WorldWideScience

Sample records for flt3 ligand targeted

  1. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  2. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    Prat-Lepesant, M.

    2005-06-01

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  3. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  4. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors.

    Science.gov (United States)

    Frett, Brendan; McConnell, Nick; Smith, Catherine C; Wang, Yuanxiang; Shah, Neil P; Li, Hong-yu

    2015-04-13

    The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. The biology and targeting of FLT3 in pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Colleen eAnnesley

    2014-09-01

    Full Text Available Despite remarkable improvement in treatment outcomes in pediatric leukemia over the past several decades, the prognosis for high risk groups of acute myeloid leukemia (AML and acute lymphoblastic leukemia (ALL, as well as for relapsed leukemia, remains poor. Intensified chemotherapy regimens have somewhat improved success rates, but at the cost of drastically increased morbidity and long term adverse effects. With the success of imatinib in Philadelphia-chromosome positive leukemia and all-trans retinoic acid in acute promyelocytic leukemia, the quest to find additional molecularly targeted therapies has generated much excitement over the past 15 years. Another such possible target in pediatric acute leukemia is FMS-like tyrosine kinase 3 (FLT3. FLT3 aberrations are among the most frequently identified transforming events in AML, and have significant clinical implications in both high risk pediatric AML and in certain high risk groups of pediatric ALL. Therefore, the successful targeting of FLT3 has tremendous potential to improve outcomes in these subsets of patients. This article will give an overview of the molecular function and signaling of the FLT3 receptor, as well as its pathogenic role in leukemia. We review the discovery of targeting FLT3, discuss currently available FLT3 inhibitors in pediatric leukemia and results of clinical trials to date, and finally, consider the future promise and challenges of FLT3 inhibitor therapy.

  7. Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Amy N. Sexauer

    2017-11-01

    Full Text Available Acute myeloid leukemia (AML is the second most common leukemia of childhood and is associated with high rates of chemotherapy resistance and relapse. Clinical outcomes for children with AML treated with maximally intensive multi-agent chemotherapy lag far behind those of children with the more common acute lymphoblastic leukemia, demonstrating continued need for new therapeutic approaches to decrease relapse risk and improve long-term survival. Mutations in the FMS-like tyrosine kinase-3 receptor gene (FLT3 occur in approximately 25% of children and adults with AML and are associated with particularly poor prognoses. Identification and development of targeted FLT3 inhibitors represents a major precision medicine paradigm shift in the treatment of patients with AML. While further development of many first-generation FLT3 inhibitors was hampered by limited potency and significant toxicity due to effects upon other kinases, the more selective second- and third-generation FLT3 inhibitors have demonstrated excellent tolerability and remarkable efficacy in the relapsed/refractory and now de novo FLT3-mutated AML settings. While these newest and most promising inhibitors have largely been studied in the adult population, pediatric investigation of FLT3 inhibitors with chemotherapy is relatively recently ongoing or planned. Successful development of FLT3 inhibitor-based therapies will be essential to improve outcomes in children with this high-risk subtype of AML.

  8. Targeting oncoprotein stability overcomes drug resistance caused by FLT3 kinase domain mutations.

    Directory of Open Access Journals (Sweden)

    Chuanjiang Yu

    Full Text Available FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML. Internal tandem duplications (ITDs in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.

  9. CSF neurofilament light chain but not FLT3 ligand discriminates Parkinsonian disorders

    Directory of Open Access Journals (Sweden)

    Megan Kristy Herbert

    2015-05-01

    Full Text Available The differentiation between multiple system atrophy (MSA and Parkinson’s disease (PD is difficult, particularly in early disease stages. Therefore, we aimed to evaluate the diagnostic value of neurofilament light chain (NFL, fms-like tyrosine kinase ligand (FLT3L and total tau protein (t-tau in cerebrospinal fluid (CSF as biomarkers to discriminate MSA from PD. Using commercially available enzyme-linked immunoassays (ELISAs, we measured CSF levels of NFL, FLT3L and t-tau in a discovery cohort of 36 PD patients, 27 MSA patients and 57 non-neurological controls and in a validation cohort of 32 PD patients, 25 MSA patients, 15 PSP patients, 5 CBS patients, and 56 non-neurological controls. Cut-offs obtained from individual assays and binary logistic regression models developed from combinations of biomarkers were assessed. CSF levels of NFL were substantially increased in MSA and discriminated between MSA and PD with a sensitivity of 74% and specificity of 92% (AUC = 0.85 in the discovery cohort and with 80% sensitivity and 97% specificity (AUC = 0.94 in the validation cohort. FLT3L levels in CSF were significantly lower in both PD and MSA compared to controls in the discovery cohort, but not in the validation cohort. T-tau levels were significantly higher in MSA than PD and controls. Addition of either FLT3L or t-tau to NFL did not improve discrimination of PD from MSA above NFL alone. Our findings show that increased levels of NFL in CSF offer clinically relevant, high accuracy discrimination between PD and MSA.

  10. Immunotherapeutical role of Flt3 ligand amplification of pulmonary dendritic cells in murine multiple organ dysfunction syndrome in vivo

    Directory of Open Access Journals (Sweden)

    Hong-wei WANG

    2012-08-01

    Full Text Available Objective To explore the therapeutic effect of Flt3 ligand (Flt3L on multiple organ dysfunction syndrome (MODS model via amplification of lung dendritic cells. Methods Animal model of MODS was replicated by injecting zymosan into the peritoneal cavity of BALB/c mice, and then the mice were randomly divided into Flt3L treatment group, MODS group, Flt3L group and control group. Mortality rate was observed. After 12 days, lung mononuclear cells were isolated by density gradient centrifugation and analyzed with flow cytometry. Blood AST, ALT, creatinine, lipase, amylase and glucose were determined by automatic biochemical analyzer. Pathological changes in lung tissue were observed under light microscope. Results Mortality in Flt3L treatment group decreased dramatically compared with MODS group. The proportions of myeloid, plasmacytoid and I-Ad+ DCs in Flt3L group were remarkably increased compared with control group, and the proportion of the three DC subsets in MODS group was much lower than that in control group. Howerver, Flt3L treatment dramatically increased the proportion of them in MODS group. In MODS group, the level of ALT, AST, lipase, amylase and creatinine remarkably increased and blood glucose decreased compared with that of Flt3L and control groups; but in Flt3L treatment group, the level of ALT, AST, lipase, amylase and creatinine decreased and blood glucose increased dramatically, and lung injury mitigated obviously compared with MODS group. Conclusion Flt3L could attenuate lung tissue injury in MODS model, improve organ function, and lower the mortality of experimental animals, thus exerting its immunotherapeutic effects by in vivo amplification of lung dendritic cells.

  11. Flt3 ligand-receptor interaction is important for maintenance of early thymic progenitor numbers in steady-state thymopoiesis.

    Science.gov (United States)

    Kenins, Linda; Gill, Jason W; Holländer, Georg A; Wodnar-Filipowicz, Aleksandra

    2010-01-01

    T-cell production throughout life depends on efficient colonization and intrathymic expansion of BM-derived hematopoietic precursors. After irradiation-induced thymic damage, thymic recovery is facilitated by Flt3 ligand (FL), expressed by perivascular fibroblasts surrounding the thymic entry site of Flt3 receptor-positive progenitor cells. Whether intrathymic FL-Flt3 interactions play a role in steady-state replenishment of T cells remains unknown. Here, using competitive BM transplantation studies and fetal thymic organ cultures we demonstrated the continued numerical advantage of Flt3+ intrathymic T-cell precursors. Sub-kidney capsule thymic transplantation experiments, in which WT and FL-/- thymic lobes were grafted into FL-/- recipients, revealed that FL expression by the thymic microenvironment plays a role in steady-state thymopoiesis. The deficiency of the most immature thymic T-cell precursors correlated to upregulation of FL by thymic MTS15+ fibroblasts, suggesting that the number of Flt3+ progenitor cells may regulate the thymic expression of this cytokine. Together, these results show that FL expression by thymic stromal fibroblasts interacting with Flt3+ T-cell progenitors is important for the physiological maintenance of early T-cell development.

  12. Targeted Therapy of FLT3 in Treatment of AML—Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Caroline Benedicte Nitter Engen

    2014-12-01

    Full Text Available Internal tandem duplications (ITDs of the gene encoding the Fms-Like Tyrosine kinase-3 (FLT3 receptor are present in approximately 25% of patients with acute myeloid leukemia (AML. The mutation is associated with poor prognosis, and the aberrant protein product has been hypothesized as an attractive therapeutic target. Various tyrosine kinase inhibitors (TKIs have been developed targeting FLT3, but in spite of initial optimism the first generation TKIs tested in clinical studies generally induce only partial and transient hematological responses. The limited treatment efficacy generally observed may be explained by numerous factors; extensively pretreated and high risk cohorts, suboptimal pharmacodynamic and pharmacokinetic properties of the compounds, acquired TKI resistance, or the possible fact that inhibition of mutated FLT3 alone is not sufficient to avoid disease progression. The second-generation agent quizartinb is showing promising outcomes and seems better tolerated and with less toxic effects than traditional chemotherapeutic agents. Therefore, new generations of TKIs might be feasible for use in combination therapy or in a salvage setting in selected patients. Here, we sum up experiences so far, and we discuss the future outlook of targeting dysregulated FLT3 signaling in the treatment of AML.

  13. Bone marrow stromal cells spontaneously produce Flt3-ligand: influence of ionizing radiations and cytokine stimulation.

    Science.gov (United States)

    Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François

    2008-08-01

    To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.

  14. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+ long-term repopulating murine hematopoietic stem cells.

    Science.gov (United States)

    Tornack, Julia; Kawano, Yohei; Garbi, Natalio; Hämmerling, Günter J; Melchers, Fritz; Tsuneto, Motokazu

    2017-09-01

    The pool of hematopoietic stem cells (HSCs) in the bone marrow is a mixture of resting, proliferating, and differentiating cells. Long-term repopulating HSCs (LT-HSC) are routinely enriched as Lin - Sca1 + c-Kit + CD34 - Flt3 - CD150 + CD48 - cells. The Flt3 ligand (Flt3L) and its receptor Flt3 are important regulators of HSC maintenance, expansion and differentiation. Using Flt3L-eGFP reporter mice, we show that endogenous Flt3L-eGFP-reporter RNA expression correlates with eGFP-protein expression. This Flt3L-eGFP-reporter expression distinguishes two LT-HSC populations with differences in gene expressions and reconstituting potential. Thus, Flt3L-eGFP-reporter low cells are identified as predominantly resting HSCs with long-term repopulating capacities. In contrast, Flt3L-eGFP-reporter high cells are in majority proliferating HSCs with only short-term repopulating capacities. Flt3L-eGFP-reporter low cells express hypoxia, autophagy-inducing, and the LT-HSC-associated genes HoxB5 and Fgd5, while Flt3L-eGFP-reporter high HSCs upregulate genes involved in HSC differentiation. Flt3L-eGFP-reporter low cells develop to Flt3L-eGFP-reporter high cells in vitro, although Flt3L-eGFP-reporter high cells remain Flt3L-eGFP-reporter high . CD150 + Flt3L-eGFP-reporter low cells express either endothelial protein C receptor (EPCR) or CD41, while Flt3L-eGFP-reporter high cells do express EPCR but not CD41. Thus, FACS-enrichment of Flt3/ Flt3L-eGFP-reporter negative, Lin - CD150 + CD48 - EPCR + CD41 + HSCs allows a further 5-fold enrichment of functional LT-HSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Clonal evolution of AML on novel FMS-like tyrosine kinase-3 (FLT3 inhibitor therapy with evolving actionable targets

    Directory of Open Access Journals (Sweden)

    Pashtoon M. Kasi

    2016-01-01

    Full Text Available For acute myeloid leukemia (AML, identification of activating mutations in the FMS-like tyrosine kinase-3 (FLT3 has led to the development of several FLT3-inhibitors. Here we present clinical and next generation sequencing data at the time of progression of a patient on a novel FLT3-inhibitor clinical trial (ASP2215 to show that employing therapeutic interventions with these novel targeted therapies can lead to consequences secondary to selective pressure and clonal evolution of cancer. We describe novel findings alongside data on treatment directed towards actionable aberrations acquired during the process. (Clinical Trial: NCT02014558; registered at: 〈https://clinicaltrials.gov/ct2/show/NCT02014558〉

  16. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  17. Flt3 ligand synergizes with granulocyte-colony-stimulating factor in bone marrow mobilization to improve functional outcome after spinal cord injury in the rat

    Czech Academy of Sciences Publication Activity Database

    Urdzíková, Lucia; Mašínová, Katarína; Vaněček, Václav; Růžička, Jiří; Šedý, Jiří; Syková, Eva; Jendelová, Pavla

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1090-1104 ISSN 1465-3249 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : axonal sprouting * bone marrow mobilization * Flt3 ligand Subject RIV: FH - Neurology Impact factor: 3.627, year: 2011

  18. Survey of activated FLT3 signaling in leukemia.

    Directory of Open Access Journals (Sweden)

    Ting-lei Gu

    Full Text Available Activating mutations of FMS-like tyrosine kinase-3 (FLT3 are found in approximately 30% of patients with acute myeloid leukemia (AML. FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3 and B cell acute lymphoblastic leukemia (normal and amplification of FLT3 cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC, we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.

  19. Flt3/Flt3L Participates in the Process of Regulating Dendritic Cells and Regulatory T Cells in DSS-Induced Colitis

    Directory of Open Access Journals (Sweden)

    Jing-Wei Mao

    2014-01-01

    Full Text Available The immunoregulation between dendritic cells (DCs and regulatory T cells (T-regs plays an important role in the pathogenesis of ulcerative colitis (UC. Recent research showed that Fms-like tyrosine kinase 3 (Flt3 and Flt3 ligand (Flt3L were involved in the process of DCs regulating T-regs. The DSS-induced colitis model is widely used because of its simplicity and many similarities with human UC. In this study, we observe the disease activity index (DAI and histological scoring, detect the amounts of DCs and T-regs and expression of Flt3/Flt3L, and investigate Flt3/Flt3L participating in the process of DCs regulating T-regs in DSS-induced colitis. Our findings suggest that the reduction of Flt3 and Flt3L expression may possibly induce colonic immunoregulatory imbalance between CD103+MHCII+DCs and CD4+CD25+FoxP3+T-regs in DSS-induced colitis. Flt3/Flt3L participates in the process of regulating DCS and T-regs in the pathogenesis of UC, at least, in the acute stage of this disease.

  20. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia

    NARCIS (Netherlands)

    J.E. Park (Julie E.); H.F. Yuen (Hiu Fung); J.B. Zhou (Jian Biao); A.Q.O. Al-aidaroos (Abdul Qader); K. Guo (Ke); P.J.M. Valk (Peter); S.D. Zhang (Shu Dong); W.J. Chng (Wee); C.W. Hong (Cheng William); K. Mills (Ken); Q. Zeng (Qi)

    2013-01-01

    textabstractFLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD

  1. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  2. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia.

    Science.gov (United States)

    Reiter, K; Polzer, H; Krupka, C; Maiser, A; Vick, B; Rothenberg-Thurley, M; Metzeler, K H; Dörfel, D; Salih, H R; Jung, G; Nößner, E; Jeremias, I; Hiddemann, W; Leonhardt, H; Spiekermann, K; Subklewe, M; Greif, P A

    2018-02-01

    The fms-related tyrosine kinase 3 (FLT3) receptor has been extensively studied over the past two decades with regard to oncogenic alterations that do not only serve as prognostic markers but also as therapeutic targets in acute myeloid leukemia (AML). Internal tandem duplications (ITDs) became of special interest in this setting as they are associated with unfavorable prognosis. Because of sequence-dependent protein conformational changes FLT3-ITD tends to autophosphorylate and displays a constitutive intracellular localization. Here, we analyzed the effect of tyrosine kinase inhibitors (TKIs) on the localization of the FLT3 receptor and its mutants. TKI treatment increased the surface expression through upregulation of FLT3 and glycosylation of FLT3-ITD and FLT3-D835Y mutants. In T cell-mediated cytotoxicity (TCMC) assays, using a bispecific FLT3 × CD3 antibody construct, the combination with TKI treatment increased TCMC in the FLT3-ITD-positive AML cell lines MOLM-13 and MV4-11, patient-derived xenograft cells and primary patient samples. Our findings provide the basis for rational combination of TKI and FLT3-directed immunotherapy with potential benefit for FLT3-ITD-positive AML patients.

  3. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo.

    Science.gov (United States)

    Ma, Hayley S; Greenblatt, Sarah M; Shirley, Courtney M; Duffield, Amy S; Bruner, J Kyle; Li, Li; Nguyen, Bao; Jung, Eric; Aplan, Peter D; Ghiaur, Gabriel; Jones, Richard J; Small, Donald

    2016-06-09

    FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)(+) LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD(+) cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD(+) cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD(+) LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD(+) patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drug's apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD(+) LSCs and reduce the rate of relapse in AML patients with FLT3 mutations.

  4. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors.

    Science.gov (United States)

    Pietschmann, Kristin; Bolck, Hella Anna; Buchwald, Marc; Spielberg, Steffi; Polzer, Harald; Spiekermann, Karsten; Bug, Gesine; Heinzel, Thorsten; Böhmer, Frank-Dietmar; Krämer, Oliver H

    2012-11-01

    Activating mutations of the class III receptor tyrosine kinase FLT3 are the most frequent molecular aberration in acute myeloid leukemia (AML). Mutant FLT3 accelerates proliferation, suppresses apoptosis, and correlates with poor prognosis. Therefore, it is a promising therapeutic target. Here, we show that RNA interference against FLT3 with an internal tandem duplication (FLT3-ITD) potentiates the efficacy of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) against AML cells expressing FLT3-ITD. Similar to RNA interference, tyrosine kinase inhibitors (TKI; AC220/cpd.102/PKC412) in combination with LBH589 exhibit superior activity against AML cells. Median dose-effect analyses of drug-induced apoptosis rates of AML cells (MV4-11 and MOLM-13) revealed combination index (CI) values indicating strong synergism. AC220, the most potent and FLT3-specific TKI, shows highest synergism with LBH589 in the low nanomolar range. A 4-hour exposure to LBH589 + AC220 already generates more than 50% apoptosis after 24 hours. Different cell lines lacking FLT3-ITD as well as normal peripheral blood mononuclear cells are not significantly affected by LBH589 + TKI, showing the specificity of this treatment regimen. Immunoblot analyses show that LBH589 + TKI induce apoptosis via degradation of FLT3-ITD and its prosurvival target STAT5. Previously, we showed the LBH589-induced proteasomal degradation of FLT3-ITD. Here, we show that activated caspase-3 also contributes to the degradation of FLT3-ITD and that STAT5 is a direct target of this protease. Our data strongly emphasize HDACi/TKI drug combinations as promising modality for the treatment of FLT3-ITD-positive AMLs. ©2012 AACR.

  5. Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD

    International Nuclear Information System (INIS)

    Razumovskaya, Elena; Sun, Jianmin; Roennstrand, Lars

    2011-01-01

    Highlights: → In this study we have demonstrated that FLT3 activation leads to activation of ERK5. → We have demonstrated that ERK5 is involved in activation of AKT downstream of FLT3. → (BIX02188) blocks activation of ERK5 and induces apoptosis in FLT3 Ba/F3 cells. → (BIX02188) induce apoptosis in the two leukemic cell lines MV4-11 and MOLM-13. -- Abstract: Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention. In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, (BIX02188), we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.

  6. Chemical Space of FLT3 Inhibitors as Potential Anti-AML Drugs.

    Science.gov (United States)

    Lan, Qing-Yuan; Zhi, Yan-Le; Heng, Hao; Tian, Jie-Yi; Guo, Xiao-Xing; Liu, Hai-Chun; Chen, Ya-Dong; Lu, Tao; Lu, Shuai

    2017-11-20

    FLT3 is a member of receptor tyrosine kinase III family, mainly expressed in hematopoietic cells. The aberrant expression and function of FLT3 are strongly related to leukemia, especially acute myeloid leukemia. Its varieties of amino-acid residues mutations, such as FLT3-ITDs and -TKDs, can induce constant proliferation of hematological tumor cells with poor prognosis. Hence FLT3 serves as a promising target in AML chemotherapy. This review focused on the progress of FLT3 inhibitors study including those that have entered clinical trials or were reported in numerous patents all over the world. Thus, we provided a useful reference for the development of new anti-leukemia drugs. Through a comprehensive retrospective study, FLT3 inhibitors in several patent applications were identified and classified into five categories, including quinolone-related, indole-related, ureas, pyrimidines and other compounds. For each category of compounds, the structural feature, SAR, biological activity and current research status were thoroughly reviewed and analyzed. Although some of those compounds expressed potent bioactivities and have reached the advanced clinical trials for the treatment of leukemia, there are still several problems need to be faced before they enter the market eventually, especially the drug resistance issue. The improvement of therapeutic potency for FLT3 inhibitors might depend on the useful combination therapy and further refinement of the intrinsic properties of FLT3 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. FLT3 mutations in canine acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Suter, Steven E; Small, George W; Seiser, Eric L; Thomas, Rachael; Breen, Matthew; Richards, Kristy L

    2011-01-01

    FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit FLT3 ITD mutations. We molecularly characterized FLT3 mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via in vitro proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting. The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have FLT3 ITD mutations and FLT3 mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the FLT3 mutation. Finally, western blots were used to confirm the conserved downstream mediators of FLT3 activating mutations. These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias

  8. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.

    Science.gov (United States)

    Kapoor, Shivani; Natarajan, Karthika; Baldwin, Patrick R; Doshi, Kshama A; Lapidus, Rena G; Mathias, Trevor J; Scarpa, Mario; Trotta, Rossana; Davila, Eduardo; Kraus, Manfred; Huszar, Dennis; Tron, Adriana E; Perrotti, Danilo; Baer, Maria R

    2018-01-01

    Purpose: fms -like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition. Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivo Results: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G 1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML. Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress

    Science.gov (United States)

    Doshi, Kshama A.; Trotta, Rossana; Natarajan, Karthika; Rassool, Feyruz V.; Tron, Adriana E.; Huszar, Dennis; Perrotti, Danilo; Baer, Maria R.

    2016-01-01

    Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD. PMID:27374090

  10. FLT3 and JAK2 Mutations in Acute Myeloid Leukemia Promote Interchromosomal Homologous Recombination and the Potential for Copy Neutral Loss of Heterozygosity.

    Science.gov (United States)

    Gaymes, Terry J; Mohamedali, Azim; Eiliazadeh, Anthony L; Darling, David; Mufti, Ghulam J

    2017-04-01

    Acquired copy neutral LOH (CN-LOH) is a frequent occurrence in myeloid malignancies and is often associated with resistance to standard therapeutic modalities and poor survival. Here, we show that constitutive signaling driven by mutated FLT3 and JAK2 confers interchromosomal homologous recombination (iHR), a precedent for CN-LOH. Using a targeted recombination assay, we determined significant iHR activity in internal tandem duplication FLT3 (FLT3-ITD) and JAK2V617F-mutated cells. Sister chromatid exchanges, a surrogate measure of iHR, was significantly elevated in primary FLT3-ITD normal karyotype acute myeloid leukemia (NK-AML) compared with wild-type FLT3 NK-AML. HR was harmonized to S phase of the cell cycle to repair broken chromatids and prevent iHR. Increased HR activity in G 0 arrested primary FLT3-ITD NK-AML in contrast to wild-type FLT3 NK-AML. Cells expressing mutated FLT3-ITD demonstrated a relative increase in mutation frequency as detected by thymidine kinase (TK) gene mutation assay. Moreover, resistance was associated with CN-LOH at the TK locus. Treatment of FLT3-ITD- and JAK2V617F-mutant cells with the antioxidant N -acetylcysteine diminished reactive oxygen species (ROS), restoring iHR and HR levels. Our findings show that mutated FLT3-ITD and JAK2 augment ROS production and HR, shifting the cellular milieu toward illegitimate recombination events such as iHR and CN-LOH. Therapeutic reduction of ROS may thus prevent leukemic progression and relapse in myeloid malignancies. Cancer Res; 77(7); 1697-708. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Frequency and Prognostic Relevance of FLT3 Mutations in Saudi Acute Myeloid Leukemia Patients

    Directory of Open Access Journals (Sweden)

    Ghaleb Elyamany

    2014-01-01

    Full Text Available The Fms-like tyrosine kinase-3 (FLT3 is a receptor tyrosine kinase that plays a key role in cell survival, proliferation, and differentiation of hematopoietic stem cells. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia (AML. AML patients with FLT3 internal tandem duplication (ITD mutations have poor cure rates the prognostic significance of point mutations; tyrosine kinase domain (TKD is still unclear. We analyzed the frequency of FLT3 mutations (ITD and D835 in patients with AML at diagnosis; no sufficient data currently exist regarding FLT3 mutations in Saudi AML patients. This study was aimed at evaluating the frequency of FLT3 mutations in patients with AML and its significance for prognosis. The frequency of FLT3 mutations in our study (18.56% was lower than many of the reported studies, FLT3-ITD mutations were observed in 14.4%, and FLT3-TKD in 4.1%, of 97 newly diagnosed AML patients (82 adult and 15 pediatric. Our data show significant increase of FLT3 mutations in male more than female (13 male, 5 female. Our results support the view that FLT3-ITD mutation has strong prognostic factor in AML patients and is associated with high rate of relapse, and high leucocytes and blast count at diagnosis and relapse.

  12. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial.

    Directory of Open Access Journals (Sweden)

    Weidong Xiong

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK. This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs, in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF.Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation.These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.

  13. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    Full Text Available Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68 in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%. Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-, a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3 and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements. The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%. To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

  14. FLT3/ITD associated with an immature immunophenotype in PML-RARα leukemia

    Directory of Open Access Journals (Sweden)

    Mariko Takenokuchi

    2012-10-01

    Full Text Available Acute promyelocytic leukemia (APL is characterized by the specific PML-RARa fusion gene resulting from translocation t(15;17 (q22;q12. Internal tandem duplication (ITD of the FLT3 gene has been observed in approximately 35% of APLs, and large-scale studies have identified the presence of ITD as an adverse prognostic factor for acute myeloblastic leukemia (AML patients. Aberrant expressions of surface antigens, such as CD2, CD34, and CD56, have been found in APL, but the implications of this are not well understood. We investigated the incidence of the FLT3/ITD mutation and FLT3/D835 (I836 point mutation in 25 APL patients. Incidence ratios of FLT3/ITD, D835 (I836, and both FLT3/ITD and D835 (I836 were 36%, 36% and 8%, respectively. FLT3/ITD+ cases showed a predominance of the bcr3 isoform (P=0.008 and M3v morphology (P<0.001. We found that all FLT3/ITD+ cases expressed CD2 (9 of 9 more frequently than that of FLT3/ITD- (1 of 16 (P<0.001, while only one of the CD2+ cases (1 of 10, 10% did not harbor FLT3/ITD, and all CD2+CD34+ cases (5 of 5, 100% harbored FLT3/ITD. In addition, quantitative polymerase chain reaction analysis showed that FLT3 mRNA was more abundantly expressed in FLT3/ITD+ than that in FLT3/ITD- (P=0.025, while there was no difference between D835(I836+ and D835(I836- with regards to aberrant surface-antigen expression, expression levels of FLT3 mRNA, M3v morphology, and the bcr3 isoform of PML-RARa mRNA. This study demonstrates that the presence of FLT3/ITD, but not D835 (I836, is closely related to aberrant CD2 expression and high expression levels of FLT3 mRNA. Our findings also suggest that FLT3/ITD as a secondary genetic event may block differentiation at the immature stage of APL.

  15. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line.

    Science.gov (United States)

    Tima, Singkome; Ichikawa, Hideki; Ampasavate, Chadarat; Okonogi, Siriporn; Anuchapreeda, Songyot

    2014-04-25

    Leukemia is a hematologic malignancy with a frequent incidence and high mortality rate. Previous studies have shown that the FLT3 gene is overexpressed in leukemic blast cells, especially in acute myeloid leukemia. In this study, a commercially available curcuminoid mixture (1), pure curcumin (2), pure demethoxycurcumin (3), and pure bisdemethoxycurcumin (4) were investigated for their inhibitory effects on cell growth, FLT3 expression, and cell cycle progression in an FLT3-overexpressing EoL-1 leukemic cell line using an MTT assay, Western blotting, and flow cytometry, respectively. The mixture (1) and compounds 2-4 demonstrated cytotoxic effects with IC50 values ranging from 6.5 to 22.5 μM. A significant decrease in FLT3 protein levels was found after curcuminoid treatment with IC20 doses, especially with mixture 1 and compound 2. In addition, mixture 1 and curcumin (2) showed activity on cell cycle arrest at the G0/G1 phase and decreased the FLT3 and STAT5A protein levels in a dose-dependent manner. Compound 2 demonstrated the greatest potential for inhibiting cell growth, cell cycle progression, and FLT3 expression in EoL-1 cells. This investigation has provided new findings regarding the effect of turmeric curcuminoids on FLT3 expression in leukemic cells.

  16. Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML.

    Science.gov (United States)

    Sayar, Hamid; Liu, Yan; Gao, Rui; Zaid, Mohammad Abu; Cripe, Larry D; Weisenbach, Jill; Sargent, Katie J; Nassiri, Mehdi; Li, Lang; Konig, Heiko; Suvannasankha, Attaya; Pan, Feng; Shanmugam, Rajasubramaniam; Goswami, Chirayu; Kapur, Reuben; Xu, Mingjiang; Boswell, H Scott

    2018-01-19

    Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted agents acting on distinct effectors, at the levels of both signal transduction and chromatin remodeling, in relapsed/refractory AML's, including Flt3ITD+ve, described with a signature of repressed tumor suppressor genes, involving Wnt antagonist RUNX3 , occurring along with ID1 and HOXA over-expressions. We tracked patient response to combination of Flt3/Raf inhibitor, Sorafenib, and Vorinostat, pan-histone deacetylase inhibitor, without or with added Bortezomib, in consecutive phase I trials. A striking association of rapid objective remissions (near-complete, complete responses) was noted to accompany induced early pharmacodynamic changes within patient blasts in situ, involving these effectors, significantly linking RUNX3 /Wnt antagonist de-repression (80%) and ID1 downregulation (85%), to a response, also preceded by profound HOXA9 repression. Response occurred in context of concurrent TET2 mutation/hypomorphy and Flt3ITD+ve mutation (83% of complete responses). Addition of Bortezomib to the combination was vital to attainment of complete response in Flt3ITD+ve cases exhibiting such Wnt pathway dysregulation.

  17. FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey

    2010-09-01

    Full Text Available Abstract Background Mutations in FLT3 result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of FLT3 mutations in a population series of childhood leukemia patients from Northern California. Methods We screened and sequenced FLT3 mutations (point mutations and internal tandem duplications, ITDs among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods. Results We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12% and 9 of 441 acute lymphocytic leukemias (ALLs, 2%. Among AMLs, FLT3 mutations were more common in older patients, and among ALLs, FLT3 mutations were more common in patients with high hyperdiploidy (3.7% than those without this cytogenetic feature (1.4%. Five FLT3 ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor FLT3 mutations at birth. Conclusions FLT3 mutations were not common in our population-based patient series in California, and patients who harbor FLT3 mutations most likely acquire them after they are born.

  18. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  19. Neurotrophin-3 and FLT3 Tyrosine Kinase Receptor in Perinatal Life

    Directory of Open Access Journals (Sweden)

    Ariadne Malamitsi-Puchner

    2005-01-01

    Full Text Available Our aim is to determine—in 30 healthy full-term infants and their mothers—circulating levels of neurotrophin-3 (NT-3 (important for antenatal and postnatal brain development and implicated in the immune response and FLT3 tyrosine kinase receptor (FLT3 (controlling hematopoiesis and found in the nervous tissue, in the fetal and neonatal life. NT-3 levels, in contrast to FLT3 ones, increased significantly on the fourth postnatal day in relation to the low levels found in the mother, fetus, and day 1 neonate (P=.03, respectively. Maternal and umbilical NT3 levels positively correlated with respective FLT3 levels (P=.003 and P=.03. Circulating NT-3 levels increased in early neonatal life, possibly due to exposure to various stimuli soon after birth. FLT3 levels do not seem to behave accordingly, although these two substances probably synergize.

  20. The Important Role of FLT3-L in Ex Vivo Expansion of Hematopoietic Stem Cells following Co-Culture with Mesenchymal Stem Cells.

    Science.gov (United States)

    Oubari, Farhad; Amirizade, Naser; Mohammadpour, Hemn; Nakhlestani, Mozhdeh; Zarif, Mahin Nikougoftar

    2015-01-01

    Hematopoietic stem cells (HSCs) transplantation using umbilical cord blood (UCB) has improved during the last decade. Because of cell limitations, several studies focused on the ex vivo expansion of HSCs. Numerous investigations were performed to introduce the best cytokine cocktails for HSC expansion The majority used the Fms-related tyrosine kinase 3 ligand (FLT3-L) as a critical component. According to FLT3-L biology, in this study we have investigated the hypothesis that FLT3-L only effectively induces HSCs expansion in the presence of a mesenchymal stem cell (MSC) feeder. In this experimental study, HSCs and MSCs were isolated from UCB and placenta, respectively. HSCs were cultured in different culture conditions in the presence and absence of MSC feeder and cytokines. After ten days of culture, total nucleated cell count (TNC), cluster of differentiation 34+(CD34(+)) cell count, colony forming unit assay (CFU), long-term culture initiating cell (LTC-IC), homeobox protein B4 (HoxB4) mRNA and surface CD49d expression were evaluated. The fold increase for some culture conditions was compared by the t test. HSCs expanded in the presence of cytokines and MSCs feeder. The rate of expansion in the co-culture condition was two-fold more than culture with cytokines (Pculture condition at a level of 20-fold equal to the presence of stem cell factor (SCF), thrombopoietin (TPO) and FLT3-L without feeder cells. The number of extracted colonies from LTC-IC and CD49d expression compared with a cytokine cocktail condition meaningfully increased (Pculture with MSCs can induce high yield expansion of HSCs and be a substitute for the universal cocktail of SCF, TPO and FLT3-L in feeder-free culture.

  1. Temporal Changes in FLT3 ITD Regulation of Stem Cell Self Renewal and Leukemogenesis

    Science.gov (United States)

    2016-11-01

    AML) more frequently in adults than in children. FLT3-ITD encodes a constitutively active FLT3 tyrosine kinase. This mutation occurs in ~30% of adult...2006). FLT3ITD encodes a constitutively active tyrosine kinase 87   receptor that has been shown to activate the STAT5, MAP-kinase (MAPK), PI3-88...define cell populations: HSCs (CD150+, CD48-Lineage-, Sca1+, c-kit+), HPCs 570   (CD48-Lineage-, Sca1+, c-kit+), and GMPs (Lineage-, Sca1-, CD127-, c

  2. Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model

    Science.gov (United States)

    Poitras, Jennifer L.; Heiser, Diane; Li, Li; Nguyen, Bao; Nagai, Kozo; Duffield, Amy S.; Gamper, Christopher; Small, Donald

    2016-01-01

    Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts. PMID:27636998

  3. Targeting Selectins and Their Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Alessandro eNatoni

    2016-04-01

    Full Text Available Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids have been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases. Humans differentially express twenty different sialyltransferases in a tissue-specific manner, each of which catalyze the attachment of sialic acids via different glycosidic linkages (2-3; 2-6 or 2-8 to the underlying glycan chain. One important mechanism whereby overexpression of sialyltransferases contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural-isomer sialyl-Lewis A, which are synthesized by the combined action of alpha 1-3-fucosyltransferases, 2-3-sialyltransferases, 1-4-galactosyltranferases, and N-acetyl--glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these sialyltransferases have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular sialyltransferases, could be beneficial to many cancer patients. Potential strategies include sialyltransferase inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of sialyltransferase inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical

  4. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD.

    Science.gov (United States)

    Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars

    2017-07-01

    The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.

  5. Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mariko Abe

    Full Text Available Internal tandem duplication (ITD mutations in the Fms-related tyrosine kinase 3 (FLT3 gene (FLT3-ITD are associated with poor prognosis in patients with acute myeloid leukemia (AML. Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21 and pre-B cell leukemia transcription factor 1 (Pbx1 that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression.

  6. Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD–induced myeloproliferation

    Science.gov (United States)

    Matsuoka, Sahoko; Thongjuea, Supat; Jamieson, Lauren; Atkinson, Deborah; Kharazi, Shabnam; Suda, Toshio

    2017-01-01

    Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD–driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology. PMID:28637883

  7. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML

    DEFF Research Database (Denmark)

    Knapper, Steven; Russell, Nigel; Gilkes, Amanda

    2017-01-01

    The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activ...

  8. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia

    International Nuclear Information System (INIS)

    Al-Jamal, Hamid Ali Nagi; Mat Jusoh, Siti Asmaa; Hassan, Rosline; Johan, Muhammad Farid

    2015-01-01

    Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0

  9. Characterisation and Clinical Significance of FLT3-ITD and non-ITD in Acute Myeloid Leukaemia Patients in Kelantan, Northeast Peninsular Malaysia.

    Science.gov (United States)

    Yunus, Noraini Mat; Johan, Muhammad Farid; Ali Nagi Al-Jamal, Hamid; Husin, Azlan; Hussein, Abdul Rahim; Hassan, Rosline

    2015-01-01

    Mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor gene may promote proliferation via activation of multiple signaling pathways. FLT3-internal tandem duplication (FLT3-ITD) is the most common gene alteration found in patients diagnosed with acute myeloid leukaemia (AML) and has been associated with poor prognosis. We performed mutational analysis of exons 14-15 and 20 of the FLT3 gene in 54 AML patients using PCR-CSGE (conformational sensitive gel electrophoresis) followed by sequencing analysis to characterise FLT3 mutations in adult patients diagnosed with AML at Hospital USM, Kelantan, Northeast Peninsular Malaysia. FLT3 exon 14-15 mutations were identified in 7 of 54 patients (13%) whereas no mutation was found in FLT3 exon 20. Six ITDs and one non-ITD mutation were found in exon 14 of the juxtamembrane (JM) domain of FLT3. FLT3-ITD mutations were associated with a significantly higher blast percentage (p-value=0.008) and white blood cell count (p-value=0.023) but there was no significant difference in median overall survival time for FLT3-ITD+/FLT3-ITD- within 2 years (p-value=0.374). The incidence of FLT3-ITD in AML patients in this particular region of Malaysia is low compared to the Western world and has a significant association with WBC and blast percentage.

  10. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain.

    Science.gov (United States)

    Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang

    2011-08-01

    Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.

  11. Incidence and significance of FLT3-ITD and NPM1 mutations in patients with normal karyotype acute myeloid leukaemia.

    LENUS (Irish Health Repository)

    Haslam, K

    2012-02-01

    BACKGROUND: Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder of haematopoietic progenitor cells. Approximately half of all adult AML patients have a normal karyotype (NK-AML) and an intermediate risk prognosis. AIMS: To determine the incidence and prognostic significance of NPM1 and FLT3-ITD mutations in a population of patients with NK-AML. METHODS: FLT3-ITD and NPM1 mutation status was retrospectively sought in presentation samples from 44 NK-AML patients. RESULTS: FLT3-ITD and NPM1 mutations were detected in 45.5 and 54.5% of patients, respectively, allowing stratification according to genotype. CONCLUSIONS: FLT3-ITD and NPM1 mutation status can be defined in NK-AML. Prospective screening for these mutations is advocated in all NK-AML patients, as the genotype is of clinical importance when considering treatment options including stem cell transplantation.

  12. Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies

    Science.gov (United States)

    Gozgit, Joseph M.; Wong, Matthew J.; Wardwell, Scott; Tyner, Jeffrey W.; Loriaux, Marc M.; Mohemmad, Qurish K.; Narasimhan, Narayana I.; Shakespeare, William C.; Wang, Frank; Druker, Brian J.; Clackson, Tim; Rivera, Victor M.

    2011-01-01

    Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα. PMID:21482694

  13. Attenuation of vaccinia virus by the expression of human Flt3 ligand

    Czech Academy of Sciences Publication Activity Database

    Žurková, K.; Hainz, P.; Kryštofová, J.; Kutinová, L.; Šanda, Miloslav; Němečková, Š.

    2010-01-01

    Roč. 7, č. 1 (2010), 109/1-109/15 ISSN 1743-422X Institutional research plan: CEZ:AV0Z40550506 Keywords : vaccinia virus * antibodies * virulence Subject RIV: CE - Biochemistry Impact factor: 2.546, year: 2010

  14. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation

    International Nuclear Information System (INIS)

    Vu, Hoang Anh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2009-01-01

    We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.

  15. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  16. Ligand-targeted theranostic nanomedicines against cancer.

    Science.gov (United States)

    Yao, Virginia J; D'Angelo, Sara; Butler, Kimberly S; Theron, Christophe; Smith, Tracey L; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Dobroff, Andrey S; Brinker, C Jeffrey; Bradbury, Andrew R M; Arap, Wadih; Pasqualini, Renata

    2016-10-28

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human sc

  17. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

    Science.gov (United States)

    Shanmugam, Rajasubramaniam; Gade, Padmaja; Wilson-Weekes, Annique; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A; Baghdadi, Tareq Al; Sargent, Katie J; Cripe, Larry D; Kalvakolanu, Dhananjaya V; Boswell, H Scott

    2012-01-15

    Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML. ©2011 AACR.

  18. SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control

    DEFF Research Database (Denmark)

    Reddy, P.N.G.; Serve, H.; Brandts, C.H.

    2012-01-01

    Activating mutations in the receptor tyrosine kinase FLT3 are frequently found in acute myelogenous leukemia patients and confer poor clinical prognosis. It is unclear how leukemic blasts escape cytokine control that regulates normal hematopoiesis. We have recently demonstrated that FLT3-internal...

  19. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  20. Should Low Molecular Weight PSMA Targeted Ligands Get Bigger and Use Albumin Ligands for PSMA Targeting?

    OpenAIRE

    Huang, Steve S.; Heston, Warren D.W.

    2017-01-01

    Prostate Specific Membrane Antigen (PSMA) is strongly expressed in prostate cancer. Recently a number of low-molecular-weight inhibitors have demonstrated excellent PSMA targeting activity for both imaging as well as Lutecium-177 radiotherapy in human trials. The paper by Choy et al raises the question of whether we can further increase the effectiveness of PSMA targeted therapy by adding an albumin-binding entity to low-molecular-weight agents

  1. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  2. Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Hovland Randi

    2007-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML. Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we examined the DNA damage related modulation of these proteins in relation to FLT3 mutational status and induction of apoptosis. Results Within one hour after exposure to ionizing radiation (IR, the AML cells (NB4, MV4-11, HL-60, primary AML cells showed an increase in Flt3 protein independent of mRNA levels, while the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4 cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin (DNR induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by apoptosis. Conclusion Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1, Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2. These observations suggest that defining the pathway(s modulating Flt3, Hdm2 and Mcl-1 may propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.

  3. HPPD: ligand- and target-based virtual screening on a herbicide target.

    Science.gov (United States)

    López-Ramos, Miriam; Perruccio, Francesca

    2010-05-24

    Hydroxyphenylpyruvate dioxygenase (HPPD) has proven to be a very successful target for the development of herbicides with bleaching properties, and today HPPD inhibitors are well established in the agrochemical market. Syngenta has a long history of HPPD-inhibitor research, and HPPD was chosen as a case study for the validation of diverse ligand- and target-based virtual screening approaches to identify compounds with inhibitory properties. Two-dimensional extended connectivity fingerprints, three-dimensional shape-based tools (ROCS, EON, and Phase-shape) and a pharmacophore approach (Phase) were used as ligand-based methods; Glide and Gold were used as target-based. Both the virtual screening utility and the scaffold-hopping ability of the screening tools were assessed. Particular emphasis was put on the specific pitfalls to take into account for the design of a virtual screening campaign in an agrochemical context, as compared to a pharmaceutical environment.

  4. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group.

    Science.gov (United States)

    Manara, E; Basso, G; Zampini, M; Buldini, B; Tregnago, C; Rondelli, R; Masetti, R; Bisio, V; Frison, M; Polato, K; Cazzaniga, G; Menna, G; Fagioli, F; Merli, P; Biondi, A; Pession, A; Locatelli, F; Pigazzi, M

    2017-01-01

    Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.

  5. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    Science.gov (United States)

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug

  6. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U

    2000-01-01

    for transduction of CD34+ cells. The effect of cytokine prestimulation on transduction efficiency and the population of uncommitted CD34+CD38- cells was determined. CD34+ cells harvested from umbilical cord blood were kept in suspension cultures and stimulated with combinations of the cytokines stem cell factor......Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... in a higher percentage of cells than the EGFP gene, but there seemed to be a positive correlation between expression of the two genes. The effect of cytokine prestimulation was therefore monitored using EGFP as marker for transduction. When SCF was compared to SCF in combination with more potent cytokines...

  8. A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)

    Science.gov (United States)

    Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott

    2014-01-01

    Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027

  9. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mutation Analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese Patients with Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available Since the discovery of JAK2V617F tyrosine kinase-activating mutation, several genes have been found mutated in myeloproliferative neoplasms (MPNs. FLT3-ITD, NPM1, and DNMT3A mutations frequently occurred in AML patients and have been found conferred with myeloproliferative neoplasms in mouse model. Therefore, we sought to search for mutations in JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in 129 cases including 120 classic MPN cases and 9 MDS/MPN cases. JAK2V617F mutation was found in 60% of the 120 classic MPNs. However, none of the patients displayed FLT3-ITD and NPM1 mutations; only 2 patients harbored DNMT3A R882 mutation. Further studies including whole-genome sequence will be conducted to investigate the possible involvement of these genes in MPN.

  11. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima.

    Science.gov (United States)

    Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Alexey V; Kutov, Danil C; Sobolev, Sergey I; Voevodin, Vladimir V; Sulimov, Vladimir B

    2015-01-01

    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  12. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Directory of Open Access Journals (Sweden)

    Igor V. Oferkin

    2015-01-01

    Full Text Available The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  13. Ligand design for riboswitches, an emerging target class for novel antibiotics.

    Science.gov (United States)

    Rekand, Illimar Hugo; Brenk, Ruth

    2017-09-01

    Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.

  14. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben

    2015-01-01

    SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130

  15. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Anindya Chatterjee

    2014-11-01

    Full Text Available Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML and myeloproliferative neoplasms (MPNs, and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  16. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    Science.gov (United States)

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  17. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    Science.gov (United States)

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  18. Detection of TET2, KRAS and CBL variants by Next Generation Sequencing and analysis of their correlation with JAK2 and FLT3 in childhood AML

    Directory of Open Access Journals (Sweden)

    Dilara Fatma Akin

    2016-04-01

    Conclusion: We found novel mutations for TET2, KRAS, and CBL. The detected variants in this article seem to be the first screening results of genes studied by NGS in childhood AML patients. Our results also showed some degree of association between FLT3-ITD and TET2, KRAS, CBL mutations.

  19. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

    NARCIS (Netherlands)

    Mathew, N.R.; Baumgartner, F.; Braun, L.; O'Sullivan, D.; Thomas, S.; Waterhouse, M.; Muller, T.A.; Hanke, K.; Taromi, S.; Apostolova, P.; Illert, A.L.; Melchinger, W.; Duquesne, S.; Schmitt-Graeff, A.; Osswald, L.; Yan, K.L.; Weber, A; Tugues, S.; Spath, S.; Pfeifer, D.; Follo, M.; Claus, R.; Lubbert, M.; Rummelt, C.; Bertz, H.; Wasch, R.; Haag, J.; Schmidts, A.; Schultheiss, M.; Bettinger, D.; Thimme, R.; Ullrich, E.; Tanriver, Y.; Vuong, G.L.; Arnold, R.; Hemmati, P.; Wolf, D.; Ditschkowski, M.; Jilg, C.; Wilhelm, K.; Leiber, C.; Gerull, S.; Halter, J.; Lengerke, C.; Pabst, T.; Schroeder, T.; Kobbe, G.; Rosler, W.; Doostkam, S.; Meckel, S.; Stabla, K.; Metzelder, S.K.; Halbach, S.; Brummer, T.; Hu, Z; Dengjel, J.; Hackanson, B.; Schmid, C.; Holtick, U.; Scheid, C.; Spyridonidis, A.; Stolzel, F.; Ordemann, R.; Muller, L.P.; Sicre-de-Fontbrune, F.; Ihorst, G.; Kuball, J.; Ehlert, J.E.; Feger, D.; Wagner, E.M.; Cahn, J.Y.; Schnell, J.; Kuchenbauer, F.; Bunjes, D.; Chakraverty, R.; Richardson, S.; Gill, S.; Kroger, N.; Ayuk, F.; Vago, L.; Ciceri, F.; Muller, A.M.; Kondo, T.; Teshima, T.; Klaeger, S.; Kuster, B.; Kim, D.D.H.; Weisdorf, D.; Velden, W.J. van der; Dorfel, D.; Bethge, W.; Hilgendorf, I.; Hochhaus, A.; Andrieux, G.; Borries, M.; Busch, H.; Magenau, J.; Reddy, P.; Labopin, M.; Antin, J.H., et al.

    2018-01-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a

  20. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

    Science.gov (United States)

    Mathew, Nimitha R; Baumgartner, Francis; Braun, Lukas; O'Sullivan, David; Thomas, Simone; Waterhouse, Miguel; Müller, Tony A; Hanke, Kathrin; Taromi, Sanaz; Apostolova, Petya; Illert, Anna L; Melchinger, Wolfgang; Duquesne, Sandra; Schmitt-Graeff, Annette; Osswald, Lena; Yan, Kai-Li; Weber, Arnim; Tugues, Sonia; Spath, Sabine; Pfeifer, Dietmar; Follo, Marie; Claus, Rainer; Lübbert, Michael; Rummelt, Christoph; Bertz, Hartmut; Wäsch, Ralph; Haag, Johanna; Schmidts, Andrea; Schultheiss, Michael; Bettinger, Dominik; Thimme, Robert; Ullrich, Evelyn; Tanriver, Yakup; Vuong, Giang Lam; Arnold, Renate; Hemmati, Philipp; Wolf, Dominik; Ditschkowski, Markus; Jilg, Cordula; Wilhelm, Konrad; Leiber, Christian; Gerull, Sabine; Halter, Jörg; Lengerke, Claudia; Pabst, Thomas; Schroeder, Thomas; Kobbe, Guido; Rösler, Wolf; Doostkam, Soroush; Meckel, Stephan; Stabla, Kathleen; Metzelder, Stephan K; Halbach, Sebastian; Brummer, Tilman; Hu, Zehan; Dengjel, Joern; Hackanson, Björn; Schmid, Christoph; Holtick, Udo; Scheid, Christof; Spyridonidis, Alexandros; Stölzel, Friedrich; Ordemann, Rainer; Müller, Lutz P; Sicre-de-Fontbrune, Flore; Ihorst, Gabriele; Kuball, Jürgen; Ehlert, Jan E; Feger, Daniel; Wagner, Eva-Maria; Cahn, Jean-Yves; Schnell, Jacqueline; Kuchenbauer, Florian; Bunjes, Donald; Chakraverty, Ronjon; Richardson, Simon; Gill, Saar; Kröger, Nicolaus; Ayuk, Francis; Vago, Luca; Ciceri, Fabio; Müller, Antonia M; Kondo, Takeshi; Teshima, Takanori; Klaeger, Susan; Kuster, Bernhard; Kim, Dennis Dong Hwan; Weisdorf, Daniel; van der Velden, Walter; Dörfel, Daniela; Bethge, Wolfgang; Hilgendorf, Inken; Hochhaus, Andreas; Andrieux, Geoffroy; Börries, Melanie; Busch, Hauke; Magenau, John; Reddy, Pavan; Labopin, Myriam; Antin, Joseph H; Henden, Andrea S; Hill, Geoffrey R; Kennedy, Glen A; Bar, Merav; Sarma, Anita; McLornan, Donal; Mufti, Ghulam; Oran, Betul; Rezvani, Katayoun; Shah, Omid; Negrin, Robert S; Nagler, Arnon; Prinz, Marco; Burchert, Andreas; Neubauer, Andreas; Beelen, Dietrich; Mackensen, Andreas; von Bubnoff, Nikolas; Herr, Wolfgang; Becher, Burkhard; Socié, Gerard; Caligiuri, Michael A; Ruggiero, Eliana; Bonini, Chiara; Häcker, Georg; Duyster, Justus; Finke, Jürgen; Pearce, Erika; Blazar, Bruce R; Zeiser, Robert

    2018-03-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD + leukemia cells. This synergized with the allogeneic CD8 + T cell response, leading to long-term survival in six mouse models of FLT3-ITD + AML. Sorafenib-related IL-15 production caused an increase in CD8 + CD107a + IFN-γ + T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD + AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 + T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

  1. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    Science.gov (United States)

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  2. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  3. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer

    Science.gov (United States)

    2014-10-01

    flanking residues around the LXXLL motif to our lead D2 compound. * To facilitate the synthesis of tris-benzamide analogues designed to target AR...we used only alkyl groups such as n- propyl , isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl and isopentyl groups for side chain diversity of the...by reacting 3-alkoxy-4-nitrobenzoyl chlorides 2 with methyl 3-alkoxy-4-aminobenzoates 3 (Scheme 1).21 NO2 O NHO R2 O R1 O O NH2 O R1 O Oa N H NO2 O

  5. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    Science.gov (United States)

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  6. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    Science.gov (United States)

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  7. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  8. Phase 1/2 study of pacritinib, a next generation JAK2/FLT3 inhibitor, in myelofibrosis or other myeloid malignancies

    Directory of Open Access Journals (Sweden)

    Srdan Verstovsek

    2016-12-01

    Full Text Available Abstract Background Pacritinib (SB1518 is a highly selective kinase inhibitor with specificity for JAK2, FLT3, IRAK1, and CFS1R. This multicenter phase 1/2 study evaluated the maximum tolerated dose (MTD, safety, and clinical activity of pacritinib in patients with myelofibrosis (MF and other advanced myeloid malignancies. Methods In the phase 1 dose-escalation part of the study, 43 adults with advanced myeloid malignancies received pacritinib 100 to 600 mg once daily (QD. In the phase 2 part of the study, 31 adults with refractory or intermediate- or high-risk newly diagnosed MF and any degree of cytopenia received pacritinib 400 mg QD. The primary endpoint is a ≥35% reduction in spleen volume at week 24 as determined by magnetic resonance imaging. Results Five patients (11.6% experienced a dose-limiting toxicity during cycle 1 of phase 1. The clinical benefit rate was 86.0% (13 patients achieving clinical improvement and 24 patients having stable disease. The MTD was established at 500 mg QD, and the recommended phase 2 dose was 400 mg QD. In phase 2, the primary endpoint was achieved by 23.5% of evaluable patients (4/17, with 47.4% (9/19 achieving a ≥50% spleen length reduction at week 24 as measured by physical examination. At week 24, 38.9% of evaluable patients (7/18 achieved a ≥50% decrease in MF Quality of Life and Symptom Assessment total score. Gastrointestinal toxicities were the most common adverse events and were predominantly grade 1/2 in severity. Grade 3/4 anemia was reported in 5/31 patients and grade 3/4 thrombocytopenia was reported in 3/31 patients. The most frequent AEs considered to be treatment related were diarrhea (28/31, nausea (15/31, vomiting (9/31, and fatigue (4/31. Grade 3 treatment-related AEs were reported in seven patients (22.6%, four of whom had diarrhea. No grade 4/5 treatment-related AEs were reported. No leukopenia, neutropenia, or lymphopenia were reported. Conclusions Pacritinib was well

  9. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    Science.gov (United States)

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    Science.gov (United States)

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  11. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers

    International Nuclear Information System (INIS)

    Wellstein, Anton

    2012-01-01

    The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.

  12. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

    Science.gov (United States)

    Liu, Xian; Xu, Yuan; Li, Shanshan; Wang, Yulan; Peng, Jianlong; Luo, Cheng; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2014-01-01

    Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound. We tested a pipeline enabling large-scale target fishing and drug repositioning, based on simple fingerprint similarity rankings with data fusion. A large library containing 533 drug relevant targets with 179,807 active ligands was compiled, where each target was defined by its ligand set. For a given query molecule, its target profile is generated by similarity searching against the ligand sets assigned to each target, for which individual searches utilizing multiple reference structures are then fused into a single ranking list representing the potential target interaction profile of the query compound. The proposed approach was validated by 10-fold cross validation and two external tests using data from DrugBank and Therapeutic Target Database (TTD). The use of the approach was further demonstrated with some examples concerning the drug repositioning and drug side-effects prediction. The promising results suggest that the proposed method is useful for not only finding promiscuous drugs for their new usages, but also predicting some important toxic liabilities. With the rapid increasing volume and diversity of data concerning drug related targets and their ligands, the simple ligand-based target fishing approach would play an important role in assisting future drug design and discovery.

  13. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination

    OpenAIRE

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaegen, Marie-Lyse; Jérôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Préat, Véronique

    2009-01-01

    The presence of RGD on nanoparticles allows the targeting of β1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of P...

  14. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity.

    Science.gov (United States)

    Tacken, Paul J; Zeelenberg, Ingrid S; Cruz, Luis J; van Hout-Kuijer, Maaike A; van de Glind, Gerline; Fokkink, Remco G; Lambeck, Annechien J A; Figdor, Carl G

    2011-12-22

    Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted delivery of TLRLs to human DCs enhanced the maturation and production of immune stimulatory cytokines and the Ag-specific activation of naive CD8(+) T cells. In vivo studies demonstrated that nanoparticles carrying Ag induced cytotoxic T-lymphocyte responses at 100-fold lower adjuvant dose when TLRLs were co-encapsulated instead of administered in soluble form. Moreover, the efficacy of these targeted TLRLs reduced the serum cytokine storm and related toxicity that is associated with administration of soluble TLRLs. We conclude that the targeted delivery of adjuvants may improve the efficacy and safety of DC-based vaccines.

  15. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    Science.gov (United States)

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  16. Importância da detecção das mutações no gene FLT3 e no gene NPM1 na leucemia mieloide aguda - Classificação da Organização Mundial de Saúde 2008 Importance of detecting FLT3 and NPM1 gene mutations in acute myeloid leukemia -World Health Organization Classification 2008

    Directory of Open Access Journals (Sweden)

    Marley Aparecida Licínio

    2010-01-01

    Full Text Available As leucemias mieloides agudas (LMA constituem um grupo de neoplasias malignas caracterizadas pela proliferação descontrolada de células hematopoéticas, decorrente de mutações que podem ocorrer em diferentes fases da diferenciação de células precursoras mieloides. Em 2008, a Organização Mundial da Saúde (OMS-2008 publicou uma nova classificação para neoplasias do sistema hematopoético e linfoide. De acordo com essa classificação, para um diagnóstico mais preciso e estratificação de prognóstico de pacientes com leucemias mieloides agudas, devem-se pesquisar mutações nos genes FLT3 e NPM1. Sabe-se que a presença de mutações no gene FLT3 é de prognóstico desfavorável e que as mutações no gene NPM1 do tipo A são de prognóstico favorável. Assim, nos países desenvolvidos, a análise das mutações no gene FLT3 e NPM1 tem sido considerada como um fator de prognóstico importante na decisão terapêutica em pacientes com diagnóstico de leucemias mieloides agudas. Considerando essas informações, é de extrema importância a análise das mutações no gene FLT3 (duplicação interna em tandem - DIT - e mutação pontual D835 e no gene NPM1 como marcadores moleculares para o diagnóstico, o prognóstico e a monitoração de doença residual mínima em pacientes com leucemias mieloides agudas.Acute myeloid leukemia (AML is a group of malignancies characterized by uncontrolled proliferation of hematopoietic cells resulting from mutations that occur at different stages in the differentiation of myeloid precursor cells. In 2008, the World Health Organization (WHO-2008 published a new classification for cancers of the hematopoietic and lymphoid system. According to this classification, FLT3 and NPM1 gene mutations should be investigated for a more precise diagnosis and prognostic stratification of AML patients. It is well known that the presence of FLT3 gene mutations is considered an unfavorable prognostic factor and type

  17. Rapid Exercise-Induced Mobilization of Dendritic Cells Is Potentially Mediated by a Flt3L- and MMP-9-Dependent Process in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Nathalie Deckx

    2015-01-01

    Full Text Available In healthy individuals, one exercise bout induces a substantial increase in the number of circulating leukocytes, while their function is transiently suppressed. The effect of one exercise bout in multiple sclerosis (MS is less studied. Since recent evidence suggests a role of dendritic cells (DC in the pathogenesis of MS, we investigated the effect of one combined endurance/resistance exercise bout on the number and function of DC in MS patients and healthy controls. Our results show a rapid increase in the number of DC in response to physical exercise in both MS patients and controls. Further investigation revealed that in particular DC expressing the migratory molecules CCR5 and CD62L were increased upon acute physical activity. This may be mediated by Flt3L- and MMP-9-dependent mobilization of DC, as demonstrated by increased circulating levels of Flt3L and MMP-9 following one exercise bout. Circulating DC display reduced TLR responsiveness after acute exercise, as evidenced by a less pronounced upregulation of activation markers, HLA-DR and CD86, on plasmacytoid DC and conventional DC, respectively. Our results indicate mobilization of DC, which may be less prone to drive inflammatory processes, following exercise. This may present a negative feedback mechanism for exercise-induced tissue damage and inflammation.

  18. Targeting bladder tumor cells in voided urine of Chinese patients with FITC-CSNRDARRC peptide ligand

    Directory of Open Access Journals (Sweden)

    Jia XY

    2012-05-01

    . The advantage was maintained in terms of the detection of invasive tumors between the FITC-CSNRDARRC ligand and UC (90.48% versus 23.81%, P = 0.001 as well as between FISH and UC (85.71% versus 23.81%, P = 0.003. The specificities for the FITC-CSNRDARRC ligand, UC, and FISH were 100%.Conclusion: Results show that the FITC-CSNRDARRC ligand is a promising noninvasive tool for diagnosis and surveillance in patients suspected of having a new bladder tumor.Keywords: bladder tumor, tumor-targeting, FITC-CSNRDARRC ligand, fluorescent probe

  19. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  20. Early Death in Two Patients with Acute Promyelocytic Leukemia Presenting the bcr3 Isoform, FLT3-ITD Mutation, and Elevated WT1 Level

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Despite major advances in the treatment of acute promyelocytic leukemia (APL, the problem of early death (ED remains unsolved. Alongside the currently known clinical and hematological risk factors, prognostic significance has been attributed to internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD, hypogranular variant morphology, and the bcr-3 isoform of PML-RARα. We describe premature death of two patients with the hypogranular variant of APL who presented remarkably high expression levels of Wilms' tumor gene (WT1. Our results point to WT1 as an important prognostic factor of ED that needs to be promptly evaluated in all newly diagnosed cases of APL.

  1. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    Science.gov (United States)

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  2. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  3. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    Science.gov (United States)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  4. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures.

    Science.gov (United States)

    Doria, Filippo; Nadai, Matteo; Folini, Marco; Di Antonio, Marco; Germani, Luca; Percivalle, Claudia; Sissi, Claudia; Zaffaroni, Nadia; Alcaro, Stefano; Artese, Anna; Richter, Sara N; Freccero, Mauro

    2012-04-14

    The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies. This journal is © The Royal Society of Chemistry 2012

  5. Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor-γ Ligands in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Raphael A. Nemenoff

    2008-01-01

    Full Text Available Lung cancer is the leading cause of cancer death, and five-year survival remains poor, raising the urgency for new treatment strategies. Activation of PPARγ represents a potential target for both the treatment and prevention of lung cancer. Numerous studies have examined the effect of thiazolidinediones such as rosiglitazone and pioglitazone on lung cancer cells in vitro and in xenograft models. These studies indicate that activation of PPARγ inhibits cancer cell proliferation as well as invasiveness and metastasis. While activation of PPARγ can occur by direct binding of pharmacological ligands to the molecule, emerging data indicate that PPARγ activation can occur through engagement of other signal transduction pathways, including Wnt signaling and prostaglandin production. Data, both from preclinical models and retrospective clinical studies, indicate that activation of PPARγ may represent an attractive chemopreventive strategy. This article reviews the existing biological and mechanistic experiments focusing on the role of PPARγ in lung cancer, focusing specifically on nonsmall cell lung cancer.

  6. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target.

    Directory of Open Access Journals (Sweden)

    Francesca Spyrakis

    Full Text Available The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block

  7. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    International Nuclear Information System (INIS)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J.; Rodriguez-Rodriguez, Cristina

    2017-01-01

    The 18-membered macrocycle H 2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [ 225 Ac(macropa)] + remained intact over 7 to 8 days when challenged with either excess La 3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J. [Cornell Univ., Ithaca, NY (United States). Chemistry and Chemical Biology; Brown, Victoria; Jermilova, Una; Ramogida, Caterina F.; Robertson, Andrew K.H.; Schaffer, Paul; Radchenko, Valery [TRIUMF, Vancouver, BC (Canada). Life Science Div.; Kelly, James M.; Amor-Coarasa, Alejandro; Nikolopoulou, Anastasia; Ponnala, Shashikanth; Williams, Clarence Jr.; Babich, John W. [Radiology, Weill Cornell Medicine, New York, NY (United States); Rodriguez-Rodriguez, Cristina [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy and Centre for Comparative Medicine

    2017-11-13

    The 18-membered macrocycle H{sub 2}macropa was investigated for {sup 225}Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all {sup 225}Ac (26 kBq) in 5 min at RT. [{sup 225}Ac(macropa)]{sup +} remained intact over 7 to 8 days when challenged with either excess La{sup 3+} ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled {sup 225}Ac in just minutes at RT, and macropa-Tmab retained >99 % of its {sup 225}Ac in human serum after 7 days. In LNCaP xenograft mice, {sup 225}Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free {sup 225}Ac over 96 h. These findings establish macropa to be a highly promising ligand for {sup 225}Ac chelation that will facilitate the clinical development of {sup 225}Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  10. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jian Jin

    Full Text Available In this content, a small molecular ligand of prostate specific membrane antigen (SMLP conjugated poly (caprolactone (PCL-b-poly (ethylene glycol (PEG copolymers with different block lengths were synthesized to construct a satisfactory drug delivery system. Four different docetaxel-loaded polymeric micelles (DTX-PMs were prepared by dialysis with particle sizes less than 60 nm as characterized by dynamic light scattering (DLS and transmission electron microscope (TEM. Optimization of the prepared micelles was conducted based on short-term stability and drug-loading content. The results showed that optimized systems were able to remain stable over 7 days. Compared with Taxotere, DTX-PMs with the same ratio of hydrophilic/hydrophobic chain length displayed similar sustained release behaviors. The cytotoxicity of the optimized targeted DTX-PCL12K-PEG5K-SMLP micelles (DTX-PMs2 and non-targeted DTX-PCL12K-mPEG5K micelles (DTX-PMs1 were evaluated by MTT assays using prostate specific membrane antigen (PSMA positive prostate adenocarcinoma cells (LNCaP. The results showed that the targeted micelles had a much lower IC50 than their non-targeted counterparts (48 h: 0.87 ± 0.27 vs 13.48 ± 1.03 µg/ml; 72 h: 0.02 ± 0.008 vs 1.35 ± 0.54 µg/ml. In vitro cellular uptake of PMs2 showed 5-fold higher fluorescence intensity than that of PMs1 after 4 h incubation. According to these results, the novel nano-sized drug delivery system based on DTX-PCL-PEG-SMLP offers great promise for the treatment of prostatic cancer.

  11. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting.

    Directory of Open Access Journals (Sweden)

    Aman P Mann

    Full Text Available Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA against E-selectin (ESTA-1 by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D = 47 nM while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition of sLe(x positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1 that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.

  12. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.

    Science.gov (United States)

    Ambure, Pravin; Bhat, Jyotsna; Puzyn, Tomasz; Roy, Kunal

    2018-04-23

    Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, β-secretase, monoamine oxidase B, glycogen synthase kinase 3β, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.

  13. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.

    Science.gov (United States)

    Uspenska, Kateryna; Lykhmus, Olena; Gergalova, Galyna; Chernyshov, Volodymyr; Arias, Hugo R; Komisarenko, Sergiy; Skok, Maryna

    2017-08-24

    Several nicotinic acetylcholine receptor (nAChR) subtypes are expressed in mitochondria to regulate the internal pathway of apoptosis in ion channel-independent manner. However, the mechanisms of nAChR activation in mitochondria and targeting to mitochondria are still unknown. Nicotine has been shown to favor nAChR pentamer assembly, folding, and maturation on the way of biosynthesis. The idea of the present work was to determine whether nicotine affects the content, glycosylation, and function of mitochondrial nAChRs. Experiments were performed in isolated liver mitochondria from mice, that either consumed or not nicotine with the drinking water (200μL/L) for 7days. Mitochondria detergent lysates were studied by sandwich or lectin ELISA for the presence and carbohydrate composition of different nAChR subunits. Intact mitochondria were examined by flow cytometry for the binding of fluorescently labeled α-cobratoxin and were tested in functional assay of cytochrome c release under the effect of either Ca 2+ or wortmannin in the presence or absence of nAChR-selective ligands, including PNU-282987 (1nM), dihydro-β-erythroidine (DhβE, 1μM), PNU-120596 (0.3, 3, or 10μM) and desformylflustrabromine hydrochloride (dFBr, 0.001, 0.3, or 1μM). It was found that nicotine consumption increased the ratio of mitochondrial vs non-mitochondrial nAChRs in the liver, enhanced fucosylation of mitochondrial nAChRs, but prevented the binding of α-cobratoxin and the cytochrome c release-attenuating effects of nAChR-specific agonists, antagonists, or positive allosteric modulators. It is concluded that nicotine consumption in vivo favors nAChR glycosylation and trafficking to mitochondria but makes them less susceptible to the effects of specific ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular evolution of peptide ligands with custom-tailored characteristics for targeting of glycostructures.

    Directory of Open Access Journals (Sweden)

    Niels Röckendorf

    Full Text Available As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the "fitness" of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside G(M1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside G(M1 by a factor of 100 for L- and 400 for D-peptides.

  15. Multi-target directed donepezil-like ligands for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Mercedes eUnzeta

    2016-05-01

    Full Text Available Alzheimer's disease (AD, the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept® but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL based on the one molecule, multiple targets paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine or 8-hydroxyquinoline with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.

  16. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  17. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tetsuro Tago

    2018-01-01

    Full Text Available Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs, which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET. We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.

  18. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand.

    Science.gov (United States)

    Barkey, Natalie M; Tafreshi, Narges K; Josan, Jatinder S; De Silva, Channa R; Sill, Kevin N; Hruby, Victor J; Gillies, Robert J; Morse, David L; Vagner, Josef

    2011-12-08

    The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R. Of these, compound 1 (4-phenylbutyryl-His-dPhe-Arg-Trp-NH(2)) exhibited high (0.2 nM) binding affinity for MC1R and low (high nanomolar) affinities for MC4R and MC5R. Functionalization of the ligand at the C-terminus with an alkyne for use in Cu-catalyzed click chemistry was shown not to affect the binding affinity. Finally, formation of the targeted polymer, as well as the targeted micelle formulation, also resulted in constructs with low nanomolar binding affinity.

  19. Oxotechnetium and Oxorhenium 3+1 mixed ligand complexes as potential melanoma targeting gents

    International Nuclear Information System (INIS)

    Rey, A.; Giglio, J.; Leon, E.; Paolino, A.; Fernandez, R.; Manta, E.; Leon, A.; Pirmettis, I.; Papadopoulos, M.; Schreiber, F.; Chabalgoity, J.

    2005-01-01

    Tc-99m '3+1' mixed ligand complexes with potential affinity for melanoma have been designed by an integrated approach using N-alkyl substituted benzamides as leader structure. This paper presents the preparation of a series of complexes with general formula Tc-99m O[(CH 3 CH 2 ) 2 N(CH 2 ) 2 N (CH 2 CH 2 ) 2 S) 2 ][RS] and their 'in vivo' evaluation as potential melanoma targeting agents. Tc-99m complexes Tc1, Tc2, Tc3 and Tc4 were prepared by combining the tridentate ligand N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine with 4 different modentate thiols. Labelling was performed by substitution using Tc-99m-glucoheptonate as precursor. All complexes were obtained with high yield ( 85%) and high radiochemical purity (90%). Identity of Tc compounds was corroborated by HPLC coinjection with the analogous rhenium complexes. Biodistribution studies were performed on the murine C57B16 mouse melanoma model obtained by subcutaneous inoculation of melanoma cells B16F1. After intravenous injection, all complexes showed high initial blood, lung and liver uptake but clearance after 12-24 hours was almost complete. Initial tumour uptake was relatively high (0.83.4% dose/g at 2 hrs. post-injection) and retention until 24 hours significant (0.450.88% dose/g). Tumour/blood and tumour/muscle ratios were favourable from 6 to 24 hours after injection due to fast blood and soft tissue clearance. Complex Tc2 showed the best tumour/blood and tumour/muscle ratios at 12 and 24 hours post-injection (1.9-2.4 and 7.5-12.0, respectively). Early and late static gamma-camera images acquired for this compound allowed delineation of the tumour with tumour/soft tissue ratios 7.4 at 12 hours. post/inj.) Complex Tc2 was also administered subcutaneously in the peritumoral region of melanoma bearing mice, in order to avoid high liver and hepatobiliary doses. In this condition, a very high percentage of the injected dose remained in the tumour, even after 24 hours (21.5%/g) with considerably

  20. Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    Full Text Available ABSTRACT CONTEXT: Acute promyelocytic leukemia (APL accounts for 8% to 10% of cases of acute myeloid leukemia (AML. Remission in cases of high-risk APL is still difficult to achieve, and relapses occur readily. CASE REPORT: Here, we describe a case of APL with high white blood cell counts in blood tests and hypogranular variant morphology in bone marrow, together with fms-like tyrosine kinase-3 with internal tandem duplication mutations (FLT3-ITD, and bcr-3 isoform of PML-RARα. Most importantly, we detected high level of Wilms’ tumor gene (WT1 in marrow blasts, through the reverse transcription polymerase chain reaction (RT-PCR. To date, no clear conclusions about an association between WT1 expression levels and APL have been reached. This patient successively received a combined treatment regimen consisting of hydroxycarbamide, arsenic trioxide and idarubicin plus cytarabine, which ultimately enabled complete remission. Unfortunately, he subsequently died of sudden massive hemoptysis because of pulmonary infection. CONCLUSION: Based on our findings and a review of the literature, abnormal functioning of WT1 may be a high-risk factor in cases of APL. Further studies aimed towards evaluating the impact of WT1 expression on the prognosis for APL patients are of interest.

  1. Peroxisome Proliferator-Activated Receptor-γ Ligands: Potential Pharmacological Agents for Targeting the Angiogenesis Signaling Cascade in Cancer

    Directory of Open Access Journals (Sweden)

    Costas Giaginis

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has currently been considered as molecular target for the treatment of human metabolic disorders. Experimental data from in vitro cultures, animal models, and clinical trials have shown that PPAR-γ ligand activation regulates differentiation and induces cell growth arrest and apoptosis in a variety of cancer types. Tumor angiogenesis constitutes a multifaceted process implicated in complex downstream signaling pathways that triggers tumor growth, invasion, and metastasis. In this aspect, accumulating in vitro and in vivo studies have provided extensive evidence that PPAR-γ ligands can function as modulators of the angiogenic signaling cascade. In the current review, the crucial role of PPAR-γ ligands and the underlying mechanisms participating in tumor angiogenesis are summarized. Targeting PPAR-γ may prove to be a potential therapeutic strategy in combined treatments with conventional chemotherapy; however, special attention should be taken as there is also substantial evidence to support that PPAR-γ ligands can enhance angiogenic phenotype in tumoral cells.

  2. Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands.

    Science.gov (United States)

    Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

    2014-01-07

    Using the example of the Ugi three-component reaction we report a fast and efficient microfluidic-assisted entry into the imidazopyridine scaffold, where building block prioritization was coupled to a new computational method for predicting ligand-target associations. We identified an innovative GPCR-modulating combinatorial chemotype featuring ligand-efficient adenosine A1/2B and adrenergic α1A/B receptor antagonists. Our results suggest the tight integration of microfluidics-assisted synthesis with computer-based target prediction as a viable approach to rapidly generate bioactivity-focused combinatorial compound libraries with high success rates. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Allogeneic stem cell transplantation benefits for patients ≥ 60 years with acute myeloid leukemia and FLT3 internal tandem duplication: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Poiré, Xavier; Labopin, Myriam; Polge, Emmanuelle; Passweg, Jakob; Craddock, Charles; Blaise, Didier; Cornelissen, Jan J; Volin, Liisa; Russell, Nigel H; Socié, Gérard; Michallet, Mauricette; Fegueux, Nathalie; Chevallier, Patrice; Brecht, Arne; Hunault-Berger, Mathilde; Mohty, Mohamad; Esteve, Jordi; Nagler, Arnon

    2018-02-01

    Intermediate-risk cytogenetic acute myeloid leukemia with an internal tandem duplication of FLT3 ( FLT3 -ITD) is associated with a high risk of relapse, and is now a standard indication for allogeneic stem cell transplantation. Nevertheless, most studies supporting this strategy have been performed in young patients. To address the benefit of allogeneic transplantation in the elderly, we made a selection from the European Society for Blood and Marrow Transplantation registry of de novo intermediate-risk cytogenetic acute myeloid leukemia harboring FLT3 -ITD in patients aged 60 or over and transplanted from a related or unrelated donor between January 2000 and December 2015. Two hundred and ninety-one patients were identified. Most patients received a reduced-intensity conditioning (82%), while donors consisted of an unrelated donor in 161 (55%) patients. Two hundred and twelve patients received their transplantation in first remission, 37 in second remission and 42 in a more advanced stage of the disease. The 2-year leukemia-free survival rate was 56% in patients in first remission, 22% in those in second remission and 10% in patients with active disease, respectively ( P <0.005). Non-relapse mortality for the entire cohort was 20%. In multivariate analysis, disease status at transplantation was the most powerful predictor of worse leukemia-free survival, graft- versus -host disease and relapse-free survival, and overall survival. In this elderly population, age was not associated with outcome. Based on the current results, allogeneic transplantation translates into a favorable outcome in fit patients ≥ 60 with FLT3 -ITD acute myeloid leukemia in first remission, similarly to current treatment recommendations for younger patients. Copyright© 2018 Ferrata Storti Foundation.

  4. Short-term, serum-free, static culture of cord blood-derived CD34+ cells: effects of FLT3-L and MIP-1alpha on in vitro expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    Capmany, G; Querol, S; Cancelas, J A; García, J

    1999-08-01

    The use of ex vivo expanded cells has been suggested as a possible means to accelerate the speed of engraftment in cord blood (CB) transplantation. The aim of this study was to fix the optimal condition for the generation of committed progenitors without affecting the stem cell compartment. Analysis of the effects of FLT3-L and MIP-1alpha when combined with SCF, IL-3 and IL-6, in short-term (6 days), serum-free expansion cultures of CB-selected CD34+ cells. An important expansion was obtained that ranged between 8-15 times for CFU-GM, 21-51 times for the BFU-E/CFU-Mix population and 11 to 30 times for CD34+ cells assessed by flow cytometry. From the combinations tested, those in which FLT3-L was present had a significant increase in the expansion of committed progenitors, while the presence of MIP-1alpha had a detrimental effect on the generation of more differentiated cells. However, stem cell candidates assessed by week 5 CAFC assay could be maintained in culture when both MIP-1a and FLT3-L were present (up to 91% recovery). This culture system was also able to expand megakaryocytic precursors as determined by the co-expression of CD34 and CD61 antigens (45-70 times), in spite of the use of cytokines non-specific for the megakaryocytic lineage. The results obtained point to the combination of SCF, IL-3, IL-6, FLT3-L and MIP-1alpha as the best suited for a pre-clinical short-term serum-free static ex vivo expansion protocol of CB CD34+ cells, since it can generate large numbers of committed progenitor cells as well as maintaining week 5 CAFC.

  5. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  6. Targeting the TAM Receptors in Leukemia.

    Science.gov (United States)

    Huey, Madeline G; Minson, Katherine A; Earp, H Shelton; DeRyckere, Deborah; Graham, Douglas K

    2016-11-08

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  7. Targeting the TAM Receptors in Leukemia

    Directory of Open Access Journals (Sweden)

    Madeline G. Huey

    2016-11-01

    Full Text Available Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  8. Technical advance: Generation of human pDC equivalents from primary monocytes using Flt3-L and their functional validation under hypoxia.

    Science.gov (United States)

    Sekar, Divya; Brüne, Bernhard; Weigert, Andreas

    2010-08-01

    The division of labor between DC subsets is evolutionarily well-defined. mDC are efficient in antigen presentation, whereas pDC act as rheostats of the immune system. They activate NK cells, cause bystander activation of mDC, and interact with T cells to induce tolerance. This ambiguity positions pDC at the center of inflammatory diseases, such as cancer, arthritis, and autoimmune diseases. The ability to generate human mDC ex vivo made it possible to engineer them to suit therapy needs. Unfortunately, a similar, easily accessible system to generate human pDC is not available. We describe a method to generate human pDC equivalents ex vivo, termed mo-pDC from peripheral blood monocytes using Flt3-L. mo-pDC showed a characteristic pDC profile, such as high CD123 and BDCA4, but low CD86 and TLR4 surface expression and a low capacity to induce autologous lymphocyte proliferation and to phagocytose apoptotic debris in comparison with mDC. Interestingly, mo-pDC up-regulated the pDC lineage-determining transcription factor E2-2 as well as expression of BDCA2, which is under the transcriptional control of E2-2 but not its inhibitor ID2, during differentiation. mo-pDC produced high levels of IFN-alpha when pretreated overnight with TNF-alpha. Under hypoxia, E2-2 was down-regulated, and ID2 was induced in mo-pDC, whereas surface expression of MHCI, CD86, and BDCA2 was decreased. Furthermore, mo-pDC produced high levels of inflammatory cytokines when differentiated under hypoxia compared with normoxia. Hence, mo-pDC can be used to study differentiation and functions of human pDC under microenvironmental stimuli.

  9. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    Science.gov (United States)

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer

    Directory of Open Access Journals (Sweden)

    Kim JS

    2013-11-01

    Full Text Available Jae Sik Kim,1 Sang Don Lee,2 Sang Jin Lee,3 Moon Kee Chung21Department of Urology, The Catholic University of Korea Incheon St Mary's Hospital, Incheon, 2Pusan National University Yangsan Hospital and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 3Genitourinary Cancer Branch, National Cancer Center, Goyang, KoreaBackground: To develop a targeting therapy for hormone-independent prostate cancer, we constructed and characterized conditionally replicating oncolytic adenovirus (Ad equipped with mRFP(monomeric red fluorescence protein/ttk (modified herpes simplex virus thymidine kinase This construct was then further modified to express both mRFP/ttk and a soluble form of cytokine FLT3L (fms-related tyrosine kinase 3 ligand simultaneously.Methods: To construct the recombinant oncolytic adenovirus, E1a and E4 genes, which are necessary for adenovirus replication, were controlled by the prostate-specific enhancer sequence (PSES targeting prostate cancer cells expressing prostate-specific antigen (PSA and prostate-specific membrane antigen (PSMA. Simultaneously, it expressed the mRFP/ttk fusion protein in order to be able to elicit the cytotoxic effect.Results: The Ad5/35PSES.mRFP/ttk chimeric recombinant adenovirus was generated successfully. When replication of Ad5/35PSES.mRFP/ttk was evaluated in prostate cancer cell lines under fluorescence microscopy, red fluorescence intensity increased more in LNCaP cells, suggesting that the mRFP/ttk fusion protein was folded functionally. In addition, the replication assay including wild-type adenovirus as a positive control showed that PSES-positive cells (LNCaP and CWR22rv permitted virus replication but not PSES-negative cells (DU145 and PC3. Next, we evaluated the killing activity of this recombinant adenovirus. The Ad5/35PSES.mRFP/ttk killed LNCaP and CWR22rv more effectively. Unlike PSES-positive cells, DU145 and PC3 were resistant to killing by this recombinant

  11. Effects of Polyethylene Glycol Spacer Length and Ligand Density on Folate Receptor Targeting of Liposomal Doxorubicin In Vitro

    Directory of Open Access Journals (Sweden)

    Kumi Kawano

    2011-01-01

    Full Text Available The folate receptor is an attractive target for selective tumor delivery of liposomal doxorubicin (DXR because it is abundantly expressed in a large percentage of tumors. This study examined the effect of polyethylene glycol (PEG spacer length and folate ligand density on the targeting ability of folate-modified liposomes. Liposomes were modified with folate-derivatized PEG-distearoylphosphatidylethanolamine with PEG molecular weights of 2000, 3400, or 5000. The association of DXR-loaded liposomes with KB cells, which overexpress the folate receptor, was evaluated by flow cytometry at various ratios of folate modification. A low ratio of folate modification with a sufficiently long PEG chain showed the highest folate receptor-mediated association with the cells, but did not show the highest in vitro cytotoxicity. DXR release from folate-modified liposomes in endosomes might be different. These findings will be useful for designing folate receptor-targeting carriers.

  12. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    Science.gov (United States)

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  13. Magnetic ligand fishing as a targeting tool for HPLC-HRMS-SPE-NMR: α-glucosidase inhibitory ligands and alkylresorcinol glycosides from Eugenia catharinae

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Brighente, Inês M. C.; Moaddel, Ruin

    2015-01-01

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase we...

  14. PU.1 is essential for CD11c expression in CD8(+/CD8(- lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    Directory of Open Access Journals (Sweden)

    Xue-Jun Zhu

    Full Text Available Dendritic cells (DCs regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+ lymphoid-derived DCs or B220(+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+ lymphoid-derived DCs, but not in B220(+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required

  15. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    Science.gov (United States)

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    Science.gov (United States)

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  17. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    Science.gov (United States)

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  18. Radiosynthesis of a new PSMA targeting ligand ([{sup 18}F]FPy-DUPA-Pep)

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Noeen, E-mail: noeen.malik@uniklinik-ulm.d [Clinic for Nuclear Medicine, University Hospital, Ulm (Germany); Machulla, Hans-Juergen; Solbach, Christoph; Winter, Gordon; Reske, Sven N.; Zlatopolskiy, Boris [Clinic for Nuclear Medicine, University Hospital, Ulm (Germany)

    2011-07-15

    Due to the specificity of expression of PSMA (prostate specific membrane antigen) particularly in prostate cancer cells (e.g. LNCaP), numerous PSMA ligands have been synthesized until now. In the current study, we synthesized DUPA-Pep having 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) linked via 8-aminooctanoic acid to two phenylalanine residues and chose 6-[{sup 18}F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester [{sup 18}F]FPy-TFP as a prosthetic group for coupling. [{sup 18}F]FPy-DUPA-Pep was obtained in a radiochemical yield of 48{+-}0.9% (decay uncorrected) within 50 min with a chemical purity of >98%.

  19. Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep)

    International Nuclear Information System (INIS)

    Malik, Noeen; Machulla, Hans-Juergen; Solbach, Christoph; Winter, Gordon; Reske, Sven N.; Zlatopolskiy, Boris

    2011-01-01

    Due to the specificity of expression of PSMA (prostate specific membrane antigen) particularly in prostate cancer cells (e.g. LNCaP), numerous PSMA ligands have been synthesized until now. In the current study, we synthesized DUPA-Pep having 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) linked via 8-aminooctanoic acid to two phenylalanine residues and chose 6-[ 18 F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester [ 18 F]FPy-TFP as a prosthetic group for coupling. [ 18 F]FPy-DUPA-Pep was obtained in a radiochemical yield of 48±0.9% (decay uncorrected) within 50 min with a chemical purity of >98%.

  20. Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep).

    Science.gov (United States)

    Malik, Noeen; Machulla, Hans-Jürgen; Solbach, Christoph; Winter, Gordon; Reske, Sven N; Zlatopolskiy, Boris

    2011-07-01

    Due to the specificity of expression of PSMA (prostate specific membrane antigen) particularly in prostate cancer cells (e.g. LNCaP), numerous PSMA ligands have been synthesized until now. In the current study, we synthesized DUPA-Pep having 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) linked via 8-aminooctanoic acid to two phenylalanine residues and chose 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester [(18)F]FPy-TFP as a prosthetic group for coupling. [(18)F]FPy-DUPA-Pep was obtained in a radiochemical yield of 48±0.9% (decay uncorrected) within 50 min with a chemical purity of >98%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

    Directory of Open Access Journals (Sweden)

    Oula Penate Medina

    2011-01-01

    Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

  2. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    Science.gov (United States)

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational

  3. Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension.

    Science.gov (United States)

    Fiorucci, Stefano; Distrutti, Eleonora

    2016-09-01

    Cirrhosis is a end-stage disease of the liver in which fibrogenesis, angiogenesis and distortion of intrahepatic microcirculation lead to increased intrahepatic resistance to portal blood flow, a condition known as portal hypertension. Portal hypertension is maintained by a variety of molecular mechanisms including sinusoidal endothelial cells (LSECs) hyporeactivity, activation of hepatic stellate cells (HSCs), reduction in hepatic endothelial nitric oxide synthase (eNOS) activity along with increased eNOS-derived NO generation in the splanchnic and systemic circulations. A reduction of the expression/function of the two major hydrogen sulfide (H2S)-producing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), has also been demonstrated. A deficit in the transsulfuration pathway leading to the accumulation of homocysteine might contribute to defective generation of H2S and endothelial hyporeactivity. Bile acids are ligands for nuclear receptors, such as farnesoid X receptor (FXR), and G-protein-coupled receptors (GPCRs), such as the G-protein bile acid receptor 1 (GPBAR1). FXR and GPBAR1 ligands regulate the expression/activity of CSE by both genomic and non-genomic effects and have been proved effective in protecting against endothelial dysfunction observed in rodent models of cirrhosis. GPBAR1, a receptor for secondary bile acids, is selectively expressed by LSECs and its activation increases the expression of CSE and attenuates the production of endotelin-1, a potent vasoconstrictor agent. In vivo GPBAR1 ligand attenuates the imbalance between vasodilatory and vaso-constricting agents, making GPBAR1 a promising target in the treatment of portal hypertension. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from Eugenia catharinae.

    Science.gov (United States)

    Wubshet, Sileshi G; Brighente, Inês M C; Moaddel, Ruin; Staerk, Dan

    2015-11-25

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase were synthesized and characterized for their inherent catalytic activity. Ligand fishing with the immobilized enzyme was optimized using an artificial test mixture consisting of caffeine, ferulic acid, and luteolin before proof-of-concept with the crude extract of Eugenia catharinae. The combination of ligand fishing and HPLC-HRMS-SPE-NMR identified myricetin 3-O-α-L-rhamnopyranoside, myricetin, quercetin, and kaempferol as α-glucosidase inhibitory ligands in E. catharinae. Furthermore, HPLC-HRMS-SPE-NMR analysis led to identification of six new alkylresorcinol glycosides, i.e., 5-(2-oxopentyl)resorcinol 4-O-β-D-glucopyranoside, 5-propylresorcinol 4-O-β-D-glucopyranoside, 5-pentylresorcinol 4-O-[α-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside, 5-pentylresorcinol 4-O-β-D-glucopyranoside, 4-hydroxy-3-O-methyl-5-pentylresorcinol 1-O-β-D-glucopyranoside, and 3-O-methyl-5-pentylresorcinol 1-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside.

  5. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Masuda, Ryo; Hisada, Hayato; Oishi, Shinya; Shimokawa, Kenta; Ono, Masahiro; Fujii, Nobutaka; Saji, Hideo; Mukai, Takahiro

    2014-03-01

    We have developed a novel radiogallium (Ga)-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga-DOTA core, Ga-DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga-DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga-DOTA-TZ1. (67)Ga-DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with (67)Ga-DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga-DOTA could be effective in detecting CXCR4-expressing tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chen, Liang; Wang, Xin; Liu, Youping; Di, Xin

    2017-09-05

    A novel strategy was developed for dual-target screening of bioactive components from traditional Chinese medicines (TCMs). This strategy was based on the use of low-cost microporous hollow fibers filled with target enzymes as baits to "fish out" the ligands in TCM extracts, followed by identification of the ligands dissociated from the target-ligand complexes by liquid chromatography-mass spectrometry. Ganjiang Huangqin Huanglian Renshen Decoction (GHHRD), a classical TCM prescription for diabetes treatment, was chosen as a model sample to evaluate the feasibility of the proposed strategy. Three bioactive components were successfully screened out from GHHRD. Coptisine was identified as the ligand of α-glucosidase and baicalin as the ligand of angiotensin-converting enzyme (ACE). Berberine was found to be a dual inhibitor of α-glucosidase and ACE. The results were further verified by enzyme inhibitory assay and molecular docking simulation. The study suggested that our developed strategy would be a powerful tool for screening bioactive components from multi-component and multi-target TCMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and evaluation of ligand targeting the somatostatin receptor for drug delivery to tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Young; Hong, Young Don; Jung, Sung Hee; Choi, Sun Ju [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, {sup 177}Lu-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological halflife of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

  8. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)

    NARCIS (Netherlands)

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Guzik, Katarzyna; Zieba, Bartosz J.; Musielak, Bogdan; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    Targeting the PD-1/PD-L1 immunologic checkpoint with monoclonal antibodies has provided unprecedented results in cancer treatment in the recent years. Development of chemical inhibitors for this pathway lags the antibody development because of insufficient structural information. The first

  9. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  10. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a multifactorial age-related disease associated with oxidative stress (OS and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative, and AntiOxBEN2 (pyrogallol derivative and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively, while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively. Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y and human hepatocarcinoma (HepG2 cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  11. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  12. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Nazanin Hakimzadeh

    Full Text Available Molecular imaging of matrix metalloproteinases (MMPs may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9 with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT imaging that effectively targets atherosclerotic lesions in mice.

  13. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    Science.gov (United States)

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  14. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    International Nuclear Information System (INIS)

    Perrot, Y; Donnarieix, D; Maigne, L; Degoul, F; Auzeloux, P; Bonnet, M; Cachin, F; Chezal, J M; Labarre, P; Moins, N; Papon, J; Rbah-Vidal, L; Vidal, A; Miot-Noirault, E

    2014-01-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic. (paper)

  15. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome.

    Science.gov (United States)

    Patel, Madhukar S; Miranda-Nieves, David; Chen, Jiaxuan; Haller, Carolyn A; Chaikof, Elliot L

    2017-05-01

    Obesity-induced insulin resistance and metabolic syndrome continue to pose an important public health challenge worldwide as they significantly increase the risk of type 2 diabetes and atherosclerotic cardiovascular disease. Advances in the pathophysiologic understanding of this process has identified that chronic inflammation plays a pivotal role. In this regard, given that both animal models and human studies have demonstrated that the interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin is not only critical for normal immune response but also is upregulated in the setting of metabolic syndrome, PSGL-1/P-selectin interactions provide a novel target for preventing and treating resultant disease. Current approaches of interfering with PSGL-1/P-selectin interactions include targeted antibodies, recombinant immunoglobulins that competitively bind P-selectin, and synthetic molecular therapies. Experimental models as well as clinical trials assessing the role of these modalities in a variety of diseases have continued to contribute to the understanding of PSGL-1/P-selectin interactions and have demonstrated the difficulty in creating clinically relevant therapeutics. Most recently, however, computational simulations have further enhanced our understanding of the structural features of PSGL-1 and related glycomimetics, which are responsible for high-affinity selectin interactions. Leveraging these insights for the design of next generation agents has thus led to development of a promising synthetic method for generating PSGL-1 glycosulfopeptide mimetics for the treatment of metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    Science.gov (United States)

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  17. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  18. LigSearch: a knowledge-based web server to identify likely ligands for a protein target

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Tjaart A. P. de; Laskowski, Roman A. [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Duban, Mark-Eugene [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Chan, A. W. Edith [University College London, London WC1E 6BT (United Kingdom); Anderson, Wayne F. [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Thornton, Janet M., E-mail: thornton@ebi.ac.uk [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom)

    2013-12-01

    LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.

  19. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  20. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment

    Science.gov (United States)

    Finkernagel, Florian; Lieber, Sonja; Schnitzer, Evelyn; Legrand, Nathalie; Schober, Yvonne; Nockher, W. Andreas; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Wagner, Uwe; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma. PMID:25968567

  1. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  2. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  3. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases.

    Science.gov (United States)

    Kalash, Leen; Val, Cristina; Azuaje, Jhonny; Loza, María I; Svensson, Fredrik; Zoufir, Azedine; Mervin, Lewis; Ladds, Graham; Brea, José; Glen, Robert; Sotelo, Eddy; Bender, Andreas

    2017-12-30

    Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A 1 and A 2A receptors (A 1 R and A 2A R) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A 1 and A 2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A 1 R, A 2A R and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A 1 R/A 2A R-PDE10A ligands, with IC 50 values of 2.4-10.0 μM at PDE10A and K i values of 34-294 nM at A 1 R and/or A 2A R. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A 1 R, A 2A R and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.

  4. Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA Via an RNA Motif-Ligand Database & Chemical Similarity Searching

    Science.gov (United States)

    Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, Sarco(endo)plasmic reticulum Ca2+ ATPase 1 (Serca1/Atp2a1), and cardiac troponin T (cTNT). Based on these observations, the development of small molecule ligands that target specifically expanded DM1 repeats could serve as therapeutics. In the present study, computational screening was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of inhibitors of the RNA-protein complex with low micromolar IC50’s, which are >20-fold more potent than the query compounds, were identified. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with virtual screening. PMID:22300544

  5. Response of SCP-2L domain of human MFE-2 to ligand removal: binding site closure and burial of peroxisomal targeting signal.

    Science.gov (United States)

    Lensink, M F; Haapalainen, A M; Hiltunen, J K; Glumoff, T; Juffer, A H

    2002-10-11

    In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.

  6. Development of effective tumor immunotherapy using a novel dendritic cell-targeting Toll-like receptor ligand.

    Directory of Open Access Journals (Sweden)

    Nadeeka H De Silva

    Full Text Available Although dendritic cell (DC-based immunotherapy shows little toxicity, improvements should be necessary to obtain satisfactory clinical outcome. Using interferon-gamma injection along with DCs, we previously obtained significant clinical responses against small or early stage malignant tumors in dogs. However, improvement was necessary to be effective to largely developed or metastatic tumors. To obtain effective methods applicable to those tumors, we herein used a DC-targeting Toll-like receptor ligand, h11c, and examined the therapeutic effects in murine subcutaneous and visceral tumor models and also in the clinical treatment of canine cancers. In murine experiments, most and significant inhibition of tumor growth and extended survival was observed in the group treated with the combination of h11c-activated DCs in combination with interferon-gamma and a cyclooxygenase2 inhibitor. Both monocytic and granulocytic myeloid-derived suppressor cells were significantly reduced by the combined treatment. Following the successful results in mice, the combined treatment was examined against canine cancers, which spontaneously generated like as those in human. The combined treatment elicited significant clinical responses against a nonepithelial malignant tumor and a malignant fibrous histiocytoma. The treatment was also successful against a bone-metastasis of squamous cell carcinoma. In the successful cases, the marked increase of tumor-responding T cells and decrease of myeloid-derived suppressor cells and regulatory T cells was observed in their peripheral blood. Although the combined treatment permitted the growth of lung cancer of renal carcinoma-metastasis, the marked elevated and long-term maintaining of the tumor-responding T cells was observed in the patient dog. Overall, the combined treatment gave rise to emphatic amelioration in DC-based cancer therapy.

  7. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    Directory of Open Access Journals (Sweden)

    Alex N. Eberle

    2017-04-01

    of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.

  8. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  9. MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies

    DEFF Research Database (Denmark)

    Murphy, J. Patrick; Konda, Prathyusha; Kowalewski, Daniel J.

    2017-01-01

    Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I pept...

  10. Targeting interleukin-11 receptor in leukemia and lymphoma: A functional ligand-directed study and hematopathology analysis of patient-derived specimens

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E.; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H. P.; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J.; O’Brien, Susan; Kantarjian, Hagop M.; Cortes, Jorge E.; Calin, George A.; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Purpose The interleukin-11 receptor (IL-11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here we evaluated the IL-11R as a candidate therapeutic target in human leukemia and lymphoma. Experimental Design and Results First, we show that the IL-11R protein is expressed in a variety of human leukemia- and lymphoma derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, while expression is absent from non-malignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11) specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL-11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analog with an apparent improved anti-leukemia cell profile. Conclusion These results indicate (i) that the IL-11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. PMID:25779950

  11. Targeting IL11 Receptor in Leukemia and Lymphoma: A Functional Ligand-Directed Study and Hematopathology Analysis of Patient-Derived Specimens.

    Science.gov (United States)

    Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H P; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Calin, George A; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2015-07-01

    The IL11 receptor (IL11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors, such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here, we evaluated the IL11R as a candidate therapeutic target in human leukemia and lymphoma. First, we show that the IL11R protein is expressed in a variety of human leukemia- and lymphoma-derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, whereas expression is absent from nonmalignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11), specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analogue with an apparent improved antileukemia cell profile. These results indicate (i) that the IL11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. ©2015 American Association for Cancer Research.

  12. New Computational Approaches for NMR-based Drug Design: A Protocol for Ligand Docking to Flexible Target Sites

    International Nuclear Information System (INIS)

    Gracia, Luis; Speidel, Joshua A.; Weinstein, Harel

    2006-01-01

    NMR-based drug design has met with some success in the last decade, as illustrated in numerous instances by Fesik's ''ligand screening by NMR'' approach. Ongoing efforts to generalize this success have led us to the development of a new paradigm in which quantitative computational approaches are being integrated with NMR derived data and biological assays. The key component of this work is the inclusion of the intrinsic dynamic quality of NMR structures in theoretical models and its use in docking. A new computational protocol is introduced here, designed to dock small molecule ligands to flexible proteins derived from NMR structures. The algorithm makes use of a combination of simulated annealing monte carlo simulations (SA/MC) and a mean field potential informed by the NMR data. The new protocol is illustrated in the context of an ongoing project aimed at developing new selective inhibitors for the PCAF bromodomains that interact with HIV Tat

  13. Comparative assessment of a 99mTc labeled H1299.2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging.

    Science.gov (United States)

    Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal

    2017-05-01

    Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A structure-based approach to ligand discovery for 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy.

    Science.gov (United States)

    Ramsden, Nicola L; Buetow, Lori; Dawson, Alice; Kemp, Lauris A; Ulaganathan, Venkatsubramanian; Brenk, Ruth; Klebe, Gerhard; Hunter, William N

    2009-04-23

    The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Escherichia coli IspF (EcIspF) was performed by combining a hierarchical filtering methodology with molecular docking. Docked compounds were inspected and 10 selected for experimental validation. A surface plasmon resonance assay was developed and two weak ligands identified. Crystal structures of EcIspF complexes were determined to support rational ligand development. Cytosine analogues and Zn(2+)-binding moieties were characterized. One of the putative Zn(2+)-binding compounds gave the lowest measured K(D) to date (1.92 +/- 0.18 muM). These data provide a framework for the development of IspF inhibitors to generate lead compounds of therapeutic potential against microbial pathogens.

  15. Interleukin-11 Receptor Is a Candidate Target for Ligand-Directed Therapy in Lung Cancer: Analysis of Clinical Samples and BMTP-11 Preclinical Activity.

    Science.gov (United States)

    Cardó-Vila, Marina; Marchiò, Serena; Sato, Masanori; Staquicini, Fernanda I; Smith, Tracey L; Bronk, Julianna K; Yin, Guosheng; Zurita, Amado J; Sun, Menghong; Behrens, Carmen; Sidman, Richard L; Lee, J Jack; Hong, Waun K; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2016-08-01

    We previously isolated an IL-11-mimic motif (CGRRAGGSC) that binds to IL-11 receptor (IL-11R) in vitro and accumulates in IL-11R-expressing tumors in vivo. This synthetic peptide ligand was used as a tumor-targeting moiety in the rational design of BMTP-11, which is a drug candidate in clinical trials. Here, we investigated the specificity and accessibility of IL-11R as a target and the efficacy of BMTP-11 as a ligand-targeted drug in lung cancer. We observed high IL-11R expression levels in a large cohort of patients (n = 368). In matching surgical specimens (i.e., paired tumors and nonmalignant tissues), the cytoplasmic levels of IL-11R in tumor areas were significantly higher than in nonmalignant tissues (n = 36; P = 0.003). Notably, marked overexpression of IL-11R was observed in both tumor epithelial and vascular endothelial cell membranes (n = 301; P < 0.0001). BMTP-11 induced in vitro cell death in a representative panel of human lung cancer cell lines. BMTP-11 treatment attenuated the growth of subcutaneous xenografts and reduced the number of pulmonary tumors after tail vein injection of human lung cancer cells in mice. Our findings validate BMTP-11 as a pharmacologic candidate drug in preclinical models of lung cancer and patient-derived tumors. Moreover, the high expression level in patients with non-small cell lung cancer is a promising feature for potential translational applications. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    Science.gov (United States)

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  18. Optimal ex vivo expansion of neutrophils from PBSC CD34+ cells by a combination of SCF, Flt3-L and G-CSF and its inhibition by further addition of TPO

    Directory of Open Access Journals (Sweden)

    Turner Marc L

    2007-10-01

    Full Text Available Abstract Background Autologous mobilised peripheral blood stem cell (PBSC transplantation is now a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy. However, there remains a period of severe neutropenia and thrombocytopenia before haematopoietic reconstitution is achieved. Ex vivo expanded PBSC have been employed as an adjunct to unmanipulated HSC transplantation, but have tended to be produced using complex cytokine mixtures aimed at multilineage (neutrophil and megakaryocyte progenitor expansion. These have been reported to reduce or abrogate neutropenia but have little major effect on thrombocytopenia. Selective megakaryocyte expansion has been to date ineffective in reducing thrombocytopenia. This study was implemented to evaluate neutrophil specific rather than multilineage ex vivo expansion of PBSC for specifically focusing on reduction or abrogation of neutropenia. Methods CD34+ cells (PBSC were enriched from peripheral blood mononuclear cells following G-CSF-mobilisation and cultured with different permutations of cytokines to determine optimal cytokine combinations and doses for expansion and functional differentiation and maturation of neutrophils and their progenitors. Results were assessed by cell number, morphology, phenotype and function. Results A simple cytokine combination, SCF + Flt3-L + G-CSF, synergised to optimally expand and mature neutrophil progenitors assessed by cell number, phenotype, morphology and function (superoxide respiratory burst measured by chemiluminescence. G-CSF appears mandatory for functional maturation. Addition of other commonly employed cytokines, IL-3 and IL-6, had no demonstrable additive effect on numbers or function compared to this optimal combination. Addition of TPO, commonly included in multilineage progenitor expansion for development of megakaryocytes, reduced the maturation of neutrophil progenitors as assessed

  19. An improved 99mTc-HYNIC-(Ser)3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor.

    Science.gov (United States)

    Khodadust, Fatemeh; Ahmadpour, Sajjad; Aligholikhamseh, Nazan; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-01-20

    Overexpression of human epidermal receptor 2 (HER2) has given the opportunity for targeting and delivering of imaging radiotracers. The aim of this study was to evaluate the 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY peptide for tumor targeting and imaging of tumor with overexpression of HER2. The HYNIC-(Ser) 3 -LTVSPWY was labeled with 99m Tc in presence of EDDA/tricine mixture as co-ligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular specific binding and tumor targeting. The high radiochemical purity of 99m Tc-HYNIC (EDDA/tricine)-(Ser) 3 -LTVSPWY was obtained to be 99%. It exhibited high stability in normal saline and human serum. In HER2 binding affinity study, a significant reduction in uptake of radiolabeled peptide (7.7 fold) was observed by blocking SKOV-3 cells receptors with unlabeled peptide. The K D and B max values for this radiolabeled peptide were determined as 3.3 ± 1.0 nM and 2.9 ± 0.3 × 10 6 CPM/pMol, respectively. Biodistribution study revealed tumor to blood and tumor to muscle ratios about 6.9 and 4 respectively after 4 h. Tumor imaging by gamma camera demonstrated considerable high contrast tumor uptake. This developed 99m Tc-HYNIC-(Ser) 3 -LTVSPWY peptide selectively targeted on HER2 tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY is much better than previously reported radiolabeled peptide as 99m Tc-CSSS-LTVSPWY for HER2 overexpression tumor targeting and imaging. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Designing Ligands for Leishmania, Plasmodium, and Aspergillus N-Myristoyl Transferase with Specificity and Anti-Target-Safe Virtual Libraries.

    Science.gov (United States)

    Garcia-Sosa, Alfonso T

    2018-01-01

    Leishmaniasis, malaria, and fungal diseases are burdens on individuals and populations and can present severe complications. Easily accessible chemical treatments for these diseases are increasingly sought-after. Targeting the parasite N-myristoyl transferase while avoiding the human enzyme and other anti-targets may allow the prospect of compounds with pan-activity against these diseases, which would simplify treatments and costs. Developing chemical libraries, both virtual and physical, that have been filtered and flagged early on in the drug discovery process (before virtual screening) could reduce attrition rates of compounds being developed and failing late in development stages due to problems of side-effects or toxicity. Chemical libraries have been screened against the anti-targets pregnane-X-receptor, sulfotransferase, cytochrome P450 2a6, 2c9, and 3a4 with three different docking programs. Statistically significant differences are observed in their interactions with these enzymes as compared to small molecule drugs and bioactive non-drug datasets. A series of compounds are proposed with the best predicted profiles for inhibition of all parasite targets while sparing the human form and anti-targets. Some of the topranked compounds have confirmed experimental activity against Leishmania, and highlighted are those compounds with best properties for further development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Smuggling Drugs into the Brain : An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

    NARCIS (Netherlands)

    Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

    2015-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics

  2. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.

    Science.gov (United States)

    Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2013-09-03

    The blood vessel wall plays a prominent role in the development of many life-threatening diseases and as such is an attractive target for treatment. To target diseased tissue, particulate drug carriers often have their surfaces modified with antibodies or epitopes specific to vascular wall-expressed molecules, along with poly(ethylene glycol) (PEG) to improve carrier blood circulation time. However, little is known about the effect of poly(ethylene glycol) on carrier adhesion dynamics-specifically in blood flow. Here we examine the influence of different molecular weight PEG spacers on particle adhesion in blood flow. Anti-ICAM-1 or Sialyl Lewis(a) were grafted onto polystyrene 2 μm and 500 nm spheres via PEG spacers and perfused in blood over activated endothelial cells at physiological shear conditions. PEG spacers were shown to improve, reduce, or have no effect on the binding density of targeted-carriers depending on the PEG surface conformation, shear rate, and targeting moiety.

  3. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Thangam, Ramar [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN (India); Sujitha, Mohanan V.; Vimala, Karuppaiya [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Kannan, Soundarapandian, E-mail: skperiyaruniv@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Zoology, Periyar University, Salem 636 011, TN (India)

    2014-03-15

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.

  4. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  5. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity?

    Science.gov (United States)

    Bianchi, Matt T; Botzolakis, Emmanuel J

    2010-03-02

    The traditional emphasis on developing high specificity pharmaceuticals ("magic bullets") for the treatment of Neurological and Psychiatric disorders is being challenged by emerging pathophysiology concepts that view disease states as abnormal interactions within complex networks of molecular and cellular components. So-called network pharmacology focuses on modifying the behavior of entire systems rather than individual components, a therapeutic strategy that would ideally employ single pharmacological agents capable of interacting with multiple targets ("magic shotguns"). For this approach to be successful, however, a framework for understanding pharmacological "promiscuity"--the ability of individual agents to modulate multiple molecular targets--is needed. Pharmacological promiscuity is more often the rule than the exception for drugs that target the central nervous system (CNS). We hypothesize that promiscuity is an important contributor to clinical efficacy. Modulation patterns of existing therapeutic agents may provide critical templates for future drug discovery in Neurology and Psychiatry. To demonstrate the extent of pharmacological promiscuity and develop a framework for guiding drug screening, we reviewed the ability of 170 therapeutic agents and endogenous molecules to directly modulate neurotransmitter receptors, a class of historically attractive therapeutic targets in Neurology and Psychiatry. The results are summarized in the form of 1) receptor-centric maps that illustrate the degree of promiscuity for GABA-, glycine-, serotonin-, and acetylcholine-gated ion channels, and 2) drug-centric maps that illustrated how characterization of promiscuity can guide drug development. Developing promiscuity maps of approved neuro-pharmaceuticals will provide therapeutic class-based templates against which candidate compounds can be screened. Importantly, compounds previously rejected in traditional screens due to poor specificity could be reconsidered in this

  6. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    International Nuclear Information System (INIS)

    Sundarraj, Shenbagamoorthy; Thangam, Ramar; Sujitha, Mohanan V.; Vimala, Karuppaiya; Kannan, Soundarapandian

    2014-01-01

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA 2 α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models

  7. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  8. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic.

    Science.gov (United States)

    Zhang, Jian; Patel, Lalit; Pienta, Kenneth J

    2010-01-01

    Chemokines are a family of small and secreted proteins that play pleiotropic roles in inflammation-related pathological diseases, including cancer. Among the identified 50 human chemokines, chemokine (C-C motif) ligand 2 (CCL2) is of particular importance in cancer development since it serves as one of the key mediators of interactions between tumor and host cells. CCL2 is produced by cancer cells and multiple different host cells within the tumor microenvironment. CCL2 mediates tumorigenesis in many different cancer types. For example, CCL2 has been reported to promote prostate cancer cell proliferation, migration, invasion, and survival, via binding to its functional receptor CCR2. Furthermore, CCL2 induces the recruitment of macrophages and induces angiogenesis and matrix remodeling. Targeting CCL2 has been demonstrated as an effective therapeutic approach in preclinical prostate cancer models, and currently, neutralizing monoclonal antibody against CCL2 has entered into clinical trials in prostate cancer. In this chapter, targeting CCL2 in prostate cancer will be used as an example to show translation of laboratory findings from cancer molecular biology to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Pasqualino de Antonellis

    Full Text Available Through negative regulation of gene expression, microRNAs (miRNAs can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs, which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies.In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1. Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133(+/CD15(+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1(+/- p53(-/-, thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo.Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic

  10. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs.

    Science.gov (United States)

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Science.gov (United States)

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  12. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1.

    Science.gov (United States)

    Sirvent, Sofía; Soria, Irene; Cirauqui, Cristina; Cases, Bárbara; Manzano, Ana I; Diez-Rivero, Carmen M; Reche, Pedro A; López-Relaño, Juan; Martínez-Naves, Eduardo; Cañada, F Javier; Jiménez-Barbero, Jesús; Subiza, Javier; Casanovas, Miguel; Fernández-Caldas, Enrique; Subiza, José Luis; Palomares, Oscar

    2016-08-01

    Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases. Copyright

  13. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms

    KAUST Repository

    Eubank, Jarrod F.

    2011-11-09

    A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms. © 2011 American Chemical Society.

  14. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms

    KAUST Repository

    Eubank, Jarrod F.; Wojtas, Łukasz; Hight, Matthew R.; Bousquet, Till; Kravtsov, Victor Ch H; Eddaoudi, Mohamed

    2011-01-01

    A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms. © 2011 American Chemical Society.

  15. Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors.

    Science.gov (United States)

    Accardo, Antonella; Galli, Filippo; Mansi, Rosalba; Del Pozzo, Luigi; Aurilio, Michela; Morisco, Anna; Ringhieri, Paola; Signore, Alberto; Morelli, Giancarlo; Aloj, Luigi

    2016-12-01

    Overexpression of the gastrin-releasing peptide receptor (GRP-R) has been documented in several human neoplasms such as breast, prostate, and ovarian cancer. There is growing interest in developing radiolabeled peptide-based ligands toward these receptors for the purpose of in vivo imaging and radionuclide therapy of GRP-R-overexpressing tumors. A number of different peptide sequences, isotopes, and labeling methods have been proposed for this purpose. The aim of this work is to perform a direct side-by-side comparison of different GRP-R binding peptides utilizing a single labeling strategy to identify the most suitable peptide sequence. Solid-phase synthesis of eight derivatives (BN1-8) designed based on literature analysis was carried out. Peptides were coupled to the DOTA chelator through a PEG4 spacer at the N-terminus. Derivatives were characterized for serum stability, binding affinity on PC-3 human prostate cancer cells, biodistribution in tumor-bearing mice, and gamma camera imaging at 1, 6, and 24 h after injection. Serum stability was quite variable among the different compounds with half-lives ranging from 16 to 400 min at 37 °C. All compounds tested showed K d values in the nanomolar range with the exception of BN3 that showed no binding. Biodistribution and imaging studies carried out for compounds BN1, BN4, BN7, and BN8 showed targeting of the GRP-R-positive tumors and the pancreas. The BN8 compound (DOTA-PEG-DPhe-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH2) showed high affinity, the longest serum stability, and the highest target-to-background ratios in biodistribution and imaging experiments among the compounds tested. Our results indicate that the NMeGly for Gly substitution and the Sta-Leu substitution at the C-terminus confer high serum stability while maintaining high receptor affinity, resulting in biodistribution properties that outperform those of the other peptides.

  16. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    Science.gov (United States)

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the

  17. Comparison of two cross-bridged macrocyclic chelators for the evaluation of 64Cu-labeled-LLP2A, a peptidomimetic ligand targeting VLA-4-positive tumors

    International Nuclear Information System (INIS)

    Jiang, Majiong; Ferdani, Riccardo; Shokeen, Monica; Anderson, Carolyn J.

    2013-01-01

    Integrin α 4 β 1 (also called very late antigen-4 or VLA-4) plays an important role in tumor growth, angiogenesis and metastasis, and there has been increasing interest in targeting this receptor for cancer imaging and therapy. In this study, we conjugated a peptidomimetic ligand known to have good binding affinity for α 4 β 1 integrin to a cross-bridged macrocyclic chelator with a methane phosphonic acid pendant arm, CB-TE1A1P. CB-TE1A1P-LLP2A was labeled with 64 Cu under mild conditions in high specific activity, in contrast to conjugates based on the “gold standard” di-acid cross-bridged chelator, CB-TE2A, which require high temperatures for efficient radiolabeling. Saturation binding assays demonstrated that 64 Cu-CB-TE1A1P-LLP2A had comparable binding affinity (1.2 nM vs 1.6 nM) but more binding sites (B max = 471 fmol/mg) in B16F10 melanoma tumor cells than 64 Cu-CB-TE2A-LLP2A (B max = 304 fmol/mg, p 64 Cu-CB-TE1A1P-LLP2A had less renal retention but higher uptake in tumor (11.4 ± 2.3 %ID/g versus 3.1 ± 0.6 %ID/g, p 64 Cu-CB-TE2A-LLP2A. At 2 h post-injection, 64 Cu-CB-TE1A1P-LLP2A also had significantly higher tumor:blood and tumor:muscle ratios than 64 Cu-CB-TE2A-LLP2A (CB-TE1A1P = 19.5 ± 3.0 and 13.0 ± 1.4, respectively, CB-TE2A = 4.2 ± 1.4 and 5.5 ± 0.9, respectively, p 64 Cu-CB-TE1A1P-LLP2A is an excellent PET radiopharmaceutical for the imaging of α 4 β 1 positive tumors and also has potential for imaging other α 4 β 1 positive cells such as those of the pre-metastatic niche

  18. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  19. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  20. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands.

    Science.gov (United States)

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H

    2010-01-01

    OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by

  1. Synthesis, characterization and biological evaluation of [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand complexes as prototypes for the development of {sup 188}Re(N)-based target-specific radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Stefan [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Agostini, Stefania [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Bergmann, Ralf; Pietzsch, Jens; Pietzsch, Hans-Juergen [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Carta, Davide; Salvarese, Nicola [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Refosco, Fiorenzo [ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Bolzati, Cristina, E-mail: bolzati@icis.cnr.i [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-04-15

    We report on an efficient procedure for the preparation of [{sup 188}Re(N)(PNP)]-based complexes (where PNP is diphosphinoamine) useful in the development of target-specific radiopharmaceuticals. The radiochemical yield of the compounds was optimized considering such reaction parameters as nature of the nitrido nitrogen donor, reaction times and pH level. The chemical identity of the {sup 188}Re agents was determined by high-performance liquid chromatography comparison with the corresponding well-characterized cold Re compounds. {sup 188}Re(N) mixed compounds have been evaluated with regard to stability toward transchelation with GSH and degradation by serum enzymes. The clearance of selected radiocompounds from normal tissues and their in vivo stability were evaluated in rats by biodistribution and imaging studies. [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand compounds were efficiently prepared in aqueous solution from perrhenate using a multistep procedure based on the preliminary formation of the labile {sup 188}Re{sup III}-EDTA species, which easily undergo oxidation/ligand exchange reaction to afford the [{sup 188}Re{sup V{identical_to}}N]{sup 2+} core in the presence of dithiocarbazate. The final mixed-ligand compounds were obtained, at 100{sup o}C, by adding the two bidentate ligands to the buffered [{sup 188}Re{sup V{identical_to}}N]{sup 2+} solution (pH 3.2-3.6). However, a relatively high amount of cys{approx} ligand was required to obtain a quantitative radiochemical yield. The complexes were stable toward reoxidation to perrhenate and ligand exchange reactions. In vivo studies showed rapid distribution and elimination of the complexes from the body. No specific uptakes in sensitive tissues/organs were detected. A positive correlation of the distribution of the complexes estimated with biodistribution studies (%ID) and with micro-SPECT semiquantification imaging analysis (standard uptake values) was observed. These results support the

  2. Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell Death in Rodent Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Anne Marie Kay Kovach

    2016-10-01

    Full Text Available Target drug deliveries using nanotechnology are a novel consideration in the treatment of cancer. We present herein an in vitro mouse model for the preliminary investigation of the efficacy of an iron oxide nanoparticle complex conjugated to vascular endothelial growth factor (VEGF antibody and ligand cluster of differentiation 80 (CD80 for the purpose of eventual translational applications in the treatment of human osteosarcoma (OSA. The 35 nm diameter iron oxide magnetic nanoparticles are functionalized with an n-hydroxysuccinimide biocompatible coating and are conjugated on the surface to proteins VEGF antibody and ligand CD80. Combined, these proteins have the ability to target OSA cells and induce apoptosis. The proposed system was tested on a cancerous rodent osteoblast cell line (ATCCTMNPO CRL-2836 at four different concentrations (0.1, 1.0, 10.0, and 100.0 μg/mL of ligand CD80 alone, VEGF antibody alone, and a combination thereof (CD80+VEGF. Systems were implemented every 24 h over different sequential treatment timelines: 24, 48, and 72 h, to find the optimal protein concentration required for a reduction in cell proliferation. Results demonstrated that a combination of ligand CD80 and VEGF antibody was consistently most effective at reducing aberrant osteoblastic proliferation for both the 24- and 72-h timelines. At 48 h, however, an increase in cell proliferation was documented for the 0.1 and 1 μg/mL groups. For the 24- and 72-h tests, concentrations of 1.0 μg/mL of CD80+VEGF and 0.1 μg/mL of VEGF antibody were most effective. Concentrations of 10.0 and 100.0 μg/mL of CD80+VEGF reduced cell proliferation, but not as remarkably as the 1.0 μg/mL concentration. In addition, cell proliferation data showed that multiple treatments (72-h test induced cell death in the osteoblasts better than a single treatment. Future targeted drug delivery system research includes trials in OSA cell lines from greater phylum

  3. CXCR4 Ligands : The Next Big Hit?

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Lapa, Constantin; Herrmann, Ken; Wester, Hans-Juergen

    2017-01-01

    The G protein-coupled protein receptor C-X-C chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic cancers. Binding of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in receptor internalization and

  4. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.

    Science.gov (United States)

    Sheridan, Robert P; Maiorov, Vladimir N; Holloway, M Katharine; Cornell, Wendy D; Gao, Ying-Duo

    2010-11-22

    One approach to estimating the "chemical tractability" of a candidate protein target where we know the atomic resolution structure is to examine the physical properties of potential binding sites. A number of other workers have addressed this issue. We characterize ~290,000 "pockets" from ~42,000 protein crystal structures in terms of a three parameter "pocket space": volume, buriedness, and hydrophobicity. A metric DLID (drug-like density) measures how likely a pocket is to bind a drug-like molecule. This is calculated from the count of other pockets in its local neighborhood in pocket space that contain drug-like cocrystallized ligands and the count of total pockets in the neighborhood. Surprisingly, despite being defined locally, a global trend in DLID can be predicted by a simple linear regression on log(volume), buriedness, and hydrophobicity. Two levels of simplification are necessary to relate the DLID of individual pockets to "targets": taking the best DLID per Protein Data Bank (PDB) entry (because any given crystal structure can have many pockets), and taking the median DLID over all PDB entries for the same target (because different crystal structures of the same protein can vary because of artifacts and real conformational changes). We can show that median DLIDs for targets that are detectably homologous in sequence are reasonably similar and that median DLIDs correlate with the "druggability" estimate of Cheng et al. (Nature Biotechnology 2007, 25, 71-75).

  5. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  6. Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel-Lindau Gene Mutation Status.

    Science.gov (United States)

    Messai, Yosra; Gad, Sophie; Noman, Muhammad Zaeem; Le Teuff, Gwenael; Couve, Sophie; Janji, Bassam; Kammerer, Solenne Florence; Rioux-Leclerc, Nathalie; Hasmim, Meriem; Ferlicot, Sophie; Baud, Véronique; Mejean, Arnaud; Mole, David Robert; Richard, Stéphane; Eggermont, Alexander M M; Albiges, Laurence; Mami-Chouaib, Fathia; Escudier, Bernard; Chouaib, Salem

    2016-10-01

    Clear cell renal cell carcinomas (ccRCC) frequently display a loss of function of the von Hippel-Lindau (VHL) gene. To elucidate the putative relationship between VHL mutation status and immune checkpoint ligand programmed death-ligand 1 (PD-L1) expression. A series of 32 renal tumors composed of 11 VHL tumor-associated and 21 sporadic RCCs were used to evaluate PD-L1 expression levels after sequencing of the three exons and exon-intron junctions of the VHL gene. The 786-O, A498, and RCC4 cell lines were used to investigate the mechanisms of PD-L1 regulation. Fisher's exact test was used for VHL mutation and Kruskal-Wallis test for PD-L1 expression. If no covariate accounted for the association of VHL and PD-L1, then a Kruskal-Wallis test was used; otherwise Cochran-Mantel-Haenzsel test was used. We also used the Fligner-Policello test to compare two medians when the distributions had different dispersions. We demonstrated that tumors from ccRCC patients with VHL biallelic inactivation (ie, loss of function) display a significant increase in PD-L1 expression compared with ccRCC tumors carrying one VHL wild-type allele. Using the inducible VHL 786-O-derived cell lines with varying hypoxia-inducible factor-2 alpha (HIF-2α) stabilization levels, we showed that PD-L1 expression levels positively correlate with VHL mutation and HIF-2α expression. Targeting HIF-2α decreased PD-L1, while HIF-2α overexpression increased PD-L1 mRNA and protein levels in ccRCC cells. Interestingly, chromatin immunoprecipitation and luciferase assays revealed a direct binding of HIF-2α to a transcriptionally active hypoxia-response element in the human PD-L1 proximal promoter in 786-O cells. Our work provides the first evidence that VHL mutations positively correlate with PD-L1 expression in ccRCC and may influence the response to ccRCC anti-PD-L1/PD-1 immunotherapy. We investigated the relationship between von Hippel-Lindau mutations and programmed death-ligand 1 expression. We

  7. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Mohr, Andreas Ø; Riise, Erik

    2016-01-01

    A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one...... molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel...... of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4...

  8. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  9. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    target rates; side effects were primarily limited to local skin reactions [349982]. Ligand has worldwide rights to market bexarotene capsules, and will market the drug in the US, Canada and selected European markets. In Spain, Portugal, Greece and Central and South America, Ferrer Internacional will market and distribute the drug. As of December 1999, Ligand was seeking additional distribution partners for select European and Asian markets [351604]. In January 2000, Alfa Wassermann signed an agreement with Ligand to exclusively market and distribute Targretin gel and capsules in Italy. Alfa paid US $0.75 million on signing with additional amounts up to an aggregate total of US $1.0 million on achievement of certain registration milestones, which are expected to be met in 2000 [351882].

  10. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  11. Reduction of dinitrogen ligands

    International Nuclear Information System (INIS)

    Richards, R.L.

    1983-01-01

    Processes of dinitrogen ligand reduction in complexes of transition metals are considered. The basic character of the dinitrogen ligand is underlined. Data on X-ray photoelectronic spectroscopy and intensities of bands ν (N 2 ) in IR-spectra of nitrogen complexes are given. The mechanism of protonation of an edge dinitrogen ligand is discussed. Model systems and mechanism of nitrogenogenase are compared

  12. A titratable two-step transcriptional amplification strategy for targeted gene therapy based on ligand-induced intramolecular folding of a mutant human estrogen receptor

    DEFF Research Database (Denmark)

    Chen, Ian Y; Paulmurugan, Ramasamy; Nielsen, Carsten Haagen

    2014-01-01

    PURPOSE: The efficacy and safety of cardiac gene therapy depend critically on the level and the distribution of therapeutic gene expression following vector administration. We aimed to develop a titratable two-step transcriptional amplification (tTSTA) vector strategy, which allows modulation...... of transcriptionally targeted gene expression in the myocardium. PROCEDURES: We constructed a tTSTA plasmid vector (pcTnT-tTSTA-fluc), which uses the cardiac troponin T (cTnT) promoter to drive the expression of the recombinant transcriptional activator GAL4-mER(LBD)-VP2, whose ability to transactivate the downstream...... induction of myocardial fluc expression. HTV injection of pcTnT-tTSTA-fluc led to negligible long-term hepatic fluc expression, regardless of the raloxifene dose given. CONCLUSIONS: The tTSTA vector strategy can effectively modulate transgene expression in a tissue-specific manner. Further refinement...

  13. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    , for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  14. 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins.

    Science.gov (United States)

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Sobarzo-Sánchez, Eduardo; Yañez, Matilde; Riera-Fernandez, Pablo; González-Díaz, Humberto

    2011-12-01

    There are many pairs of possible Drug-Proteins Interactions that may take place or not (DPIs/nDPIs) between drugs with high affinity/non-affinity for different proteins. This fact makes expensive in terms of time and resources, for instance, the determination of all possible ligands-protein interactions for a single drug. In this sense, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out rational DPIs prediction. Unfortunately, almost all QSAR models predict activity against only one target. To solve this problem we can develop multi-target QSAR (mt-QSAR) models. In this work, we introduce the technique 2D MI-DRAGON a new predictor for DPIs based on two different well-known software. We use the software MARCH-INSIDE (MI) to calculate 3D structural parameters for targets and the software DRAGON was used to calculated 2D molecular descriptors all drugs showing known DPIs present in the Drug Bank (US FDA benchmark dataset). Both classes of parameters were used as input of different Artificial Neural Network (ANN) algorithms to seek an accurate non-linear mt-QSAR predictor. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 21:21-31-1:1. This MLP classifies correctly 303 out of 339 DPIs (Sensitivity = 89.38%) and 480 out of 510 nDPIs (Specificity = 94.12%), corresponding to training Accuracy = 92.23%. The validation of the model was carried out by means of external predicting series with Sensitivity = 92.18% (625/678 DPIs; Specificity = 90.12% (730/780 nDPIs) and Accuracy = 91.06%. 2D MI-DRAGON offers a good opportunity for fast-track calculation of all possible DPIs of one drug enabling us to re-construct large drug-target or DPIs Complex Networks (CNs). For instance, we reconstructed the CN of the US FDA benchmark dataset with 855 nodes 519 drugs+336 targets). We predicted CN with similar topology (observed and predicted values of average distance are equal to 6.7 vs. 6.6). These CNs can be used to explore

  15. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  16. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    National Research Council Canada - National Science Library

    Vail, Neal

    2008-01-01

    ... done. Quantified functional groups available for ligand conjugation using S35-labeled ligands. Developed alternative assay to confirm affinity of bone-targeting nanoparticles to hydroxyapatite substrates...

  17. In vitro and in vivo evaluation of a (18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging.

    Directory of Open Access Journals (Sweden)

    Zohreh Varasteh

    Full Text Available Expression of the gastrin-releasing peptide receptor (GRPR in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA via a diethylene glycol (PEG2 spacer (NOTA-P2-RM26 labeled with (68Ga and (111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a (18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with (18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50 of the [(natF]AlF-NOTA-P2-RM26 was compared to that of the (natGa-loaded peptide using (125I-Tyr(4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with (18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol. The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [(natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM. The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [(18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p

  18. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  19. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  20. Building a Robust Tumor Profiling Program: Synergy between Next-Generation Sequencing and Targeted Single-Gene Testing.

    Directory of Open Access Journals (Sweden)

    Matthew C Hiemenz

    Full Text Available Next-generation sequencing (NGS is a powerful platform for identifying cancer mutations. Routine clinical adoption of NGS requires optimized quality control metrics to ensure accurate results. To assess the robustness of our clinical NGS pipeline, we analyzed the results of 304 solid tumor and hematologic malignancy specimens tested simultaneously by NGS and one or more targeted single-gene tests (EGFR, KRAS, BRAF, NPM1, FLT3, and JAK2. For samples that passed our validated tumor percentage and DNA quality and quantity thresholds, there was perfect concordance between NGS and targeted single-gene tests with the exception of two FLT3 internal tandem duplications that fell below the stringent pre-established reporting threshold but were readily detected by manual inspection. In addition, NGS identified clinically significant mutations not covered by single-gene tests. These findings confirm NGS as a reliable platform for routine clinical use when appropriate quality control metrics, such as tumor percentage and DNA quality cutoffs, are in place. Based on our findings, we suggest a simple workflow that should facilitate adoption of clinical oncologic NGS services at other institutions.

  1. The target landscape of clinical kinase drugs.

    Science.gov (United States)

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. A ligand's view of target similarity

    DEFF Research Database (Denmark)

    Garland, Stephen L; Gloriam, David E

    2011-01-01

    GPCR binding site-directed techniques are rapidly evolving into powerful tools for modern drug discovery. Many of these approaches bridge chemistry and biology, which are inseparable concepts in nature but are often treated as separate worlds in drug discovery and science in general. This review ...

  3. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  4. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  5. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  6. 99mTc-labeling of Peptidomimetic Antagonist to Selectively Target αvβ3 Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands

    Science.gov (United States)

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C.P; Wood, Bradford; Carrasquillo, Jorge A.; Danthi, S. Narasimhan; Paik, Chang H.

    2010-01-01

    Objectives The aim of this research was to synthesize radiolabeled peptidomimetic integrin αvβ3 antagonist with 99mTc for rapid targeting of integrin αvβ3 receptors in tumor to produce a high tumor to background ratio. Methods The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with 99mTc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N′-diacetic acid (EDDA) as the co-ligand. The products, 99mTc EDDA2/HYNIC-IAC (P1) and 99mTc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. Results P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 °C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 ± 13.48 vs 51.05 ± 14.05%) when incubated with αvβ3 at a molar excess (0.8 μM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17±0.52 and 2.13±0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 ± 3.67% ID at 4 h whereas 54.04 ± 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by imaging studies showing higher tumor

  7. [Supercomputer investigation of the protein-ligand system low-energy minima].

    Science.gov (United States)

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  8. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  9. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  10. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  11. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  12. Designing multiple ligands - medicinal chemistry strategies and challenges.

    Science.gov (United States)

    Morphy, Richard; Rankovic, Zoran

    2009-01-01

    It has been widely recognised over the recent years that parallel modulation of multiple biological targets can be beneficial for treatment of diseases with complex etiologies such as cancer asthma, and psychiatric disease. In this article, current strategies for the generation of ligands with a specific multi-target profile (designed multiple ligands or DMLs) are described and a number of illustrative example are given. Designing multiple ligands is frequently a challenging endeavour for medicinal chemists, with the need to appropriately balance affinity for 2 or more targets whilst obtaining physicochemical and pharmacokinetic properties that are consistent with the administration of an oral drug. Given that the properties of DMLs are influenced to a large extent by the proteomic superfamily to which the targets belong and the lead generation strategy that is pursued, an early assessment of the feasibility of any given DML project is essential.

  13. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  14. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  15. The Pim kinases: new targets for drug development.

    Science.gov (United States)

    Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

    2011-12-01

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

  16. Theranostics Targeting Metastatic Breast Cancer

    Science.gov (United States)

    2016-10-01

    Knapp DW. Targeting folate receptors to treat invasive urinary bladder cancer . Cancer Res 2013;73(2):875–884. 71. Holm J, Hansen SI, Hoier-Madsen M...purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor...trafficking, thus impacting the efficacy of receptor -mediated drug delivery for cancer therapy. These factors include the following: (i) the rate of ligand

  17. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  18. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  19. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  20. Metal-ligand interactions

    Science.gov (United States)

    Ervin, Kent M.

    Experimental studies of the interactions of small transition-metal cluster anions with carbonyl ligands are reviewed and compared with neutral and cationic clusters. Under thermal conditions, the reaction rates of transition-metal clusters with carbon monoxide are measured as a function of cluster size. Saturation limits for carbon monoxide addition can be related to the geometric structures of the clusters. Both energy-resolved threshold collision-induced dissociation experiments and time-resolved photodissociation experiments are used to measure metal-carbonyl binding energies. For platinum and palladium trimer anions, the carbonyl binding energies are assigned to different geometric binding sites. Platinum and palladium cluster anions catalyse the oxidation of carbon monoxide to carbon dioxide in a full catalytic cycle at thermal energies.

  1. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  3. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  4. KLIFS : a knowledge-based structural database to navigate kinase-ligand interaction space

    NARCIS (Netherlands)

    van Linden, O.P.J.; Kooistra, A.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C.

    2013-01-01

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal

  5. AsteriX: a Web server to automatically extract ligand coordinates from figures in PDF articles.

    NARCIS (Netherlands)

    Lounnas, V.; Vriend, G.

    2012-01-01

    Coordinates describing the chemical structures of small molecules that are potential ligands for pharmaceutical targets are used at many stages of the drug design process. The coordinates of the vast majority of ligands can be obtained from either publicly accessible or commercial databases.

  6. Correcting ligands, metabolites, and pathways

    NARCIS (Netherlands)

    Ott, M.A.; Vriend, G.

    2006-01-01

    BACKGROUND: A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases,

  7. Neuroprotective targets through which 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a sigma receptor ligand, mitigates the effects of methamphetamine in vitro

    Science.gov (United States)

    Kaushal, Nidhi; Robson, Matthew J.; Rosen, Abagail; McCurdy, Christopher R.; Matsumoto, Rae R.

    2014-01-01

    Exposure to high or repeated doses of methamphetamine can cause hyperthermia and neurotoxicity, which are thought to increase the risk of developing a variety of neurological conditions. Sigma receptor antagonism can prevent methamphetamine-induced hyperthermia and neurotoxicity, but the underlying cellular targets through which the neuroprotection is conveyed remain unknown. Differentiated NG108-15 cells were thus used as a model system to begin elucidating the neuroprotective mechanisms targeted by sigma receptor antagonists to mitigate the effects of methamphetamine. In differentiated NG108-15 cells, methamphetamine caused the generation of reactive oxygen/nitrogen species, an increase in PERK-mediated endoplasmic reticulum stress and the activation of caspase-3, -8 and -9, ultimately resulting in apoptosis at micromolar concentrations, and necrotic cell death at higher concentrations. The sigma receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), attenuated methamphetamine-induced increases in reactive oxygen/nitrogen species, activation of caspase-3,-8 and-9 and accompanying cellular toxicity. In contrast, 1,3-di(2-tolyl)-guanidine (DTG), a sigma receptor agonist, shifted the dose response curve of methamphetamine-induced cell death towards the left. To probe the effect of temperature on neurotoxicity, NG108-15 cells maintained at an elevated temperature (40 °C) exhibited a significant and synergistic increase in cell death in response to methamphetamine, compared to cells maintained at a normal cell culture temperature (37 °C). SN79 attenuated the enhanced cell death observed in the methamphetamine-treated cells at 40 °C. Together, the data demonstrate that SN79 reduces methamphetamine-induced reactive oxygen/nitrogen species generation and caspase activation, thereby conveying neuroprotective effects against methamphetamine under regular and elevated temperature conditions. PMID:24380829

  8. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  9. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  10. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery

    Science.gov (United States)

    Fischer, Marcus; Coleman, Ryan G.; Fraser, James S.; Shoichet, Brian K.

    2014-07-01

    Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.

  11. Targeted Delivery of siRNA Therapeutics to Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Qixin Leng

    2017-01-01

    Full Text Available Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.

  12. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  13. PL-PatchSurfer: a novel molecular local surface-based method for exploring protein-ligand interactions.

    Science.gov (United States)

    Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G; Kihara, Daisuke

    2014-08-27

    Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  14. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  15. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  16. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  17. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  18. Benzimidazoles: an ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands.

    Science.gov (United States)

    Kaur, Gaganpreet; Kaur, Maninder; Silakari, Om

    2014-01-01

    The recent research area endeavors to discover ultimate multi-target ligands, an increasingly feasible and attractive alternative to existing mono-targeted drugs for treatment of complex, multi-factorial inflammation process which underlays plethora of debilitated health conditions. In order to improvise this option, exploration of relevant chemical core scaffold will be an utmost need. Privileged benzimidazole scaffold being historically versatile structural motif could offer a viable starting point in the search for novel multi-target ligands against multi-factorial inflammation process since, when appropriately substituted, it can selectively modulate diverse receptors, pathways and enzymes associated with the pathogenesis of inflammation. Despite this remarkable capability, the multi-target capacity of the benzimidazole scaffold remains largely unexploited. With this in focus, the present review article attempts to provide synopsis of published research to exemplify the valuable use of benzimidazole nucleus and focus on their suitability as starting scaffold to develop multi-targeted anti-inflammatory ligands.

  19. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  20. Single institute study of FLT3 mutation in acute myeloid leukemia ...

    Indian Academy of Sciences (India)

    typic, and clinical characteristics and compare them with pre- viously reported cases. To further ... A 58-year-old man was presented in February 1997 with malaise, throat and chest ... Physical examination, laboratory and cyto- genetic data are ...

  1. Anginex-conjugated liposomes for targeting of angiogenic endothelial cells

    NARCIS (Netherlands)

    Brandwijk, Ricardo J. M. G. E.; Mulder, Willem J. M.; Nicolay, Klaas; Mayo, Kevin H.; Thijssen, Victor L. J. L.; Griffioen, Arjan W.

    2007-01-01

    Identification of a tumor angiogenesis specific ligand would allow targeting of tumor vasculature. Lipidic vehicles can be used to deliver therapeutic agents for treatment of disease or contrast agents for molecular imaging. A targeting ligand would allow specific delivery of such formulations to

  2. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    Science.gov (United States)

    2015-10-01

    PELP1 interactions. LNCaP cells were treated with bis-benzamides in the presence of 10 nM DHT . Cell lysates were then immunoprecipitated with...doses) for 2 hours and then treated cells with EtOH or DHT (10 nM) for 30 mins. After treatment, Nano-Glo live cell reagents were added into cells...with large and small bit AR and PELP1 constructs and then treated with bis-benzamides in the absence and presence of 10 nM DHT . Evaluation of the

  3. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui; Hu, Jinsong; Huang, Kuo-Wei

    2017-01-01

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  4. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui

    2017-10-02

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  5. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Sun [Division of Undeclared Majors, Chosun University, Gwangju 501-759 (Korea, Republic of); Yoon, Doo-Soo; Sohn, Jun Youn [Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744 (Korea, Republic of); Park, Jeong-Sook, E-mail: eicosa@cnu.ac.kr [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Choi, Jin-Seok, E-mail: c34281@gmail.com [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of)

    2017-03-01

    To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24 h. Cellular uptake was studied at time intervals of 0.5, 1, and 2 h in MCF-7 cells, and cell growth inhibition study was performed for 24 h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0 ± 100.6 nm (PTX-NC), 302.0 ± 152.0 nm (Tf-PTX-NC) and 339 ± 180.6 nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24 h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition. - Highlights: • Surface modified PTX-NCs with HA and Tf are successfully prepared by adsorption method. • Enhanced cellular uptake of modified PTX-NCs compared to unmodified PTX-NC • Improved cell killing effect by surface modified PTX-NCs.

  6. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  7. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed

  8. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.

    Science.gov (United States)

    Deganutti, Giuseppe; Moro, Stefano

    2017-04-01

    Kinetic and thermodynamic ligand-protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand-protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand-protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand-protein binding.

  9. Ligand pose and orientational sampling in molecular docking.

    Directory of Open Access Journals (Sweden)

    Ryan G Coleman

    Full Text Available Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10 to 4×10(10 to 1×10(11 to 2×10(11 to 5×10(11 mean atoms scored per target, since multiple conformations are sampled per orientation, the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.

  10. Discovery of a novel selective PPARγ ligand with partial agonist binding properties by integrated in silico / in vitro work flow

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Petersen, Rasmus K.; Fratev, Filip Filipov

    2013-01-01

    that control glucose and lipid metabolism and is an important target for drugs against type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In an effort to identify novel PPARγ ligands with an improved pharmacological profile, emphasis has shifted to selective ligands with partial...

  11. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  12. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  13. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  14. Outcome of the first wwPDB/CCDC/D3R Ligand Validation Workshop

    Science.gov (United States)

    Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A.; Berman, Helen M.; Bhat, Talapady N.; Blaney, Jeff; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K.; Case, David A.; Clark, Kirk L.; Darden, Tom; Emsley, Paul; Feher, Victoria A.; Feng, Zukang; Groom, Colin R.; Harris, Seth F.; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J.; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E.; Markley, John L.; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T.; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T.; Padyana, Anil K.; Peishoff, Catherine E.; Pieniazek, Susan; Read, Randy J.; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C.; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna; Warren, Gregory L.; Westbrook, John D.; Williams, Pamela; Yang, Huanwang; Young, Jasmine

    2016-01-01

    Summary Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographic Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30–31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. PMID:27050687

  15. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  16. Differential effects of EGFR ligands on endocytic sorting of the receptor

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Grandal, Michael Vibo; Henriksen, Lasse

    2009-01-01

    signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic...... trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor...

  17. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  18. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  19. Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivity

    OpenAIRE

    Berke, Allison Paige

    2013-01-01

    Abstract Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivityby Allison Paige Berke Joint Doctor of Philosophywith the University of California San FranciscoUniversity of California, Berkeley Professor Song Li, ChairDue to structural similarity, OlfCc1and its mammalian analogue V2R2 are hypothesized to respond to amino acid ligands in a calcium-mediated fashion. By analyzing receptor structure and making targeted mutations, the specificity and sensitivity of the receptor s...

  20. Glucocorticoid-induced TNF receptor family related protein ligand [GITR-L] is requisite for optimal functioning of regulatory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Gongxian eLiao

    2014-02-01

    Full Text Available Glucocorticoid-Induced Tumor necrosis factor Receptor family-related protein (GITR, TNFRSF18, CD357 is constitutively expressed on regulatory T cells (Tregs and is inducible on effector T cells (Teffs. In this report, we examine the role of GITR-Ligand (GITR-L, which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L-/- mice is impaired after injection of the dendritic cells (DCs inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L-/- mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L-/- FoxP3(GFP reporter mice using adeno-associated virus (AAV8-OVA the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L-/-Rag-/- and Rag-/- mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L-/- but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

  1. Ligand-directed profiling of organelles with internalizing phage libraries

    Science.gov (United States)

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  2. In vivo potency revisited - Keep the target in sight.

    Science.gov (United States)

    Gabrielsson, Johan; Peletier, Lambertus A; Hjorth, Stephan

    2018-04-01

    Potency is a central parameter in pharmacological and biochemical sciences, as well as in drug discovery and development endeavors. It is however typically defined in terms only of ligand to target binding affinity also in in vivo experimentation, thus in a manner analogous to in in vitro studies. As in vivo potency is in fact a conglomerate of events involving ligand, target, and target-ligand complex processes, overlooking some of the fundamental differences between in vivo and in vitro may result in serious mispredictions of in vivo efficacious dose and exposure. The analysis presented in this paper compares potency measures derived from three model situations. Model A represents the closed in vitro system, defining target binding of a ligand when total target and ligand concentrations remain static and constant. Model B describes an open in vivo system with ligand input and clearance (Cl (L) ), adding in parallel to the turnover (k syn , k deg ) of the target. Model C further adds to the open in vivo system in Model B also the elimination of the target-ligand complex (k e(RL) ) via a first-order process. We formulate corresponding equations of the equilibrium (steady-state) relationships between target and ligand, and complex and ligand for each of the three model systems and graphically illustrate the resulting simulations. These equilibrium relationships demonstrate the relative impact of target and target-ligand complex turnover, and are easier to interpret than the more commonly used ligand-, target- and complex concentration-time courses. A new potency expression, labeled L 50 , is then derived. L 50 is the ligand concentration at half-maximal target and complex concentrations and is an amalgamation of target turnover, target-ligand binding and complex elimination parameters estimated from concentration-time data. L 50 is then compared to the dissociation constant K d (target-ligand binding affinity), the conventional Black & Leff potency estimate EC 50

  3. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening

    Science.gov (United States)

    Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin

    2013-01-01

    The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457

  4. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  5. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  6. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.

    Science.gov (United States)

    Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

  7. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  8. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  9. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  10. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    International Nuclear Information System (INIS)

    Dietz, Marina S; Haße, Daniel; Ferraris, Davide M; Göhler, Antonia; Niemann, Hartmut H; Heilemann, Mike

    2013-01-01

    The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.

  11. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.

    Directory of Open Access Journals (Sweden)

    M Lisa Phipps

    Full Text Available Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1 ensure efficient display; 2 maximize the ability to select high affinity ligands; and 3 minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands.

  13. Histamine H3 receptor ligands in the group of (homo)piperazine derivatives.

    Science.gov (United States)

    Szczepanska, Katarzyna; Kuder, Kamil; Kiec-Kononowicz, Katarzyna

    2017-11-23

    Since its' discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications make H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One of such replacements is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R's and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd 0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  15. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  16. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, Mads Corvinius; Larsen, Anders Foller; Abdikadir, Faisal Hussein

    2014-01-01

    G-quadruplex (G4) ligands are currently receiving considerable attention as potential anticancer therapeutics. A series of phenanthroline-2,9-bistriazoles carrying tethered positive end groups has been synthesized and evaluated as G4 stabilizers. The compounds were efficiently assembled by copper......(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in CH2Cl2 and water in the presence of a complexing agent. Characterization of the target compounds on telomeric and c-KIT G4 sequences led to the identification of guanidinium-substituted compounds as potent G4 DNA ligands with high selectivity over duplex DNA....... The diisopropylguanidium ligands exhibited high selectivity for the proto-oncogenic sequence c-KIT over the human telomeric sequence in the surface plasmon resonance (SPR) assay, whereas the compounds appeared potent on both G4 structures in the FRET melting temperature assay. The phenanthroline-2,9-bistriazole ligands...

  17. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    Directory of Open Access Journals (Sweden)

    Bingjie Hu

    2014-08-01

    Full Text Available Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer. PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD. We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  18. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  19. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  20. Organotellurium ligands – designing and complexation reactions

    Indian Academy of Sciences (India)

    Unknown

    membered rings it is negative and ~30 ppm only. Keywords. Organotellurium ligands; hybrid telluroether; platinum metal complexes; tellurium-125 NMR. 1. Introduction. Tellurium is the noblest metalloid which may act as a Lewis acid as well as Lewis base. The ligand chemistry of tellurium, which acts as a 'soft' donor, was ...

  1. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.

    Science.gov (United States)

    Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S

    2017-08-01

    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.

  3. Balancing focused combinatorial libraries based on multiple GPCR ligands

    Science.gov (United States)

    Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.

    2006-08-01

    G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.

  4. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pan Dipanjan [Department of Medicine, Washington University Medical School, St. Louis, MO (United States)], E-mail: dipanjan@wustl.edu; Lanza, Gregory M.; Wickline, Samuel A. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Caruthers, Shelton D. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Philips Healthcare, Andover, MA (United States)], E-mail: scaruthers@cmrl.wustl.edu

    2009-05-15

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  5. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    International Nuclear Information System (INIS)

    Pan Dipanjan; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2009-01-01

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  6. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  7. Computational multiscale modeling in protein--ligand docking.

    Science.gov (United States)

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  8. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  9. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  10. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.

    Science.gov (United States)

    Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H

    2018-04-20

    Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting

  11. The role of HOXB2 and HOXB3 in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Oscar [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund (Sweden); Chougule, Rohit A.; Moharram, Sausan A. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kabir, Nuzhat N. [Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Sun, Jianmin [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kazi, Julhash U. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Rönnstrand, Lars, E-mail: lars.ronnstrand@med.lu.se [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden)

    2015-11-27

    Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.

  12. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  13. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  14. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  15. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44.

    Science.gov (United States)

    Hidalgo, Andrés; Peired, Anna J; Wild, Martin; Vestweber, Dietmar; Frenette, Paul S

    2007-04-01

    The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.

  16. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  17. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    Science.gov (United States)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  18. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  19. A Versatile Dinucleating Ligand Containing Sulfonamide Groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa

    2014-01-01

    ligand can be prepared in aqueous solutions using only divalent metal ions. Two of the copper(II) complexes, [Cu2(psmp)(OH)] and [Cu2(psmp)(OAc)2]-, demonstrate the anticipated 1:2 ligand/metal stoichiometry and show that the dimetallic binding site created for exogenous ligands possesses high inherent...... of antiferromagnetic coupling. This is corroborated computationally by broken-symmetry density functional theory, which for isotropic modeling of the coupling predicts an antiferromagnetic coupling strength of J = 70.5 cm-1....

  20. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  1. Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases

    DEFF Research Database (Denmark)

    Chang, Cynthia X L; Tan, Anthony T; Or, Ming Yan

    2013-01-01

    report 30 novel irradiation-sensitive ligands, specifically targeting South East Asian populations, which provide 93, 63, and 79% coverage for HLA-A, -B, and -C, respectively. Unique ligands for all 16 HLA types were constructed to provide the desired soluble HLA product in sufficient yield. Peptide...

  2. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology

    Directory of Open Access Journals (Sweden)

    Kotaro Sakamoto

    2017-09-01

    Full Text Available ActRIIB (activin receptor type-2B is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN, growth differentiation factor 11 (GDF11, and bone morphogenetic protein 9 (BMP9. Notably, the protein-protein interaction (PPI between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9, AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity.

  3. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hudson, Brian D; Shimpukade, Bharat; Milligan, Graeme

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands ...

  4. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    DEFF Research Database (Denmark)

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  5. Statistical Estimation of the Protein-Ligand Binding Free Energy Based On Direct Protein-Ligand Interaction Obtained by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-09-01

    Full Text Available We have developed a method for estimating protein-ligand binding free energy (DG based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation. The present method included the fluctuation term of structural change of the protein and the effective dielectric constant. We applied this method to 34 protein-ligand complex structures. As a result, the correlation coefficient between the experimental and calculated DG values was 0.81, and the average error of DG was 1.2 kcal/mol with the use of the fixed parameters. These results were obtained from a 2 nsec molecular dynamics simulation.

  6. Ligand based pharmacophore modelling of anticancer histone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... The study was carried out using the software Ligand Scout (version .... Computer Science, for his great help and support. We are also grateful to Faculty of Engineering and applied. Sciences, Mohammad .... Aided Mol. Design ...

  7. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  8. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  9. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  10. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  11. Identification of small molecular ligands as potent inhibitors of fatty acid metabolism in Mycobacterium tuberculosis

    Science.gov (United States)

    Malikanti, Ramesh; Vadija, Rajender; Veeravarapu, Hymavathi; Mustyala, Kiran Kumar; Malkhed, Vasavi; Vuruputuri, Uma

    2017-12-01

    Tuberculosis (Tb) is one of the major health challenges for the global scientific community. The 3-hydroxy butyryl-CoA dehydrogenase (Fad B2) protein belongs to 3-hydroxyl acetyl-CoA dehydrogenase family, which plays a key role in the fatty acid metabolism and β-oxidation in the cell membrane of Mycobacterium tuberculosis (Mtb). In the present study the Fad B2 protein is targeted for the identification of potential drug candidates for tuberculosis. The 3D model of the target protein Fad B2, was generated using homology modeling approach and was validated. The plausible binding site of the Fad B2 protein was identified from computational binding pocket prediction tools, which ranges from ASN120 to VAL150 amino acid residues. Virtual screening was carried out with the databases, Ligand box UOS and hit definder, at the binding site region. 133 docked complex structures were generated as an output. The identified ligands show good glide scores and glide energies. All the ligand molecules contain benzyl amine pharmacophore in common, which show specific and selective binding interactions with the SER122 and ASN146 residues of the Fad B2 protein. The ADME properties of all the ligand molecules were observed to be within the acceptable range. It is suggested from the result of the present study that the docked molecular structures with a benzyl amine pharmacophore act as potential ligands for Fad B2 protein binding and as leads in Tb drug discovery.

  12. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds.

  13. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  14. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  15. Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers

    OpenAIRE

    Levoye, Angélique; Dam, Julie; Ayoub, Mohammed A; Guillaume, Jean-Luc; Jockers, Ralf

    2006-01-01

    G-protein-coupled receptors (GPCRs) are important drug targets and are involved in virtually every biological process. However, there are still more than 140 orphan GPCRs, and deciphering their function remains a priority for fundamental and clinical research. Research on orphan GPCRs has concentrated mainly on the identification of their natural ligands, whereas recent data suggest additional ligand-independent functions for these receptors. This emerging concept is connected with the observ...

  16. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  17. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention...... safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge...

  18. Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method

    DEFF Research Database (Denmark)

    Frandsen, Ida Osborn; Boesgaard, Michael W; Fidom, Kimberley

    2017-01-01

    Virtual screening offers an efficient alternative to high-throughput screening in the identification of pharmacological tools and lead compounds. Virtual screening is typically based on the matching of target structures or ligand pharmacophores to commercial or in-house compound catalogues....... The complete pharmacophore fragment library is freely available through the GPCR database, GPCRdb, allowing the successful application herein to be repeated for most of the 285 class A GPCR targets. The method could also easily be adapted to other protein families....

  19. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  20. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  1. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  2. Targeting the UPR to Circumvent Endocrine Resistance in Breast Cancer

    Science.gov (United States)

    2016-12-01

    cells, and re-sensitize resistant cells, to both estrogen withdrawal (analogous to treatment with an AI ) and to two different classes of AE (TAM and...following hits for NPPTA-TsOH and JS20- TsOH: NPPTA-TsOH: c-KIT<PDGFRB<FLT-3 JS20-TsOH: MEK6<NEK1 Future directions and publication(s): Currently

  3. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren

    2014-01-01

    of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin...... cycle inhibitory compounds decreased PPAR ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal...... expansion for PPAR ligand production at the onset of adipocyte differentiation....

  5. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server.

    Science.gov (United States)

    Lee, Kyoungyeul; Lee, Minho; Kim, Dongsup

    2017-12-28

    The identification of target molecules is important for understanding the mechanism of "target deconvolution" in phenotypic screening and "polypharmacology" of drugs. Because conventional methods of identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs have advantages such as low computational cost and high feasibility; however, the data dependency in the SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets. We developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random forest algorithm. The performance of each target model was tested by employing the ROC curve and the mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess the performance of target ranking. A benchmark model using an optimized sampling method and parameters was examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query ligands available publicly at http://rfqsar.kaist.ac.kr . The target models that we built can be used for both predicting the activity of ligands toward each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are additionally fitted to the probability so that users can estimate how likely a ligand-target interaction is active. The user interface of our web site is user friendly and intuitive, offering useful information and cross references.

  6. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  7. Exploring the Ligand-Protein Networks in Traditional Chinese Medicine: Current Databases, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhao

    2013-01-01

    Full Text Available The traditional Chinese medicine (TCM, which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.

  8. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  9. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  10. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  11. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  12. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  13. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  14. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  15. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  17. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  18. CERN: Fixed target targets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become visible for the first

  19. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  20. NKG2D Ligands in Tumor Immunity: Two Sides of a Coin

    Directory of Open Access Journals (Sweden)

    Jennifer eWu

    2015-03-01

    Full Text Available The activating/co-stimulatory receptor NKG2D (natural-killer group 2, member D is expressed on the surface of all human NK, NKT, CD8+ T and subsets of γδ+ T cells. The significance of NKG2D function in tumor immunity has been well demonstrated in experimental animal models. However, the role of human NKG2D ligands in regulating tumor immunity and cancer prognosis had been controversial in the literature. In this review, we summarize the latest advancement, discuss the controversies, and present evidence that membrane-bound and soluble NKG2D ligands oppositely regulate tumor immunity. We also discuss new perspectives of targeting NKG2D ligands for cancer immunotherapy.

  1. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  2. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    Science.gov (United States)

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  3. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response.

    Science.gov (United States)

    Davra, Viralkumar; Kimani, Stanley G; Calianese, David; Birge, Raymond B

    2016-11-29

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.

  4. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts.

    Science.gov (United States)

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia

    2014-01-01

    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.

  5. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  6. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  8. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  10. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  11. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts.

    Science.gov (United States)

    Lenkei, Z; Beaudet, A; Chartrel, N; De Mota, N; Irinopoulou, T; Braun, B; Vaudry, H; Llorens-Cortes, C

    2000-11-01

    Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.

  12. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    Science.gov (United States)

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  13. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  14. Mechanistic pathways of recognition of a solvent-inaccessible cavity of protein by a ligand

    Science.gov (United States)

    Mondal, Jagannath; Pandit, Subhendu; Dandekar, Bhupendra; Vallurupalli, Pramodh

    One of the puzzling questions in the realm of protein-ligand recognition is how a solvent-inaccessible hydrophobic cavity of a protein gets recognized by a ligand. We address the topic by simulating, for the first time, the complete binding process of benzene from aqueous media to the well-known buried cavity of L99A T4 Lysozyme at an atomistic resolution. Our multiple unbiased microsecond-long trajectories, which were completely blind to the location of target binding site, are able to unequivocally identify the kinetic pathways along which benzene molecule meanders across the solvent and protein and ultimately spontaneously recognizes the deeply buried cavity of L99A T4 Lysozyme at an accurate precision. Our simulation, combined with analysis based on markov state model and free energy calculation, reveals that there are more than one distinct ligand binding pathways. Intriguingly, each of the identified pathways involves the transient opening of a channel of the protein prior to ligand binding. The work will also decipher rich mechanistic details on unbinding kinetics of the ligand as obtained from enhanced sampling techniques.

  15. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    Directory of Open Access Journals (Sweden)

    Lola eFernández-Messina

    2012-09-01

    Full Text Available Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumours and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, MICA/B and ULBPs, are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarise the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.

  16. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  17. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Non-conventional Frizzled ligands and Wnt receptors.

    Science.gov (United States)

    Hendrickx, Marijke; Leyns, Luc

    2008-05-01

    The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.

  19. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...

  20. Tumor target amplification: Implications for nano drug delivery systems.

    Science.gov (United States)

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  2. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

    Science.gov (United States)

    Ward, Carl C; Kleinman, Jordan I; Nomura, Daniel K

    2017-06-16

    Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

  3. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  4. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  5. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  6. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  7. Programmed Death-Ligand 1 Immunohistochemistry Testing

    DEFF Research Database (Denmark)

    Büttner, Reinhard; Gosney, John R; Skov, Birgit Guldhammer

    2017-01-01

    Purpose Three programmed death-1/programmed death-ligand 1 (PD-L1) inhibitors are currently approved for treatment of non-small-cell lung cancer (NSCLC). Treatment with pembrolizumab in NSCLC requires PD-L1 immunohistochemistry (IHC) testing. Nivolumab and atezolizumab are approved without PD-L1...

  8. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  9. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.

    Science.gov (United States)

    Xia, Jie; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren; Wang, Xiang Simon

    2014-05-27

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the "artificial enrichment" and "analogue bias" of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.

  10. Synthesis and characterization of ligands and bifunctional chelating agents by modification of cysteine for complexation studies with 99mTc

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Kothari, K.; Banerjee, S.; Samuel, G.; Suresh, M.; Sarma, H.D.

    1998-01-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products are characterised by high resolution NMR spectroscopy. Complexation studies of the ligands with 99m Tc are standardised using stannous tartrate as the reducing agent at varying reaction conditions. The complexes are characterised using standard quality control techniques such as TLC, paper electrophoresis and PC. Lipophilicities of the complexes are estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity in the 99m Tc complexes are observed on substituting the carboxylic acid residue in ligand I and II with the ethyl carboxylate groups (ligands III and IV). All the ligands formed complexes in high yield. While the complexes of ligand I and II are observed to be hydrophilic in nature and are not extractable into CHCl 3 , ligands III and IV gave neutral and lipophilic complexes. Though the distribution ratios of the complexes of ligands III and IV in CHCl 3 /saline system are observed to be very high, considerable differences in lipophilicities are also observed as evidenced by the difference in their respective extractabilities in chloroform. On storage, the complex of ligand III exhibit a tendency to get converted to a hydrophilic and non-extractable species. The bio-distribution of the complexes of ligands I and II showed that they have predominantly renal clearances whereas the complexes of ligands III and IV exhibited a significant hepatobiliary uptake and did not show much uptake in brain in spite of its favourable properties such as neutrality, lipophilicity and conversion into a hydrophilic species. (author)

  11. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  12. Dynamic ligand-based pharmacophore modeling and virtual ...

    Indian Academy of Sciences (India)

    Five ligand-based pharmacophore models were generated from 40 different .... the Phase module of the Schrodinger program.35 Each model consisted of six types of ... ligand preparation included the OPLS_2005 force field and to retain the ...

  13. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  14. The emergence of designed multiple ligands for neurodegenerative disorders.

    Science.gov (United States)

    Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J

    2011-09-01

    The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.

  15. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  16. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  17. Ligand-induced internalization of neurotensin in transfected COS-7 cells: differential intracellular trafficking of ligand and receptor.

    Science.gov (United States)

    Vandenbulcke, F; Nouel, D; Vincent, J P; Mazella, J; Beaudet, A

    2000-09-01

    The neuropeptide neurotensin (NT) is known to be internalized in a receptor-mediated fashion into its target cells. To gain insight into the mechanisms underlying this process, we monitored in parallel the migration of the NT1 neurotensin receptor subtype and a fluorescent analog of NT (fluo-NT) in COS-7 cells transfected with a tagged NT1 construct. Fluo-NT internalization was prevented by hypertonic sucrose, potassium depletion and cytosol acidification, demonstrating that it proceeded via clathrin-coated pits. Within 0-30 minutes, fluo-NT accumulated together with its receptor in Acridine Orange-positive, acidic organelles. These organelles concentrated transferrin and immunostained positively for rab 5A, therefore they were early endosomes. After 30-45 minutes, the ligand and its receptor no longer colocalized. Fluo-NT was first found in rab 7-positive late endosomes and later in a nonacidic juxtanuclear compartment identified as the Trans-Golgi Network (TGN) by virtue of its staining for syntaxin 6. This juxtanuclear compartment also stained positively for rab 7 and for the TGN/pericentriolar recycling endosome marker rab 11, suggesting that the ligand could have been recruited to the TGN from either late or recycling endosomes. By that time, internalized receptors were detected in Lamp-1-immunoreactive lysosomes. These results demonstrate that neurotensin/NT1 receptor complexes follow a recycling cycle that is unique among the G protein-coupled receptors studied to date, and provide the first evidence for the targeting of a nonendogenous protein from endosomes to the TGN.

  18. Global profiling of lysine reactivity and ligandability in the human proteome

    Science.gov (United States)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  19. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  20. Global profiling of lysine reactivity and ligandability in the human proteome.

    Science.gov (United States)

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  1. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated...

  2. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  3. New pinene-derived pyridines as bidentate chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stewart-Liddon, A.; Teplý, Filip; Kobr, L.; Muir, K. W.; Haigh, D.; Kočovský, P.

    2008-01-01

    Roč. 64, č. 18 (2008), s. 4011-4025 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : chiral ligands * transition metal catalysis * asymmetric catalysis * pyridine ligands * oxazoline ligands Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  4. Synthesis and biological evaluation of bivalent cannabinoid receptor ligands based on hCB₂R selective benzimidazoles reveal unexpected intrinsic properties.

    Science.gov (United States)

    Nimczick, Martin; Pemp, Daniela; Darras, Fouad H; Chen, Xinyu; Heilmann, Jörg; Decker, Michael

    2014-08-01

    The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB₂R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  6. Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.

    Science.gov (United States)

    Eble, Johannes A

    2018-02-15

    The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.

  7. Sigma-2 receptor ligands QSAR model dataset

    Directory of Open Access Journals (Sweden)

    Antonio Rescifina

    2017-08-01

    Full Text Available The data have been obtained from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB and refined according to the QSAR requirements. These data provide information about a set of 548 Sigma-2 (σ2 receptor ligands selective over Sigma-1 (σ1 receptor. The development of the QSAR model has been undertaken with the use of CORAL software using SMILES, molecular graphs and hybrid descriptors (SMILES and graph together. Data here reported include the regression for σ2 receptor pKi QSAR models. The QSAR model was also employed to predict the σ2 receptor pKi values of the FDA approved drugs that are herewith included.

  8. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  9. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    International Nuclear Information System (INIS)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran; Chu, Wenhua; Chu, Yunxiang; Mach, Robert H.; Zeng, Chenbo

    2017-01-01

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119, WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.

  10. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase.

    Science.gov (United States)

    Amero, Carlos D; Byerly, Douglas W; McElroy, Craig A; Simmons, Amber; Foster, Mark P

    2009-08-18

    Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.

  11. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  12. EGFR Activation by Spatially Restricted Ligands

    Science.gov (United States)

    2006-06-01

    the level of ligand production, that result in human breast cancer. We have integrated genetic and biochemical methods to study (1) the effects of a...and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711-2723...findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision

  13. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  14. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  15. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Maike Bublitz

    2015-07-01

    Full Text Available Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  16. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  17. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes.

    Science.gov (United States)

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L

    2011-07-06

    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  18. Fas and Fas ligand in cyst fluids, serum and tumors of patients with benign and (borderline) malignant ovarian tumors

    NARCIS (Netherlands)

    Arts, HJG; De Jong, S; Hollema, H; Ten Hoor, KA; De Vries, EGE; Van Der Zee, AGJ

    Drug resistance in ovarian cancer treatment urges the exploration of new targets for drugs against this malignancy. Fas is a cell membrane receptor which, after engagement with Fas ligand (FasL), triggers apoptotic death. In this study Fas and FasL levels in cyst fluids and sera of patients with

  19. Different response patterns of several ligands at the sphingosine-1-phosphate receptor subtype 3 (S1P(3))

    NARCIS (Netherlands)

    Jongsma, M.; van Unen, J.; van Loenen, P. B.; Michel, M. C.; Peters, S. L. M.; Alewijnse, A. E.

    2009-01-01

    Recently, some ligands targeting the sphingosine-1-phosphate receptor subtype 3 (S1P(3)) have become available. The characterization of these compounds was mainly based on one functional read-out system, although S1P(3) receptors are known to activate different signal transduction pathways.

  20. Synthesis and characterization of 6,6'-bis(2-hydroxyphenyl)-2,2'-bipyridine ligand and its interaction with ct-DNA

    Science.gov (United States)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd

    2015-09-01

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6'-dibromo-2,2'-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6'-bis(2-methoxyphenyl)-2,2'-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by 1H, 2D cosy and 13C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant Kb = 1.19 × 103 ± 0.08 M-1.

  1. Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridine ligand and its interaction with ct-DNA

    International Nuclear Information System (INIS)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd

    2015-01-01

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by 1 H, 2D cosy and 13 C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K b = 1.19 × 10 3 ± 0.08 M −1

  2. Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridine ligand and its interaction with ct-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor (Malaysia)

    2015-09-25

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by {sup 1}H, 2D cosy and {sup 13}C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K{sub b} = 1.19 × 10{sup 3} ± 0.08 M{sup −1}.

  3. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe.

    Science.gov (United States)

    Laguerre, Aurélien; Stefan, Loic; Larrouy, Manuel; Genest, David; Novotna, Jana; Pirrotta, Marc; Monchaud, David

    2014-09-03

    Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.

  4. Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein

    Science.gov (United States)

    Zhou, Zhigang; Li, Yumin

    2009-10-01

    As a tumor suppressor, p53 plays an important role in cancer suppression. The biological function of p53 as a tumor suppressor is disabled when it binds to S100B. Developing the ligands to block the S100B-p53 interaction has been proposed as one of the most important approaches to the development of anti-cancer agents. We screened a small compound library against the binding interface of S100B and p53 to identify potential compounds to interfere with the interaction. The ligand-binding effect on the S100B-p53 interaction was explored by molecular dynamics at the atomic level. The results show that the ligand bound between S100B and p53 propels the two proteins apart by about 2 Å compared to the unligated S100B-p53 complex. The binding affinity of S100B and p53 decreases by 8.5-14.6 kcal/mol after a ligand binds to the interface from the original unligated state of the S100B-p53 complex. Ligand-binding interferes with the interaction of S100B and p53. Such interference could impact the association of S100B and p53, which would free more p53 protein from the pairing with S100B and restore the biological function of p53 as a tumor suppressor. The analysis of the binding mode and ligand structural features would facilitate our effort to identify and design ligands to block S100B-p53 interaction effectively. The results from the work suggest that developing ligands targeting the interface of S100B and p53 could be a promising approach to recover the normal function of p53 as a tumor suppressor.

  5. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  6. AsteriX: a Web server to automatically extract ligand coordinates from figures in PDF articles.

    Science.gov (United States)

    Lounnas, V; Vriend, G

    2012-02-27

    Coordinates describing the chemical structures of small molecules that are potential ligands for pharmaceutical targets are used at many stages of the drug design process. The coordinates of the vast majority of ligands can be obtained from either publicly accessible or commercial databases. However, interesting ligands sometimes are only available from the scientific literature, in which case their coordinates need to be reconstructed manually--a process that consists of a series of time-consuming steps. We present a Web server that helps reconstruct the three-dimensional (3D) coordinates of ligands for which a two-dimensional (2D) picture is available in a PDF file. The software, called AsteriX, analyses every picture contained in the PDF file and attempts to determine automatically whether or not it contains ligands. Areas in pictures that may contain molecular structures are processed to extract connectivity and atom type information that allow coordinates to be subsequently reconstructed. The AsteriX Web server was tested on a series of articles containing a large diversity in graphical representations. In total, 88% of 3249 ligand structures present in the test set were identified as chemical diagrams. Of these, about half were interpreted correctly as 3D structures, and a further one-third required only minor manual corrections. It is principally impossible to always correctly reconstruct 3D coordinates from pictures because there are many different protocols for drawing a 2D image of a ligand, but more importantly a wide variety of semantic annotations are possible. The AsteriX Web server therefore includes facilities that allow the users to augment partial or partially correct 3D reconstructions. All 3D reconstructions are submitted, checked, and corrected by the users domain at the server and are freely available for everybody. The coordinates of the reconstructed ligands are made available in a series of formats commonly used in drug design research. The

  7. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy.

    Science.gov (United States)

    Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S

    2011-09-26

    The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand

  8. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  9. Challenges of ligand identification for the second wave of orphan riboswitch candidates.

    Science.gov (United States)

    Greenlee, Etienne B; Stav, Shira; Atilho, Ruben M; Brewer, Kenneth I; Harris, Kimberly A; Malkowski, Sarah N; Mirihana Arachchilage, Gayan; Perkins, Kevin R; Sherlock, Madeline E; Breaker, Ronald R

    2018-03-04

    Orphan riboswitch candidates are noncoding RNA motifs whose representatives are believed to function as genetic regulatory elements, but whose target ligands have yet to be identified. The study of certain orphans, particularly classes that have resisted experimental validation for many years, has led to the discovery of important biological pathways and processes once their ligands were identified. Previously, we highlighted details for four of the most common and intriguing orphan riboswitch candidates. This facilitated the validation of riboswitches for the signaling molecules c-di-AMP, ZTP, and ppGpp, the metal ion Mn 2+ , and the metabolites guanidine and PRPP. Such studies also yield useful linkages between the ligands sensed by the riboswitches and numerous biochemical pathways. In the current report, we describe the known characteristics of 30 distinct classes of orphan riboswitch candidates - some of which have remained unsolved for over a decade. We also discuss the prospects for uncovering novel biological insights via focused studies on these RNAs. Lastly, we make recommendations for experimental objectives along the path to finding ligands for these mysterious RNAs.

  10. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein-Ligand Interactions.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2017-04-11

    First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.

  11. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  12. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    International Nuclear Information System (INIS)

    Campos, Samuel K.; Barry, Michael A.

    2006-01-01

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon

  13. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  14. Effects of coumestrol on lipid and glucose metabolism as a farnesoid X receptor ligand

    International Nuclear Information System (INIS)

    Takahashi, Miki; Kanayama, Tomohiko; Yashiro, Takuya; Kondo, Hidehiko; Murase, Takatoshi; Hase, Tadashi; Tokimitsu, Ichiro; Nishikawa, Jun-ichi; Sato, Ryuichiro

    2008-01-01

    In the course of an effort to identify novel agonists of the farnesoid X receptor (FXR), coumestrol was determined to be one such ligand. Reporter and in vitro coactivator interaction assays revealed that coumestrol bound and activated FXR. Treatment of Hep G2 cells with coumestrol stimulated the expression of FXR target genes, thereby regulating the expression of target genes of the liver X receptor and hepatocyte nuclear factor-4α. Through these actions, coumestrol is expected to exert beneficial effects on lipid and glucose metabolism

  15. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.

    Science.gov (United States)

    Jayalakshmi, V; Krishna, N Rama

    2002-03-01

    A couple of recent applications of intermolecular NOE (INOE) experiments as applied to biomolecular systems involve the (i) saturation transfer difference NMR (STD-NMR) method and (ii) the intermolecular cross-saturation NMR (ICS-NMR) experiment. STD-NMR is a promising tool for rapid screening of a large library of compounds to identify bioactive ligands binding to a target protein. Additionally, it is also useful in mapping the binding epitopes presented by a bioactive ligand to its target protein. In this latter application, the STD-NMR technique is essentially similar to the ICS-NMR experiment, which is used to map protein-protein or protein-nucleic acid contact surfaces in complexes. In this work, we present a complete relaxation and conformational exchange matrix (CORCEMA) theory (H. N. B. Moseley et al., J. Magn. Reson. B 108, 243-261 (1995)) applicable for these two closely related experiments. As in our previous work, we show that when exchange is fast on the relaxation rate scale, a simplified CORCEMA theory can be formulated using a generalized average relaxation rate matrix. Its range of validity is established by comparing its predictions with those of the exact CORCEMA theory which is valid for all exchange rates. Using some ideal model systems we have analyzed the factors that influence the ligand proton intensity changes when the resonances from some protons on the receptor protein are saturated. The results show that the intensity changes in the ligand signals in an intermolecular NOE experiment are very much dependent upon: (1) the saturation time, (2) the location of the saturated receptor protons with respect to the ligand protons, (3) the conformation of the ligand-receptor interface, (4) the rotational correlation times for the molecular species, (5) the kinetics of the reversibly forming complex, and (6) the ligand/receptor ratio. As an example of a typical application of the STD-NMR experiment we have also simulated the STD effects for a

  17. Tumor-targeting peptides from combinatorial libraries*

    Science.gov (United States)

    Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.

    2018-01-01

    Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583

  18. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design.

    Science.gov (United States)

    Neshich, Izabella Agostinho Pena; Nishimura, Leticia; de Moraes, Fabio Rogerio; Salim, Jose Augusto; Villalta-Romero, Fabian; Borro, Luiz; Yano, Inacio Henrique; Mazoni, Ivan; Tasic, Ljubica; Jardine, Jose Gilberto; Neshich, Goran

    2015-01-01

    The term "agrochemicals" is used in its generic form to represent a spectrum of pesticides, such as insecticides, fungicides or bactericides. They contain active components designed for optimized pest management and control, therefore allowing for economically sound and labor efficient agricultural production. A "drug" on the other side is a term that is used for compounds designed for controlling human diseases. Although drugs are subjected to much more severe testing and regulation procedures before reaching the market, they might contain exactly the same active ingredient as certain agrochemicals, what is the case described in present work, showing how a small chemical compound might be used to control pathogenicity of Gram negative bacteria Xylella fastidiosa which devastates citrus plantations, as well as for control of, for example, meningitis in humans. It is also clear that so far the production of new agrochemicals is not benefiting as much from the in silico new chemical compound identification/discovery as pharmaceutical production. Rational drug design crucially depends on detailed knowledge of structural information about the receptor (target protein) and the ligand (drug/agrochemical). The interaction between the two molecules is the subject of analysis that aims to understand relationship between structure and function, mainly deciphering some fundamental elements of the nanoenvironment where the interaction occurs. In this work we will emphasize the role of understanding nanoenvironmental factors that guide recognition and interaction of target protein and its function modifier, an agrochemical or a drug. The repertoire of nanoenvironment descriptors is used for two selected and specific cases we have approached in order to offer a technological solution for some very important problems that needs special attention in agriculture: elimination of pathogenicity of a bacterium which is attacking citrus plants and formulation of a new fungicide. Finally

  19. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  20. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    Science.gov (United States)

    2007-07-01

    Science 270, 1500–1502. 32. Pasqualini , R., Koivunen, E., and Ruoslahti, E. (1997) v integrins as receptors for tumor targeting by circulating ligands...Nat. Biotech- nol. 15, 542–546. 33. Arap, W., Pasqualini , R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor...Cancer Res. 2, 663–673. 47. Arap, W., Pasqualini , R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a

  1. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  2. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Schrøder, Tenna Juul; Christensen, Søren [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Strandbygård, Dorthe [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Pallesen, Lone Tjener [Aarhus University, Ole Worms Allé 3, 8000 Aarhus C (Denmark); García-Alai, Maria Marta [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark); Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep [GVK BioScience, Plot No. 28 A, IDA Nacharam, Hyderabad 500 076 (India); Watson, Steven P., E-mail: jla@mb.au.dk [H. Lundbeck A/S, Ottiliavej 9, 2500 Valby (Denmark); Thirup, Søren, E-mail: jla@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C (Denmark)

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  3. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    International Nuclear Information System (INIS)

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Strandbygård, Dorthe; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep; Watson, Steven P.; Thirup, Søren

    2014-01-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine

  4. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  5. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  6. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  7. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    Science.gov (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  10. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  11. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  12. New ' Bucky- ligands'. Potentially Monoanionic Terdentate Diamino Aryl Pincer Ligands Anchored to C60

    NARCIS (Netherlands)

    Koten, G. van; Meijer, M.D.; Gossage, R.A.; Jastrzebski, J.T.B.H.

    1998-01-01

    Two new methanofullerenes have been prepared by the reaction of C{6}{0} with diazo substituted, potentially monoanionic, terdentate diamino aryl ligands, yielding a mixture of the open valence [5, 6]- and closed valence [6,6]-isomers. Single isomers of the pure [6,6]-methanofullerenes were obtained

  13. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  14. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  15. New synthetic routes toward enantiopure nitrogen donor ligands

    OpenAIRE

    Sala, Xavier; Rodríguez, Anna M.; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; Zelewsky, Alexander von; Llobet, Antoni; Benet-Buchholz, Jordi

    2008-01-01

    New polypyridylic chiral ligands, having either C₃ or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-α-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has...

  16. Selectivity in ligand recognition of G-quadruplex loops.

    Science.gov (United States)

    Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen

    2009-03-03

    A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.

  17. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  18. Spectrochemical study on different ligand neodymium complexes

    International Nuclear Information System (INIS)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Krasovskaya, L.I.; Rasshinina, T.A.; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1986-01-01

    A series of new adducts of neodymium complexes with 1, 1, 1, 5, 5, 5-hexafluoropentadione - 2, 4 and 2-heptafluoropropoxy-1, 1, 1, 2-tetrafluoro-5-phenylpentadione-3, 5: Nd(HFPTFPhPD) 3 x2H 2 O, Nd(HFPTFPhPD) 3 xDipy, Nd(HFPTFPhPD) 3 xPhen, Nd(HFPTFPhPD) 3 xDphen, Nd(HFA) 3 x2H 2 O, Nd(HFA) 3 xDipy, Nd(HFA) 3 xPhen, Nd(HFA) 3 xDphen, have been synthesized. Ways of their fragmentation under electron impact are established. Bond strength of additional ligands with central atom in the complexes studied is evaluated. Data on decomposition mechanisms of bicharged ions have been obtained for the first time. Addition of bis-heterocycles to neodymium three-ligand complexes changes the properties of the complexes - their thermal stability and photochemical stability increase, in certain cases their volatility increases

  19. Novel Somatostatin Receptor Ligands Therapies for Acromegaly

    Directory of Open Access Journals (Sweden)

    Rosa Maria Paragliola

    2018-03-01

    Full Text Available Surgery is considered the treatment of choice in acromegaly, but patients with persistent disease after surgery or in whom surgery cannot be considered require medical therapy. Somatostatin receptor ligands (SRLs octreotide (OCT, lanreotide, and the more recently approved pasireotide, characterized by a broader receptor ligand binding profile, are considered the mainstay in the medical management of acromegaly. However, in the attempt to offer a more efficacious and better tolerated medical approach, recent research has been aimed to override some limitations related to the use of currently approved drugs and novel SRLs therapies, with potential attractive features, have been proposed. These include both new formulation of older molecules and new molecules. Novel OCT formulations are aimed in particular to improve patients’ compliance and to reduce injection discomfort. They include an investigational ready-to-use subcutaneous depot OCT formulation (CAM2029, delivered via prefilled syringes and oral OCT that uses a “transient permeability enhancer” technology, which allows for OCT oral absorption. Another new delivery system is a long-lasting OCT implant (VP-003, which provide stable doses of OCT throughout a period of several months. Finally, a new SRL DG3173 (somatoprim seems to be more selective for GH secretion, suggesting possible advantages in the presence of hyperglycemia or diabetes. How much these innovations will actually be beneficial to acromegaly patients in real clinical practice remains to be seen.

  20. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  1. Target preparation

    International Nuclear Information System (INIS)

    Hinn, G.M.

    1984-01-01

    A few of the more interesting of the 210 targets prepared in the Laboratory last year are listed. In addition the author continues to use powdered silver mixed with /sup 9,10/BeO to produce sources for accelerator radio dating of Alaskan and South Polar snow. Currently, he is trying to increase production by multiple sample processing. Also the author routinely makes 3 μg/cm 2 cracked slacked carbon stripper foils and is continuing research with some degree of success in making enriched 28 Si targets starting with the oxide

  2. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

    Science.gov (United States)

    Niphakis, Micah J; Lum, Kenneth M; Cognetta, Armand B; Correia, Bruno E; Ichu, Taka-Aki; Olucha, Jose; Brown, Steven J; Kundu, Soumajit; Piscitelli, Fabiana; Rosen, Hugh; Cravatt, Benjamin F

    2015-06-18

    Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.

    Science.gov (United States)

    Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-09-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.

  4. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    Science.gov (United States)

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  5. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    Science.gov (United States)

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  6. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  7. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  8. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are