclear Information System (INIS)

    García-García, Reinaldo; Kolton, Alejandro B; Domínguez, Daniel; Lecomte, Vivien

    2012-01-01

    We derive various exact results for Markovian systems that spontaneously relax to a non-equilibrium steady state by using joint probability distribution symmetries of different entropy production decompositions. The analytical approach is applied to diverse problems such as the description of the fluctuations induced by experimental errors, for unveiling symmetries of correlation functions appearing in fluctuation–dissipation relations recently generalized to non-equilibrium steady states, and also for mapping averages between different trajectory-based dynamical ensembles. Many known fluctuation theorems arise as special instances of our approach for particular twofold decompositions of the total entropy production. As a complement, we also briefly review and synthesize the variety of fluctuation theorems applying to stochastic dynamics of both continuous systems described by a Langevin dynamics and discrete systems obeying a Markov dynamics, emphasizing how these results emerge from distinct symmetries of the dynamical entropy of the trajectory followed by the system. For Langevin dynamics, we embed the 'dual dynamics' with a physical meaning, and for Markov systems we show how the fluctuation theorems translate into symmetries of modified evolution operators

  19. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  20. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  1. Discussion on the establishment of blood glucose fluctuation animal models

    OpenAIRE

    Chun-Liu Gai; Jing-Ru Zhao; Xiao-Long Chen

    2014-01-01

    AIM: To provide the experimental basis for the in vivo study of blood glucose fluctuation injury mechanism, through intraperitoneal injection of glucose to establish blood glucose fluctuation animal models and to simulate blood glucose fluctuation of patients with diabetes.METHODS: Rats were randomly divided into four groups: normal control group(NC), normal fluctuation group(NF), diabetes mellitus group(DM)and diabetes fluctuation group(DF). Diabetic models were induced through intraperitone...

  2. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  3. Lattice dynamics and electronic properties of superconducting Nbsub(x)Vsub(1-x)N compounds

    International Nuclear Information System (INIS)

    Geibel, C.; Rietschel, H.; Pelizzone, M.; Junod, A.; Muller, J.

    1982-01-01

    The Nbsub(x)Vsub(1-x)N-system presents a pronounced minimum in Tsub(c) at the composition Nbsub(0.5)Vsub(0.5)N. We investigated the structural, the electronic properties and the lattice dynamics of these compounds to study whether this minimum is induced by structural defects, a decrease of the electron-phonon-coupling or by spin fluctuations. (orig.)

  4. Genetic and environmental transmission of body mass index fluctuation.

    Science.gov (United States)

    Bergin, Jocilyn E; Neale, Michael C; Eaves, Lindon J; Martin, Nicholas G; Heath, Andrew C; Maes, Hermine H

    2012-11-01

    This study sought to determine the relationship between body mass index (BMI) fluctuation and cardiovascular disease phenotypes, diabetes, and depression and the role of genetic and environmental factors in individual differences in BMI fluctuation using the extended twin-family model (ETFM). This study included 14,763 twins and their relatives. Health and Lifestyle Questionnaires were obtained from 28,492 individuals from the Virginia 30,000 dataset including twins, parents, siblings, spouses, and children of twins. Self-report cardiovascular disease, diabetes, and depression data were available. From self-reported height and weight, BMI fluctuation was calculated as the difference between highest and lowest BMI after age 18, for individuals 18-80 years. Logistic regression analyses were used to determine the relationship between BMI fluctuation and disease status. The ETFM was used to estimate the significance and contribution of genetic and environmental factors, cultural transmission, and assortative mating components to BMI fluctuation, while controlling for age. We tested sex differences in additive and dominant genetic effects, parental, non-parental, twin, and unique environmental effects. BMI fluctuation was highly associated with disease status, independent of BMI. Genetic effects accounted for ~34 % of variance in BMI fluctuation in males and ~43 % of variance in females. The majority of the variance was accounted for by environmental factors, about a third of which were shared among twins. Assortative mating, and cultural transmission accounted for only a small proportion of variance in this phenotype. Since there are substantial health risks associated with BMI fluctuation and environmental components of BMI fluctuation account for over 60 % of variance in males and over 50 % of variance in females, environmental risk factors may be appropriate targets to reduce BMI fluctuation.

  5. Origin of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references

  6. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  7. Study of the statistical physics bases on superstatistics from the β-fluctuated to the T-fluctuated form

    Science.gov (United States)

    Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.

    2018-04-01

    In this paper, we study the T -fluctuated form of superstatistics. In this form, some thermodynamic quantities such as the Helmholtz energy, the entropy and the internal energy, are expressed in terms of the T -fluctuated form for a canonical ensemble. In addition, the partition functions in the formalism for 2-level and 3-level distributions are derived. Then we make use of the T -fluctuated superstatistics for a quantum harmonic oscillator problem and the thermal properties of the system for three statistics of the Bose-Einstein, Maxwell-Boltzmann and Fermi-Dirac statistics are calculated. The effect of the deformation parameter on these properties is examined. All the results recover the well-known results by removing the deformation parameter.

  8. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  9. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  10. Fluctuations of wormlike micelle fluids in capillary flow

    Science.gov (United States)

    Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team

    2017-11-01

    We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.

  11. Manipulating lightcone fluctuations in an analogue cosmic string

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2018-02-01

    Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  12. Manipulating lightcone fluctuations in an analogue cosmic string

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2018-02-01

    We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  13. Power fluctuations from large wind farms - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.

    2009-08-15

    Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)

  14. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    Science.gov (United States)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-01-01

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the

  15. Analysis of water-level fluctuations in Wisconsin wells

    Science.gov (United States)

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    More than 60 percent of the residents of Wisconsin use ground water as their primary water source. Water supplies presently are abundant, but ground-water levels continually fluctuate in response to natural factors and human-related stresses. A better understanding of the magnitude, duration, and frequency of past fluctuations, and the factors controlling these fluctuations may help anticipate future changes in ground-water levels.

  16. An analog model for quantum lightcone fluctuations in nonlinear optics

    International Nuclear Information System (INIS)

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-01-01

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  17. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  18. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  19. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    Full Text Available Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena, a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  20. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  1. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  2. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  3. Magnetic fluctuations in the plasma of KT-5C tokamak

    International Nuclear Information System (INIS)

    Lu Ronghua; Pan Gesheng; Wang Zhijiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xu Min; Xiao Delong; Yu Yi

    2004-01-01

    A newly developed moveable magnetic probe array was installed on KT-5C tokamak. The profiles of radial and poloidal magnetic fluctuations of the plasma have been measured for (0.5r/a1.1). The experimental results indicate that there is a radial gradient which is greater than relative electrostatic fluctuations and the magnetic fluctuations contribute a little to losses. A strong coherence between fluctuations of 4 mm nearby two points suggests that the magnetic fluctuations have quite a long correlation length

  4. Thermal fluctuation problems encountered in LMFRs

    International Nuclear Information System (INIS)

    Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.

    1994-01-01

    One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue

  5. Effect of Alfvenic fluctuations on the solar wind

    International Nuclear Information System (INIS)

    Chien, T.H.

    1974-01-01

    The major source of microscale fluctuations in the interplanetary medium due to the outwardly propagating Alfven waves is considered. The effect of the Alfven waves on the supersonic expansion of the solar wind is studied under the assumption that the motion of the interplanetary medium can be resolved physically into a comparatively smooth and slowly varying mesoscale flow and field with very irregular disordered incompressible microscale Alfvenic fluctuations superposed on it. The important features of the solar wind such as heat conduction flux, spiral interplanetary magnetic field, and proton thermal anisotropy are included in the theory. For inviscid, steady state, spherically symmetrical model of the solar wind, the two-fluid formulation of the background mesoscale MHD equations is obtained. The results show that during the expansion process, fluctuation energy is converted into the kinetic energy of the solar wind. Due to the presence of the Alfvenic fluctuations, the velocity of the solar wind is about 5 percent higher than that without considering the fluctuations. (U.S.)

  6. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  7. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  8. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  9. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  10. Birth order and fluctuating asymmetry: a first look.

    Science.gov (United States)

    Lalumière, M L; Harris, G T; Rice, M E

    1999-01-01

    We investigated the hypothesis that maternal immunoreactivity to male-specific features of the foetus can increase developmental instability. We predicted that the participants' number of older brothers would be positively related to the fluctuating asymmetry of ten bilateral morphological traits. The participants were 40 adult male psychiatric patients and 31 adult male hospital employees. Consistent with the hypothesis, the participants' number of older brothers--but not number of older sisters, younger brothers or younger sisters--was positively associated with fluctuating asymmetry. The patients had significantly larger fluctuating asymmetry scores and tended to have more older brothers than the employees, but the positive relationship between the number of older brothers and fluctuating asymmetry was observed in both groups. PMID:10643079

  11. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  12. Fluctuations and transport in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nevins, W.M.; Chen, L.

    1979-11-01

    A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/

  13. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  14. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  15. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  16. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  17. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  18. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  19. Total charge fluctuation in heavy ion collision

    International Nuclear Information System (INIS)

    Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Garg, P.

    2014-01-01

    Event-by-event fluctuations of positive, negative, total and net charge produced in relativistic nuclear collisions have been of interest to explore phase transition and/or a critical end point (CEP) which is believed to exist somewhere between the hadronic phase and the quark-gluon phase of the QCD phase diagram. The entropy is closely related to the particle multiplicity, and it is expected to be approximately conserved during the evolution of the matter created at the early stage. The entropy fluctuations are not directly observed but can be inferred from the experimentally measured quantities. The final state mean multiplicity is proportional to the entropy of the initial state ( ∼ S). The particle multiplicity can be measured on an event-by-event basis, whereas the entropy is defined by averaging the particle multiplicities in the ensemble of events. Thus, the dynamical entropy fluctuations can be measured experimentally by measuring the fluctuations in the mean multiplicity

  20. Collective fluctuations in networks of noisy components

    International Nuclear Information System (INIS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2010-01-01

    Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect the functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is not clear. Here, we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such non-trivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.

  1. Density fluctuations in ohmic Asdex discharges

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1989-01-01

    The investigations on the wave-number and frequency spectra of the density fluctuations, occurring in the different operational modes of ASDEX, are summarized. The aim of the experiments is to study the physical nature of fluctuations and their influence on anomalous transport. The scattering system is described. The results reported were obtained using a 100 mW, λ = 119 μm CW CH-30H laser and homodyne detection

  2. Work extraction from quantum systems with bounded fluctuations in work

    Science.gov (United States)

    Richens, Jonathan G.; Masanes, Lluis

    2016-11-01

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

  3. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  4. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  5. Concentration fluctuations in gas releases by industrial accidents

    DEFF Research Database (Denmark)

    Nielsen, M.; Chatwin, P.C.; Ejsing Jørgensen, Hans

    2002-01-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statisticalanalyses and surface-layer scaling. The statistical...... and the probability distribution for the plume centreline. The distance-neighbour function generalizedfor higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools...... moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of thesemoments is universal with a gaussian core and exponential tails. The instantaneous plume width...

  6. Measurement of magnetic fluctuations on ZT-40(M)

    International Nuclear Information System (INIS)

    Miller, G.

    1990-01-01

    The mathematical basis for experimental measurement of magnetic fluctuations in a Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-work for analysis of the five-fixed-probe technique. The extrapolation of edge-measured rvec B r fluctuations into the plasma is discussed. Correlations between magnetic and other fluctuations expected from a quasi-static model are derived and transport-relevant correlations are discussed. Data from ZT-40(M) are presented

  7. High-frequency fluctuations of surface temperatures in an urban environment

    Science.gov (United States)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  8. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  9. Faraday polarization fluctuations of satellite beacon signals

    Science.gov (United States)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  10. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  11. Effects of limited spatial resolution on fluctuation measurements (invited)

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1995-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work, the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical---not only does it reduce the measured fluctuation amplitude and increase the correlation length (as does an extent perpendicular to the propagation direction), but it also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  12. RSA fluctuation in major depressive disorder.

    Science.gov (United States)

    Rottenberg, Jonathan; Clift, April; Bolden, Sarah; Salomon, Kristen

    2007-05-01

    Cardiac vagal control, as measured by indices of respiratory sinus arrhythmia (RSA), has been investigated as a marker of impaired self-regulation in mental disorders, including depression. Past work in depressed samples has focused on deficits in resting RSA levels, with mixed results. This study tested the hypothesis that depression involves abnormal RSA fluctuation. RSA was measured in depressed and healthy control participants during rest and during two reactivity tasks, each followed by a recovery period. Relative to controls, depressed persons exhibited lower resting RSA levels as well as less RSA fluctuation, primarily evidenced by a lack of task-related vagal suppression. Group differences in RSA fluctuation were not accounted for by differences in physical health or respiration, whereas group differences in resting RSA level did not survive covariate analyses. Depression may involve multiple deficits in cardiac vagal control.

  13. Extracellular matrix fluctuations during early embryogenesis

    International Nuclear Information System (INIS)

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node)

  14. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    Science.gov (United States)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  15. Transient fluctuation relations for time-dependent particle transport

    Science.gov (United States)

    Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris

    2010-09-01

    We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.

  16. Entropic Repulsion Between Fluctuating Surfaces

    Science.gov (United States)

    Janke, W.

    The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.

  17. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath.

    We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  18. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  19. General description of magnetic fluctuations in TEXT

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1989-01-01

    The magnetic fluctuations in TEXT (R = 1m, a = 0.26m, ohmically heated tokamak with a full poloidal limiter) have been extensively measured with magnetic probes in the shadow of the limiter with an instrumental range of f -1 (m rms p (f > 50kHz) at the limiter radius is found to be of order 10 -5 T, which is too small to produce significant transport directly. Over the range of discharge parameters in TEXT, the B rms p (f > 50kHz) is observed to have a strong q a dependence (q a -2.2 ) and also a density dependence (n eo -0.8 ). Furthermore, the magnetic fluctuations show a significant correlation with edge electrostatic density fluctuations measured by Langmiur probe inside the limiter radius, and extending along magnetic field lines. Phase variation of the correlated components suggests k double-prime/k perpendicular ∼ 0.005. The B p rms (f >50kHz) is also found to be little dependent on parallel electric field E double-prime. Magnetic fluctuations in both low and high frequency ranges have been characterized by their response to gas puffing, pellet injection, impurity injection, and the effect of an ergodic magnetic limiter. The behavior of magnetic fluctuations with electron cyclotron resonance heating (ECRH) has been also investigated in detail

  20. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  1. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  2. Squeezing of thermal and quantum fluctuations: Universal features

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Flensberg, Karsten

    1993-01-01

    We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....

  3. Temporal fluctuations after a quantum quench: Many-particle dephasing

    Science.gov (United States)

    Marquardt, Florian; Kiendl, Thomas

    After a quantum quench, the expectation values of observables continue to fluctuate in time. In the thermodynamic limit, one expects such fluctuations to decrease to zero, in order for standard statistical physics to hold. However, it is a challenge to determine analytically how the fluctuations decay as a function of system size. So far, there have been analytical predictions for integrable models (which are, naturally, somewhat special), analytical bounds for arbitrary systems, and numerical results for moderate-size systems. We have discovered a dynamical regime where the decrease of fluctuations is driven by many-particle dephasing, instead of a redistribution of occupation numbers. On the basis of this insight, we are able to provide exact analytical expressions for a model with weak integrability breaking (transverse Ising chain with additional terms). These predictions explicitly show how fluctuations are exponentially suppressed with system size.

  4. Structural features that predict real-value fluctuations of globular proteins.

    Science.gov (United States)

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  5. Active Brownian particles with velocity-alignment and active fluctuations

    International Nuclear Information System (INIS)

    Großmann, R; Schimansky-Geier, L; Romanczuk, P

    2012-01-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)

  6. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  7. Limits on arcsecond-scale fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Knoke, J.E.; Partridge, R.B.; Ratner, M.I.; Shapiro, I.I.

    1984-01-01

    We used the NRAO Very Large Array in its C configuration at a wavelength of 6 cm to set upper limits on the rms fluctuation of sky brightness on angular scales of 6''--18'' from sources too weak to be detected individually. At the highest resolution, we establish a limit of 8 μJy per beam area on the rms sky fluctuation. If this fluctuation level is the result of a Poisson distribution of unresolved sources, each of flux density S 0 Jy, then the number density of such sources per steradian must be less than 0.08 S 0 -2 sr -1 . For alternative models in which all sources are resolved, we derive less stringent limits. Our limits on the rms sky fluctuation also establish limits on the rms temperature fluctuation ΔT for simple models of fluctuations in the cosmic microwave background: (ΔT/2.7 K) -3 and (ΔT/2.7 K) -3 for Gaussian temperature fluctuations of angular scale 6'' and 18'', respectively

  8. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  9. Collective fluctuations in magnetized plasma: Transition probability approach

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1997-01-01

    Statistical plasma electrodynamics is elaborated with special emphasis on the transition probability approach and quasi-particles, and on modern applications to magnetized plasmas. Fluctuation spectra in the magnetized plasma are calculated in the range of low frequencies (with respect to the cyclotron one), and the conditions for the transition from incoherent to collective fluctuations are established. The role of finite-Larmor-radius effects and particle polarization drift in such a transition is explained. The ion collective features in fluctuation spectra are studied. 63 refs., 30 figs

  10. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  11. Near-Milne realization of scale-invariant fluctuations

    International Nuclear Information System (INIS)

    Magueijo, Joao

    2007-01-01

    A near-Milne universe produces a very red spectrum of vacuum quantum fluctuations but has the potential to produce near-scale-invariant thermal fluctuations. This happens if the energy and entropy are mildly subextensive, for example, if there is a Casimir contribution. Therefore, one does not need to invoke corrections to Einstein gravity (as in loop quantum cosmology) for a thermal scenario to be viable. Neither do we need the energy to scale like the area, as in scenarios where the thermal fluctuations are subject to a phase transition in the early universe. Some odd features of this model are pointed out: whether they are fatal or merely unusual will need to be investigated further

  12. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  13. Torque fluctuations caused by upstream mean flow and turbulence

    Science.gov (United States)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  14. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  15. Nonequilibrium thermodynamics and fluctuation relations for small systems

    International Nuclear Information System (INIS)

    Cao Liang; Ke Pu; Qiao Li-Yan; Zheng Zhi-Gang

    2014-01-01

    In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become significant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti—Cohen fluctuation theorem, and then to the Evans—Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluctuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation. (topical review - statistical physics and complex systems)

  16. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  17. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  18. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  19. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  20. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Science.gov (United States)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  1. The fluctuation theory of the stellar mass loss

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1981-01-01

    The idea that fluctuations in the mass flow are as significant as the very existence of the flow has led to the development of a fluctuation theory of the stellar mass loss. A general theory for fluctuations in non-equilibrium systems - and such are stellar atmospheres - was developed long ago. In developing the general theory to a specific stellar theory, however, the arguments have not come up in their logical order. The present sketch of this theory improves on that order and is offered as a framework for further study. (Auth.)

  2. Time-clustering behavior of sharp fluctuation sequences in Chinese stock markets

    International Nuclear Information System (INIS)

    Yuan Ying; Zhuang Xintian; Liu Zhiying; Huang Weiqiang

    2012-01-01

    Sharp fluctuations (in particular, extreme fluctuations) of asset prices have a great impact on financial markets and risk management. Therefore, investigating the time dynamics of sharp fluctuation is a challenge in the financial fields. Using two different representations of the sharp fluctuations (inter-event times and series of counts), the time clustering behavior in the sharp fluctuation sequences of stock markets in China is studied with several statistical tools, including coefficient of variation, Allan Factor, Fano Factor as well as R/S (rescaled range) analysis. All of the empirical results indicate that the time dynamics of the sharp fluctuation sequences can be considered as a fractal process with a high degree of time-clusterization of the events. It can help us to get a better understanding of the nature and dynamics of sharp fluctuation of stock price in stock markets.

  3. Energy fluctuations in a biharmonically driven nonlinear system

    Indian Academy of Sciences (India)

    analyse the nature of work and heat fluctuations and show that the steady state fluctuation .... The above equation is the statement of the first law of thermodynamics and ..... One of the authors (AMJ) thanks DST, India for financial support.

  4. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  5. Quantum fluctuation of the order parameter in polyacetylene

    International Nuclear Information System (INIS)

    Su Zhao-bin; Wang Ya-xin; Yu Lu.

    1984-07-01

    The effects of the lattice quantum fluctuation upon the order parameter in the Peierls systems are studied by using the Green's function technique. The order parameter is reduced but survives the quantum fluctuations in agreement with the Monte Carlo simulations. (author)

  6. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  7. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    Science.gov (United States)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-03-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  8. Critical thermal limits affected differently by developmental and adult thermal fluctuations

    DEFF Research Database (Denmark)

    Salachan, Paul Vinu; Sørensen, Jesper Givskov

    2017-01-01

    the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between...... fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly......, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster....

  9. Work and power fluctuations in a critical heat engine

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  10. Work and power fluctuations in a critical heat engine.

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016)2041-172310.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  11. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  12. Drift-Alfven waves induced optical emission fluctuations in Aditya tokamak

    International Nuclear Information System (INIS)

    Manchanda, R.; Ghosh, J.; Chattopadhyay, P. K.; Chowdhuri, M. B.; Banerjee, Santanu; Ramasubramanian, N.; Patel, Ketan M.; Kumar, Vinay; Vasu, P.; Tanna, R. L.; Paradkar, B.; Gupta, C. N.; Bhatt, S. B.; Raju, D.; Jha, R.; Atrey, P. K.; Joisa, S.; Rao, C. V. S.; Saxena, Y. C.

    2010-01-01

    In Aditya tokamak [S. B. Bhatt et al. Indian J. Pure Appl. Phys. 27, 710 (1989)], an increase in the H α and C 2+ intensity fluctuations from the edge region is observed with an increase in the magnetohydrodynamic (MHD) activity. Very small fluctuation amplitudes of H α and C 2+ intensity are observed in discharges where there is no MHD activity compared to the discharges with MHD activity. These fluctuations in the H α and C 2+ , measured by optical filter--photomultiplier tube combination--are modulated by Mirnov oscillations having a dominant peak with a common frequency ∼7-10 kHz. Further investigation reveals the presence of strong coherent fluctuations in density and floating potential at same frequency as well. These observations indicate the existence of a nonelectrostatic instability, which may be based on the coupled mode of the drift mode and the Alfven mode. The coherent density fluctuations give rise to the experimentally observed coherent H α and C 2+ intensity fluctuations.

  13. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  14. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  15. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  16. Evidence of strong proton shape fluctuations from incoherent diffraction

    International Nuclear Information System (INIS)

    Mantysaari, H.; Schenke, B.

    2016-01-01

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  17. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  18. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  19. Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains.

    Science.gov (United States)

    Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos

    2017-11-01

    We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.

  20. Escape routes, weak links, and desynchronization in fluctuation-driven networks

    DEFF Research Database (Denmark)

    Schäfer, Benjamin; Matthiae, Moritz; Zhang, Xiaozhu

    2017-01-01

    Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may undermine the dynamical robustness of power grid networks. Focusing...... on fundamental noise models, we derive analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable to fluctuations. These results thereby not only...

  1. Effect of density fluctuations on ECCD in ITER and TCV

    Directory of Open Access Journals (Sweden)

    Coda S.

    2012-09-01

    Full Text Available Density fluctuations near the edge of tokamak plasmas can affect the propagation of electron cyclotron (EC waves. In the present paper, the EC wave propagation in a fluctuating equilibrium is determined using the ray-tracing code C3PO. The evolution of the electron distribution function is calculated self-consistently with the EC wave damping using the 3-D Fokker-Planck solver LUKE. The cumulative effect of fluctuations results in a significant broadening of the current profile combined with a fluctuating power deposition profile. This mechanism improves the simulation of fully non-inductive EC discharges in the TCV tokamaks. Predictive simulations for ITER show that density fluctuations could make the stabilization of NTMs in ITER more challenging.

  2. Fluctuation-dissipation theorem in general relativity and the cosmological constant

    International Nuclear Information System (INIS)

    Mottola, E.

    1992-01-01

    Vacuum fluctuations are an essential feature of quantum field theory. Yet, the smallness of the scalar curvature of our universe suggests that the zero-point energy associated with these fluctuations does not curve spacetime. A possible way out of this paradox is suggested by the fact that microscopic fluctuations are generally accompanied by dissipative behavior in macroscopic systems. The intimate relation between the two is expressed by a fluctuation-dissipation theorem which extends to general relativity. The connection between quantum fluctuations and dissipation suggests a mechanism for the conversion of coherent stresses in the curvature of space into ordinary matter or radiation, thereby relaxing the effective cosmological ''constant'' to zero over time. The expansion of the universe may be the effect of this time-asymmetric relaxation process

  3. Critical Fluctuations in Spatial Complex Networks

    Science.gov (United States)

    Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra

    2010-05-01

    An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.

  4. On statistical fluctuations in the dibaryon spectra

    International Nuclear Information System (INIS)

    Bazhanskij, I.I.; Luk'yanov, V.K.; Reznik, B.L.; Titov, A.I.

    1988-01-01

    The aim of this report is to show, that idea about statistical nature of dibaryon resonances corresponds to the present experimental data. Condition for cross section fluctuation occurrence is linked with value of decay width for isolated dibaryon in nucleon channel. Γ in terms of dibaryon potential quark model and q 6 → NN dibaryon decay for q 6 state with S 6 orbital symmetry and (S=I, I=0) deuteron quantum numbers are calculated as an example. np → ppπ - , dp → ppn and elastic pp-scattering are considered and distributions of cross sections and correlation functions obtained from these reactions are presented to investigate cross section fluctuations in spectra of effective masses of two-nucleon systems. Supposition about fluctuation pattern does not contradict the experiment. Curves, calculated with x l α < or approx. 0.05 partial amplitude parameter and full width of Γ < or approx. 20 MeV dibaryon resonances comply to the present experiment best. Fluctuation peculiarities -peaks in cross sections have approximately the same energy width (Γ ∼ 15-20 MeV) as the observed narrow peak in effective mass spectra of some reactions. 16 refs.; 3 figs

  5. Macroeconomic fluctuations and mortality in postwar Japan.

    Science.gov (United States)

    Granados, José A Tapia

    2008-05-01

    Recent research has shown that after long-term declining trends are excluded, mortality rates in industrial countries tend to rise in economic expansions and fall in economic recessions. In the present work, co-movements between economic fluctuations and mortality changes in postwar Japan are investigated by analyzing time series of mortality rates and eight economic indicators. To eliminate spurious associations attributable to trends, series are detrended either via Hodrick-Prescott filtering or through differencing. As previously found in other industrial economies, general mortality and age-specific death rates in Japan tend to increase in expansions and drop in recessions, for both males and females. The effect, which is slightly stronger for males, is particularly noticeable in those aged 45-64. Deaths attributed to heart disease, pneumonia, accidents, liver disease, and senility--making up about 41% of total mortality--tend to fluctuate procyclically, increasing in expansions. Suicides, as well as deaths attributable to diabetes and hypertensive disease, make up about 4% of total mortality and fluctuate countercyclically, increasing in recessions. Deaths attributed to other causes, making up about half of total deaths, don't show a clearly defined relationship with the fluctuations of the economy.

  6. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    Science.gov (United States)

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.

  7. Analysis of jitter due to call-level fluctuations

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel)

    2005-01-01

    textabstractIn communication networks used by constant bit rate applications, call-level dynamics (i.e., entering and leaving calls) lead to fluctuations in the load, and therefore also fluctuations in the delay (jitter). By intentionally delaying the packets at the destination, one can transform

  8. Environmental factors influencing fluctuation of share prices on ...

    African Journals Online (AJOL)

    Environmental factors influencing fluctuation of share prices on Nigeria stock exchange market. ... What are these environmental variables that affect the fluctuation of share prices in Nigeria? ... The results show inflation, money supply, total deficits index of industrial production, interest rate and GDP influence stock prices.

  9. Fluctuations and correlations of conserved charges near the QCD critical point

    International Nuclear Information System (INIS)

    Fu Weijie; Wu Yueliang

    2010-01-01

    We study the fluctuations and correlations of conserved charges, such as the baryon number, the electric charge and the strangeness, at the finite temperature and the nonzero baryon chemical potential in an effective model. The fluctuations are calculated up to the fourth-order and the correlations to the third-order. We find that the second-order fluctuations and correlations have a peak or valley structure when the chiral phase transition takes place with the increase of the baryon chemical potential; the third-order fluctuations and correlations change their signs during the chiral phase transition; and the fourth-order fluctuations have two maxima and one minimum. We also depict contour plots of various fluctuations and correlations of conserved charges in the plane of temperature and the baryon chemical potential. It is found that higher-order fluctuations and correlations of conserved charges are superior to the second-order ones to be used to search for the critical point in heavy ion collision experiments.

  10. Sources of Macroeconomic Fluctuations in MENA Countries

    OpenAIRE

    Balcilar, Mehmet; Bagzibagli, Kemal

    2010-01-01

    A close examination of the MENA region economies reveals a number of fundamental sources of macroeconomic fluctuations. These include economic factors such as exchange rate instability, large public debt, current account deficits, and escalation of inflation. The political factors such as government instability, corruption, bureaucracy, and internal conflicts also are major sources of macroeconomic instability. Thus, the sources of macroeconomic fluctuations in these countri...

  11. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  12. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  13. Fluctuation scaling, Taylor's law, and crime.

    Science.gov (United States)

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  14. Effects of disorder on the out-of-plane magnetoresistance in the high-Tc BISCCO compound

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    An explanation is proposed to account for the observed anisotropic out-of-plane magnetoresistivity of the single crystal high temperature superconductor BISCCO compound. The explanation is based on a dynamic scaling model for conductivity fluctuations in the superconducting matrix. In this model, it is assumed that the c-axis conduction in an applied field parallel to the c-direction occurs through defect-mediated interplanar ''weak links'' which behave as an array of parallel, independently fluctuating, superconducting channels. The model also takes into account the possibility of thermally induced dimensional crossover above which the superconducting layers are effectively decoupled and behave as a quasi two-dimensional system. The predictions of the model are consistent with the magnetoresistance measurements reported for two separate experiments on Bi 2 Sr 2 CaCu 2 O 8 single crystals. (orig.)

  15. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  16. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  17. Membrane fluctuations mediate lateral interaction between cadherin bonds

    Science.gov (United States)

    Fenz, Susanne F.; Bihr, Timo; Schmidt, Daniel; Merkel, Rudolf; Seifert, Udo; Sengupta, Kheya; Smith, Ana-Sunčana

    2017-09-01

    The integrity of living tissues is maintained by adhesion domains of trans-bonds formed between cadherin proteins residing on opposing membranes of neighbouring cells. These domains are stabilized by lateral cis-interactions between the cadherins on the same cell. However, the origin of cis-interactions remains perplexing since they are detected only in the context of trans-bonds. By combining experimental, analytical and computational approaches, we identify bending fluctuations of membranes as a source of long-range cis-interactions, and a regulator of trans-interactions. Specifically, nanometric membrane bending and fluctuations introduce cooperative effects that modulate the affinity and binding/unbinding rates for trans-dimerization, dramatically affecting the nucleation and growth of adhesion domains. Importantly, this regulation relies on physical principles and not on details of protein-protein interactions. These omnipresent fluctuations can thus act as a generic control mechanism in all types of cell adhesion, suggesting a hitherto unknown physiological role for recently identified active fluctuations of cellular membranes.

  18. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  19. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  20. Stochastic dark energy from inflationary quantum fluctuations

    Science.gov (United States)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  1. Charge-Induced Fluctuation Forces in Graphitic Nanostructures

    Directory of Open Access Journals (Sweden)

    D. Drosdoff

    2016-01-01

    Full Text Available Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van der Waals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Our results strongly indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.

  2. Fluctuations and localization in mesoscopic electron

    CERN Document Server

    Janssen, Martin

    2001-01-01

    The quantum phenomena of tunneling and interference show up not only in the microscopic world of atoms and molecules, but also in cold materials of the real world, such as metals and semiconductors. Though not fully macroscopic, such mesoscopic systems contain a huge number of particles, and the holistic nature of quantum mechanics becomes evident already in simple electronic measurements. The measured quantity fluctuates as a function of applied fields in an unpredictable, yet reproducible way. Despite this fingerprint character of fluctuations, their statistical properties are universal, i.e

  3. Long term persistence in the sea surface temperature fluctuations

    OpenAIRE

    Monetti, Roberto A.; Havlin, Shlomo; Bunde, Armin

    2002-01-01

    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation $C(s)$ of temperature fluctuations separated by a time period $s$, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a...

  4. The study of RMB exchange rate complex networks based on fluctuation mode

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  5. Statistical orientation fluctuations: constant angular momentum versus constant rotational frequency constraints

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Tulane Univ., New Orleans, LA (United States)

    1992-08-01

    Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.

  6. Giant current fluctuations in an overheated single-electron transistor

    Science.gov (United States)

    Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.

    2010-11-01

    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.

  7. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  8. Influence of intensity fluctuations on laser damage in optical materials

    International Nuclear Information System (INIS)

    Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L.

    1995-01-01

    A study is reported of the influence of temporal fluctuations of laser radiation on the development of thermal explosion of absorbing inclusions and on the statistical properties of the laser induced damage in transparent dielectrics. A fluctuation time scale in which the fluctuations affect the thermal explosion of inclusions is established. An analysis is made of the conditions ensuring control of temporal fluctuations of laser radiation so as to eliminate their influence on the experimental statistical relationships governing laser damage associated with the distribution of absorbing inclusions in the bulk and on the surface of a sample

  9. The effect of longitudinal fluctuations in (3+1)D viscous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang; Karpenko, Yuri [FIAS, Frankfurt (Germany); Petersen, Hannah [FIAS, Frankfurt (Germany); ITP, Goethe University, Frankfurt (Germany); GSI, Darmstadt (Germany); Huovinen, Pasi [ITP, University of Wroclaw (Poland); Wang, Xin-Nian [CCNU, Wuhan (China); LBNL, Berkeley (United States)

    2016-07-01

    The energy density fluctuations of the quark gluon plasma (QGP) in the transverse plane are studied in detail and found to be important to explain the high order harmonic flow v{sub n} at RHIC and LHC. However, the energy density fluctuations along longitudinal direction (space-time rapidity η{sub s}) have not been fully investigated yet, even though they should exist as well. Previous studies show that the longitudinal fluctuations strongly depend on the initial entropy deposition mechanisms. In this work AMPT initial conditions are used where HIJING introduces longitudinal fluctuations originating from the asymmetry between forward and backward going participants, string length fluctuations and finite number of partons at different collision energies. The longitudinal fluctuations have been found to be responsible for the de-correlation of anisotropic flow and twist of event planes along rapidity. We study the effect of longitudinal fluctuations on the QGP expansion in both transverse and longitudinal direction within CLVisc, a (3+1)D viscous hydrodynamic code parallelized on GPU using OpenCL, to check whether the anisotropic flow is affected by longitudinal fluctuations and to determine appropriate shear viscosity over entropy density coefficients η/s in comparison with experiments at RHIC and LHC.

  10. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.

  11. Modification of boundary fluctuations by LHCD in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Song Mei; Wan Baonian; Xu Guosheng; Ling Bili

    2003-01-01

    Measurements of boundary fluctuations and fluctuation driven electron fluxes have been performed in ohmic and lower hybrid current drive enhanced confinement plasma using a graphite Langmuir probe array on HT-7 tokamak. The fluctuations are significantly suppressed and the turbulent fluxes are remarkably depressed in the enhanced plasma. We characterized the statistical properties of fluctuations and the particle flux and found a non-Gaussian character in the whole scrape-off layer with minimum deviations from Gaussian in the proximity of the velocity shear layer in ohmic plasma. In the enhanced plasma the deviations in the boundary region are all reduces obviously. The fluctuations and induced electron fluxes show sporadic bursts asymmetric in time and the asymmetry is remarkably weakened in the lower hybrid current driving (LHCD) phase. The results suggest a coupling between the statistical behaviour of fluctuations and the turbulent flow

  12. Nonlinear correlations in phase-space resolved fluctuations at drift wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Skiff, F [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Uzun, I [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Diallo, A [Centre de Recherches en Physique des Plasams EPF, Lausanne (Switzerland)

    2007-12-15

    In an effort to better understand plasma transport, we measure fluctuations associated with drift instabilities resolved in the ion phase-space. Primary attention is given to fluctuations near the electron drift frequency where there are two general components to the observed fluctuations. From two (spatial) point measurements of the ion distribution function with a variable separation along the magnetic field, a number of statistical measures of the fluctuations are calculated including cross-correlation and cross-bicoherence. Both fluid ({omega}/k >> v{sub ti}) and kinetic ({omega}/k {approx} v{sub ti}) components are observed in the fluctuations. The nonlinear interactions are found to depend strongly on the ion particle velocity.

  13. Fluid Fuel Fluctuations in the Spherical Tank

    Directory of Open Access Journals (Sweden)

    H. D. Nguyen

    2014-01-01

    Full Text Available Many authors tried to solve a task concerning small fluctuations of the incompressible ideal liquid, which partially fills a stationary tank of any shape. There is a long list of references to this subject. The article presents a task solution on own fluctuations of liquid in spherical capacity, with boundary conditions on a free surface and a surface with a resistance – drain surface. Relevance of problem consists in assessment of influence of intra tank devices (measuring, intaking, damping devices, etc. on the liquid fuel fluctuations. The special attention is paid to finding the own values and frequencies of the equations of disturbed flow fluctuations with dissipation available on the boundary surfaces. In contrast to the previous examples, the lowering speed and the free surface area at undisturbed state are variable.The article also considers a variation formulation of the auxiliary boundary tasks. In solution of variation tasks, the attached Legendre's functions were used as coordinate functions. Further, after substitution of the variation tasks solution in the boundary conditions and the subsequent mathematical operations the characteristic equation was obtained. To obtain solutions of the cubic characteristic equation Cardano formulas were used. The article also considers the task on the own motions of liquid filling a capacity between two concentric spheres and flowing out via the intake in case there is a free surface. Reliability of the obtained numerical results is confirmed by comparison with calculation results of frequencies resulting from solutions of a task on the own fluctuations of liquid in the spherical capacity with the constant depth of liquid. All numerical calculations were performed using the Matlab environment.

  14. Critical fluctuations in cortical models near instability

    Directory of Open Access Journals (Sweden)

    Matthew J. Aburn

    2012-08-01

    Full Text Available Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human EEG, however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where nonlinearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power-law scaling and bistable switching have been suggested as generic indicators of the approach to bifurcation in nonlinear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.

  15. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  16. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  17. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  18. Maxwell electrodynamics subjected to quantum vacuum fluctuations

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.

  19. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  20. Changes in atomic populations due to edge plasma fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, R., E-mail: ramzi.hammami@univ-provence.fr [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Capes, H. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Catoire, F. [CELIA, Université de Bordeaux 1 and CNRS, Domaine du Haut Carré, Talence 33405 (France); Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Mekkaoui, A.; Rosato, J.; Stamm, R. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France)

    2013-07-15

    The population balance of atoms or ions in an edge plasma is calculated in the presence of fluctuating density or temperature. We have used a stochastic model taking advantage of the knowledge of the plasma parameter statistical properties, and assuming a stepwise constant stochastic process for the fluctuating variable. The model is applied to simplified atomic systems such as three level hydrogen atoms or the ionization balance of carbon affected by electronic temperature or density fluctuations obeying a gamma PDF, and an exponential waiting time distribution.

  1. Limitation and suppression of hot electron fluctuations in submicron semiconductor structures

    International Nuclear Information System (INIS)

    Kochelap, V.A.; Zahleniuk, N.A.; Sokolov, V.N.

    1992-09-01

    We present theoretical investigations of fluctuations of hot electrons in submicron active regions, where the dimensions 2 d of the region is comparable to the electron energy relaxation length L ε . The new physical phenomenon is reported; the fluctuations depend on the sample thickness, with 2d ε a suppression of fluctuations arises in the range of fluctuation frequencies ω much less than T -1 ε , T ε is the electron energy relaxation time. (author). 12 refs, 7 figs

  2. Near resonant absorption by atoms in intense, fluctuating fields: [Progress report

    International Nuclear Information System (INIS)

    1989-01-01

    During the present grant period preparations for photon echo studies of the role of phase fluctuations of an optical driving field resonant with the 1 S 0 - 3 P 1 transition in 174 Yb are moving forward. This experimental study emphasizes the role of fluctuations as a decorrelating mechanism on a phased array of excited atoms. Improvements in laser stabilization and in the quality of the fluctuation spectrum have been carried out and the first spectroscopic measurements will be carried out during this grant year. In response to an important recent theoretical study we have also applied the phase fluctuation synthesizing capability to the study of the atomic sodium resonance fluorescence line profile, driven by a phase fluctuating laser. The measured fluctuations in the fluorescence, characterized in terms of the standard deviation of the fluorescence intensity, have an unexpected and strong dependence on detuning of the driving laser

  3. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  4. Particle transport due to magnetic fluctuations

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  5. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    Science.gov (United States)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  6. Fine-Scale Fluctuations in the Corona Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High Resolution Coronal Imager(HiC) flew aboard a NASA sounding rocket on 2012 July11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region11520.We selected events based on a lifetime greater than 11s (twoHiC frames)and intensities greater than a threshold determined from the average background intensity in a pixel and the photon and electronic noise. We find fluctuations occurring down to the smallest timescale(11s).Typical intensity fluctuations are 20% background intensity, while some events peaka t100%the background intensity.Generally the fluctuations are clustered in solar structures, particularly the moss.We interpret the fluctuations in the moss as indicative of heating events. We use the observed events to model the active region core.

  7. Controlling fluctuations in an ITB and comparison with gyrokinetic simulations

    Science.gov (United States)

    Ernst, D. R.; Fiore, C. L.; Dominguez, A.; Podpaly, Y.; Reinke, M. L.; Terry, J. L.; Tsujii, N.; Bespamyatnov, I.; Churchill, M.; Greenwald, M.; Hubbard, A.; Hughes, J. W.; Lee, J.; Ma, Y.; Wolfe, S.; Wukitch, S.

    2011-10-01

    We have modulated on-axis ICRF minority heating to trigger fluctuations and core electron transport in Alcator C-Mod Internal Transport Barriers (ITB's). Temperature swings of 50% produced strong bursts of density fluctuations, measured by phase contrast imaging (PCI), while edge fluctuations from reflectometry, Mirnov coils, and gas puff imaging (GPI) simultaneously diminished. The PCI fluctuations are in phase with sawteeth, further evidence that they originate within the ITB foot. Linear gyrokinetic analysis with GS2 shows TEMs are driven unstable in the ITB by the on-axis heating, as in Refs.,. Nonlinear gyrokinetic simulations of turbulence in the ITB are compared with fluctuation data using a synthetic diagnostic. Strong ITB's were produced with high quality ion and electron profile data. Supported by U.S. DoE awards DE-FC02-99ER54512, DE-FG02-91ER54109, DE-FC02-08ER54966.

  8. Inflationary fluctuations, entropy generation and baryogenesis in a cold universe

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1987-01-01

    We study the implications of a generic inflationary model for scenarios of baryogenesis based on the decays of coherent oscillations of squark and slepton fields. We consider the effects of de Sitter fluctuations on the magnitudes of the coherent oscillations of squarks and sleptons. We see that the largest contribution to the entropy density is due to inflation decays which together with the value of the oscillation amplitude determined by the de Sitter fluctuations leads to a baryon to entropy ratio O(10 -10 ). The isothermal density fluctuations produced by the coherent oscillations are found to be negligible compared with the adiabatic fluctuations produced during inflation. (orig.)

  9. Effects of phase transition induced density fluctuations on pulser dynamics

    International Nuclear Information System (INIS)

    Bagchi, Partha; Das, Arpan; Srivastava, Ajit M.; Layek, Biswanath

    2016-01-01

    We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling) may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves. (author)

  10. Fluctuations in the thermal superfluid model for heated spherical nuclei

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1990-01-01

    The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)

  11. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  12. Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.

    Science.gov (United States)

    Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V

    2015-09-01

    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.

  13. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  14. Mesoscopic fluctuations of Coulomb drag between quasiballistic one-dimensional wires

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    that the fluctuations in G(12) differ dramatically from those of the diagonal conductance G(ii): the fluctuations are large and can even exceed the mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical simulations elucidating the fluctuations for both correlated...... and uncorrelated disorder. We also present analytic arguments, which fully account for the trends observed numerically....

  15. Study of fluctuation and turbulance of JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi [Tokyo Univ. (Japan)] [and others

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: (1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, (2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, (3) to study density fluctuation at L-H transition by using this analytical method, and (4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  16. Study of fluctuation and turbulance of JFT-2M

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: 1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, 2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, 3) to study density fluctuation at L-H transition by using this analytical method, and 4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  17. Characterization of Alfvenic fluctuations in the magnetopause boundary layer

    International Nuclear Information System (INIS)

    Rezeau, L.; Morane, A.; Perraut, S.; Roux, A.; Schmidt, R.

    1989-01-01

    The European Space Agency GEOS 2 spacecraft happened to cross the magnetopause several times, at various local times. Intense electric and magnetic fluctuations, in the ultralow-frequency (ULF) range (0-10 Hz) have been detected during each such crossing, with a peak at the magnetopause and still large amplitudes in the adjacent magnetosheath and magnetopause boundary layer. By applying spectral analysis and correlations to the electric and magnetic fluctuations, and a minimum variance analysis to the magnetic fluctuations, the authors investigate the nature of these fluctuations which appear as short-lasting bursts in the spacecraft frame. Having reviewed possible interpretations, they show that the observed electric and magnetic signatures are consistent with small-scale (L ∼ ion Larmor radius) Alfvenic field-aligned structures passing by the spacecraft at high speed. It is suggested that these structures correspond to nonlinear Alfvenic structures

  18. Superconducting quasiparticle lifetimes due to spin-fluctuation scattering

    International Nuclear Information System (INIS)

    Quinlan, S.M.; Scalapino, D.J.; Bulut, N.

    1994-01-01

    Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor

  19. Measurement of amplitude fluctuations in a rapid response photomultiplier; Mesure des fluctuations d'amplitude d'un photo multiplicateur a reponse rapide

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [French] Pour etudier les fluctuations d'amplitude d'un photomultiplicateur a reponse rapide, on introduit deux variables aleatoires independantes qui determinent la forme de l'impulsion anodique. L'energie de chaque impulsion, directement fonction du gain et de sa variance, est la premiere variable; les fluctuations d'amplitude, fonctions de la premiere variable, dependent egalement de la largeur de l'impulsion qui, elle, constitue la deuxieme variable. Les resultats obtenus sur les variations de l'amplitude maximale, a l'aide d'un circuit elargisseur d'impulsions a front raide, et les resultats des variations statistiques du gain sont compares pour mettre en evidence le fait que la variance relative a l'amplitude maximale du signal est plus grande que celle du gain. Dans la mesure de ces fluctuations, sont mises en evidence la contribution du coefficient d'emission secondaire de la premiere dynode et celle du coefficient d'emission secondaire moyen du multiplicateur. (auteur)

  20. Addendum to ''Density fluctuations in liquid rubidium''

    International Nuclear Information System (INIS)

    Haan, S.W.; Mountain, R.D.; Hsu, C.S.; Rahman, A.

    1980-01-01

    We performed molecular-dynamics simulations of liquid rubidium and the Lennard-Jones fluid at several densities and temperatures, and of a system whose pair potential is the repulsive core of the rubidium potential. In all cases, propagating density fluctuations occurred in the rubidiumlike systems at much shorter wavelengths than in the Lennard-Jones system. This indicates that the repulsive part of the pair potential is the dominant factor in determining the relaxation of short-wavelength density fluctuations

  1. Self-Organized Percolation and Critical Sales Fluctuations

    Science.gov (United States)

    Weisbuch, Gérard; Solomon, Sorin

    There is a discrepancy between the standard view of equilibrium through price adjustment in economics and the observation of large fluctuations in stock markets. We study here a simple model where agents decisions not only depend upon their individual preferences but also upon information obtained from their neighbors in a social network. The model shows that information diffusion coupled to the adjustment process drives the system to criticality with large fluctuations rather than converging smoothly to equilibrium.

  2. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  3. Resistance Fluctuations in GaAs Nanowire Grids

    Directory of Open Access Journals (Sweden)

    Ivan Marasović

    2014-01-01

    Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.

  4. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  5. Paradox of spontaneous cancer regression: implications for fluctuational radiothermy and radiotherapy

    International Nuclear Information System (INIS)

    Roy, Prasun K.; Dutta Majumder, D.; Biswas, Jaydip

    1999-01-01

    Spontaneous regression of malignant tumours without treatment is a most enigmatic phenomenon with immense therapeutic potentialities. We analyse such cases to find that the commonest cause is a preceding episode of high fever-induced thermal fluctuation which produce fluctuation of biochemical and immunological parameters. Using Prigogine-Glansdorff thermodynamic stability formalism and biocybernetic principles, we develop the theoretical foundation of tumour regression induced by thermal, radiational or oxygenational fluctuations. For regression, a preliminary threshold condition of fluctuations is derived, namely σ > 2.83. We present some striking confirmation of such fluctuation-induced regression of various therapy-resistant masses as Ewing tumour, neurogranuloma and Lewis lung carcinoma by utilising σ > 2.83. Our biothermodynamic stability model of malignancy appears to illuminate the marked increase of aggressiveness of mammalian malignancy which occurred around 250 million years ago when homeothermic warm-blooded pre-mammals evolved. Using experimental data, we propose a novel approach of multi-modal hyper-fluctuation therapy involving modulation of radiotherapeutic hyper-fractionation, temperature, radiothermy and immune-status. (author)

  6. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  7. Fluctuating Asymmetry and Intelligence

    Science.gov (United States)

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  8. Heat-capacity analysis of a large number of A15-type compounds

    International Nuclear Information System (INIS)

    Junod, A.; Jarlborg, T.; Muller, J.

    1983-01-01

    We analyze the low- and medium-temperature specific heat of 25 samples based on eleven A15 binary compounds, with T/sub c/'s ranging from less than 0.015 to 18 K. Experimentally determined ''moments'' of the phonon spectra (omega-bar,omega-bar 2 ,#betta#/sub log/) are included in the analysis. Values are tabulated for T-bar/sub c/, 2 , eta, 2 >, N/sub bs/(E/sub F/), Momega-bar 2 2 , H/sub c/(0), and 2δ(0)/k/sub B/T/sub c/. We note the following: (i) The Debye temperature is generally a bad estimate of #betta#/sub log/. (ii) lambda is governed mainly by the ''electronic parameter'' eta; lambda = 0.175eta(eV/A 2 ) +- 0.2 for all A15 compounds studied. (iii) eta is proportional to the density of states at the Fermi level and this density of states agrees well with band-structure calculations of Jarlborg in Nb-based compounds. In V-based compounds, the observed bad correlation may reflect the presence of spin fluctuations. (iv) The values for the reduced gap 2δ(0)/k/sub B/T/sub c/ range from 3.4 to 4.9 and they are correlated with T/sub c//#betta#/sub log/

  9. Nematic fluctuations and resonance in iron-based superconductors

    Science.gov (United States)

    Gallais, Yann

    The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is ubiquitous in many iron based superconductors (Fe SC), and has relevance for the cuprates as well. Here I will review recent electronic Raman scattering experiments which report the presence of critical nematic fluctuations in the charge channel in the tetragonal phase of several Fe SC systems. In electron doped Co-BaFe2As2 (Co-Ba122), these fluctuations extend over most of the superconducting dome. Their associated nematic susceptibility shows Curie-Weiss behavior, and its doping dependence suggests the presence of a nematic quantum critical point near optimal TC Similar nematic fluctuations are also observed in FeSe despite the absence of magnetic order, raising the question of the link between nematicity and magnetism in Fe SC. In FeSe I will further contrast the evolution of nematic fluctuations under isoelectronic S substitution and hydrostatic pressures up to 8 GPa, with only the former showing evidence for a nematic quantum critical point. In the superconducting state of Co-Ba122, I will show that a resonance emerges in the Raman spectra near the nematic quantum critical point. This nematic resonance is a clear fingerprint of the coupling between nematic fluctuations and Bogoliubov quasiparticles, and can be thought as the nematic counterpart of the spin resonance observed in neutron scattering experiments. Support from Agence Nationale de la Recherche via ANR Grant ''Pnictides'' is acknowledged.

  10. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  11. Charge Fluctuations in Nanoscale Capacitors

    Science.gov (United States)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  12. Charge fluctuations in nanoscale capacitors.

    Science.gov (United States)

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  13. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  14. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  15. Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies.

    Science.gov (United States)

    Kim, Young Bin; Kim, Jun Gi; Kim, Wook; Im, Jae Ho; Kim, Tae Hyeong; Kang, Shin Jin; Kim, Chang Hun

    2016-01-01

    This paper proposes a method to predict fluctuations in the prices of cryptocurrencies, which are increasingly used for online transactions worldwide. Little research has been conducted on predicting fluctuations in the price and number of transactions of a variety of cryptocurrencies. Moreover, the few methods proposed to predict fluctuation in currency prices are inefficient because they fail to take into account the differences in attributes between real currencies and cryptocurrencies. This paper analyzes user comments in online cryptocurrency communities to predict fluctuations in the prices of cryptocurrencies and the number of transactions. By focusing on three cryptocurrencies, each with a large market size and user base, this paper attempts to predict such fluctuations by using a simple and efficient method.

  16. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series

    Science.gov (United States)

    Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.

    1992-01-01

    A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.

  17. A mini-max principle for drift waves and mesoscale fluctuations

    International Nuclear Information System (INIS)

    Itoh, S-I; Itoh, K

    2011-01-01

    A mini-max principle for the system of the drift waves and mesoscale fluctuations (e.g. zonal flows, etc) is studied. For the system of model equations a Lyapunov function is constructed, which takes the minimum when the stationary state is realized. The dynamical evolution describes the access to the state that is realized. The competition between different mesoscale fluctuations is explained. The origins of irreversibility that cause an approach to the stationary state are discussed. A selection rule among fluctuations is derived, and conditions, under which different kinds of mesocale fluctuations coexist, are investigated. An analogy of this minimum principle to the principle of 'minimum Helmholtz free energy' in thermal equilibrium is shown.

  18. Statistical fluctuations of the number of neutrons in a pile

    International Nuclear Information System (INIS)

    Raievski, V.

    1958-01-01

    The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [fr

  19. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet

    Science.gov (United States)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  20. Fluctuations in the DNA double helix

    Science.gov (United States)

    Peyrard, M.; López, S. C.; Angelov, D.

    2007-08-01

    DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.

  1. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    V. Kan

    2018-02-01

    Full Text Available We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1 the isotropic Kolmogorov turbulence and (2 the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  2. Charge fluctuations in high-electron-mobility transistors: a review

    International Nuclear Information System (INIS)

    Green, F.

    1993-01-01

    The quasi-two-dimensional carrier population, free to move within a near-perfect crystalline matrix, is the key to remarkable improvements in signal gain, current density and quiet operation. Current-fluctuation effects are central to all of these properties. Some of these are easily understood within linear-response theory, but other fluctuation phenomena are less tractable. In particular, nonequilibrium noise poses significant theoretical challenges, both descriptive and predictive. This paper examines a few of the basic physical issues which motivate device-noise theory. The structure and operation of high-electron-mobility transistor are first reviewed. The recent nonlinear fluctuation theory of Stanton and Wilkins (1987) help to identify at least some of the complicated noise physics which can arise when carriers in GaAs-like conduction bands are subjected to high fields. Simple examples of fluctuation-dominated behaviour are discussed, with numerical illustrations. 20 refs., 9 figs

  3. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  4. Dissipative neutrino oscillations in randomly fluctuating matter

    International Nuclear Information System (INIS)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis

  5. Dissipative neutrino oscillations in randomly fluctuating matter

    Science.gov (United States)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.

  6. Fluctuation theory for radiative transfer in random media

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jing Wenjia

    2011-01-01

    We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.

  7. New PHOBOS results on event-by-event fluctuations

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.

    2006-04-01

    We present new results from the PHOBOS experiment at RHIC on event-by-event fluctuations of particle multiplicities and angular distributions in nucleus-nucleus collisions at RHIC. Our data for Au+Au collisions at √sNN = 200 GeV show that at a level of 10-4 or less, no rare, large-amplitude fluctuations in the total multiplicity distributions or the shape of the pseudorapidity distributions are observed. We however find significant short-range multiplicity correlations in these data, that can be described as particle production in clusters. In Cu+Cu collisions, we observe large final-state azimuthal anisotropies ν2. A common scaling behavior for Cu+Cu and Au+Au for these anisotropies emerges when fluctuations in the initial state geometry are taken into account.

  8. Backreaction of Cosmological Fluctuations during Power-Law Inflation

    International Nuclear Information System (INIS)

    Marozzi, G.

    2007-01-01

    We study the renormalized energy-momentum tensor of cosmological scalar fluctuations during the slow-rollover regime for power-law inflation and find that it is characterized by a negative energy density at the leading order, with the same time behavior as the background energy. The average expansion rate appears decreased by the backreaction of the effective energy of cosmological fluctuations, but this value is comparable with the energy of the background only if inflation starts at a Planckian energy. We also find that, for this particular model, the first- and second-order inflaton fluctuations are decoupled and satisfy the same equation of motion. To conclude, the fourth-order adiabatic expansion for the inflaton scalar field is evaluated for a general potential V(φ)

  9. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  10. Universal conductance fluctuations in disordered metals

    International Nuclear Information System (INIS)

    Lee, P.A.

    1987-01-01

    The author argues that observed and theoretical fluctuations in the electrical conductance of disordered metals, induced by variations in the magnetic field or the chemical potential, are not time-dependent noise but that the conductance is a deterministic albeit fluctuating function for a given realization of the impurity configuration. A method is constructed for representing the sensitivity of the conductance of a given metal to a small change in the impurity configuration as a function of such variables as sample size, impurities per unit volume, and mean free path. The sensitivity helps explain the size of 1/f noise due to defect motion in disordered metals

  11. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  12. Fluctuation measurements by Langmuir probes during LHCD on ASDEX tokamak

    International Nuclear Information System (INIS)

    Stoeckel, J.

    1991-01-01

    The level of edge electrostatic fluctuations decreases and the global particle/energy confinement improves during lower hybrid current drive (LHCD) regimes on ASDEX, when the total power remains below the initial OH power level. For higher powers, the fluctuations increase noticeably, whereas the global confinement is returning to its OH value. The observed increase of fluctuations is poloidally asymmetric and is caused by local power deposition in front of the grill antenna. (orig.)

  13. Fluctuating fluid dynamics for the QGP in the LHC and BES era

    Directory of Open Access Journals (Sweden)

    Bluhm Marcus

    2018-01-01

    Full Text Available In an era of high-precision determinations of QGP properties a full incorporation of fluid dynamical fluctuations into our models has become crucial, in particular, when describing the dynamics of small systems or near the conjectured QCD critical point. In this talk we discuss some effects of the propagation of these fluctuations. For LHC physics we focus on fluctuations in the energy-momentum tensor, while the impact of fluctuations in the diffusive net-baryon density is studied to improve our knowledge on the formation of critical fluctuations being searched in current and future BES programs.

  14. Investigation of Parametric Instability of the Planetary Gear under Speed Fluctuations

    Directory of Open Access Journals (Sweden)

    Xinghui Qiu

    2017-01-01

    Full Text Available Planetary gear is widely used in engineering and usually has symmetrical structure. As the number of teeth in contact changes during rotation, the time-varying mesh stiffness parametrically excites the planetary gear and may cause severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and therefore sideband instabilities may arise and original instabilities are significantly affected. Considering two different speed fluctuations, original and sideband instabilities are numerically and analytically investigated. A rotational lumped-parameter model of the planetary gear is developed, in which the time-varying mesh stiffness, input speed fluctuations, and damping are considered. Closed-form approximations of instability boundaries for primary and combination instabilities are obtained by perturbation analysis and verified by numerical analysis. The effects of speed fluctuations and damping on parametric instability are systematically examined. Because of the frequency modulation, whether a parametric instability occurs cannot be simply predicted by the planet meshing phase which is applicable to constant speed. Besides adjusting the planet meshing phase, speed fluctuation supplies a new thought to minimize certain instability by adjusting the amplitude or frequency of the speed fluctuation. Both original and sideband instabilities are shrunken by damping, and speed fluctuation further shrinks the original instability.

  15. Effect of altering local protein fluctuations using artificial intelligence

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nishiyama

    2017-03-01

    Full Text Available The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  16. Effect of altering local protein fluctuations using artificial intelligence

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  17. Fluctuations in a system depending on several random parameters. Application to reactors (1962); Fluctuations d'un systeme dependant de plusieurs parametres aleatoires. Application aux reacteurs nucleaires (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A [Faculte des Sciences de Paris, 75 (France); Pachowska, R [Universite Technique de Varsovie (Poland)

    1962-07-01

    We have previously developed a method for studying neutronic fluctuations in nuclear reactors using the analogy between the behaviour of a reactor and that of certain common radioelectric circuits. The fluctuations may then be calculated by introducing into the circuit a suitable noise source. By this method we have been able to consider the overall fluctuations in a particularly simple form and we have provided a physical significance for certain results obtained more laboriously by other methods. The object of the present report is to generalise this method and in particular to extend it to the case of a reactor having a cellular structure and to apply it to fluctuations within a cell. It is thus shown that the fluctuations in a cell are the resultant of two terms: - a rapidly evolving Poissonian noise, not related to the overall fluctuations; - a slowly evolving noise, when the reactor is not too far from criticality, which is related to the overall fluctuations. The first term arises from a rapid 'ordering' of the system, during which time the cells come mutually into equilibrium. The second term is due to the coordinated evolution of all the cells, after the end of the first transitory phase. The conclusions reached show that it would be useful to complete the study with an analysis of non-linear phenomena which can considerably influence the transitory behaviour of the cells during the initial pre-equilibrium phase. This report also Stresses the relationship of the new method to the old methods. It tends also to place pile fluctuation theory in a more general framework, that of the fluctuations of a system depending on several random parameters; from this point of view, the method could easily be transposed and adapted to the study of other physical problems of this type. (authors) [French] Nous avons precedemment developpe une methode d'etude des fluctuations neutroniques des reacteurs nucleaires mettant a profit l'analogie entre le comportement d

  18. Fluctuation, stationarity, and ergodic properties of random-matrix ensembles

    International Nuclear Information System (INIS)

    Pandey, A.

    1979-01-01

    The properties of random-matrix ensembles and the application of such ensembles to energy-level fluctuations and strength fluctuations are discussed. The two-point correlation function for complex spectra described by the three standard Gaussian ensembles is calculated, and its essential simplicity, displayed by an elementary procedure that derives from the dominance of binary correlations. The resultant function is exact for the unitary case and a very good approximation to the orthogonal and symplectic cases. The same procedure yields the spectrum for a Gaussian orthogonal ensemble (GOE) deformed by a pairing interaction. Several extensions are given and relationships to other problems of current interest are discussed. The standard fluctuation measures are rederived for the GOE, and their extensions to the unitary and symplectic cases are given. The measures are shown to derive, for the most part, from the two-point function, and new relationships between them are established, answering some long-standing questions. Some comparisons with experimental values are also made. All the cluster functions, and therefore the fluctuation measures, are shown to be stationary and strongly ergodic, thus justifying the use of random matrices for individual spectra. Strength fluctuations in the orthogonal ensemble are also considered. The Porter-Thomas distribution in its various forms is rederived and its ergodicity is established

  19. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate

    OpenAIRE

    Weissgerber, Thomas; Watanabe, Mutsumi; Hoefgen, Rainer; Dahl, Christiane

    2014-01-01

    Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to ...

  20. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes.

    Science.gov (United States)

    Cherstvy, A G; Metzler, R

    2014-07-01

    We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼ |x|(α) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.

  1. Selection on female behaviour fluctuates with offspring environment.

    Science.gov (United States)

    Taylor, R W; Boutin, S; Humphries, M M; McAdam, A G

    2014-11-01

    Temporal variation in selection has long been proposed as a mechanism by which genetic variation could be maintained despite short-term strong directional selection and has been invoked to explain the maintenance of consistent individual differences in behaviour. We tested the hypothesis that ecological changes through time lead to fluctuating selection, which could promote the maintenance of variation in female behavioural traits in a wild population of North American red squirrels. As predicted, linear selection gradients on female aggression and activity significantly fluctuated across years depending on the level of competition among juveniles for vacant territories. This selection acted primarily through juvenile overwinter survival rather than maternal fecundity. Incorporating uncertainty in individual measures of behaviour reduced the magnitude of annual selection gradients and increased uncertainty in these estimates, but did not affect the overall pattern of temporal fluctuations in natural selection that coincided with the intensity of competition for vacant territories. These temporal fluctuations in selection might, therefore, promote the maintenance of heritable individual differences in behaviour in this wild red squirrel population. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Thermodynamic fluctuations within the Gibbs and Einstein approaches

    International Nuclear Information System (INIS)

    Rudoi, Yurii G; Sukhanov, Alexander D

    2000-01-01

    A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov - Zubarev and Hellmann - Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the 'genetic' relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed. (reviews of topical problems)

  3. Poisson and Porter-Thomas fluctuations in off-yrast rotational transitions

    International Nuclear Information System (INIS)

    Matsuo, M.; Doessing, T.; Herskind, B.; Frauendorf, S.

    1993-01-01

    Fluctuations associated with stretched E2 transitions from high-spin levels in nuclei around 168 Yb are investigated by a cranked shell model extended to include residual two-body interactions. In the cranked mean-field model without residual interactions, it is found that gamma-ray energies behave like random variables and the energy spectra show Poisson fluctuation. With two-body residual interactions included, the discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE-type fluctuations for both energy levels and transition strengths (Porter-Thomas fluctuations). (orig.)

  4. Counting statistics in low level radioactivity measurements fluctuating counting efficiency

    International Nuclear Information System (INIS)

    Pazdur, M.F.

    1976-01-01

    A divergence between the probability distribution of the number of nuclear disintegrations and the number of observed counts, caused by counting efficiency fluctuation, is discussed. The negative binominal distribution is proposed to describe the probability distribution of the number of counts, instead of Poisson distribution, which is assumed to hold for the number of nuclear disintegrations only. From actual measurements the r.m.s. amplitude of counting efficiency fluctuation is estimated. Some consequences of counting efficiency fluctuation are investigated and the corresponding formulae are derived: (1) for detection limit as a function of the number of partial measurements and the relative amplitude of counting efficiency fluctuation, and (2) for optimum allocation of the number of partial measurements between sample and background. (author)

  5. Evolution of critical fluctuations in a heavy-ion collision scenario

    Science.gov (United States)

    Herold, Christoph; Nahrgang, Marlene; Kobdaj, Chinorat; Limphirat, Ayut; Yan, Yupeng

    2017-11-01

    We study fluctuations of the sigma field and the net-baryon number on the crossover side of the critical point within the model of nonequilibrium chiral fluid dynamics (NχFD). Herein, the sigma field as the chiral order parameter is propagated explicitly and coupled to a fluid of quarks. Before investigating these fluctuations in an expanding nonequilibrium medium, we scrutinize the NχFD model by comparing cumulants of the sigma fluctuations in a thermalized box to (ratios of) susceptibilities as they are obtained from derivatives of the grand canonical potential. The dynamically determined cumulants follow the trend of the thermodynamic susceptibilities. In an expanding inhomogeneous medium, however, the behavior of the fluctuations is shown to be different as a result of memory effects.

  6. Ce2Co3Ge5: a new U2Co3Si5 - type valance fluctuating compound

    International Nuclear Information System (INIS)

    Layek, Samar; Hossain, Zakir

    2010-01-01

    Poly crystalline sample of Ce 2 Co 3 Ge 5 have been prepared by arc melting and consequently annealing at 1100 deg C. Rietveld refinement of XRD shows that it crystallize in the orthorhombic U 2 Co 3 Si 5 structure (space group Ibam) with crystal parameters a= 9.802A, b= 11.777A and c= 5.941A and unit cell volume V= 684.8 A 3 The unit cell volume of Ce 2 Co 3 Ge 5 is seen clearly to deviate from that expected on the basis of lanthanide contraction. From susceptibility measurement, effective magnetic moment of this compound μ eff = 0.95 μ B which is lower than magnetic moment free for Ce 3+ ions (2.54 μB) but higher than that of non-magnetic Ce 4+ state (0 μ B ). All these results clearly indicated Ce 2 Co 3 Ge 5 to be a mixed valance compound. (author)

  7. Deriving GENERIC from a Generalized Fluctuation Symmetry

    Science.gov (United States)

    Kraaij, Richard; Lazarescu, Alexandre; Maes, Christian; Peletier, Mark

    2018-02-01

    Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function.

  8. Primordial black holes from passive density fluctuations

    OpenAIRE

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this paper, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses $\\lesssim 10^{15}g$ depending on the number of e-folds when the scale of our observable universe leaves horizon...

  9. Spark-safe mechanical fluctuation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Retek, S; Galisz, T

    1979-04-20

    The subject of the invention is a mechanical fluctuation sensor in a spark-safe design for use at mines which are dangerous for gas, as an element of different systems for remote control information transfer. The patented sensor of mechanical fluctuations contains: magnetic-induction transformer characterized by the fact that its inert mass consists of a plane permanent magnet placed in the suspended state on springs between 2 coils, which together with their cores are rigidly fixed to the walls of the ferromagnetic vessels. The ends of the coil windings are interconnected, while the beginnings of the windings are lead out with connection to the outlet of the electronic amplifier with binary outlet signal. The electronic amplifier is placed between the transformer in the common ferromagnetic housing which is a screen for protection from the effect of external magnetic fields.

  10. Motivational Monitoring as a Tool of Managing Fluctuation of Personnel

    OpenAIRE

    Darchenko Nataliya D.

    2013-01-01

    The goal of the article lies in the study of a possibility to manage fluctuation of personnel at a modern enterprise through application of the motivational monitoring and in identification of some methodical aspects of formation of the system of monitoring the fluctuation of personnel. The article considers the essence, tasks and main directions of motivational monitoring at an enterprise and offers its classification. It proves urgency of the problem of fluctuation of personnel at enterpris...

  11. Enhancement of large fluctuations to extinction in adaptive networks

    Science.gov (United States)

    Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.

    2018-01-01

    During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.

  12. SUNWARD-PROPAGATING ALFVÉNIC FLUCTUATIONS OBSERVED IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); Belcher, John W.; Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Jiansen, E-mail: hli@spaceweather.ac.cn [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China)

    2016-06-10

    The mixture/interaction of anti-sunward-propagating Alfvénic fluctuations (AFs) and sunward-propagating Alfvénic fluctuations (SAFs) is believed to result in the decrease of the Alfvénicity of solar wind fluctuations with increasing heliocentric distance. However, SAFs are rarely observed at 1 au and solar wind AFs are found to be generally outward. Using the measurements from Voyager 2 and Wind , we perform a statistical survey of SAFs in the heliosphere inside 6 au. We first report two SAF events observed by Voyager 2 . One is in the anti-sunward magnetic sector with a strong positive correlation between the fluctuations of magnetic field and solar wind velocity. The other one is in the sunward magnetic sector with a strong negative magnetic field—velocity correlation. Statistically, the percentage of SAFs increases gradually with heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These results provide new clues for understanding the generation mechanism of SAFs.

  13. Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo2 and Er(Co1-xSix)2

    International Nuclear Information System (INIS)

    Singh, Niraj K; Kumar, Pramod; Suresh, K G; Nigam, A K; Coelho, A A; Gama, S

    2007-01-01

    The effect of external pressure on the magnetic properties and magnetocaloric effect of polycrystalline compounds DyCo 2 and Er(Co 1-x Si x ) 2 (x = 0,0.025 and 0.05) has been studied. The ordering temperatures of both the parent and the Si-substituted compounds are found to decrease with pressure. In all the compounds, the critical field for metamagnetic transition increases with pressure. It is seen that the magnetocaloric effect in the parent compounds is almost insensitive to pressure, while there is considerable enhancement in the case of Si-substituted compounds. Spin fluctuations arising from the magnetovolume effect play a crucial role in determining the pressure dependence of the magnetocaloric effect in these compounds. The variation of the magnetocaloric effect is explained on the basis of the Landau theory of magnetic phase transitions

  14. General framework for fluctuating dynamic density functional theory

    Science.gov (United States)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  15. Fluctuations in Fission Characteristics in the Resonance Range

    International Nuclear Information System (INIS)

    Fort, E.; Courcelle, A.

    2006-01-01

    In the resonance range, experimental data exhibit meaningful fluctuations of the number of prompt neutrons ν p (E) and γ-rays emitted in fission. Fluctuations of delayed-neutrons multiplicity ν d (E) are also expected. Although these fluctuations may have a non-negligible impact on reactor integral parameters (such as k eff , β eff ), they are usually not described in the current nuclear-data libraries Endf, JENDL or Jeff (except for 239 Pu evaluation in Jeff.1). Experiments by Hambsch et al. on 235 U have justified the fluctuations of total kinetic energy of fission fragments [i.e TKE(E)] by the fluctuations in the mass distributions. An interesting channel-mode formalism, described by Furman, provides a methodology to assess the fluctuations of fission characteristics in the resonance range. This approach is based on ideas relating fission channels or transition states as proposed by Bohr and fission modes as parameterized for instance by Brosa et al. This formalism requires the knowledge of physical parameters rarely measured up to now, such as PP JK (E), the energy dependant probability to form a transition state with a spin J and its projection along the deformation axis K, w m JK , the probability to feed the fission mode m from a (J,K) transition state. Nevertheless, in the case of 3 - and 4 - resonances of 235 U, various experiments permit these data to be extracted. The present study proposes a tentative evaluation of ν p of 235 U based on these ideas. The evaluation of νp for 239 Pu, performed in the 80's for the JEF library, was also revisited. At that time, the model was based on the existence of pre-fission gamma (the so called n-γf effect) as well as a spin effect (prescription of different ν p values for each spin state 0 + and 1 + ). This paper emphasizes the need for further measurements to provide more accurate information on the parameters used in this formalism, and improve the present work. (authors)

  16. Chaotic dynamic characteristics of pressure fluctuation signals in hydro-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen Tao; An, Shi [School of Management, Harbin Institute of Technology, Harbin (China); Li, Xiao Bin; Lan, Chao Feng; Li, Feng Chen [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China); Wang, Jian Sheng [Ministry of Education of China, Tianjin (China)

    2016-11-15

    The pressure fluctuation characteristics in a Francis hydro-turbine running at partial flow conditions were studied based on the chaotic dynamic methods. Firstly, the experimental data of pressure fluctuations in the draft tube at various flow conditions was de-noised using lifting wavelet transformation, then, for the de-noised signals, their spectrum distribution on the frequency domain, the energy variation and the energy partition accounting for the total energy was calculated. Hereby, for the flow conditions ranging from no cavitation to severe cavitation, the chaos dynamic features of fluctuation signals were analyzed, including the temporal-frequency distribution, phase trajectory, Lyapunov exponent and Poincaré map etc. It is revealed that, the main energy of pressure fluctuations in the draft tube locates at low-frequency region. As the cavitation grows, the amplitude of power spectrum at frequency domain becomes larger. For all the flow conditions, all the maximal Lyapunov exponents are larger than zero, and they increase with the cavitation level. Therefore, it is believed that there indeed exist the chaotic attractors in the pressure fluctuation signals for a hydro-turbine.

  17. Transitions in optimal adaptive strategies for populations in fluctuating environments

    Science.gov (United States)

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2017-09-01

    Biological populations are subject to fluctuating environmental conditions. Different adaptive strategies can allow them to cope with these fluctuations: specialization to one particular environmental condition, adoption of a generalist phenotype that compromises between conditions, or population-wise diversification (bet hedging). Which strategy provides the largest selective advantage in the long run depends on the range of accessible phenotypes and the statistics of the environmental fluctuations. Here, we analyze this problem in a simple mathematical model of population growth. First, we review and extend a graphical method to identify the nature of the optimal strategy when the environmental fluctuations are uncorrelated. Temporal correlations in environmental fluctuations open up new strategies that rely on memory but are mathematically challenging to study: We present analytical results to address this challenge. We illustrate our general approach by analyzing optimal adaptive strategies in the presence of trade-offs that constrain the range of accessible phenotypes. Our results extend several previous studies and have applications to a variety of biological phenomena, from antibiotic resistance in bacteria to immune responses in vertebrates.

  18. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  19. Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection

    International Nuclear Information System (INIS)

    Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma

    2016-01-01

    Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)

  20. Low-frequency fluctuation in multimode semiconductor laser subject to optical feedback

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Huiying Ye; Zhaoxin Song

    2008-01-01

    Dynamics of a semiconductor laser subject to moderate optical feedback operating in the low-frequency fluctuation regime is numerically investigated.Multimode Lang-Kobayashi(LK)equations show that the low-frequency intensity dropout including the total intensity and sub-modes intensity is accompanied by sudden dropout simultaneously,which is in good agreement with experimental observation.The power fluctuation is quite annoying in practical applications,therefore it becomes important to study the mechanism of power fluctuation.It is also shown that many factors,such as spontaneous emission noise and feedback parameter,may influence power fluctuation larger than previously expected.

  1. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.); Bengtson, R D; Ritz, Ch P [Texas Univ., Austin, TX (USA); Kraemer, M [Bochum Univ. (Germany, F.R.); Tsois, N [NRS Demokritos, Attiki (Greece)

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H/sub {alpha}/ emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs.

  2. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Giannone, L.; Niedermeyer, H.; Bengtson, R.D.; Ritz, Ch.P.; Kraemer, M.; Tsois, N.

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H α emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs

  3. Measurement of pressure fluctuation in gas-liquid two-phase vortex street

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Sang Wenhui; Zhang Hongjian

    2009-01-01

    The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.

  4. In vivo detection of fluctuating brain steroid levels SHORT

    Science.gov (United States)

    Ikeda, Maaya; Rensel, Michelle A.; Schlinger, Barney A.; Remage-Healey, Luke

    2015-01-01

    This protocol describes a method for in vivo measurement of steroid hormones in brain circuits of the zebra finch. In vivo microdialysis has been used successfully to detect fluctuating neurosteroids in the auditory forebrain (Remage-Healey et al., 2008; 2012; Ikeda et al., 2012) and in the hippocampus (Rensel et al., 2012; 2013) of behaving adult zebra finches. In some cases, the steroids measured are derived locally (e.g., ‘neurosteroids’ like estrogens in males) whereas in other cases the steroids measured reflect systemic circulating levels and/or central conversion (e.g., the primary androgen testosterone and the primary glucocorticoid corticosterone). We also describe the method of reverse-microdialysis (‘retrodialysis’) of compounds that can influence local steroid neurochemistry as well as behavior. In vivo microdialysis can now be used to study steroid signaling in the brain for a variety of experimental purposes. Furthermore, similar methods have been developed to examine changing levels of catecholamines in behaving zebra finches (e.g., Sasaki et al., 2006). Thus, the combined study of neurochemistry and behavior in a vocal learning species now has a new set of powerful tools. PMID:25342066

  5. Analysis for probability of irradiance fluctuation; Nissha hendo kakuritsu no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, J; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K; Sakuta, K [Electrochemical Laboratory, Tsukuba (Japan)

    1996-10-27

    Distribution of probabilities of solar radiation fluctuation was examined to learn the fluctuation in photovoltaic power generation efficiency for the purpose of improving on the generation system. The measuring setup comprised one base station and nine terminal stations. The terminal stations were arrayed in lattice so that a 4km{times}4km-large area would be covered. The standard deviation in solar radiation fluctuation at an observation spot ANNE stayed constant at approximately 0.1kW/m{sup 2} at all observation hours. In the vicinity of a clearness index range of 0.5-0.6 (a higher index showing a clearer weather) in the daytime, the index fluctuated very much, predicting a half-clear sky with scattered cloud. In the range of 0.2-0.3, fluctuation was small. In the range of 0.6-0.7, fluctuation was small and solar radiation was stable under the clear sky. The scope of fluctuation in the areal average is smaller than that in the average at each of the terminal stations, which is explained by the even-out effect. This means that, if multiple PV systems concentratedly introduced into one region are appropriately coordinated, the outputs from the individual PV systems that are naturally inconsistent are evened out and that the reliability of the network as a whole is consequently enhanced. 5 refs., 7 figs., 1 tab.

  6. Magnetic excitations and amplitude fluctuations in insulating cuprates

    Science.gov (United States)

    Chelwani, N.; Baum, A.; Böhm, T.; Opel, M.; Venturini, F.; Tassini, L.; Erb, A.; Berger, H.; Forró, L.; Hackl, R.

    2018-01-01

    We present results from light scattering experiments on three insulating antiferromagnetic cuprates, YBa2Cu3O6.05 , Bi2Sr2YCu2O8 +δ , and La2CuO4 as a function of polarization and excitation energy using samples of the latest generation. From the raw data we derive symmetry-resolved spectra. The spectral shape in B1 g symmetry is found to be nearly universal and independent of excitation energy. The spectra agree quantitatively with predictions by field theory [Eur. Phys. J. B 88, 237 (2015), 10.1140/epjb/e2015-60438-1] facilitating the precise extraction of the Heisenberg coupling J . In addition, the asymmetric lineshape on the high-energy side is found to be related to amplitude fluctuations of the magnetization. In La2CuO4 alone, minor contributions from resonance effects may be identified. The spectra in the other symmetries are not universal. The variations may be traced back to weak resonance effects and extrinsic contributions. For all three compounds we find support for the existence of chiral excitations appearing as a continuum in A2 g symmetry having an onset slightly below 3 J . In La2CuO4 an additional isolated excitation appears on top of the A2 g continuum.

  7. Dynamic Evolution Analysis of Stock Price Fluctuation and Its Control

    Directory of Open Access Journals (Sweden)

    Yuhua Xu

    2018-01-01

    Full Text Available This paper studies a simple dynamical system of stock price fluctuation time series based on the rule of stock market. When the stock price fluctuation system is disturbed by external excitations, the system exhibits obviously chaotic phenomena, and its basic dynamic properties are analyzed. At the same time, a new fixed-time convergence theorem is proposed for achieving fixed-time control of stock price fluctuation system. Finally, the effectiveness of the method is verified by numerical simulation.

  8. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Simões, F. J. R. Jr.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Gaelzer, R.; Ziebell, L. F. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  9. Fluctuations in a Levy flight gas

    International Nuclear Information System (INIS)

    Fogedby, H.C.; Jensen, H.J.

    1991-01-01

    We consider the density fluctuations of an ideal Brownian gas of particles performing Levy flights characterized by the index f. We find that the fluctuations scale as ΔN(t)∝t H , where the Hurst exponent H locks onto the universal value 1/4 for Levy flights with a finite root mean square range (f>2). For Levy flights with a finite mean range but infinite root mean square range (1< f<2) the Hurst exponent H=1/2f. For infinite range Levy flights (f<1) the Hurst exponent locks onto the value 1/2. The corresponding power spectrum scales with an exponent 1+2H, independent of dimension. (orig.)

  10. Fluctuation of heat current in Josephson junctions

    Directory of Open Access Journals (Sweden)

    P. Virtanen

    2015-02-01

    Full Text Available We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  11. Magnetoresistance in RCo2 spin-fluctuation systems

    International Nuclear Information System (INIS)

    Gratz, E.; Nowotny, H.; Enser, J.; Bauer, E.; Hense, K.

    2004-01-01

    The effect of the spin fluctuations on the field and temperature dependence of the magnetoresistance in ScCo 2 and LuCo 2 was studied. The experimental data where explained assuming two competing mechanisms determining the magnetoresistance of these substances. One is the 'normal magnetoresistance' caused by the influence of the Lorentz force on conduction electron trajectories. The other is due to the suppression of the spin fluctuations caused by an external magnetic field. This interplay give rise to a pronounced drop of the magnetoresistance towards the lower temperature range

  12. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... on conformational fluctuations that is in correspondence with experimental measurements. TYPHON provides a flexible, yet computationally efficient, method to explore possible conformational fluctuations in proteins....

  13. Physical Characteristics of Fluidized Beds via Pressure Fluctuation Analysis

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2008-01-01

    Roč. 54, č. 7 (2008), s. 1761-1769 ISSN 0001-1541 R&D Projects: GA AV ČR IAA400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas-solid fluidization * pressure fluctuations * fluctuation characteristics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.883, year: 2008

  14. Vessel size effect on the characteristic frequency of the free surface fluctuations

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Kim, Min Joon; Kim, Jong Man; Choi, Byoung Hae

    2004-01-01

    Studies of the free surface fluctuations is one of the important topics in a liquid metal nuclear reactor using sodium as the coolant that has a free surface in the upper plenum of the reactor vessel. The main reasons for the study on the free surface fluctuations can be summarized as: 1. to secure the structural integrity of a reactor vessel by considering the thermal stress on the vessel wall induced by the fluctuations of the free surface between the hot sodium and cold cover gas, 2. to prevent the cover gas entrainment at the free surface of the sodium because the entrained gas causes a change in the reactivity and also reduces the heat removal capability in the core. Some experimental studies on the free surface fluctuations have been reported. However, most of them focus on the gas entrainment phenomena and only a few works concern the basic characteristics of the free surface fluctuations. Since the thermal stress on the wall is strongly dependent on the amplitude and frequency of the free surface fluctuations, studies on the amplitudes and frequencies should receive more attention. In Nam, empirical formulae on the amplitudes and frequencies with respect to the geometric and hydraulic parameters were introduced. It is an interesting result, but the experiment was performed within the parameter range near the onset point of the fluctuations. In the real reactor condition, larger sized fluctuations may exist and the formula needs to be modified. In this study, we performed experiments on the free surface fluctuations, especially on larger sized fluctuations and made an analysis of the amplitudes and frequencies. The main focus of this paper is the effect of the vessel size on the characteristic frequencies. It is thought to be helpful for finding the scaling laws, for example, designing a scale-down experiment

  15. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  16. Multiplicity fluctuations and collective flow in small colliding systems

    Science.gov (United States)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  17. Recent results on event-by-event fluctuations in ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2083375

    2015-01-01

    Non-statistical event-by-event fluctuations in relativistic heavy-ion collisions have been proposed as a probe of the phase transition of hadronic matter to a deconfined phase of quarks and gluons, the so-called Quark-Gluon Plasma. In a thermodynamical picture of the strongly interacting system formed in heavy-ion collisions, the dynamical fluctuations of net-charge, fluctuations of the mean transverse momentum, mean multiplicity and balance functions are related to the fundamental properties of the system, hence they may reveal information about the QCD phase transition. In this article, recent results on event-by-event measurements of net-charge fluctuations, the measurement of the balance function and mean transverse momentum fluctuations are discussed.

  18. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    Science.gov (United States)

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  19. Firm default and aggregate fluctuations

    NARCIS (Netherlands)

    Jacobson, Tor; Linde, Jesper; Roszbach, Kasper

    This paper studies the relationship between macroeconomic fluctuations and corporate defaults while conditioning on industry affiliation and an extensive set of firm-specific factors. By using a panel data set for virtually all incorporated Swedish businesses over 1990-2009, a period which includes

  20. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  1. Determination of plasma velocity from light fluctuations in a cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2009-01-01

    Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s -1 close to the nozzle exit and about 2000 m s -1 close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work.

  2. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  3. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  4. Fluctuation theorems and atypical trajectories

    International Nuclear Information System (INIS)

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  5. Study of energy fluctuation effect on the statistical mechanics of equilibrium systems

    International Nuclear Information System (INIS)

    Lysogorskiy, Yu V; Wang, Q A; Tayurskii, D A

    2012-01-01

    This work is devoted to the modeling of energy fluctuation effect on the behavior of small classical thermodynamic systems. It is known that when an equilibrium system gets smaller and smaller, one of the major quantities that becomes more and more uncertain is its internal energy. These increasing fluctuations can considerably modify the original statistics. The present model considers the effect of such energy fluctuations and is based on an overlapping between the Boltzmann-Gibbs statistics and the statistics of the fluctuation. Within this o verlap statistics , we studied the effects of several types of energy fluctuations on the probability distribution, internal energy and heat capacity. It was shown that the fluctuations can considerably change the temperature dependence of internal energy and heat capacity in the low energy range and at low temperatures. Particularly, it was found that, due to the lower energy limit of the systems, the fluctuations reduce the probability for the low energy states close to the lowest energy and increase the total average energy. This energy increasing is larger for lower temperatures, making negative heat capacity possible for this case.

  6. Experimental scaling of fluctuations and confinement with Lundquist number in the RFP

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Chapman, J.T.; Prager, S.C.; Sarff, J.S.

    1997-09-01

    The scaling of the magnetic and velocity fluctuations with Lundquist number (S) is examined experimentally over a range of values from 7 x 10 4 to 10 6 in a reversed field pinch (RFP) plasma. Magnetic fluctuations do not scale uniquely with the Lundquist number. At high (relative) density, fluctuations scale as b∝S -0.18 , and fluctuations are almost independent of S at low relative density, b∝S -0.07 ; however both exponents fall in the range of theoretical and numerical predictions. At high relative density, the scaling of the energy confinement time follows expectations for transport in a stochastic magnetic field. A confinement scaling law (nτ E ∝β 4/5 T -7/10 A -3/5 I φ 2 ) is derived assuming the persistent dominance of stochastic magnetic diffusion in the RFP and on the measured scaling of magnetic fluctuations. The peak velocity fluctuations during a sawtooth cycle scale marginally stronger than magnetic fluctuations but weaker than a simple Ohm's law prediction. The sawtooth period is determined by a resistive-Alfvenic hybrid time (T saw ∝√(τ R τ Alf )) rather than a purely resistive time

  7. Transport and fluctuations in high temperature spheromak plasmas

    International Nuclear Information System (INIS)

    McLean, H.S.; Wood, R.D.; Cohen, B.I.; Hooper, E.B.; Hill, D.N.; Moller, J.M.; Romero-Talamas, C.; Woodruff, S.

    2006-01-01

    Higher electron temperature (T e >350 eV) and reduced electron thermal diffusivity (χ e 2 /s) is achieved in the Sustained Spheromak Physics Experiment (SSPX) by increasing the discharge current=I gun and gun bias flux=ψ gun in a prescribed manner. The internal current and q=safety factor profile derived from equilibrium reconstruction as well as the measured magnetic fluctuation amplitude can be controlled by programming the ratio λ gun =μ 0 I gun /ψ gun . Varying λ gun above and below the minimum energy eigenvalue=λ FC of the flux conserver (∇xB-vector=λ FC B-vector) varies the q profile and produces the m/n=poloidal/toroidal magnetic fluctuation mode spectrum expected from mode-rational surfaces with q=m/n. The highest T e is measured when the gun is driven with λ gun slightly less than λ FC , producing low fluctuation amplitudes ( e as T e increases, differing from Bohm or open field line transport models where χ e increases with T e . Detailed resistive magnetohydrodynamic simulations with the NIMROD code support the analysis of energy confinement in terms of the causal link with the q profile, magnetic fluctuations associated with low-order mode-rational surfaces, and the quality of magnetic surfaces

  8. Development of fluctuation monitor type sodium ionization detector

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Sato, Yoshihiko; Ibe, Eishi; Suzuoki, Akira

    1986-01-01

    In order to improve the sensitivity and the reliability of the sodium leak detection system used in the fast breeder reactors, a new type SID (sodium ionization detector) has been developed, in which the monitored signal is only the fluctuating component of the current between the filament and the ion collector. The fluctuating component was extracted by a band pass filter and its root mean square value was calculated as the SID signal. Fluctuation characteristics of the output current were studied by its frequency spectrum. The results revealed that the current spectrum was affected by the particle size distribution of the aerosol and was most clearly distinguished from that of the background current in the frequency region of 0.5 ∼ 10 Hz. Output characteristics of the fluctuation monitor type SID (FM-SID) were obtained as a function of sodium concentration in the gas. The FM-SID sensitivity was lowered by impurities in the gas, such as oxygen and water vapor. Finally, in comparisons with the conventional DC-SIDs, the background noise level of the FM-SID was much lower and S/N ratio was greatly improved. The detectable sodium concentration level was ten times lower than that of the DC-SID. (author)

  9. Buckling of stiff polymers: Influence of thermal fluctuations

    Science.gov (United States)

    Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.

    2007-12-01

    The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.

  10. Interaction of charged reaction products with opalescent fluctuations

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    In a D-T plasma close to ignition, if the contribution of the 3.5 MeV fusion-produced α-particles to the total plasma pressure is neglected, the interaction of these particles with the magnetic fluctuations which are supported by the bulk of the plasma can be described by retaining the contribution arising from the wave-particle resonant interaction only. Then, following a perturbation approach, we can start by examining the time evolution, in the absence of α-particles, of magnetic fluctuations of the shear-Alfven type in a sheared magnetic configuration where the presence of magnetic curvature causes a mixing between these waves and interchange instabilities. In the description of these fluctuations, we shall adopt an equation, derived from the theory of ballooning modes that can be proved to be valid in the neighborhood of the magnetic axis

  11. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  12. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  13. Concentration fluctuations in gas releases by industrial accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Chatwin, P.C.; Joergensen, H.E.; Mole, N.; Munro, R.J.; Ott, S.

    2002-05-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statistical analyses and surface-layer scaling. The statistical moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of these moments is universal with a gaussian core and exponential tails. The instantaneous plume width is fluctuating with a log-normal distribution. The position of the instantaneous plume centre-line is modelled by a normal distribution and a Langevin equation, by which the meander effect on the time-averaged plume width is predicted. Fixed-frame statistics are modelled by convolution of moving-frame statistics and the probability distribution for the plume centreline. The distance-neighbour function generalized for higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools are based on Karhunen-Loeve expansion and Fourier transformations using iterative or correlation-distortion techniques. The input to the simulation is the probability distribution of the individual processes, assumed stationary, and the cross-correlations of all signal combinations. The use in practical risk assessment is illustrated by implementation of a typical heavy-gas dispersion model, enhanced for prediction and simulation of concentration fluctuations. (au)

  14. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  15. Theoretical studies on rapid fluctuations in solar flares

    International Nuclear Information System (INIS)

    Vlahos, L.

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins, e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed

  16. Theoretical studies on rapid fluctuations in solar flares

    Science.gov (United States)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  17. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    Science.gov (United States)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  18. Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases

    International Nuclear Information System (INIS)

    Arapaki, E.; Argyrakis, P.; Tringides, M.C.

    2008-01-01

    Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity

  19. The nuclear fluctuation width and the method of maxima in excitation curves

    International Nuclear Information System (INIS)

    Burjan, V.

    1988-01-01

    The method of counting maxima of excitation curves in the region of the occurrence of nuclear cross section fluctuations is extended to the case of the more realistic maxima defined as a sequence of five points instead of the simpler and commonly used case of a sequence of three points of an excitation curve. The dependence of the coefficient b (5) (κ), relating the number of five-point maxima and the mean level width Γ of the compound nucleus, on the relative distance K of excitation curve points is calculated. The influence of the random background on the coefficient b (5) (κ) is discussed and a comparison with the properties of the three-point coefficient b (3) (κ) is made - also in connection with the contribution of the random background. The calculated values of b (5) (κ) are well reproduced by the data obtained from the analysis of artificial excitation curves. (orig.)

  20. Multiscale probability distribution of pressure fluctuations in fluidized beds

    International Nuclear Information System (INIS)

    Ghasemi, Fatemeh; Sahimi, Muhammad; Reza Rahimi Tabar, M; Peinke, Joachim

    2012-01-01

    Analysis of flow in fluidized beds, a common chemical reactor, is of much current interest due to its fundamental as well as industrial importance. Experimental data for the successive increments of the pressure fluctuations time series in a fluidized bed are analyzed by computing a multiscale probability density function (PDF) of the increments. The results demonstrate the evolution of the shape of the PDF from the short to long time scales. The deformation of the PDF across time scales may be modeled by the log-normal cascade model. The results are also in contrast to the previously proposed PDFs for the pressure fluctuations that include a Gaussian distribution and a PDF with a power-law tail. To understand better the properties of the pressure fluctuations, we also construct the shuffled and surrogate time series for the data and analyze them with the same method. It turns out that long-range correlations play an important role in the structure of the time series that represent the pressure fluctuation. (paper)

  1. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    International Nuclear Information System (INIS)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-01-01

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs

  2. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations, and a sy......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...... of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies...

  3. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  4. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  5. Glacial Fluctuation in the Source Region of the Yangtze River

    International Nuclear Information System (INIS)

    Shengyi, Gao; Qingsong, Fan; Xi, Cao; Li, Ma

    2014-01-01

    Glaciers in the source region of the Yangtze River are not only water resources but also important energy and environmental resources. Glacial fluctuation is an important component of the study of changes in the natural environment, including climate change. We investigated the glaciers in the source region of the Yangtze River, and analyzed the fluctuations using multi-temporal remote sensing data. The trend in glacial fluctuation and the factors that influence it were determined. The results have implications for water resource management and environmental conservation in the Yangtze River region

  6. Time evolution of temperature fluctuation in a non-equilibrated system

    International Nuclear Information System (INIS)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath; Samantray, Prasant

    2016-01-01

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  7. Time evolution of temperature fluctuation in a non-equilibrated system

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Samantray, Prasant [Indian Institute of Technology Indore, Centre of Astronomy, School of Basic Sciences, Simrol (India)

    2016-09-15

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  8. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  9. Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise

    International Nuclear Information System (INIS)

    Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.

    2006-01-01

    The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data

  10. Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces

    International Nuclear Information System (INIS)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-01-01

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  11. Constraints on stable equilibria with fluctuation-induced (Casimir) forces.

    Science.gov (United States)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  12. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  13. Respondence Between Electrochemical Fluctuations and Phenomenon for Localized Corrosion of Less-Noble Metals

    International Nuclear Information System (INIS)

    Itoi, Yasuhiko; Take, Seisho; Tsuru, Tooru

    2008-01-01

    We have been studying application of electrochemical noise (Fluctuation) analysis for localized corrosion. Foils of Zinc, Aluminum and Magnesium were used as specimens for electrochemical cell simulating localized corrosion. These specimens were dipped in sodium chloride solutions adjusted to each exponent of hydrogen ion concentration (pH) condition of 5.5, 10, 12 respectively. Time variations of potential and current were measured in those solutions, and simultaneously the surfaces of specimens were observed using microscope with television monitor. Two types of electrochemical cells were arranged for experiments simulated localized corrosion. The fluctuations on trendy component of short-circuited potential and short-circuited current were appeared in synchronization. It was seemed that these fluctuations result from hydrogen evolution on the aluminum active site in the crevice from the microscopic observation. In the case of zinc and magnesium, fluctuations appeared on the trendy component of the corrosion potential. Two types fluctuation were detected. First one is the fluctuation varied periodically. The second one is the random fluctuation. It was seemed that these fluctuations result from generation of corrosion products and hydrogen evolution on the active site in the crevice of zinc and magnesium from the microscopic observation

  14. Influence of Signal and Noise on Statistical Fluctuation of Single-Mode Laser System

    International Nuclear Information System (INIS)

    Xu Dahai; Cheng Qinghua; Cao Li; Wu Dajin

    2006-01-01

    On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The statistical fluctuation of the laser system can be restrained by reducing the intensity of pump noise and quantum noise. Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coefficient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.

  15. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  16. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  17. Event-by-event multiplicity fluctuations in Pb-Pb collisions in ALICE

    CERN Document Server

    Mukherjee, Maitreyee

    2016-01-01

    Fluctuations of various observables in heavy-ion collisions at ultra-relativistic energies have been extensively studied as they provide important signals regarding the formation of a Quark-Gluon Plasma (QGP). Because of the large number of produced particles in each event, a detailed study of event-by-event multiplicity fluctuations has been proposed as one of the signatures of the phase transition. In addition, the understanding of multiplicity fluctuations is essential for other event-by-event measurements. In the present work, we have calculated the scaled variance ($\\omega_{\\rm ch}=\\sigma^{\\rm 2} / \\mu$) of the charged-particle multiplicity distributions as a function of centrality in Pb-Pb collisions at LHC energies. Here, $\\mu$ and $\\sigma$ denote the mean and the width of the multiplicity distributions, respectively. The trend of scaled variances as a function of centrality is presented and discussed. Volume fluctuations play an important role while measuring the multiplicity fluctuations, which are a...

  18. Co-existence of long-range order and spin fluctuation in a new geometric frustration series M2(OH)3Cl

    International Nuclear Information System (INIS)

    Zheng, X.G.; Hagihala, Masato; Toriyi, Takato

    2007-01-01

    Recently, we observed the co-existence of a long-range magnetic order and spin fluctuation in a clean compound of clinoatacamite, Cu 2 (OH) 3 Cl (PRL95 (2005) 057201). The present work reports magnetic studies on other compounds of this transition metal series M 2 (OH) 3 Cl, where M represents three-dimensional (3D)-electron magnetic ions of Co 2+ , Fe 2+ , etc., respectively. The present study shows that this co-existence is a common feature of the M 2 Cl(OH) 3 series, no matter whether it is anti-ferromagnetic, as in the case of Fe 2 (OH) 3 Cl (T N =15 K), or ferromagnetic, as in the case of Co 2 (OH) 3 Cl (T C =10.5 K). These compounds show a 3D network of corner-sharing tetrahedrons for the magnetic ions. The tetrahedron is slightly tilted with roughly 10% longer distance between the M-M bonded by Cl than those bonded by O and this distortion is suspected to be responsible for the partial order. This research suggests that the transition metal hydroxyhalide M 2 Cl(OH) 3 series are new geometric frustration system on tetrahedral lattice for d-electron spins

  19. Molecular thermodynamics using fluctuation solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela

    . The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...

  20. Chiral vacuum fluctuations in quantum gravity.

    Science.gov (United States)

    Magueijo, João; Benincasa, Dionigi M T

    2011-03-25

    We examine tensor perturbations around a de Sitter background within the framework of Ashtekar's variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  1. Fluctuation relations with intermittent non-Gaussian variables.

    Science.gov (United States)

    Budini, Adrián A

    2011-12-01

    Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.

  2. Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire

    International Nuclear Information System (INIS)

    Kim, Jeongmin; Lee, Seunghyun; Kim, MinGin; Lee, Wooyoung; Brovman, Yuri M.; Kim, Philip

    2014-01-01

    We present the low temperature transport properties of an individual single-crystalline Bi nanowire grown by the on-film formation of nanowire method. The temperature dependent resistance and magnetoresistance of Bi nanowires were investigated. The phase coherence length was obtained from the fluctuation pattern of the magnetoresistance below 40 K using universal conductance fluctuation theory. The obtained temperature dependence of phase coherence length and the fluctuation amplitude indicates that the transport of electrons shows 2-dimensional characteristics originating from the surface states. The temperature dependence of the coherence length derived from the weak antilocalization effect using the Hikami–Larkin–Nagaoka model is consistent with that from the universal conductance fluctuations theory

  3. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  4. General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation

    International Nuclear Information System (INIS)

    Xiang, Gao; Shi-Hai, Sun; Lin-Mei, Liang

    2009-01-01

    The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate

  5. Quantum work fluctuation theorem: Nonergodic Brownian motion case

    International Nuclear Information System (INIS)

    Bai, Zhan-Wu

    2014-01-01

    The work fluctuations of a quantum Brownian particle driven by an external force in a general nonergodic heat bath are studied under a general initial state. The exact analytical expression of the work probability distribution function is derived. Results show the existence of a quantum asymptotic fluctuation theorem, which is in general not a direct generalization of its classical counterpart. The form of this theorem is dependent on the structure of the heat bath and the specified initial condition.

  6. Nuclear shadowing and the optics of hadronic fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Mankiewicz, L. E-mail: lech_mankiewicz@camk.edu.pl; Piller, G.; Vaenttinen, M.; Weise, W

    2001-06-04

    A coordinate-space description of shadowing in deep-inelastic lepton-nucleus scattering is presented. The picture in the laboratory frame is that of quark-gluon fluctuations of the high-energy virtual photon, propagating coherently over large light-cone distances in the nuclear medium. We discuss the detailed dependence of the coherence effects on the invariant mass of the fluctuation. We comment on the issue of possible saturation in the shadowing effects at very small Bjorken-x.

  7. Fluctuations of approximatelly 1014 eV cosmic rays

    International Nuclear Information System (INIS)

    Erdoes, G.; Gombosi, T.; Kota, J.; Owens, A.J.; Somogyi, A.J.; Varga, A.

    1977-06-01

    It is shown that the approximately 6x10 13 eV primary cosmic ray flux, as observed in the Extensive Air Shower experiment on Musala Peak, has unexplained broad-band aperiodic fluctuations with an amplitude of 0.5%, a spectrum of 1/f, and time scales from days through a year. Possible sources of these fluctuations are discussed: instrumental drifts, data analysis techniques, meteorological effects, and scattering by interstellar electromagnetic field irregularities. (Sz.N.Z.)

  8. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China

    Directory of Open Access Journals (Sweden)

    Xifeng Liu

    2016-12-01

    Full Text Available In this study, the characteristics of the total electron content (TEC fluctuations and their regional differences over China were analyzed by utilizing the rate of the TEC index (ROTI based on GPS data from 21 reference stations across China during a solar cycle. The results show that there were significant regional differences at different latitudes. Strong ionospheric TEC fluctuations were usually observed at lower latitudes in southern China, where the occurrence of TEC fluctuations demonstrated typical nighttime- and season-dependent (equinox months features. This phenomenon was consistent with the ionospheric scintillation characteristics of this region. Additionally, compared to low-latitude China, the intensity of TEC fluctuations over mid-latitude China was significantly weaker, and the occurrence of TEC fluctuations was not a nighttime-dependent phenomenon. Moreover, the intensity of TEC fluctuations was much stronger during high solar activity than during low solar activity. Furthermore, the summer-dependent characteristics of TEC fluctuations gradually emerged over lower mid-latitude areas as equinox characteristics weakened. Similar to the equinox characteristics, the summer-dependent characteristics gradually weakened or even disappeared with the increasing latitude. Relevant discussions of this phenomenon are still relatively rare, and it requires further study and analysis.

  9. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    Science.gov (United States)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  10. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  11. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  12. Quantifying fluctuations in reversible enzymatic cycles and clocks

    Science.gov (United States)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  13. Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, O.E.; Paulsen, J.V.

    1997-01-01

    It is shown by simple physical arguments and fluid simulations that electrostatic flute-mode fluctuations can sustain a substantial cross-field current in addition to mass and energy transport. The simulations show that this current determines essential features of the fluctuating plasma...

  14. Cross-section fluctuations and color transparency in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Baym, Gordon

    1995-01-01

    The internal configuration of the color-carrying degrees of freedom of an ultrarelativistic hadron is frozen by Lorentz time dilation. When the spatial extent of the configuration is small, the hadron interacts weakly with other hadrons - the phenomenon of color transparency - since the color fields generated by the overall color neutral components nearly cancel. The hadron experiences only weak color-dipole interactions for small configurations. similarly, when the color configuration of the hadron is large it interacts more strongly than average - a color opacity. Such varying interactions are described by fluctuations in the interaction cross-sections of hadrons, which are intimately related of the phenomena of inelastic shadowing and diffractive dissociation. This connection allows on the deduce information on cross-section fluctuations from measurements of these phenomena. Cross-section fluctuations give rise to important fluctuations in observed quantities, such as multiplicity and transverse energy, produced in ultrarelativistic heavy-ion collisions. (author)

  15. Pressure fluctuation caused by moderate acceleration

    Science.gov (United States)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  16. Water-level fluctuations influence sediment porewater ...

    Science.gov (United States)

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a

  17. Turbulent temperature fluctuations in liquid metals

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1977-01-01

    Examination of experimental data for the spectral distribution of velocity (u and v) and temperature (theta) fluctuations in the fully turbulent region of heated pipe-flow has suggested a schematic representation which incorporates the essential features. Evidence is cited to suggest that the -vtheta correlation coefficient maintains higher values that the uv coefficient at wave-numbers in the inertial subrange. The theory of Batchelor, Howells and Townsend, and limited evidence from experiments in mercury, then suggests the form of the theta 2 spectra and -vtheta cross-spectra in liquid metals. From this information, a limiting Peclet number is deduced, above which the correlation coefficient of v and theta should be a fairly weak function of Pe alone. An attempt to check this inference from published data for the RMS level of temperature fluctuations, and for the turbulent Prandtl number, proves inconclusive, because many of the correlation coefficients so estimated have values greater than unity. It is concluded that all these results for theta tilde must therefore be in error. However, since there is no evidence of very low correlation coefficients, they almost certainly lie in the range 0.5 multiply/divide 2 over a large proportion of the radius. Thus theta tilde can be estimated for any fluid in which the fluctuations are induced by uniform heating, at least to within a factor of 2, using the analysis presented. (author)

  18. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-01-01

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  19. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    Konchakovski, Volodymyr P.

    2009-01-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the optimal

  20. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the

  1. Fluctuations in work motivation: tasks do not matter!

    Science.gov (United States)

    Navarro, Jose; Curioso, Fernando; Gomes, Duarte; Arrieta, Carlos; Cortes, Mauricio

    2013-01-01

    Previous studies have shown that work motivation fluctuates considerably and in a nonlinear way over time. In the present research, we are interested in studying if the task at hand does or does not influence the presence of these fluctuations. We gathered daily registers from 69 workers during 21 consecutive working days (7036 registers) of task developed and levels of motivation, self-efficacy beliefs and instrumentalities perception. These registers were then categorized into a list of labor activities in main tasks and subtasks by means of three judges with a high level of agreement (97.47% for tasks, and 98.64% for subtasks). Taking the MSSD statistic (mean squared successive difference) of the average of motivation, self-efficacy and instrumentality, and using hierarchical regression analysis we have found that tasks (beta = .03; p = .188) and subtasks (beta = .10; p = .268) do not affect the presence of fluctuations in motivation. These results reveal instability in work motivation independently from the tasks and subtasks that the workers do. We proceed to find that fluctuations in work motivation show a fractal structure across the different tasks we do in a working day. Implications of these results to motivational theory will be discussed as well as possible explanations (e.g. the influence of affect in work motivation) and directions for future research are provided.

  2. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  3. Fluctuations in Overlapping Generations Economies

    DEFF Research Database (Denmark)

    Tvede, Mich

    . The approach to existence of endogenous fluctuations is basic in the sense that the prime ingredients are the implicit function theorem and linear algebra. Moreover the approach is applied to show that for an open and dense set of utility functions there exist endowment vectors such that sunspot equilibria...

  4. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

    Science.gov (United States)

    Pang, Yan; Wang, Xiang; Liu, Zhaomiao

    2018-03-01

    Droplet generation in a T-shape microchannel, with a main channel width of 50 μm , side channel width of 25 μm, and height of 50 μm, is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall's shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

  5. Communication Networks - Analysis of jitter due to call-level fluctuations

    NARCIS (Netherlands)

    Mandjes, M.R.H.

    2007-01-01

    Abstract In communication networks used by constant bit rate applications, call-level dynamics (i.e. entering and leaving calls) lead to fluctuations in the load, and therefore also fluctuations in the delay (jitter). By intentionally delaying the packets at the destination, one can transform the

  6. Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; An, Z.G.; Diamond, P.H.; Lee, G.S.; Hahm, T.S.

    1985-11-01

    The saturation mechanism for density and potential fluctuation spectra which evolve from linearly unstable electrostatic resistive interchange modes, are investigated using particle simulations. Detailed comparisons of the nonlinear evolution, saturation levels and resultant spectra between two- and three-dimensional sheared magnetic field configurations are made. Significant differences appear. The single rational surface, quasilinear-dominated evolution, fluctuation spectrum is adequately described using a density convection model. For the multiple rational surface case, the potential fluctuations are adequately represented by a balance between the nonlinearly modified source (curvature drive) and linear sink (parallel resistive field line diffusion). An accurate description of the density spectrum requires a mode coupling theory based on the two-point density correlation evolution equation. 24 refs., 15 figs

  7. Fluctuations and the nuclear Meissner effect in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Ring, P; Rasmussen, J O

    1985-10-24

    The phase transition from a superfluid system to a normal fluid system in nuclei under the influence of a strong Coriolis field is investigated by the generator coordinate method (GCM). The strange behavior of the experimental moments of inertia in the nucleus WYHf is well reproduced in this theory. The pairing collapse of the neutrons, however, is completely washed out by the fluctuations. It is found that the fluctuations of the orientation in gauge space, taken into account by number projection before the variation play the most important role. Fluctuations connected with the virtual admixture of pairing vibrations add only small corrections. (orig.).

  8. Long time-scale fluctuations in the evolution of the Earth

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1981-01-01

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed. (U.K.)

  9. A theory of power-law distributions in financial market fluctuations.

    Science.gov (United States)

    Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene

    2003-05-15

    Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.

  10. Long time-scale fluctuations in the evolution of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK). Astronomy Centre

    1981-02-18

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed.

  11. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  12. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  13. Quantum fluctuations of vortices in Josephson-coupled superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L.N.; Maley, M.P.

    1994-01-01

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2), is explained. In the mean, field approach this slope should be almost B independent. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T

  14. Are topological charge fluctuations in QCD instanton dominated?

    International Nuclear Information System (INIS)

    Edwards, Robert G.; Heller, Urs M.

    2002-01-01

    We consider a recent proposal by Horvath et al. to address the question of whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings, we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD

  15. Are Topological Charge Fluctuations in QCD Instanton Dominated?

    International Nuclear Information System (INIS)

    Edwards, Robert G.; Heller, Urs M.

    2001-01-01

    We consider a recent proposal by Horvath et al. to address the question whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD

  16. Avalanche fluctuations within the multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Lamas Valverde, J.; Veenhof, R.J.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    The multigap resistive plate chamber (MRPC) was originally designed to have improved time resolution (compared to the wide gap RPC), but also to keep the good high rate behaviour and ease of construction associated with the wide gap RPC. However in addition we observed a very long efficiency plateau, even at high rates. Here we consider fluctuations in avalanche growth, and show that the inherent ''averaging'' of these fluctuations can account for the enhanced performance of the multigap RPC. (orig.)

  17. Holocene glacial fluctuations in southern South America

    Science.gov (United States)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.

    2016-12-01

    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  18. Prevention of Employees Fluctuation in IT

    Directory of Open Access Journals (Sweden)

    Libor Mesicek

    2017-10-01

    Full Text Available The aim of this paper is to present results of implementation fluctuation preventing counter-measures among other positions in IT department. In 2017 there is still one of the lowest unemployment rates in the history of the Czech Republic (especially in IT and companies are trying to preserve and prevent their key employees from moving to another employer. One of the tools, which could help reduce this risk, is providing additional education, certification and qualification with laying great emphasis on most valuable and essential personnel. The paper present updated results after 6 months since the company started with selection of high risks employees. It has been found that group of employees with high risk of leaving the company has shrunk and overall fluctuation index has also plunged.

  19. Medium-term fluctuations and the "Great Ratios" of economic growth

    DEFF Research Database (Denmark)

    Groth, Christian; Madsen, Jakob B.

    2016-01-01

    Evidence for the OECD countries show that the “great ratios”, such as the unemployment rate, factor shares, Tobin’s q and the investment-capital ratio, fluctuate significantly on medium-term frequencies of 10-40 years duration. To explain these medium-term fluctuations, we establish a macro...

  20. Can Intrinsic Fluctuations Increase Efficiency in Neural Information Processing?

    Science.gov (United States)

    Liljenström, Hans

    2003-05-01

    All natural processes are accompanied by fluctuations, characterized as noise or chaos. Biological systems, which have evolved during billions of years, are likely to have adapted, not only to cope with such fluctuations, but also to make use of them. We investigate how the complex dynamics of the brain, including oscillations, chaos and noise, can affect the efficiency of neural information processing. In particular, we consider the amplification and functional role of internal fluctuations. Using computer simulations of a neural network model of the olfactory cortex and hippocampus, we demonstrate how microscopic fluctuations can result in global effects at the network level. We show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels, analogous to stochastic resonance phenomena. Noise can also induce transitions between different dynamical states, which could be of significance for learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. We speculate whether this dynamical behavior perhaps could be related to (creative) thinking.

  1. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  2. Large fluctuations and fixation in evolutionary games

    International Nuclear Information System (INIS)

    Assaf, Michael; Mobilia, Mauro

    2010-01-01

    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite

  3. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  4. Supersymmetric curvatons and phase-induced curvaton fluctuations

    International Nuclear Information System (INIS)

    McDonald, John

    2004-01-01

    We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H 2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H 2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≅10 12 GeV during inflation

  5. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  6. Fluctuation-induced long-range interactions in polymer systems

    International Nuclear Information System (INIS)

    Semenov, A N; Obukhov, S P

    2005-01-01

    We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects

  7. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    Science.gov (United States)

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  8. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  9. Species packing in eco-evolutionary models of seasonally fluctuating environments.

    Science.gov (United States)

    Kremer, Colin T; Klausmeier, Christopher A

    2017-09-01

    As ecology and evolution become ever more entwined, many areas of ecological theory are being re-examined. Eco-evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation-dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable. Members of these communities possess distinct environmental preferences, revealing widespread patterns of limiting similarity. This regularity leads to consistent changes in the structure of communities across fluctuation regimes. However, at high amplitudes, subtle differences in the form of fluctuations dramatically affect the collapse of communities. We also show that identical fluctuations can support multiple evolutionarily stable communities - a novel example of alternative stable states within eco-evolutionary systems. Consequently, the configuration of communities will depend on historical contingencies, including details of the adaptive process. Integrating evolution into the study of coexistence offers new insights, while enriching our understanding of ecology. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  11. Redistribution of phase fluctuations in a periodically driven cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, Robert; Zhu, Beilei; Rexin, Tobias [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); Mathey, Ludwig [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Hamburg (Germany); Cavalleri, Andrea [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford (United Kingdom)

    2015-07-01

    We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBCO, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. We demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales and we discuss the behavior of vortices in the ab-planes and across the weakly coupled junctions.

  12. Spin fluctuation theory of itinerant electron magnetism

    CERN Document Server

    Takahashi, Yoshinori

    2013-01-01

    This volume shows how collective magnetic excitations determine most of  the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.

  13. Primordial black holes from passive density fluctuations

    International Nuclear Information System (INIS)

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this Letter, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses ≲10 15 g depending on the number of e-folds when the scale of our observable universe leaves horizon. These PBHs are likely to have evaporated and cannot be a candidate for dark matter but they may still affect the early universe.

  14. Crossover transition in the fluctuation of Internet

    Science.gov (United States)

    Qian, Jiang-Hai

    2018-06-01

    The inconsistent fluctuation behavior of Internet predicted by preferential attachment(PA) and Gibrat's law requires empirical investigations on the actual system. By using the interval-tunable Gibrat's law statistics, we find the actual fluctuation, characterized by the conditional standard deviation of the degree growth rate, changes with the interval length and displays a crossover transition from PA type to Gibrat's law type, which has not yet been captured by any previous models. We characterize the transition dynamics quantitatively and determine the applicative range of PA and Gibrat's law. The correlation analysis indicates the crossover transition may be attributed to the accumulative correlation between the internal links.

  15. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.; Finelli, F.

    1999-01-01

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  16. Quantum criticality in He3 bi-layers and heavy fermion compounds

    International Nuclear Information System (INIS)

    Benlagra, A.

    2009-11-01

    Despite intense experimental as well as theoretical efforts the understanding of physical phenomena peculiar to heavy fermion compounds remains one of the major problems in condensed matter physics; this research thesis considers the recently proposed theoretical approaches to describe the critical regime properties. This approach is based on the following idea: critical modes which are responsible for this regime are non-magnetic and are associated to the destruction of the Kondo effect between localized magnetic impurities and travelling conduction electrons at the quantum critical point. The author derives an analytic expression for the free energy within this model by using the Luttinger-Ward functional approach within the frame of the Eliashberg theory. The obtained expressions are transparently including the effect of critical fluctuations, integrated in a self-coherent way. The behaviour of different thermodynamic quantities is then deduced from these expressions. The result is compared with recent experiments on heavy fermion compounds as well as on a Helium-3 bilayer system adsorbed on graphite substrate in order to test the validity of such a model. Strengths and drawbacks of the model are outlined

  17. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  18. Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling

    International Nuclear Information System (INIS)

    Chertkov, Michael; Backhaus, Scott; Lebedev, Vladimir

    2015-01-01

    Highlights: • Fracturing and low cost of gas stimulated significant recent expansion of the natural gas networks. • Power system operators transition to gas as the main supply, also facing new reliability challenges. • Natural gas-fired generators vary burn-rates to balance fluctuating output of wind generation. • Impact of the gas-generator variations is seen in diffusive jitter of pressure within the gas network. • Fluctuating pressure impacts both reliability of natural gas deliveries and safety of pipeline operations. - Abstract: The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  19. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  20. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors