WorldWideScience

Sample records for flpo deleter mice

  1. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jenny J Sun

    Full Text Available CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD. Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.

  2. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  3. Multigene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1996-01-01

    K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly γ-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF 1 male mice exposed to protracted neutron radiation

  4. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  5. Deletion of Fanca or Fancd2 dysregulates Treg in mice

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M.; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C.; Steinbrecher, Kris A.; Davies, Stella M.

    2014-01-01

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca−/− or Fancd2−/− BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca−/− or Fancd2−/− mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25+Foxp3+ Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25+Foxp3+ Tregs of Fanca−/− or Fancd2−/− mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients. PMID:24501220

  6. Deletion of Fanca or Fancd2 dysregulates Treg in mice.

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C; Steinbrecher, Kris A; Davies, Stella M; Pang, Qishen

    2014-03-20

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca(-/-) or Fancd2(-/-) BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca(-/-) or Fancd2(-/-) mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25(+)Foxp3(+) Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25(+)Foxp3(+) Tregs of Fanca(-/-) or Fancd2(-/-) mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients.

  7. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    Energy Technology Data Exchange (ETDEWEB)

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  8. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Science.gov (United States)

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  9. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis.Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival.In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice.Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  10. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  11. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1997-01-01

    This study was conducted on mouse lung adenocarcinoma tissues that were formalin-treated and paraffin-embedded 25 years ago to investigate the large gene deletions of mRb and p53 in B6CF 1 male mice. A total of 80 lung tissue samples from irradiated mice and 40 lung samples from nonirradiated controls were randomly selected and examined in the mRb portion of this study. The results showed a significant (P 0.05) from that for spontaneous lung adenocarcinomas or lung adenocarcinomas from mice exposed to single-dose γ irradiation at a similar total dose. mRb fragments 3 (71%) and 5 (67%), the parts of the gene that encoded the pocket binding region of Rb protein to adenovirus E1A and SV40 T-antigen, were the most frequently deleted fragments. p53 gene deletion analysis was carried out on normal lungs and lung adenocarcinomas that were initially found to bear mRb deletions. Exons 1,4,5,6, and 9 were chosen to be analyzed

  12. Deletion of a coordinate regulator of type 2 cytokine expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrs, Markus; Blankespoor, Catherine M.; Wang, Zhi-En; Loots, Gaby G.; Hadeiba, Husein; Shinkai, Kanade; Rubin, Edward M.; Locksley, Richard M.

    2001-07-30

    Mechanisms underlying the differentiation of stable T helper subsets will be important in understanding how discrete types of immunity develop in response to different pathogens. An evolutionarily conserved {approx}400 base pair non-coding sequence in the IL-4/IL-13 intergenic region, designated CNS-1, was deleted in mice. The capacity to develop Th2 cells was compromised in vitro and in vivo in the absence of CNS-1. Despite the profound effect in T cells, mast cells from CNS-1-deleted mice maintained their capacity to produce IL-4. A T cell-specific element critical for optimal expression of type 2 cytokines may represent evolution of a regulatory sequence exploited by adaptive immunity.

  13. Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice

    Directory of Open Access Journals (Sweden)

    Katerina Kraft

    2015-02-01

    Full Text Available Structural variations (SVs contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements.

  14. Corticosterone release in oxytocin gene deletion mice following exposure to psychogenic versus non-psychogenic stress.

    Science.gov (United States)

    Amico, Janet A; Cai, Hou-ming; Vollmer, Regis R

    2008-09-19

    Both anxiety-related behavior [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, X. Li, J.A. Amico, Female oxytocin-deficient mice display enhanced anxiety-related behavior, Endocrinology 144 (2003) 2291-2296] and the release of corticosterone following a psychogenic stress such as exposure to platform shaker was greater in female [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, L. Rinaman, X. Li, J.A. Amico, Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 (2004) R1494-R1504], but not male [R.C. Mantella, R.R. Vollmer, J.A. Amico, Corticosterone release is heightened in food or water deprived oxytocin deficient male mice, Brain Res. 1058 (2005) 56-61], oxytocin gene deletion (OTKO) mice compared to wild type (WT) cohorts. In the present study we exposed OTKO and WT female mice to another psychogenic stress, inserting a rectal probe to record body temperature followed by brief confinement in a metabolic cage, and measured plasma corticosterone following the stress. OTKO mice released more corticosterone than WT mice (Pstress. In contrast, if OTKO and WT female and male mice were administered insulin-induced hypoglycemia, an acute physical stress, corticosterone release was not different between genotypes. The absence of central OT signaling pathways in female mice heightens the neuroendocrine (e.g., corticosterone) response to psychogenic stress, but not to the physical stress of insulin-induced hypoglycemia.

  15. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  16. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  17. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  18. Targeted gene deletion of miRNAs in mice by TALEN system.

    Science.gov (United States)

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  19. Targeted gene deletion of miRNAs in mice by TALEN system.

    Directory of Open Access Journals (Sweden)

    Shuji Takada

    Full Text Available Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A tail worked better than that of with poly(A tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  20. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage.

    Science.gov (United States)

    Wang, Huizhen; Hastings, Richard; Miller, William L; Kumar, T Rajendra

    2016-01-05

    Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice

    Science.gov (United States)

    Tomberg, Kärt; Khoriaty, Rami; Westrick, Randal J.; Fairfield, Heather E.; Reinholdt, Laura G.; Brodsky, Gary L.; Davizon-Castillo, Pavel; Ginsburg, David; Di Paola, Jorge

    2016-01-01

    During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains. PMID:26950939

  2. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Kärt Tomberg

    Full Text Available During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS, an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10-7. Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.

  3. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  4. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  5. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  6. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST

    DEFF Research Database (Denmark)

    Karlsson, Rose-Marie; Adermark, Louise; Molander, Anna

    2012-01-01

    mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating...... rotarod, alcohol-induced hypothermia, and loss of righting reflex. Extracellular glutamate was measured using microdialysis, and striatal slice electrophysiology was carried out to examine plasticity of the cortico-striatal pathway as a model system in which adaptations to the constitutive GLAST deletion...... deletion of GLAST unexpectedly results in markedly reduced alcohol consumption and preference, associated with markedly reduced alcohol reward. Endocannabinoid signaling appears to be down-regulated upstream of the CB1 receptor as a result of the GLAST deletion, and is a candidate mechanism behind...

  7. Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Zhu, Yiwen; May, Dalit; Afzal, Veena; Gong, Elaine; Attanasio, Catia; Blow, Matthew J.; Cohen, Jonathan C.; Rubin, Edward M.; Pennacchio, Len A.

    2010-01-01

    Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation properties of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.

  8. Deletion of the miR-143/145 Cluster Leads to Hydronephrosis in Mice

    Science.gov (United States)

    Medrano, Silvia; Sequeira-Lopez, Maria Luisa S.; Gomez, R. Ariel

    2015-01-01

    Obstructive nephropathy, the leading cause of kidney failure in children, can be anatomic or functional. The underlying causes of functional hydronephrosis are not well understood. miRNAs, which are small noncoding RNAs, regulate gene expression at the post-transcriptional level. We found that miR-145-5p, a member of the miR-143/145 cluster that is highly expressed in smooth muscle cells of the renal vasculature, was present in the pelvicalyceal system and the ureter. To evaluate whether the miR-143/145 cluster is involved in urinary tract function we performed morphologic, functional, and gene expression studies in mice carrying a whole-body deletion of miR-143/145. miR-143/145–deficient mice developed hydronephrosis, characterized by severe papillary atrophy and dilatation of the pelvicalyceal system without obvious physical obstruction. Moreover, mutant mice showed abnormal ureteral peristalsis. The number of ureter contractions was significantly higher in miR-143/145–deficient mice. Peristalsis was replaced by incomplete, short, and more frequent contractions that failed to completely propagate in a proximal-distal direction. Microarray analysis showed 108 differentially expressed genes in ureters of miR-143/145–deficient mice. Ninety genes were up-regulated and 18 genes were down-regulated, including genes with potential regulatory roles in smooth muscle contraction and extracellular matrix-receptor interaction. We show that miR-143/145 are important for the normal peristalsis of the ureter and report an association between the expression of these miRNAs and hydronephrosis. PMID:25307343

  9. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  10. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    Science.gov (United States)

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney

  11. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    Science.gov (United States)

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  12. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    Science.gov (United States)

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  13. Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice.

    Science.gov (United States)

    Harris, Suzan L; Kazmierczak, Marcin; Pangršič, Tina; Shah, Prahar; Chuchvara, Nadiya; Barrantes-Freer, Alonso; Moser, Tobias; Schwander, Martin

    2017-03-06

    Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. By contrast, loss of Pjvk in adult OHCs causes a slowly progressive hearing loss associated with OHC degeneration and delayed loss of inner hair cells (IHCs), indicating a primary role for pejvakin in regulating OHC function and survival. Consistent with this model, synaptic transmission at the IHC ribbon synapse is largely unaffected in sirtaki mice that carry a C-terminal deletion mutation in Pjvk. Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    Science.gov (United States)

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  15. Matriptase Deletion Initiates a Sjögren’s Syndrome-Like Disease in Mice

    Science.gov (United States)

    Liu, Xibao; Swaim, William D.; Lai, Zhennan; Cabrera-Perez, Javier; Di Pasquale, Giovanni; Ambudkar, Indu S.; Bugge, Thomas H.; Chiorini, John A.

    2014-01-01

    Objective The objective of this study was to determine the effect of epithelial barrier disruption, caused by deficiency of the membrane-anchored serine protease, matriptase, on salivary gland function and the induction of autoimmunity in an animal model. Methods Embryonic and acute ablation of matriptase expression in the salivary glands of mice was induced, leading to decreased epithelial barrier function. Mice were characterized for secretory epithelial function and the induction of autoimmunity including salivary and lacrimal gland dysfunction, lymphocytic infiltration, serum anti-Ro/SSA, anti-La/SSB and antinuclear antibodies. Salivary glands immune activation/regulation, barrier function as well as tight junction proteins expression also were determined. Expression of matriptase in minor salivary gland biopsies was compared among pSS patients and healthy volunteers. Results Embryonic ablation of matriptase expression in mice resulted in the loss of secretory epithelial cell function and the induction of autoimmunity similar to that observed in primary Sjögren’s syndrome. Phenotypic changes included exocrine gland dysfunction, lymphocytic infiltrates, production of Sjögren’s syndrome-specific autoantibodies, and overall activation of the immune system. Acute ablation of matriptase expression resulted in significant salivary gland dysfunction in the absence of overt immune activation. Analysis of the salivary glands indicates a loss of electrical potential across the epithelial layer as well as altered distribution of a tight junction protein. Moreover, a significant decrease in matriptase gene expression was detected in the minor salivary glands of pSS patients compared with healthy volunteers. Conclusions Our findings demonstrate that local impairment of epithelial barrier function can lead to loss of exocrine gland dysfunction in the absence of inflammation while systemic deletion can induce a primary Sjögren’s syndrome like phenotype with

  16. Matriptase deletion initiates a Sjögren's syndrome-like disease in mice.

    Directory of Open Access Journals (Sweden)

    Hongen Yin

    Full Text Available The objective of this study was to determine the effect of epithelial barrier disruption, caused by deficiency of the membrane-anchored serine protease, matriptase, on salivary gland function and the induction of autoimmunity in an animal model.Embryonic and acute ablation of matriptase expression in the salivary glands of mice was induced, leading to decreased epithelial barrier function. Mice were characterized for secretory epithelial function and the induction of autoimmunity including salivary and lacrimal gland dysfunction, lymphocytic infiltration, serum anti-Ro/SSA, anti-La/SSB and antinuclear antibodies. Salivary glands immune activation/regulation, barrier function as well as tight junction proteins expression also were determined. Expression of matriptase in minor salivary gland biopsies was compared among pSS patients and healthy volunteers.Embryonic ablation of matriptase expression in mice resulted in the loss of secretory epithelial cell function and the induction of autoimmunity similar to that observed in primary Sjögren's syndrome. Phenotypic changes included exocrine gland dysfunction, lymphocytic infiltrates, production of Sjögren's syndrome-specific autoantibodies, and overall activation of the immune system. Acute ablation of matriptase expression resulted in significant salivary gland dysfunction in the absence of overt immune activation. Analysis of the salivary glands indicates a loss of electrical potential across the epithelial layer as well as altered distribution of a tight junction protein. Moreover, a significant decrease in matriptase gene expression was detected in the minor salivary glands of pSS patients compared with healthy volunteers.Our findings demonstrate that local impairment of epithelial barrier function can lead to loss of exocrine gland function [corrected] in the absence of inflammation while systemic deletion can induce a primary Sjögren's syndrome like phenotype with autoimmunity and loss of

  17. Deletion of the App-Runx1 region in mice models human partial monosomy 21.

    Science.gov (United States)

    Arbogast, Thomas; Raveau, Matthieu; Chevalier, Claire; Nalesso, Valérie; Dembele, Doulaye; Jacobs, Hugues; Wendling, Olivia; Roux, Michel; Duchon, Arnaud; Herault, Yann

    2015-06-01

    Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21. © 2015. Published by The Company of Biologists Ltd.

  18. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  19. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    DEFF Research Database (Denmark)

    Honoré, Bent; Buus, Søren; Claësson, Mogens H

    2008-01-01

    ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensiona......ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two...... alpha type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin beta-3 chain, a 25 kDa actin fragment, proteasome subunit beta type 9, cofilin-1 and glia...

  20. SnoRNA Snord116 (Pwcr1/MBII-85 deletion causes growth deficiency and hyperphagia in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Prader-Willi syndrome (PWS is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85 in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85 in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.

  1. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice.

    Science.gov (United States)

    Pesko, Kendra N; Fitzpatrick, Kelly A; Ryan, Elizabeth M; Shi, Pei-Yong; Zhang, Bo; Lennon, Niall J; Newman, Ruchi M; Henn, Matthew R; Ebel, Gregory D

    2012-05-25

    Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    Science.gov (United States)

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice

    Directory of Open Access Journals (Sweden)

    Danyi Peng

    2017-12-01

    Full Text Available Alveolar epithelial cells (AECs injury and failed reconstitution of the AECs barrier are both integral to alveolar flooding and subsequent pulmonary fibrosis (PF. Nevertheless, the exact mechanisms regulating the regeneration of AECs post-injury still remain unclear. SMARCA4 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is essential for kidney and heart fibrosis. We investigates SMARCA4 function in lung fibrosis by establishing PF mice model with bleomycin firstly and found that the expression of SMARCA4 was mainly enhanced in alveolar type II (ATII cells. Moreover, we established an alveolar epithelium-specific SMARCA4-deleted SP-C-rtTA/(tetO7-Cre/SMARCA4f/f mice (SOSM4Δ/Δ model, as well as a new SMARCA4-deleted alveolar type II (ATII-like mle-12 cell line. We found that the bleomycin-induced PF was more aggressive in SOSM4Δ/Δ mice. Also, the proliferation of ATII cells was decreased with the loss of SMARCA4 in vivo and in vitro. In addition, we observed increased proliferation of ATII cells accompanied by abnormally high expression of SMARCA4 in human PF lung sections. These data uncovered the indispensable role of SMARCA4 in the proliferation of ATII cells, which might affect the progression of PF.

  4. CCAAT/enhancer binding protein β deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    International Nuclear Information System (INIS)

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-01

    Highlights: ► LXR agonist activation increases liver TG accumulation by increasing lipogenesis. ► C/EBPβ −/− mouse prevents LXR activation-mediated induction of hepatic lipogenesis. ► C/EBPβ deletion increases mitochondrial transport chain function. ► Beneficial effects of LXR activation on liver cholesterol metabolism did not change. ► C/EBPβ inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBPβ expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBPβ deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBPβ −/− mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBPβ −/− mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBPβ in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBPβ might therefore be an important therapeutic strategy to prevent LXR activation-mediated adverse effects on liver TG metabolism without disrupting its beneficial effects on cholesterol metabolism.

  5. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  6. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance

    DEFF Research Database (Denmark)

    Vernochet, Cecile; Mourier, Arnaud; Bezy, Olivier

    2012-01-01

    Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated...... oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has...... positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity....

  7. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair

    Science.gov (United States)

    Mandrekar-Colucci, Shweta; Hall, Jodie C.E.; Sweet, David R.; Schmitt, Philipp J.; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia

    2016-01-01

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155–5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. SIGNIFICANCE STATEMENT Axon regeneration after spinal cord injury (SCI) fails

  8. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  9. Rib fractures and death from deletion of osteoblast βcatenin in adult mice is rescued by corticosteroids.

    Science.gov (United States)

    Duan, JinZhu; Lee, Yueh; Jania, Corey; Gong, Jucheng; Rojas, Mauricio; Burk, Laurel; Willis, Monte; Homeister, Jonathon; Tilley, Stephen; Rubin, Janet; Deb, Arjun

    2013-01-01

    Ribs are primarily made of cortical bone and are necessary for chest expansion and ventilation. Rib fractures represent the most common type of non-traumatic fractures in the elderly yet few studies have focused on the biology of rib fragility. Here, we show that deletion of βcatenin in Col1a2 expressing osteoblasts of adult mice leads to aggressive osteoclastogenesis with increased serum levels of the osteoclastogenic cytokine RANKL, extensive rib resorption, multiple spontaneous rib fractures and chest wall deformities. Within days of osteoblast specific βcatenin deletion, animals die from respiratory failure with a vanishing rib cage that is unable to sustain ventilation. Increased bone resorption is also observed in the vertebrae and femur. Treatment with the bisphosphonate pamidronate delayed but did not prevent death or associated rib fractures. In contrast, administration of the glucocorticoid dexamethasone decreased serum RANKL and slowed osteoclastogenesis. Dexamethasone preserved rib structure, prevented respiratory compromise and strikingly increased survival. Our findings provide a novel model of accelerated osteoclastogenesis, where deletion of osteoblast βcatenin in adults leads to rapid development of destructive rib fractures. We demonstrate the role of βcatenin dependent mechanisms in rib fractures and suggest that glucocorticoids, by suppressing RANKL, may have a role in treating bone loss due to aggressive osteoclastogenesis.

  10. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.

    Directory of Open Access Journals (Sweden)

    Boris V Skryabin

    2007-12-01

    Full Text Available Prader-Willi syndrome (PWS [MIM 176270] is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScr(m-/p+ are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScr(m+/p- consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.

  11. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  12. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2.

    Science.gov (United States)

    Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A

    2013-10-01

    Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.

  13. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Adrenomedullin (AM and its receptor complexes, calcitonin receptor-like receptor (Calcrl and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  14. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    Science.gov (United States)

    Hoopes, Samantha L; Willcockson, Helen H; Caron, Kathleen M

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl)/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl)/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl)/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  15. Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3beta?

    LENUS (Irish Health Repository)

    Carew, Rosemarie M.

    2010-07-06

    Abstract Background Male Irs2-\\/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-\\/- mice. We identify retarded renal growth in male and female Irs2-\\/- mice, independent of diabetes. Results Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-\\/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-\\/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ\\/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in Irs2-\\/- kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-\\/- kidney. Conclusions In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size.

  16. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2007-05-01

    Full Text Available Effector responses induced by polarized CD4+ T helper 2 (Th2 cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha. IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(creIL-4Ralpha(-/lox deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(creIL-4Ralpha(-/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(creIL-4Ralpha(-/lox mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L

  17. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  18. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  19. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  20. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    Science.gov (United States)

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  1. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  2. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Science.gov (United States)

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  3. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice.

    Directory of Open Access Journals (Sweden)

    Cathy Joanna Jensen

    Full Text Available In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2. Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function.

  4. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  5. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  6. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss.

    Science.gov (United States)

    DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R; Maridas, David E; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R; Rosen, Clifford J

    2015-11-01

    Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21.

  7. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.

    Science.gov (United States)

    Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G

    2016-08-10

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron

  8. Male mice with deleted Wolframin (Wfs1 gene have reduced fertility

    Directory of Open Access Journals (Sweden)

    Aunapuu Marina

    2009-08-01

    Full Text Available Abstract Background Wolfram Syndrome (WS is an autosomal recessive disorder characterised by non-autoimmune diabetes mellitus, optic atrophy, cranial diabetes insipidus and sensorineural deafness. Some reports have described hypogonadism in male WS patients. The aim of our study was to find out whether Wfs1 deficient (Wfs1KO male mice have reduced fertility and, if so, to examine possible causes. Methods Wfs1KO mice were generated by homologous recombination. Both Wfs1KO and wild type (wt male mice were mated with wt female mice. The number of litters and the number of pups were counted and pregnancy rates calculated. The motility and morphology of the sperm and the histology of testes were analysed. Serum testosterone and FSH concentrations were also measured. Results The pregnancy rate in wt females mated with Wfs1KO males was significantly lower than in the control group (15% vs. 32%; p Conclusion The impaired fertility of Wfs1KO male mice is most likely due to changes in sperm morphology and reduced number of spermatogenic cells. The exact mechanism through which the Wfs1 gene influences sperm morphology needs to be clarified in further studies.

  9. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    International Nuclear Information System (INIS)

    Ishizaka, Masanori; Gohda, Tomohito; Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji; Oliva Trejo, Juan Alejandro; Asao, Rin; Hidaka, Teruo; Asanuma, Katsuhiko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2015-01-01

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  10. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Masanori [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Gohda, Tomohito, E-mail: goda@juntendo.ac.jp [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Oliva Trejo, Juan Alejandro [Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Asao, Rin; Hidaka, Teruo [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Asanuma, Katsuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Horikoshi, Satoshi [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Tomino, Yasuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023 (Japan)

    2015-11-20

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  11. Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity

    DEFF Research Database (Denmark)

    Iba, K; Durkin, M E; Johnsen, L

    2001-01-01

    and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were...... in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material...... in tissue growth and remodeling. The tetranectin-deficient mouse is the first mouse model that resembles common human kyphotic disorders, which affect up to 8% of the population....

  12. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  13. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Juhee Shin

    Full Text Available Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.

  14. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  15. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  16. Mitochondrial Ferritin Deletion Exacerbates β-Amyloid-Induced Neurotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Peina Wang

    2017-01-01

    Full Text Available Mitochondrial ferritin (FtMt is a mitochondrial iron storage protein which protects mitochondria from iron-induced oxidative damage. Our previous studies indicate that FtMt attenuates β-amyloid- and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. To explore the protective effects of FtMt on β-amyloid-induced memory impairment and neuronal apoptosis and the mechanisms involved, 10-month-old wild-type and Ftmt knockout mice were infused intracerebroventricularly (ICV with Aβ25–35 to establish an Alzheimer’s disease model. Knockout of Ftmt significantly exacerbated Aβ25–35-induced learning and memory impairment. The Bcl-2/Bax ratio in mouse hippocampi was decreased and the levels of cleaved caspase-3 and PARP were increased. The number of neuronal cells undergoing apoptosis in the hippocampus was also increased in Ftmt knockout mice. In addition, the levels of L-ferritin and FPN1 in the hippocampus were raised, and the expression of TfR1 was decreased. Increased MDA levels were also detected in Ftmt knockout mice treated with Aβ25–35. In conclusion, this study demonstrated that the neurological impairment induced by Aβ25–35 was exacerbated in Ftmt knockout mice and that this may relate to increased levels of oxidative stress.

  17. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  18. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    Science.gov (United States)

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of

  20. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Miki Nagase

    Full Text Available Macrophage-mediated inflammation has been implicated in various kidney diseases. We previously reported that Rac1, a Rho family small GTP-binding protein, was overactivated in several chronic kidney disease models, and that Rac1 inhibitors ameliorated renal injury, in part via inhibition of inflammation, but the detailed mechanisms have not been clarified. In the present study, we examined whether Rac1 in macrophages effects cytokine production and the inflammatory mechanisms contributing to kidney derangement. Myeloid-selective Rac1 flox control (M-Rac1 FC and knockout (M-Rac1 KO mice were generated using the cre-loxP system. Renal function under basal conditions did not differ between M-Rac1 FC and KO mice. Accordingly, lipopolysaccharide (LPS-evoked kidney injury model was created. LPS elevated blood urea nitrogen and serum creatinine, enhanced expressions of kidney injury biomarkers, Kim-1 and Ngal, and promoted tubular injury in M-Rac1 FC mice. By contrast, deletion of myeloid Rac1 almost completely prevented the LPS-mediated renal impairment. LPS triggered a marked induction of macrophage-derived inflammatory cytokines, IL-6 and TNFα, in M-Rac1 FC mice, which was accompanied by Rac1 activation, stimulation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH oxidase, and reactive oxygen species overproduction. These changes were inhibited in M-Rac1 KO mice. LPS evoked F4/80-positive macrophages accumulation in the kidney, which was not affected by myeloid Rac1 deficiency. We further tested the role of Rac1 signaling in cytokine production using macrophage cell line, RAW264.7. Exposure to LPS increased IL-6 and TNFα mRNA expression. The LPS-driven cytokine induction was dose-dependently blocked by the Rac1 inhibitor EHT1864, NADPH oxidase inhibitor diphenyleneiodonium, and NF-κB inhibitor BAY11-7082. In conclusion, genetic ablation of Rac1 in the myeloid lineage protected against LPS-induced renal inflammation and injury, by

  1. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

    Science.gov (United States)

    Ng, Lily; Liu, Hong; St Germain, Donald L; Hernandez, Arturo; Forrest, Douglas

    2017-06-01

    Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

  2. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Daiei Takahashi

    2017-04-01

    Full Text Available The with-no-lysine kinase (WNK 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism.

  3. Deletion of the Men1 Gene Prevents Streptozotocin-Induced Hyperglycemia in Mice

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2010-01-01

    Full Text Available Diabetes ultimately results from an inadequate number of functional beta cells in the islets of Langerhans. Enhancing proliferation of functional endogenous beta cells to treat diabetes remains underexplored. Here, we report that excision of the Men1 gene, whose loss-of-function mutation leads to inherited multiple endocrine neoplasia type 1 (MEN1, rendered resistant to streptozotocin-induced hyperglycemia in a tamoxifen-inducible and temporally controlled Men1 excision mouse model as well as in a tissue-specific Men1 excision mouse model. Men1 excision prevented mice from streptozotocin-induced hyperglycemia mainly through increasing the number of functional beta cells. BrdU incorporation by beta cells, islet size, and circulating insulin levels were significantly increased in Men1-excised mice. Membrane localization of glucose transporter 2 was largely preserved in Men1-excised beta cells, but not in Men1-expressing beta cells. Our findings suggest that repression of menin, a protein encoded by the Men1 gene, might be a valuable means to maintain or increase the number of functional endogenous beta cells to prevent or ameliorate diabetes.

  4. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  6. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice

    Directory of Open Access Journals (Sweden)

    Kaifeng Yin

    2017-05-01

    Full Text Available Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7, which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.

  7. Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma.

    Science.gov (United States)

    Lee, S; Liu, P; Teinturier, R; Jakob, J; Tschaffon, M; Tasdogan, A; Wittig, R; Hoeller, S; Baumhoer, D; Frappart, L; Vettorazzi, S; Bertolino, P; Zhang, C; Tuckermann, J

    2018-02-01

    Ossifying fibroma (OF) is a rare benign tumor of the craniofacial bones that can reach considerable and disfiguring dimensions if left untreated. Although the clinicopathological characteristics of OF are well established, the underlying etiology has remained largely unknown. Our work indicates that Men1-a tumor suppressor gene responsible of Multiple endocrine neoplasia type 1-is critical for OF formation and shows that mice with targeted disruption of Men1 in osteoblasts (Men1 Runx2Cre ) develop multifocal OF in the mandible with a 100% penetrance. Using lineage-tracing analysis, we demonstrate that loss of Men1 arrests stromal osteoprogenitors in OF at the osterix-positive pre-osteoblastic differentiation stage. Analysis of Men1-lacking stromal spindle cells isolated from OF (OF-derived MSCs (OFMSCs)) revealed a downregulation of the cyclin-dependent kinase (CDK) inhibitor Cdkn1a, consistent with an increased proliferation rate. Intriguingly, the re-expression of Men1 in Men1-deficient OFMSCs restored Cdkn1a expression and abrogated cellular proliferation supporting the tumor-suppressive role of Men1 in OF. Although our work presents the first evidence of Men1 in OF development, it further provides the first genetic mouse model of OF that can be used to better understand the molecular pathogenesis of these benign tumors and to potentially develop novel treatment strategies.

  8. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  9. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    International Nuclear Information System (INIS)

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-01-01

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14 −/− placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14 −/− pregnant uteri compared with Cxcl14 +/− pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14 +/+ and Cxcl14 −/− pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus

  10. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qichen [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Chen, Hua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Deng, Zhili [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Duan, Enkui, E-mail: duane@ioz.ac.cn [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China)

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  11. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF2α

    Science.gov (United States)

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  12. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2011-01-01

    Full Text Available It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathological development in mice with cardiomyocyte-restricted PPARβ/δ deficiency. In the present study, a mouse model with long-term PPARβ/δ deficiency in PPARα-null background showed a comparably reduced cardiac expression of lipid metabolism to those of single PPAR-deficient mouse models. The PPARα-null background did not rescue or aggravate the cardiac pathological development linked to cardiomyocyte-restricted PPARβ/δ deficiency. Moreover, PPARα-null did not alter the phenotypic development in adult mice with the short-term deletion of PPARβ/δ in their hearts, which showed mitochondrial abnormalities, depressed cardiac performance, and cardiac hypertrophy with attenuated expression of key factors in mitochondrial biogenesis and defense. The present study demonstrates that cardiomyocyte-restricted deletion of PPARβ/δ in PPARα-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of fatty acid oxidation. Therefore, PPARβ/δ is essential for maintaining mitochondrial biogenesis and defense in cardiomyocytes independent of PPARα.

  14. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice.

    Science.gov (United States)

    Kim, WonHee; Ma, Liang; Lomoio, Selene; Willen, Rachel; Lombardo, Sylvia; Dong, Jinghui; Haydon, Philip G; Tesco, Giuseppina

    2018-02-02

    β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1

  15. Deletion of the γ-Aminobutyric Acid Transporter 2 (GAT2 and SLC6A13) Gene in Mice Leads to Changes in Liver and Brain Taurine Contents*

    Science.gov (United States)

    Zhou, Yun; Holmseth, Silvia; Guo, Caiying; Hassel, Bjørnar; Höfner, Georg; Huitfeldt, Henrik S.; Wanner, Klaus T.; Danbolt, Niels C.

    2012-01-01

    The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [3H]taurine. Furthermore, most of the uptake of [3H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain. PMID:22896705

  16. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice.

    Science.gov (United States)

    Khalifé, Manal; Reine, Fabienne; Paquet-Fifield, Sophie; Castille, Johan; Herzog, Laetitia; Vilotte, Marthe; Moudjou, Mohammed; Moazami-Goudarzi, Katayoun; Makhzami, Samira; Passet, Bruno; Andréoletti, Olivier; Vilette, Didier; Laude, Hubert; Béringue, Vincent; Vilotte, Jean-Luc

    2016-02-01

    Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Phenotypic characterization of a novel virulence-factor deletion strain of Burkholderia mallei that provides partial protection against inhalational glanders in mice

    Directory of Open Access Journals (Sweden)

    Joel A. Bozue

    2016-02-01

    Full Text Available Burkholderia mallei (Bm is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN, and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.

  19. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  20. Inhibition of the promotion of hepatocarcinogenesis by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) by the deletion of the p50 subunit of NF-κB in mice

    International Nuclear Information System (INIS)

    Glauert, Howard P.; Tharappel, Job C.; Banerjee, Subhashis; Chan, Nelson L.S.; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lee, Eun Y.; Robertson, Larry W.; Spear, Brett T.

    2008-01-01

    Polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental chemicals that bioaccumulate and have hepatic tumor promoting activity in rodents. The present study examined the effect of deleting the p50 subunit of NF-κB on the hepatic tumor promoting activity of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) in mice. Both wild-type and p50-/- male mice were injected i.p. with diethylnitrosamine (DEN, 90 mg/kg) and then subsequently injected biweekly with 20 i.p. injections of PCB-153 (300 μmol/kg/injection). p50 deletion decreased the tumor incidence in both PCB- and vehicle-treated mice, whereas PCB-153 slightly (P = 0.09) increased the tumor incidence in wild-type and p50-/- mice. PCB-153 increased the total tumor volume in both wild-type and p50-/- mice, but the total tumor volume was not affected by p50 deletion in either PCB- or vehicle-treated mice. The volume of tumors that were positive for glutamine synthetase (GS), which is indicative of mutations in the beta-catenin gene, was increased in both wild-type and p50-/- mice administered PCB-153 compared to vehicle controls, and inhibited in p50-/- mice compared to wild-type mice (in both PCB- and vehicle-treated mice). The volume of tumors that were negative for GS was increased in p50-/- mice compared to wild-type mice but was not affected by PCB-153. PCB-153 increased cell proliferation in normal hepatocytes in wild-type but not p50-/- mice; this increase was inhibited in p50-/- mice. In hepatic tumors, the rate of cell proliferation was much higher than in normal hepatocytes, but was not affected by PCB treatment or p50 deletion. The rate of apoptosis, as measured by the TUNEL assay, was not affected by PCB-153 or p50 deletion in normal hepatocytes. In hepatic tumors, the rate of apoptosis was lower than in normal hepatocytes; PCB-153 slightly (P = 0.10) increased apoptosis in p50-/- but not wild-type mice; p50 deletion had no effect. Taken together, these data indicate that the absence of

  1. Deletion of the Intestinal Plasma Membrane Calcium Pump, Isoform 1, Atp2b1, in Mice is Associated with Decreased Bone Mineral Density and Impaired Responsiveness to 1, 25-Dihydroxyvitamin D3

    Science.gov (United States)

    Ryan, Zachary C.; Craig, Theodore A.; Filoteo, Adelaida G.; Westendorf, Jennifer J.; Cartwright, Elizabeth J.; Neyses, Ludwig; Strehler, Emanuel E.; Kumar, Rajiv

    2016-01-01

    The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1fl/fl) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1EKO mice). Pmca1EKO mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) litter mates. At two months of age, Pmca1EKO mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P <0.037), and reduced femoral bone mineral density (P <0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1EKO mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1EKO mice (P <0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1EKO mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3. PMID:26392310

  2. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking.

    Science.gov (United States)

    White, Robert A; Boydston, Leigh A; Brookshier, Terri R; McNulty, Steven G; Nsumu, Ndona N; Brewer, Brandon P; Blackmore, Krista

    2005-12-01

    Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.

  3. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice

    DEFF Research Database (Denmark)

    Lehre, A C; Rowley, N M; Zhou, Y

    2011-01-01

    of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic...... to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However......, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test...

  4. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    Science.gov (United States)

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  5. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    Science.gov (United States)

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  6. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  7. Food-induced reinforcement is abrogated by the genetic deletion of the MT1 or MT2 melatonin receptor in C3H/HeN mice.

    Science.gov (United States)

    Clough, Shannon J; Hudson, Randall L; Dubocovich, Margarita L

    2018-05-02

    Palatable food is known for its ability to enhance reinforcing responses. Studies have suggested a circadian variation in both drug and natural reinforcement, with each following its own time course. The goal of this study was to determine the role of the MT 1 and MT 2 melatonin receptors in palatable snack food-induced reinforcement, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for snack food-induced CPP at either ZT 6 - 8 (ZT: Zeitgeber time; ZT 0 = lights on), when endogenous melatonin levels are low, or ZT 19 - 21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The amount of snack food (chow, Cheetos®, Froot Loops® and Oreos®) consumed was of similar magnitude at both times, however only C3H/HeN mice conditioned to snack food at ZT 6 - 8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT 1 (MT 1 KO) or MT 2 (MT 2 KO) receptor tested at ZT 6 - 8 did not develop a place preference for snack food. Although the MT 2 KO mice showed a similar amount of snack food consumed when compared to wild-type mice, the MT 1 KO mice consumed significantly less than either genotype. We conclude that in our mouse model snack food-induced CPP is dependent on time of day and the presence of the MT 1 or MT 2 receptors, suggesting a role for melatonin and its receptors in snack food-induced reinforcement. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  9. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Alessandro Marsili

    Full Text Available The type 2 iodothyronine deiodinase (D2 converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT, and mice with a disrupted Dio2 gene (D2KO have an impaired response to cold. BAT is also activated by overfeeding.After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2 was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER, suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance.We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity.

  10. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Santana-Farre, Ruyman; Vesterlund, Mattias

    2012-01-01

    in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice...

  11. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Science.gov (United States)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  12. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain.

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J

    2013-12-20

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.

  13. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    Science.gov (United States)

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Altered behaviour and cognitive function following combined deletion of Toll-like receptors 2 and 4 in mice.

    Science.gov (United States)

    Too, Lay Khoon; McGregor, Iain S; Baxter, Alan G; Hunt, Nicholas H

    2016-04-15

    Activation of the immune system due to infection or aging is increasingly linked to impaired neuropsychological function. Toll-like receptors 2 and 4 (TLR2, TLR4) are well-characterised for their role in inflammatory events, and their combined activation has been implicated in neurological diseases. We therefore determined whether TLR2 and TLR4 double gene knockout (GKO) mice showed modified behaviour and cognitive function during a 16-day test sequence that employed the automated IntelliCage test system. The IntelliCage features a home cage environment in which groups of mice live and where water reward is gained through performing various tasks centred on drinking stations in each corner of the apparatus. All mice were tested twice, one month apart (the first sequence termed "R1"and the second "R2"). There were fewer corner visits and nosepokes in TLR2/4 GKO compared to wild-type mice during early exploration in R1, suggesting elevated neophobia in GKO mice. Reduced exploration persisted over subsequent test modules during the dark phase. TLR2/4 GKO mice also displayed increased corner visits during drinking sessions compared to non-drinking sessions, but this was not associated with increased drinking. In subsequent, more complex test modules, TLR2/4 GKO mice had unimpaired spatial learning, but showed markedly poorer performance in a visual discrimination reversal task compared to wild-type mice. These results indicated subtle impairments in behaviour and cognitive functions due to double deficiency in TLR2 and TLR4. These finding are highly relevant to understanding the combined actions of TLR2 and TLR4 on neurological status in a range of different disease conditions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice

    Science.gov (United States)

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D. Woodrow; Ivy, Dunbar; Perryman, M.B.; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-01-01

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an ∼7 Mb ‘cardiac critical region’ in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease. PMID:19942620

  17. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  18. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  19. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice

    Directory of Open Access Journals (Sweden)

    Philip E. Lapinski

    2013-11-01

    In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs and their progeny, which include both cell types. MSC-lineage-specific SHP-2 knockout (MSC SHP-2 KO mice exhibited postnatal growth retardation, limb and chest deformity, and calvarial defects. These skeletal abnormalities were associated with an absence of mature osteoblasts and massive chondrodysplasia with a vast increase in the number of terminally differentiated hypertrophic chondrocytes in affected bones. Activation of mitogen activated protein kinases (MAPKs and protein kinase B (PKB; also known as AKT was impaired in bone-forming cells of MSC SHP-2 KO mice, which provides an explanation for the skeletal defects that developed. These findings reveal a cell-autonomous role for SHP-2 in bone-forming cells in mice in the regulation of skeletal development. The results add to our understanding of the pathophysiology of skeletal abnormalities observed in humans with germline mutations in the PTPN11 gene (e.g. Noonan syndrome and LEOPARD syndrome.

  20. Liver-specific deletion of the signal transducer and activator of transcription 5 gene aggravates fatty liver in response to a high-fat diet in mice.

    Science.gov (United States)

    Baik, Myunggi; Nam, Yoon Seok; Piao, Min Yu; Kang, Hyeok Joong; Park, Seung Ju; Lee, Jae-Hyuk

    2016-03-01

    Growth hormone (GH) signal is mediated by signal transducer and activator of transcription 5 (STAT5), which controls hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is clinically associated with a deficiency in GH. This study was performed to understand the role of local STAT5 signaling on hepatic lipid and glucose metabolism utilizing liver-specific STAT5 gene deletion (STAT5 LKO) mice under both normal diet and high-fat diet (HFD) feeding conditions. STAT5 LKO induced hepatic steatosis under HFD feeding, while this change was not observed in mice on normal diet. STAT5 LKO caused hyperglycemia, hyperinsulinemia, hyperleptinemia and elevated free fatty acid and cholesterol concentrations under HFD feeding but induced only hyperglycemia on normal diet. At the molecular level, STAT5 LKO up-regulated the expression of genes involved in lipid uptake (CD36), very low-density lipoprotein receptor (VLDLR), lipogenic stearoyl-CoA desaturase and adipogenic peroxisome proliferator-activated receptor gamma, in both diet groups. In response to HFD feeding, further increases in CD36 and VLDLR expression were found in STAT5 LKO mice. In conclusion, our study suggests that low STAT5 signaling on normal diet predisposes STAT5 LKO mice to early development of fatty liver by hyperglycemia and activation of lipid uptake and adipogenesis. A deficiency in STAT5 signaling under HFD feeding deregulates hepatic and body glucose and lipid metabolism, leading to the development of hepatic steatosis. Our study indicates that low STAT5 signaling, due to low GH secretion, may increase a chance for NAFLD development in elderly people. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  2. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Houbao [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Xu, Wangyang [Department of Clinical Laboratories, Ninth People’s Hospital, SJTUSM, Shanghai 200011 (China); Zhang, Hongxin [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Liu, Jianbing [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Xu, Haimin [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Lu, Shunyuan; Dang, Suying [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Kuang, Ying [Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Jin, Xiaolong [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Wang, Zhugang, E-mail: zhugangw@shsmu.edu.cn [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China)

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  3. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    International Nuclear Information System (INIS)

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-01-01

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a −/− mice are protected from CAC. •Tumor cells from Kif18a −/− mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC

  4. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Nawrocki, Andrea R; Rodriguez, Carlos G; Toolan, Dawn M; Price, Olga; Henry, Melanie; Forrest, Gail; Szeto, Daphne; Keohane, Carol Ann; Pan, Yie; Smith, Karen M; Raheem, Izzat T; Cox, Christopher D; Hwa, Joyce; Renger, John J; Smith, Sean M

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.

  5. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  6. Suppressor of cytokine signaling 2 (Socs2 deletion protects bone health of mice with DSS-induced inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Ross Dobie

    2018-01-01

    Full Text Available Individuals with inflammatory bowel disease (IBD often present with poor bone health. The development of targeted therapies for this bone loss requires a fuller understanding of the underlying cellular mechanisms. Although bone loss in IBD is multifactorial, the altered sensitivity and secretion of growth hormone (GH and insulin-like growth factor-1 (IGF-1 in IBD is understood to be a critical contributing mechanism. The expression of suppressor of cytokine signaling 2 (SOCS2, a well-established negative regulator of GH signaling, is stimulated by proinflammatory cytokines. Therefore, it is likely that SOCS2 expression represents a critical mediator through which proinflammatory cytokines inhibit GH/IGF-1 signaling and decrease bone quality in IBD. Using the dextran sodium sulfate (DSS model of colitis, we reveal that endogenously elevated GH function in the Socs2−/− mouse protects the skeleton from osteopenia. Micro-computed tomography assessment of DSS-treated wild-type (WT mice revealed a worsened trabecular architecture compared to control mice. Specifically, DSS-treated WT mice had significantly decreased bone volume, trabecular thickness and trabecular number, and a resulting increase in trabecular separation. In comparison, the trabecular bone of Socs2-deficient mice was partially protected from the adverse effects of DSS. The reduction in a number of parameters, including bone volume, was less, and no changes were observed in trabecular thickness or separation. This protected phenotype was unlikely to be a consequence of improved mucosal health in the DSS-treated Socs2−/− mice but rather a result of unregulated GH signaling directly on bone. These studies indicate that the absence of SOCS2 is protective against bone loss typical of IBD. This study also provides an improved understanding of the relative effects of GH/IGF-1 signaling on bone health in experimental colitis, information that is essential before these drugs are

  7. Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice.

    Science.gov (United States)

    Xiong, Xiwen; Zhang, Cuicui; Zhang, Yang; Fan, Rui; Qian, Xinlai; Dong, X Charlie

    2017-06-01

    SIRT6 is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis and anti-inflammation. However, its function in the adipose tissue is not well understood. To examine the metabolic function of SIRT6 in the adipose tissue, we generated two mouse models that are deficient in Sirt6 using the Cre-lox approach. Two commonly used Cre lines that are driven by either the mouse Fabp4 or Adipoq gene promoter were chosen for this study. The Sirt6- knockout mice generated by the Fabp4-Cre line ( Sirt6 f/f : Fabp4-Cre) had a significant increase in both body weight and fat mass and exhibited glucose intolerance and insulin resistance as compared with the control wild-type mice. At the molecular levels, the Sirt6 f/f :Fabp4-Cre-knockout mice had increased expression of inflammatory genes including F4/80, TNFα, IL-6 and MCP-1 in both white and brown adipose tissues. Moreover, the knockout mice showed decreased expression of the adiponectin gene in the white adipose tissue and UCP1 in the brown adipose tissue, respectively. In contrast, the Sirt6 knockout mice generated by the Adipoq-Cre line ( Sirt6 f/f :Adipoq-Cre) only had modest insulin resistance. In conclusion, our data suggest that the function of SIRT6 in the Fabp4-Cre-expressing cells in addition to mature adipocytes plays a critical role in body weight maintenance and metabolic homeostasis. © 2017 Society for Endocrinology.

  8. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    Science.gov (United States)

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  10. Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice.

    Directory of Open Access Journals (Sweden)

    Jesus Gil-Pulido

    Full Text Available Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3 is required for the development of classical CD8α+ and CD103+ DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr-/--deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α+ and CD103+ antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis.

  11. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice.

    Directory of Open Access Journals (Sweden)

    Yu S Zhou

    2013-10-01

    Full Text Available β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9 in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

  12. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes.

    Science.gov (United States)

    Cheung, Leonard Y M; Okano, Hideyuki; Camper, Sally A

    2017-01-05

    The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  14. Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice.

    Directory of Open Access Journals (Sweden)

    Johannes Fuss

    2010-09-01

    Full Text Available Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.

  15. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice.

    Science.gov (United States)

    Lan, Zi-Jian; Krause, M S; Redding, S D; Li, X; Wu, G Z; Zhou, H X; Bohler, H C; Ko, C; Cooney, A J; Zhou, Junmei; Lei, Z M

    2017-03-15

    Theca cell-selective Pten mutation (tPtenMT) in mice resulted in increases in PDK1 and Akt phosphorylation, indicating an over-activation of PI3K signaling in the ovaries. These mice displayed elevated androgen levels, ovary enlargement, antral follicle accumulation, early fertility loss and increased expression of Lhcgr and genes that are crucial to androgenesis. These abnormalities were partially reversed by treatments of PI3K or Akt inhibitor. LH actions in Pten deficient theca cells were potentiated. The phosphorylation of Foxo1 was increased, while the binding of Foxo1 to forkhead response elements in the Lhcgr promoter was reduced in tPtenMT theca cells, implying a mechanism by which PI3K/Akt-induced upregulation of Lhcgr in theca cells might be mediated by reducing the inhibitory effect of Foxo1 on the Lhcgr promoter. The phenotype of tPtenMT females is reminiscent of human PCOS and suggests that dysregulated PI3K cascade in theca cells may be involved in certain types of PCOS pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory.

    Science.gov (United States)

    Haidar, M; Guèvremont, G; Zhang, C; Bathgate, R A D; Timofeeva, E; Smith, C M; Gundlach, A L

    2017-05-01

    Hippocampus is innervated by γ-aminobutyric acid (GABA) "projection" neurons of the nucleus incertus (NI), including a population expressing the neuropeptide, relaxin-3 (RLN3). In studies aimed at gaining an understanding of the role of RLN3 signaling in hippocampus via its G i/o -protein-coupled receptor, RXFP3, we examined the distribution of RLN3-immunoreactive nerve fibres and RXFP3 mRNA-positive neurons in relation to hippocampal GABA neuron populations. RLN3-positive elements were detected in close-apposition with a substantial population of somatostatin (SST)- and GABA-immunoreactive neurons, and a smaller population of parvalbumin- and calretinin-immunoreactive neurons in different hippocampal areas, consistent with the relative distribution patterns of RXFP3 mRNA and these marker transcripts. In light of the functional importance of the dentate gyrus (DG) hilus in learning and memory, and our anatomical data, we examined the possible influence of RLN3/RXFP3 signaling in this region on spatial memory. Using viral-based Cre/LoxP recombination methods and adult mice with a floxed Rxfp3 gene, we deleted Rxfp3 from DG hilar neurons and assessed spatial memory performance and affective behaviors. Following infusions of an AAV (1/2) -Cre-IRES-eGFP vector, Cre expression was observed in DG hilar neurons, including SST-positive cells, and in situ hybridization histochemistry for RXFP3 mRNA confirmed receptor depletion relative to levels in floxed-RXFP3 mice infused with an AAV (1/2) -eGFP (control) vector. RXFP3 depletion within the DG hilus impaired spatial reference memory in an appetitive T-maze task reflected by a reduced percentage of correct choices and increased time to meet criteria, relative to control. In a continuous spontaneous alternation Y-maze task, RXFP3-depleted mice made fewer alternations in the first minute, suggesting impairment of spatial working memory. However, RXFP3-depleted and control mice displayed similar locomotor activity, anxiety

  17. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica L Fetterman

    Full Text Available Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3 total suspended particulate of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i in utero from gestation days 1-19, or (ii from birth until 3 weeks of age (neonatal. Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  19. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice.

    Science.gov (United States)

    Fetterman, Jessica L; Pompilius, Melissa; Westbrook, David G; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E; Ballinger, Scott W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  20. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    Science.gov (United States)

    Fetterman, Jessica L.; Pompilius, Melissa; Westbrook, David G.; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis. PMID:23825571

  1. Deletion of the basement membrane heparan sulfate proteoglycan type XVIII collagen causes hypertriglyceridemia in mice and humans.

    Directory of Open Access Journals (Sweden)

    Joseph R Bishop

    2010-11-01

    Full Text Available Lipoprotein lipase (Lpl acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism.We examined mutant mice defective in collagen XVIII (Col18, a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia.This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.

  2. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease.

    Science.gov (United States)

    Chen, Shuai; Kang, Yujia; Sun, Yan; Zhong, Yanhong; Li, Yanli; Deng, Lijuan; Tao, Jin; Li, Yang; Tian, Yingpu; Zhao, Yinan; Cheng, Jianghong; Liu, Wenjie; Feng, Gen-Sheng; Lu, Zhongxian

    2016-12-01

    Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  3. Neuron-specific deletion of peroxisome proliferator-activated receptor delta (PPARδ in mice leads to increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Heidi E Kocalis

    Full Text Available Central nervous system (CNS lipid accumulation, inflammation and resistance to adipo-regulatory hormones, such as insulin and leptin, are implicated in the pathogenesis of diet-induced obesity (DIO. Peroxisome proliferator-activated receptors (PPAR α, δ, γ are nuclear transcription factors that act as environmental fatty acid sensors and regulate genes involved in lipid metabolism and inflammation in response to dietary and endogenous fatty acid ligands. All three PPAR isoforms are expressed in the CNS at different levels. Recent evidence suggests that activation of CNS PPARα and/or PPARγ may contribute to weight gain and obesity. PPARδ is the most abundant isoform in the CNS and is enriched in the hypothalamus, a region of the brain involved in energy homeostasis regulation. Because in peripheral tissues, expression of PPARδ increases lipid oxidative genes and opposes inflammation, we hypothesized that CNS PPARδ protects against the development of DIO. Indeed, genetic neuronal deletion using Nes-Cre loxP technology led to elevated fat mass and decreased lean mass on low-fat diet (LFD, accompanied by leptin resistance and hypothalamic inflammation. Impaired regulation of neuropeptide expression, as well as uncoupling protein 2, and abnormal responses to a metabolic challenge, such as fasting, also occur in the absence of neuronal PPARδ. Consistent with our hypothesis, KO mice gain significantly more fat mass on a high-fat diet (HFD, yet are surprisingly resistant to diet-induced elevations in CNS inflammation and lipid accumulation. We detected evidence of upregulation of PPARγ and target genes of both PPARα and PPARγ, as well as genes of fatty acid oxidation. Thus, our data reveal a previously underappreciated role for neuronal PPARδ in the regulation of body composition, feeding responses, and in the regulation of hypothalamic gene expression.

  4. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE KO ) and APP/glial fibrillary acidic protein (GFAP)-apoE KO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE KO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE KO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE KO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE KO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation

  5. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice

    DEFF Research Database (Denmark)

    Alkharusi, Amira; Mirecki-Garrido, Mercedes; Ma, Zuheng

    2016-01-01

    Background: Diabetes type 1 is characterized by the failure of beta cells to produce insulin. Suppressor of cytokine signaling (SOCS) proteins are important regulators of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Previous studies have shown that GH can...... prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. Methodology: The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes...... in SOCS2-/- mice. Results: We show that 6-month-old SOCS2-/- mice, but not 2-month-old mice, were less sensitive to MLDSTZ-induced diabetes, compared to controls. MLDSTZ treatment induced glucose intolerance in both SOCS2+/+ and SOCS2-/- mice, as shown by glucose tolerance tests, with SOCS2+/+ mice...

  6. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  7. Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia.

    Science.gov (United States)

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2016-03-15

    Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.

  8. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice.

    NARCIS (Netherlands)

    Escande, C.; Chini, C.C.; Nin, V.; Dykhouse, K.M.; Novak, C.M.; Levine, J.; Deursen, J.M.A. van; Gores, G.J.; Chen, J.; Lou, Z.; Chini, E.N.

    2010-01-01

    The enzyme sirtuin 1 (SIRT1) is a critical regulator of many cellular functions, including energy metabolism. However, the precise mechanisms that modulate SIRT1 activity remain unknown. As SIRT1 activity in vitro was recently found to be negatively regulated by interaction with the deleted in

  9. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    Science.gov (United States)

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  11. Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome.

    Science.gov (United States)

    Walls, G V; Stevenson, M; Lines, K E; Newey, P J; Reed, A A C; Bowl, M R; Jeyabalan, J; Harding, B; Bradley, K J; Manek, S; Chen, J; Wang, P; Williams, B O; Teh, B T; Thakker, R V

    2017-07-13

    The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73 +/- ) and conditional parathyroid-specific (Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73 +/+ and Cdc73 +/+ /PTH-Cre) littermates. Survival of Cdc73 +/- mice, when compared to Cdc73 +/+ mice was reduced (Cdc73 +/- =80%; Cdc73 +/+ =90% at 18 months of age, Pfourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73 +/- , Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73 +/- mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73 +/- mice did not develop bone or renal tumours but female Cdc73 +/- mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73 +/- mice had increased proliferation rates that were 2-fold higher than in Cdc73 +/+ mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.

  12. Liver-specific rescuing of CEACAM1 reverses endothelial and cardiovascular abnormalities in male mice with null deletion of Ceacam1 gene

    Directory of Open Access Journals (Sweden)

    Lucia Russo

    2018-03-01

    Full Text Available Objective: Mice with global null mutation of Ceacam1 (Cc1−/−, display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1−/−liver+ mice. The current study examined whether Cc1−/− male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. Methods and results: Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1−/−, but not Cc1−/−liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1−/−, but not Cc1−/−xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1−/−, but not Cc1−/−xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1−/− mice, which was normalized in Cc1−/−xliver+ mice. Conclusions: The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function. Keywords: Insulin clearance, Hyperinsulinemia, Insulin resistance, Endothelial function, Cardiomyopathy

  13. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  14. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  15. Deletion of T-type calcium channels Cav3.1 or Cav3.2 attenuates endothelial dysfunction in aging mice

    DEFF Research Database (Denmark)

    Thuesen, Anne D; Andersen, Kenneth; Lyngsø, Kristina S

    2018-01-01

    Impairment of endothelial function with aging is accompanied by reduced nitric oxide (NO) production. T-type Cav3.1 channels augment nitric oxide and co-localize with eNOS. Therefore, the hypothesis was that T-type channels contribute to the endothelial dysfunction of aging. Endothelial function...... was determined in mesenteric arteries (perfusion) and aortae (isometric contraction) of young and old wild-type (WT), Cav3.1, and Cav3.2 knockout mice. NO production was measured by fluorescence imaging in mesenteric arteries. With age, endothelium-dependent subsequent dilatation (following depolarization...... significantly reduced in mesenteric arteries of old compared to young WT mice. In Cav3.1(-/-) and Cav3.2(-/-) preparations, NO levels increased significantly with age. Relaxations to acetylcholine were significantly smaller in the aortae of old compared to young WT mice, while such responses were comparable...

  16. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice.

    Science.gov (United States)

    Wei, Zhikui; Lei, Xia; Petersen, Pia S; Aja, Susan; Wong, G William

    2014-04-01

    Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gained significantly more body weight when fed standard laboratory chow. Increased food intake, due in part to upregulated expression of hypothalamic orexigenic neuropeptides, contributed to greater adiposity in CTRP9 knockout mice. Although the frequency of food intake remained unchanged, CTRP9 knockout mice increased caloric intake by increasing meal size and decreasing satiety ratios. The absence of CTRP9 also resulted in peripheral tissue insulin resistance, leading to increased fasting insulin levels, impaired hepatic insulin signaling, and reduced insulin tolerance. Increased expression of lipogenic genes, combined with enhanced caloric intake, contributed to hepatic steatosis in CTRP9 knockout mice. Loss of CTRP9 also resulted in reduced skeletal muscle AMPK activation and mitochondrial content. Together, these results provide the genetic evidence for a physiological role of CTRP9 in controlling energy balance via central and peripheral mechanisms.

  17. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair

    NARCIS (Netherlands)

    Y.J. Choi (Yong Jun); H. Li (Han); M.Y. Son (Mi Young); X.-H. Wang (Xiao-Hong); J.L. Fornsaglio (Jamie L.); R.W. Sobol (Robert W.); M. Lee (Moonsook); J. Vijg (Jan); S. Imholz (Sandra); M.E.T. Dollé (Martijn); H. van Steeg (Harry); E. Reiling (Erwin); P. Hasty (Paul)

    2014-01-01

    textabstractKu70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB

  18. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  19. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice

    OpenAIRE

    Wei, Zhikui; Lei, Xia; Petersen, Pia S.; Aja, Susan; Wong, G. William

    2014-01-01

    Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gained significantly more body weight when fed standard laboratory chow. Increased food intake, due in ...

  20. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  1. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    Science.gov (United States)

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  2. Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality.

    Directory of Open Access Journals (Sweden)

    Paula Dietrich

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.

  3. Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice

    DEFF Research Database (Denmark)

    Ollinger, Rupert; Childs, Andrew J; Burgess, Hannah M

    2008-01-01

    . During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential...... spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis...... in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects...

  4. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  5. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice

    Science.gov (United States)

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan

    2016-01-01

    ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo. In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo. In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5

  6. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  7. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  8. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  9. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  10. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  11. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

    Science.gov (United States)

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-11-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer-mutation/deletion of Pten and deletion of Klf5.

  12. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  13. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  14. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions

    NARCIS (Netherlands)

    Glogauer, Michael; Marchal, Christophe C.; Zhu, Fei; Worku, Aelaf; Clausen, Björn E.; Foerster, Irmgard; Marks, Peter; Downey, Gregory P.; Dinauer, Mary; Kwiatkowski, David J.

    2003-01-01

    Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To

  15. On Deletion of Sutra Translation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-juan

    2017-01-01

    Dao An's the metaphor of translation "wine diluted with water' ' expressed a view about translation that had been abridged.Later Kumarajiva provided metaphor "rice chewed—tasteless and downright disgusting".Both of them felt regretted at the weakening of taste,sometimes even the complete loss of flavor caused by deletion in translation of Buddhist sutras.In early sutra translation,deletion is unavoidable which made many sutra translators felt confused and drove them to study it further and some even managed to give their understanding to this issue.This thesis will discuss the definition,and what causes deletion and the measures adopted by the sutra translators.

  16. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    Science.gov (United States)

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  17. Strategies for state-dependent quantum deleting

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting

  18. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  19. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  20. Targeted deletion of hepatocyte Ikkβ confers growth advantages

    International Nuclear Information System (INIS)

    Koch, Katherine S.; Maeda, Shin; He, Guobin; Karin, Michael; Leffert, Hyam L.

    2009-01-01

    Mice lacking hepatocyte IKKβ (Ikkβ Δhep ) are defective in TNFα-activation of hepatocellular transcription factor NF-κB, and highly susceptible to hepatotoxicity. Following diethylnitrosamine (DEN) exposure, Ikkβ Δhep mice develop more hepatocellular carcinoma (HCC) than control mice due partly to enhanced DEN-induced hepatocyte death. Here we show that Ikkβ Δhep hepatocytes display growth advantages over normal hepatocytes consisting of precocious PCNA and cyclin D1 expression during liver regeneration (shortened hepatocyte G 0 → G 1 transitions), and enhanced recovery efficiency, cyclin D1 expression and cell proliferation after plating. Ex vivo deletion of Ikkβ also accelerates hepatocyte growth. Ikkβ Δhep hepatocyte proliferative responses show heightened sensitivity to TGFα and TNFα, and heightened expression of fibronectin, collagens I/III, nidogen, β-actin and integrin β1 mRNAs. These findings suggest that altered mitogen signaling and expression of extracellular matrix and its associated components underlie growth advantages. Increased HCC development in Ikkβ Δhep mice may also be caused by growth advantages of surviving Ikkβ-deleted hepatocytes.

  1. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  2. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  3. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  4. Conditional IL-2 gene deletion: consequences for T cell proliferation

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-05-01

    Full Text Available To explore the role of interleukin-2 (IL-2 in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analogue, tamoxifen (TAM as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT, conventional IL-2 (-/-, TAM-treated Cre recombinase negative (Cre-/IL2fl/fl, and Cre+/IL-2fl/fl (Cre+, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by protein-bead arrays. Splenocytes from conventional IL-2 (-/- and TAM-treated Cre+ mice resulted in undetectable IL-2 production, so that both strains were IL-2 deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2 (-/- mice did so. By comparison, only cells from IL-2 sufficient WT and Cre- switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice, which were all equivalent, while proliferation of cells from conventional IL-2 (-/- mice was compromised. Splenocytes from IL-2 deficient conventional IL-2 (-/- mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21, whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2 (-/- Cre+ mice were comparable with WT and Cre- mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis is attributable to IL-2, and proliferation

  5. Detection of retinoblastoma gene deletions in spontaneous and radiation-induced mouse lung adenocarcinomas by polymerase chain reaction

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma gene using histological sections from radiation-induced and spontaneous tumors as the DNA source. Six mouse Rb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mouse Rb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (5.69 Gy 60 Co γ rays or 0.6 Gy JANUS neutrons, which have been found to have approximately equal radiobiological effectiveness) were analyzed for mouse Rb deletions. Tumors in 6 neutron-irradiated mice had no mouse Rb deletions. However, 1 of 6 tumors from γ-irradiated mice (17%) and 6 of 18 spontaneous tumors from unirradiated mice (33%) showed a deletion in one or both mouse Rb alleles. All deletions detected were in the 5' region of the mouse Rb gene. 36 refs., 2 figs., 2 tabs

  6. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  7. Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle

    International Nuclear Information System (INIS)

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B.

    2007-01-01

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARα and PPARβ isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARα-/-, PPARβ-/-, and double PPARα-/- β-/- mice. Heart and soleus muscle analyses show that the deletion of PPARα induces a decrease of the HAD activity (β-oxidation) while soleus contractile phenotype remains unchanged. A PPARβ deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARβ and PPARα functions since double gene deletion PPARα-PPARβ mostly reproduces the null PPARα-mediated reduced β-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARβ is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARα in PPARα null mice

  8. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  9. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid. © The Author 2014. Published by Oxford University Press.

  10. Rag Deletion in Peripheral T Cells Blocks TCR Revision

    Science.gov (United States)

    Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.

    2010-01-01

    Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935

  11. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.

    Science.gov (United States)

    Lee, Soo Min; Baik, Jasmine; Nguyen, Dara; Nguyen, Victoria; Liu, Shiwei; Hu, Zhaoyang; Abbott, Geoffrey W

    2017-06-01

    Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K + current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2 +/+ and Kcne2 - / - mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K + channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. © FASEB.

  12. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  13. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  14. Probabilistic cloning and deleting of quantum states

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Ying Mingsheng

    2002-01-01

    We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines proposed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily presumed number of the input states are linearly independent. This simply generalizes some results for cloning. We also derive an upper bound for the success probability of the cloning and deleting machine

  15. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    Science.gov (United States)

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  16. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Science.gov (United States)

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  17. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus

    2015-01-01

    Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering ...

  18. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    OpenAIRE

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2007-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as in...

  20. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  1. Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington's disease

    OpenAIRE

    Mealer, Robert G.; Subramaniam, Srinivasa; Snyder, Solomon H.

    2013-01-01

    Although the mutated protein causing Huntington's disease (HD) is expressed throughout the body, the major pathology of HD is localized to the striatum of the brain. We previously reported that the striatal-enriched protein Rhes binds the mutated huntingtin protein and enhances its cytotoxicity. We now demonstrate that Rhes-deleted mice are dramatically protected from neurotoxicity and motor dysfunction in a striatal-specific model of HD elicited by 3-nitropropionic acid. This finding suggest...

  2. T-cell transfer and cytokine/TCR gene deletion models in the study of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Delbro, D; Claesson, Mogens Helweg

    1997-01-01

    Until recently there existed no appropriate immunological animal models for human inflammatory bowel diseases (IBD). Today a number of models, mostly in the mouse and rat, have proved useful in the study of several aspects of IBD, including the histopathology and the disease-inductive and -protec...... and in gene-deleted mice....

  3. Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory

    Science.gov (United States)

    Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…

  4. 46 CFR 67.171 - Deletion; requirement and procedure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Deletion; requirement and procedure. 67.171 Section 67...; Requirement for Exchange, Replacement, Deletion, Cancellation § 67.171 Deletion; requirement and procedure. (a... provided in § 67.161, and the vessel is subject to deletion from the roll of actively documented vessels...

  5. 19 CFR 142.49 - Deletion of C-4 Code.

    Science.gov (United States)

    2010-04-01

    .... Entry filers may delete C-4 Codes from Line Release by notifying the port director in writing on a Deletion Data Loading Sheet. Such notification shall state the C-4 Code which is to be deleted, the port... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A port...

  6. In vivo immunologic selection of class I major histocompatibility complex gene deletion variants from the B16-BL6 melanoma.

    Science.gov (United States)

    Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H

    1987-06-01

    The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.

  7. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  8. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  9. Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation.

    Science.gov (United States)

    Staines, Katherine A; Javaheri, Behzad; Hohenstein, Peter; Fleming, Robert; Ikpegbu, Ekele; Unger, Erin; Hopkinson, Mark; Buttle, David J; Pitsillides, Andrew A; Farquharson, Colin

    2017-11-01

    The transmembrane glycoprotein E11/Podoplanin (Pdpn) has been implicated in the initial stages of osteocyte differentiation. However, its precise function and regulatory mechanisms are still unknown. Due to the known embryonic lethality induced by global Pdpn deletion, we have herein explored the effect of bone-specific Pdpn knockdown on osteocyte form and function in the post-natal mouse. Extensive skeletal phenotyping of male and female 6-week-old Oc-cre;Pdpn flox/flox (cKO) mice and their Pdpn flox/flox controls (fl/fl) has revealed that Pdpn deletion significantly compromises tibial cortical bone microarchitecture in both sexes, albeit to different extents (p < 0.05). Consistent with this, we observed an increase in stiffness in female cKO mice in comparison to fl/fl mice (p < 0.01). Moreover, analysis of the osteocyte phenotype by phalloidin staining revealed a significant decrease in the dendrite volume (p < 0.001) and length (p < 0.001) in cKO mice in which deletion of Pdpn also modifies the bone anabolic loading response (p < 0.05) in comparison to age-matched fl/fl mice. Together, these data confirm a regulatory role for Pdpn in osteocyte dendrite formation and as such, in the control of osteocyte function. As the osteocyte dendritic network is known to play vital roles in regulating bone modeling/remodeling, this highlights an essential role for Pdpn in bone homeostasis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  10. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  11. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  12. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    International Nuclear Information System (INIS)

    Joshi, Ayesha; Ellenson, Lora Hedrick

    2011-01-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten +/- mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten +/- mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ERα as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  13. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  14. Clonal deletion: A mechanism of tolerance in mixed bone marrow chimeras

    International Nuclear Information System (INIS)

    Yu, J.C.; Webster, M.; Fox, I.J.

    1990-01-01

    The mechanism of antigen-specific immunologic unresponsiveness which results from lethal irradiation and mixed (syngeneic-allogeneic) bone marrow cell (BMC) reconstitution is unknown. To determine whether clonal deletion is the mechanism of tolerance in this model, monoclonal antibody (Mab) RR-4-4, specific for a T-cell receptor (V beta 6) reactive against the minor alloantigen MLsa, was employed. Six-week-old B10 mice (H-2b, Mlsb, Thyl.2) were tolerized to AKR antigens (H-2k, Mlsa, Thyl.1) by whole body irradiation (950 R) and iv infusion of T-cell-depleted (TCD) B10 BMC + non-TCD AKR BMC. Chimerism and antigen-specific tolerance were documented by flow microfluorometry (FMF), skin grafting, mixed lymphocyte reaction, and cell-mediated lympholysis. When tolerant B10 mice (n = 15) had accepted AKR skin grafts for greater than 100 days, these animals were studied for the presence of host V beta 6+ T cells using Mab RR-4-4. FMF revealed that 0-5% of host (B10) lymph node and spleen cells from chimeras were V beta 6+ while 15-20% of lymph node and spleen cells from control B10 mice expressed V beta 6. These data demonstrate that clonal deletion occurs in the lethal irradiation-mixed reconstitution model as evidenced by the near total elimination of Mlsa-reactive V beta 6+ T cells and suggest that it maybe a mechanism responsible for tolerance in adult mice

  15. Some analogies between quantum cloning and quantum deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We further verify the impossibility of deleting an arbitrary unknown quantum state, and also show it is impossible to delete two nonorthogonal quantum states as a consequence of unitarity of quantum mechanics. A quantum approximate (deterministic) deleting machine and a probabilistic (exact) deleting machine are constructed. The estimation for the global fidelity characterizing the efficiency of the quantum approximate deleting is given. We then demonstrate that unknown nonorthogonal states chosen from a set with their multiple copies can evolve into a linear superposition of multiple deletions and failure branches by a unitary process if and only if the states are linearly independent. It is notable that the proof for necessity is somewhat different from Pati's [Phys. Rev. Lett. 83, 2849 (1999)]. Another deleting machine for the input states that are unnecessarily linearly independent is also presented. The bounds on the success probabilities of these deleting machines are derived. So we expound some preliminary analogies between quantum cloning and deleting

  16. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain

    Directory of Open Access Journals (Sweden)

    Qingzhang Zhu

    2017-01-01

    Full Text Available Objective: IP6 kinases (IP6Ks regulate cell metabolism and survival. Mice with global (IP6K1-KO or adipocyte-specific (AdKO deletion of IP6K1 are protected from diet induced obesity (DIO at ambient (23 °C temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE. Thus, at thermoneutral (30 °C temperature, high fat diet (HFD-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR, fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target. Keywords: IP6K, Obesity, Diabetes, Energy expenditure, β-oxidation

  17. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  18. Grin1 receptor deletion within CRF neurons enhances fear memory.

    Directory of Open Access Journals (Sweden)

    Georgette Gafford

    Full Text Available Corticotropin releasing factor (CRF dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD. CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA. Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre (Martin et al., 2010. In these studies, mice that have the gene that encodes NR1 (Grin1 flanked by loxP sites (floxed were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+. We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+ into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.

  19. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  20. 78 FR 37525 - Procurement List; Deletions

    Science.gov (United States)

    2013-06-21

    .... Contracting Activity: Dept of the Air Force, FA7014 AFDW A7KI, Andrews AFB, MD. Service Type/Location: Laundry... Procurement List. SUMMARY: This action deletes products and services from the Procurement List that were... products and services listed below are no longer suitable for procurement by the Federal Government under...

  1. Sequence analysis of 17 NRXN1 deletions

    DEFF Research Database (Denmark)

    Hoeffding, Louise Kristine Enggaard; Hansen, Thomas; Ingason, Andrés

    2014-01-01

    into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism...

  2. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  3. Obtaining a Proportional Allocation by Deleting Items

    NARCIS (Netherlands)

    Dorn, B.; de Haan, R.; Schlotter, I.; Röthe, J.

    2017-01-01

    We consider the following control problem on fair allocation of indivisible goods. Given a set I of items and a set of agents, each having strict linear preference over the items, we ask for a minimum subset of the items whose deletion guarantees the existence of a proportional allocation in the

  4. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li

    2014-01-01

    operations performed, and α_M/N_(n) is a functional inverse of Ackermann’s function. They left open the question whether delete operations can be implemented more efficiently than find operations, for example, in o(log n) worst-case time. We resolve this open problem by presenting a relatively simple...

  5. Mapping genomic deletions down to the base

    DEFF Research Database (Denmark)

    Dunø, Morten; Hove, Hanne; Kirchhoff, Maria

    2004-01-01

    the breakpoint of the third patient was mapped to a region previously predicted to be prone for rearrangements. One patient also harboured an inversion in connection with the deletion that disrupted the HDAC9 gene. All three patients showed clinical characteristics reminiscent of the hand-foot-genital syndrome...

  6. Genetic deletion of Rnd3 in neural stem cells promotes proliferation via upregulation of Notch signaling.

    Science.gov (United States)

    Dong, Huimin; Lin, Xi; Li, Yuntao; Hu, Ronghua; Xu, Yang; Guo, Xiaojie; La, Qiong; Wang, Shun; Fang, Congcong; Guo, Junli; Li, Qi; Mao, Shanping; Liu, Baohui

    2017-10-31

    Rnd3, a Rho GTPase, is involved in the inhibition of actin cytoskeleton dynamics through the Rho kinase-dependent signaling pathway. We previously demonstrated that mice with genetic deletion of Rnd3 developed a markedly larger brain compared with wild-type mice. Here, we demonstrate that Rnd3 knockout mice developed an enlarged subventricular zone, and we identify a novel role for Rnd3 as an inhibitor of Notch signaling in neural stem cells. Rnd3 deficiency, both in vivo and in vitro , resulted in increased levels of Notch intracellular domain protein. This led to enhanced Notch signaling and promotion of aberrant neural stem cell growth, thereby resulting in a larger subventricular zone and a markedly larger brain. Inhibition of Notch activity abrogated this aberrant neural stem cell growth.

  7. RIP3 attenuates the pancreatic damage induced by deletion of ATG7.

    Science.gov (United States)

    Zhou, Xiaodong; Xie, Li; Xia, Leizhou; Bergmann, Frank; Büchler, Markus W; Kroemer, Guido; Hackert, Thilo; Fortunato, Franco

    2017-07-13

    Invalidation of pancreatic autophagy entails pancreatic atrophy, endocrine and exocrine insufficiency and pancreatitis. The aim of this study was to investigate whether depletion of Rip3, which is involved in necroptotic signaling, may attenuate the pancreatic atrophy and pancreatitis resulting from autophagy inhibition. Autophagy and necroptosis signaling were evaluated in mice lacking expression of Rip3 in all organs and Atg7 in the pancreas. Acinar cell death, inflammation and fibrosis were evaluated by using of a compendium of immunofluorescence methods and immunoblots. Mice deficient for pancreatic Atg7 developed acute pancreatitis, which progressed to chronic pancreatitis. This phenotype reduces autophagy, increase apoptosis and necroptosis, inflammation and fibrosis, as well as premature death of the animals. Knockout of Rip3 exacerbated the apoptotic death of acinar cells, increased tissue damage, reduced macrophage infiltration and further accelerated the death of the mice with Atg7-deficient pancreas. The pancreatic degeneration induced by autophagy inhibition was exacerbated by Rip3 deletion.

  8. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  9. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

    Science.gov (United States)

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911

  10. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory

    Science.gov (United States)

    Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100

  11. Genetics Home Reference: 17q12 deletion syndrome

    Science.gov (United States)

    ... with 17q12 deletion syndrome have delayed development (particularly speech and language delays), intellectual disability, or behavioral or psychiatric disorders. Behavioral and psychiatric conditions that have been reported in people with 17q12 deletion syndrome include autism ...

  12. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  14. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  15. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  16. Probabilistic deletion of copies of linearly independent quantum states

    International Nuclear Information System (INIS)

    Feng Jian; Gao Yunfeng; Wang Jisuo; Zhan Mingsheng

    2002-01-01

    We show that each of two copies of the nonorthogonal states randomly selected from a certain set S can be probabilistically deleted by a general unitary-reduction operation if and only if the states are linearly independent. We derive a tight bound on the best possible deleting efficiencies. These results for 2→1 probabilistic deleting are also generalized into the case of N→M deleting (N,M positive integers and N>M)

  17. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  18. 78 FR 29119 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-17

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products and services to the... Activity: Washington Headquarters Services (WHS), Acquisition Directorate, Washington, DC. Deletion On 4/5...

  19. 5 CFR 1631.17 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 1631.17... Deletion of exempted information. Where requested records contain matters which are exempted under 5 U.S.C... disclosed by the Board with deletions. To each such record, the Board shall attach a written justification...

  20. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Science.gov (United States)

    2010-09-17

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion From the Procurement List. SUMMARY: The Committee is proposing to add... aggregated by the Defense Logistics Agency Troop Support, Philadelphia, PA. Deletion Regulatory Flexibility...

  1. 5 CFR 2502.18 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 2502.18... Charges for Search and Reproduction § 2502.18 Deletion of exempted information. Where requested records... the remainder of the records, they shall be disclosed by the Office with deletions. To each such...

  2. 78 FR 75912 - Procurement List; Addition and Deletion

    Science.gov (United States)

    2013-12-13

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Addition to and deletion from the Procurement List. SUMMARY: This action adds a service to the Procurement...: General Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for...

  3. 78 FR 27369 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-10

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products to the Procurement..., Philadelphia, PA. Deletion On 4/5/2013 (78 FR 20622-20623), the Committee for Purchase From People Who Are...

  4. 75 FR 7450 - Procurement List: Proposed Addition and Deletion

    Science.gov (United States)

    2010-02-19

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed addition to and deletion from Procurement List. SUMMARY: The Committee is proposing to add to the... W6BA ACA, FT CARSON, COLORADO. Deletion Regulatory Flexibility Act Certification I certify that the...

  5. 77 FR 20795 - Procurement List Proposed Addition and Deletion

    Science.gov (United States)

    2012-04-06

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Addition to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a.... Deletion Regulatory Flexibility Act Certification I certify that the following action will not have a...

  6. 36 CFR 1275.58 - Deletion of restricted portions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of restricted... HISTORICAL MATERIALS OF THE NIXON ADMINISTRATION Access by the Public § 1275.58 Deletion of restricted... materials after the deletion of the portions which are restricted under this § 1275.50 or § 1275.52. ...

  7. 75 FR 69638 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-11-15

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds products and a service to the...), DENVER, CO. Deletion On 9/17/2010 (75 FR 56995-56996), the Committee for Purchase From People Who Are...

  8. 76 FR 60810 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-09-30

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add... Activity: Department of Energy, Idaho Operations Office, Idaho Falls, ID. DELETION Regulatory Flexibility...

  9. 44 CFR 5.27 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying... Availability of General Agency Information, Rules, Orders, Policies, and Similar Material § 5.27 Deletion of..., interpretation, or staff manual or instruction. However, the justification for each deletion will be explained...

  10. 29 CFR 1610.20 - Deletion of exempted matters.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records... the remainder of the records, they shall be disclosed by the Commission with deletions. To each such...

  11. 49 CFR 7.6 - Deletion of identifying detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6... To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to be... the deletion will accompany the record published or made available for inspection. ...

  12. 76 FR 5142 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2011-01-28

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement.... Contracting Activity: Department of Transportation, Federal Aviation Administration, Jamaica, NY. Deletion On...

  13. Genetics Home Reference: proximal 18q deletion syndrome

    Science.gov (United States)

    ... characteristic features. Most cases of proximal 18q deletion syndrome are the result of a new (de novo) deletion and are not inherited from a ... J, Fox PT, Stratton RF, Perry B, Hale DE. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet ...

  14. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  15. An environment-mediated quantum deleter

    International Nuclear Information System (INIS)

    Srikanth, R.; Banerjee, Subhashish

    2007-01-01

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters

  16. Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.

    Science.gov (United States)

    Sherwood, Andrew; Holland, Peter C; Adamantidis, Antoine; Johnson, Alexander W

    2015-12-01

    Exposure to environmental cues associated with food can evoke eating behavior in the absence of hunger. This capacity for reward cues to promote feeding behaviors under sated conditions can be examined in the laboratory using cue-potentiated feeding (CPF). The orexigenic neuropeptide Melanin Concentrating Hormone (MCH) is expressed throughout brain circuitry critical for CPF. We examined whether deletion of the MCH receptor, MCH-1R, would in KO mice disrupt overeating in the presence of a Pavlovian CS+ associated with sucrose delivery. While both wild-type controls and KO mice showed comparable food magazine approach responses during the CPF test, MCH-1R deletion significantly impaired the ability of the CS+ to evoke overeating of sucrose under satiety. Through the use of a refined analysis of meal intake, it was revealed that this disruption to overeating behavior in KO mice reflected a reduction in the capacity for the CS+ to initiate and maintain bursts of licking behavior. These findings suggest that overeating during CPF requires intact MCH-1R signaling and may be due to an influence of the CS+ on the palatability of food and on regulatory mechanisms of peripheral control. Thus, disruptions to MCH-1R signaling may be a useful pharmacological tool to inhibit this form of overeating behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors.

    Science.gov (United States)

    Catón, Javier; Luder, Hans-Ulrich; Zoupa, Maria; Bradman, Matthew; Bluteau, Gilles; Tucker, Abigail S; Klein, Ophir; Mitsiadis, Thimios A

    2009-04-15

    TBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome. Because of the early lethality of the Tbx1-/- mice, we used long-term culture techniques that allow the unharmed growth of incisors until their full maturity. All cultured incisors of Tbx1-/- mice were hypoplastic and lacked enamel, while thorough histological examinations demonstrated the complete absence of ameloblasts. The absence of enamel is preceded by a decrease in proliferation of the ameloblast precursor cells and a reduction in amelogenin gene expression. The cervical loop area of the incisor, which contains the niche for the epithelial stem cells, was either severely reduced or completely missing in mutant incisors. In contrast, ectopic expression of Tbx1 was observed in incisors from mice with upregulated Fibroblast Growth Factor signalling and was closely linked to ectopic enamel formation and deposition in these incisors. These results demonstrate that Tbx1 is essential for the maintenance of ameloblast progenitor cells in rodent incisors and that its deletion results in the absence of enamel formation.

  18. Conditional deletion of Pten causes bronchiolar hyperplasia.

    Science.gov (United States)

    Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A

    2008-03-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.

  19. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    Science.gov (United States)

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  20. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects.

    Science.gov (United States)

    Keitges, Elisabeth A; Pasion, Romela; Burnside, Rachel D; Mason, Carla; Gonzalez-Ruiz, Antonio; Dunn, Teresa; Masiello, Meredith; Gebbia, Joseph A; Fernandez, Carlos O; Risheg, Hiba

    2013-07-01

    Microdeletions of 8p23.1 are mediated by low copy repeats and can cause congenital diaphragmatic hernia (CDH) and cardiac defects. Within this region, point mutations of the GATA4 gene have been shown to cause cardiac defects. However, the cause of CDH in these deletions has been difficult to determine due to the paucity of mutations that result in CDH, the lack of smaller deletions to refine the region and the reduced penetrance of CDH in these large deletions. Mice deficient for one copy of the Gata4 gene have been described with CDH and heart defects suggesting mutations in Gata4 can cause the phenotype in mice. We report on the SNP microarray analysis on two fetuses with deletions of 8p23.1. The first had CDH and a ventricular septal defect (VSD) on ultrasonography and a family history of a maternal VSD. Microarray analysis detected a 127-kb deletion which included the GATA4 and NEIL2 genes which was inherited from the mother. The second fetus had an incomplete atrioventricular canal defect on ultrasonography. Microarray analysis showed a 315-kb deletion that included seven genes, GATA4, NEIL2, FDFT1, CTSB, DEFB136, DEFB135, and DEFB134. These results suggest that haploinsufficiency of the two genes in common within 8p23.1; GATA4 and NEIL2 can cause CDH and cardiac defects in humans. Copyright © 2013 Wiley Periodicals, Inc.

  1. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6.

    Directory of Open Access Journals (Sweden)

    Jan C-C Hu

    Full Text Available Amelogenesis imperfecta (AI is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3 and AMELY (Yp11.2. About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6. We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling "snow-capped" teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240, but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.

  2. Deletion of nardilysin prevents the development of steatohepatitis and liver fibrotic changes.

    Directory of Open Access Journals (Sweden)

    Shoko Ishizu-Higashi

    Full Text Available Nonalcoholic steatohepatitis (NASH is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1, a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1-/- mice were fed a control choline-supplemented amino acid-defined (CSAA diet or a choline-deficient amino acid-defined (CDAA diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1-/- mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1-/- mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1-/- mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1-/- mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1-/- mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1-/- mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1-/- mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1-/- mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1-/- mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.

  3. Cortical GluN2B deletion attenuates punished suppression of food reward-seeking.

    Science.gov (United States)

    Radke, Anna K; Nakazawa, Kazu; Holmes, Andrew

    2015-10-01

    Compulsive behavior, which is a hallmark of psychiatric disorders such as addiction and obsessive-compulsive disorder, engages corticostriatal circuits. Previous studies indicate a role for corticostriatal N-methyl-D-aspartate receptors (NMDARs) in mediating compulsive-like responding for drugs of abuse, but the specific receptor subunits controlling reward-seeking in the face of punishment remain unclear. The current study assessed the involvement of corticostriatal GluN2B-containing NMDARs in measures of persistent and punished food reward-seeking. Mice with genetic deletion of GluN2B in one of three distinct neuronal populations, cortical principal neurons, forebrain interneurons, or striatal medium spiny neurons, were tested for (1) sustained food reward-seeking when reward was absent, (2) reward-seeking under a progressive ratio schedule of reinforcement, and (3) persistent reward-seeking after a footshock punishment. Mutant mice with genetic deletion of GluN2B in cortical principal neurons demonstrated attenuated suppression of reward-seeking during punishment. These mice performed normally on other behavioral measures, including an assay for pain sensitivity. Mutants with interneuronal or striatal GluN2B deletions were normal on all behavioral assays. Current findings offer novel evidence that loss of GluN2B-containing NMDARs expressed on principal neurons in the cortex results in reduced punished food reward-seeking. These data support the involvement of GluN2B subunit in cortical circuits regulating cognitive flexibility in a variety of settings, with implications for understanding the basis of inflexible behavior in neuropsychiatric disorders including obsessive-compulsive disorders (OCD) and addictions.

  4. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation.

    Science.gov (United States)

    Pan, Zhen-Guo; An, Xu-Sheng

    2018-04-06

    SARM1 (Sterile alpha and armadillo motif-containing protein 1) is the recently identified TIR domain-containing cytosolic protein, which is involved in toll-like receptors (TLRs) signaling transduction. In the present study, the role of SARM1 in high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) progression was explored. We found that SARM1 was expressed highly in fatty liver. And SARM1-knockout (KO) reduced steatohepatitis and metabolic disorders induced by HFD. SARM1-deletion decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in HFD-fed mice. Additionally, inflammatory response caused by HFD was alleviated by SARM1-deletion through inactivating TLR4/7/9 and nuclear factor kappa B (NF-κB) pathways. Of note, SARM1-deletion also reduced the expressions of inflammation-associated molecules in hypothalamus of HFD-fed mice. Furthermore, HFD administration led to oxidative stress in liver of mice, while being decreased in SARM1-KO mice. Moreover, SARM1-ablation improved lipid dyslipidemia by suppressing the mRNA levels of genes, linked to glycolysis, lipogenesis and transcriptional regulation. Insulin resistance was also attenuated by SARM1-deficiency through enhancing the activation of liver Akt/glycogen synthase kinase-3β (GSK3β) and insulin receptor substrate-1 (IRS1)/FOXO1 pathways in HFD-fed mice. Also, SARM1-knockout improved neuropeptide Y (NPY), Pro-Opiomelanocortins (POMC), Agouti-related Protein (AGRP) and Cocaine-and-Amphetamine Responsive Transcript 1 (CART1) expressions in hypothalamus of mice after HFD administration. In vitro, we found that the reduction of inflammatory response, oxidative stress and dyslipidemia induced by SARM1-knockout in primary hepatocytes after fructose stimulation was largely attributed to its suppression to TLR4/7/9. Together, the findings demonstrated that SARM1 might be an effective target for developing effective therapeutic strategies against NAFLD. Copyright © 2018

  5. SLUG (SNAI2) deletions in patients with Waardenburg disease.

    Science.gov (United States)

    Sánchez-Martín, Manuel; Rodríguez-García, Arancha; Pérez-Losada, Jesús; Sagrera, Ana; Read, Andrew P; Sánchez-García, Isidro

    2002-12-01

    Waardenburg syndrome (WS; deafness with pigmentary abnormalities) is a congenital disorder caused by defective function of the embryonic neural crest. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. WS1 and WS3 are caused by mutations in PAX3, whereas WS2 is heterogenous, being caused by mutations in the microphthalmia (MITF) gene in some but not all affected families. The identification of Slugh, a zinc-finger transcription factor expressed in migratory neural crest cells, as the gene responsible for pigmentary disturbances in mice prompted us to analyse the role of its human homologue SLUG in neural crest defects. Here we show that two unrelated patients with WS2 have homozygous deletions in SLUG which result in absence of the SLUG product. We further show that Mitf is present in Slug-deficient cells and transactivates the SLUG promoter, and that Slugh and Kit genetically interact in vivo. Our findings further define the locus heterogeneity of WS2 and point to an essential role of SLUG in the development of neural crest-derived human cell lineages: its absence causes the auditory-pigmentary symptoms in at least some individuals with WS2.

  6. Nod2 mediates susceptibility to Yersinia pseudotuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Ulrich Meinzer

    Full Text Available Nucleotide oligomerisation domain 2 (NOD2 is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.

  7. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  9. UNC5B receptor deletion exacerbates tissue injury in response to AKI.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Navankasattusas, Sutip; Li, Dean Y; Kim, Il-man; Ramesh, Ganesan

    2014-02-01

    Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)). Mice were subjected to two different models of organ injury: ischemia reperfusion injury of the kidney and cisplatin-induced nephrotoxicity. Both mouse models of UNC5B depletion had normal organ function and histology under basal conditions. After AKI, however, UNC5B(-/flox/GGT-cre) mice exhibited significantly worse renal function and damage, increased tubular apoptosis, enhanced p53 activation, and exacerbated inflammation compared with UNC5B(-/flox) and wild-type mice. shRNA-mediated suppression of UNC5B expression in cultured tubular epithelial cells exacerbated cisplatin-induced cell death in a p53-dependent manner and blunted Akt phosphorylation. Inhibition of PI3 kinase similarly exacerbated cisplatin-induced apoptosis; in contrast, overexpression of UNC5B reduced cisplatin-induced apoptosis in these cells. Taken together, these results show that the netrin-1 receptor UNC5B plays a critical role in cell survival and kidney injury through Akt-mediated inactivation of p53 in response to stress.

  10. Protective Role of Aldose Reductase Deletion in an Animal Model of Oxygen-Induced Retinopathy

    Directory of Open Access Journals (Sweden)

    Zhongjie Fu

    2011-05-01

    Full Text Available Retinopathy of prematurity (ROP is a common disease occurred in premature babies. Both vascular abnormality and neural dysfunction of the retina were reported, and oxidative stress was involved. Previously, it has been showed that deficiency of aldose reductase (AR, the rate-limiting enzyme in polyol pathway, lowered oxidative stress. Here, the effect of AR deletion on neonatal retinal injury was investigated by using a mouse model of ROP (oxygen-induced retinopathy, OIR. Seven-day-old pups were exposed to 75% oxygen for 5 days and then returned to room air. The vascular changes and neuronal/glial responses were examined and compared between wild-type and AR-deficient OIR mice. Significantly reduced vaso-obliterated area, blood vessel leakage, and early revascularization were observed in AR-deficient OIR mice. Moreover, reduced amacrine cells and less distorted strata were observed in AR-deficient OIR mice. Less astrocytic immunoreactivity and reduced Müller cell gliosis were also observed in AR-deficient mice. After OIR, nitrotyrosine immunoreactivity and poly (ADP-ribose (PAR translocation, which are two oxidative stress markers, were decreased in AR-deficient mice. Significant decrease in VEGF, pho-Erk1/2, pho-Akt, and pho-I?B expression was found in AR-deficient OIR retinae. Thus, these observations suggest that the deficiency of aldose reductase may protect the retina in the OIR model.

  11. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  12. Uhrf2 deletion impairs the formation of hippocampus-dependent memory by changing the structure of the dentate gyrus.

    Science.gov (United States)

    Chen, Xiao-Rong; Sun, Shi-Cheng; Teng, Shuai-Wen; Li, Liang; Bie, Yi-Fan; Yu, Hui; Li, Da-Li; Chen, Zhe-Yu; Wang, Yue

    2018-03-01

    Ubiquitin-like with PHD and ring finger domains 2 (Uhrf2) is distributed in many brain regions, including the cortex and hippocampus. Decreased Uhrf2 expression is involved in neurodegenerative disease. A recent study showed Uhrf2 deletion impaired spatial memory; however, the mechanism remains elusive. In our study, we determined that Uhrf2 +/- and Uhrf2 -/- mice had significant learning and memory deficiencies in contextual fear conditioning (CFC) and the novel place recognition test but not in the novel object recognition test. Interestingly, there were no changes in the Uhrf2 protein levels in the hippocampus of C57BL6 mice after CFC training, which suggests Uhrf2 in adult mice may not be related to the formation of CFC long-term memory. Based on Nissl staining, Uhrf2 deletion caused neuropathological changes specifically in the crest of the dentate gyrus (DG), such as cell swelling, a vague outline and confused boundary; however, no changes were identified in the medial prefrontal cortex (mPFC). Transmission electron microscope assay further indicated a series of abnormal ultrastructure changes in neurons and glia in the DG crest. These results suggested that Uhrf2 deletion selectively blocked the development of the DG crest and impaired hippocampus-dependent learning and memory. Our study will facilitate a better understanding of the role of Uhrf2 protein in the central nervous system.

  13. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  14. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  15. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA

  16. Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver.

    Science.gov (United States)

    Nagashima, Kazuki; Sawa, Shinichiro; Nitta, Takeshi; Prados, Alejandro; Koliaraki, Vasiliki; Kollias, George; Nakashima, Tomoki; Takayanagi, Hiroshi

    2017-11-04

    The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin + CD31 - cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin + CD31 - cells. Tnfsf11 fl/Δ Col6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  18. Writing and deleting single magnetic skyrmions.

    Science.gov (United States)

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  19. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  20. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down

    Science.gov (United States)

    Willenberg, Rafer; Zukor, Katherine; Liu, Kai; He, Zhigang; Steward, Oswald

    2016-01-01

    Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting PTEN in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the “wrong” side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical AAV-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral BDA injections in PTEN-deleted mice with spinal cord injury and in non-injured PTEN-floxed mice that had not received AAV-Cre. In non-injured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in grey matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side, in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using shRNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the non-injured CST, highlighting one aspect for how resultant circuitry from regenerating axons may differ from that of the uninjured CST. PMID:26878190

  1. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  3. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    Science.gov (United States)

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  4. Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Smith, Claire E L; Murillo, Gina; Brookes, Steven J; Poulter, James A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2016-08-15

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function. © The Author 2016. Published by Oxford University Press.

  5. Method for introducing unidirectional nested deletions

    Science.gov (United States)

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  6. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  7. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors.

    Directory of Open Access Journals (Sweden)

    Roopali Yadav

    Full Text Available The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1 and glutamate δ2 (GluD2 receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.

  8. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  9. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  10. NPL deletion policy for RCRA-regulated TSD facilities finalized

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab

  11. Clival encephalocele and 5q15 deletion: a case report.

    Science.gov (United States)

    Puvabanditsin, Surasak; Malik, Imran; Garrow, Eugene; Francois, Lissa; Mehta, Rajeev

    2015-03-01

    A preterm neonate presenting with respiratory distress after birth was found to have a clival encephalocele, which is a variant of a basal encephalocele, and hypoplasia of the cerebellum. Genetic studies revealed a small deletion of the long arm of chromosome 5: 5q15 deletion. We report a rare variant of a basal encephalocele with a cerebellar malformation and 5q15 deletion. © The Author(s) 2014.

  12. Male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, A.; Maizonnier, D. (Station d' Amelioration des Plantes de l' I.N.R.A., Dijon (France))

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined.

  13. HOXA genes cluster: clinical implications of the smallest deletion

    OpenAIRE

    Pezzani, Lidia; Milani, Donatella; Manzoni, Francesca; Baccarin, Marco; Silipigni, Rosamaria; Guerneri, Silvana; Esposito, Susanna

    2015-01-01

    Background HOXA genes cluster plays a fundamental role in embryologic development. Deletion of the entire cluster is known to cause a clinically recognizable syndrome with mild developmental delay, characteristic facies, small feet with unusually short and big halluces, abnormal thumbs, and urogenital malformations. The clinical manifestations may vary with different ranges of deletions of HOXA cluster and flanking regions. Case presentation We report a girl with the smallest deletion reporte...

  14. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  15. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  16. 75 FR 1355 - Procurement List Additions and Deletions

    Science.gov (United States)

    2010-01-11

    .../Location: Janitorial Services, Jamestown Service Center, 8430 Country Club Street, Jamestown, ND. NPA..., the following products and services are deleted from the Procurement List: Products Business Cards NSN...

  17. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. SNX27 Deletion Causes Hydrocephalus by Impairing Ependymal Cell Differentiation and Ciliogenesis.

    Science.gov (United States)

    Wang, Xin; Zhou, Ying; Wang, Jian; Tseng, I-Chu; Huang, Timothy; Zhao, Yingjun; Zheng, Qiuyang; Gao, Yue; Luo, Hong; Zhang, Xian; Bu, Guojun; Hong, Wanjin; Xu, Huaxi

    2016-12-14

    Hydrocephalus is a brain disorder derived from CSF accumulation due to defects in CSF clearance. Although dysfunctional apical cilia in the ependymal cell layer are causal to the onset of hydrocephalus, mechanisms underlying proper ependymal cell differentiation are largely unclear. SNX27 is a trafficking component required for normal brain function and was shown previously to suppress γ-secretase-dependent amyloid precursor protein and Notch cleavage. However, it was unclear how SNX27-dependent γ-secretase inhibition could contribute to brain development and pathophysiology. Here, we describe and characterize an Snx27-deleted mouse model for the ependymal layer defects of deciliation and hydrocephalus. SNX27 deficiency results in reductions in ependymal cells and cilia density, as well as severe postnatal hydrocephalus. Inhibition of Notch intracellular domain signaling with γ-secretase inhibitors reversed ependymal cells/cilia loss and dilation of lateral ventricles in Snx27-deficient mice, giving strong indication that Snx27 deletion triggers defects in ependymal layer formation and ciliogenesis through Notch hyperactivation. Together, these results suggest that SNX27 is essential for ependymal cell differentiation and ciliogenesis, and its deletion can promote hydrocephalus pathogenesis. Down's syndrome (DS) in humans and mouse models has been shown previously to confer a high risk for the development of pathological hydrocephalus. Because we have previously described SNX27 as a component that is consistently downregulated in DS, we present here a robust Snx27-deleted mouse model that produces hydrocephalus and associated ciliary defects with complete penetrance. In addition, we find that γ-secretase/Notch modulation may be a candidate drug target in SNX27-associated hydrocephalus such as that observed in DS. Based on these findings, we anticipate that future study will determine whether modulation of a SNX27/Notch/γ-secretase pathway can also be of

  19. Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits.

    Directory of Open Access Journals (Sweden)

    Shui-Wang Ying

    Full Text Available Hyperpolarization-activated, cyclic nucleotide-gated (HCN channels generate the pacemaking current, I(h, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.We investigated the effects of Kcne2 gene deletion on I(h properties and excitability in ventrobasal (VB and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+ and Kcne2(-/- mice. Kcne2 deletion shifted the voltage-dependence of I(h activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4, although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/- neurons.Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of

  20. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma rays. Part I. Experimental observations.

    Science.gov (United States)

    Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M

    2009-04-01

    Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.

  1. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome*

    Science.gov (United States)

    Libby, Andrew E.; Bales, Elise; Orlicky, David J.; McManaman, James L.

    2016-01-01

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. PMID:27679530

  2. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome.

    Science.gov (United States)

    Libby, Andrew E; Bales, Elise; Orlicky, David J; McManaman, James L

    2016-11-11

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour.

    Science.gov (United States)

    Bacon, C; Schneider, M; Le Magueresse, C; Froehlich, H; Sticht, C; Gluch, C; Monyer, H; Rappold, G A

    2015-05-01

    Neurodevelopmental disorders are multi-faceted and can lead to intellectual disability, autism spectrum disorder and language impairment. Mutations in the Forkhead box FOXP1 gene have been linked to all these disorders, suggesting that it may play a central role in various cognitive and social processes. To understand the role of Foxp1 in the context of neurodevelopment leading to alterations in cognition and behaviour, we generated mice with a brain-specific Foxp1 deletion (Nestin-Cre(Foxp1-/-)mice). The mutant mice were viable and allowed for the first time the analysis of pre- and postnatal neurodevelopmental phenotypes, which included a pronounced disruption of the developing striatum and more subtle alterations in the hippocampus. More detailed analysis in the CA1 region revealed abnormal neuronal morphogenesis that was associated with reduced excitability and an imbalance of excitatory to inhibitory input in CA1 hippocampal neurons in Nestin-Cre(Foxp1-/-) mice. Foxp1 ablation was also associated with various cognitive and social deficits, providing new insights into its behavioural importance.

  4. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Yaqing; Parsels, Joshua D; Lohse, Ines; Lawrence, Theodore S; Pasca di Magliano, Marina; Sun, Yi; Morgan, Meredith A

    2016-11-01

    Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-Kras G12D ;Fbxw7 fl/fl (KFC fl/fl ) compound mice. We found that KFC fl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFC fl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFC fl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of Kras G12D -induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2017-09-01

    Full Text Available We explored the role of the Krebs cycle enzyme fumarate hydratase (FH in glucose-stimulated insulin secretion (GSIS. Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D. The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.

  6. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  8. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  9. Brand deletion: How the decision-making approach affects deletion success

    Directory of Open Access Journals (Sweden)

    Víctor Temprano-García

    2018-04-01

    Full Text Available Literature on brand deletion (BD, a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also analyzed. The model is tested on a sample of 155 cases of BD. Results point to positive effects on BD success of both rationality and intuition, and a negative effect of politics. Findings also indicate that the negative impact of political behavior on BD success is minimized in the absence of evidence and objective information and when the BD is undertaken through a brand name change. JEL classification: L10, M31, Keywords: Brand deletion, Rational decision-making, Intuitive decision-making, Political decision-making, Brand deletion success

  10. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  11. Generalised deletion designs | Gachii | African Journal of Science ...

    African Journals Online (AJOL)

    In this paper asymmetrical single replicate factorial designs are constructed from symmetrical single replicate factorial designs using the deletion technique. The study is along the lines of Voss(1986), Chauhan(1989) and Gachii and Odhiambo(1997). We give results for the general order deletion designs of the form sn-m1(s ...

  12. 24 CFR 990.155 - Addition and deletion of units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Addition and deletion of units. 990.155 Section 990.155 Housing and Urban Development Regulations Relating to Housing and Urban...; Computation of Eligible Unit Months § 990.155 Addition and deletion of units. (a) Changes in public housing...

  13. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele.

    Science.gov (United States)

    Gashti, N G; Salehi, Z; Madani, A H; Dalivandan, S T

    2014-04-01

    Varicocele is the abnormal inflexion and distension of veins of the pampiniform plexus within spermatic cord and is one of the amendable causes of male infertility. It can increase reactive oxygen species (ROS) production in semen and cause oxidative stress. The purpose of this study was to analyse spermatozoa mtDNA 4977-bp deletion in infertile men with varicocele. To detect 4977-bp deletion in spermatozoa mtDNA, semen samples of 60 infertile patients with clinical varicocele and 90 normal men from northern Iran were prepared. After extraction of spermatozoa total DNA, Gap polymerase chain reaction (Gap PCR) was performed. 4977-bp deletion was observed in 81.66% of patients with varicocele, while approximately 15.55% of controls had this deletion. As spermatozoa from patients with varicocele had a high frequency of occurrence of 4977-bp deletion in mtDNA [OR = 24.18, 95% confidence interval (CI) = 10.15-57.57, P deletion in spermatozoa and cause infertility in north Iranian men. However, to determine the relation between sperm mtDNA 4977-bp deletion and varicocele-induced infertility, larger population-based studies are needed. It is concluded that there is an association between sperm mtDNA 4977-bp deletion and varicocele-induced infertility in the population studied. © 2013 Blackwell Verlag GmbH.

  14. 34 CFR 5.16 - Deletion of identifying details.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Deletion of identifying details. 5.16 Section 5.16 Education Office of the Secretary, Department of Education AVAILABILITY OF INFORMATION TO THE PUBLIC PURSUANT TO PUB. L. 90-23 (Eff. until 7-14-10) What Records Are Available § 5.16 Deletion of identifying...

  15. 42 CFR 401.118 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or order...

  16. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  17. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  18. 76 FR 78248 - Procurement List; Addition and Deletions

    Science.gov (United States)

    2011-12-16

    .... Service Type/Location: Laundry Service, Stratton Medical Center, 113 Holland Ave, Albany, NY. [[Page 78249...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  19. 75 FR 49481 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-08-13

    ... added to the Procurement List: Services Service Type/Locations: Laundry Service, Atlanta VA Medical...: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement... disabilities and deletes a service from the Procurement List previously furnished by such agency. DATES...

  20. 78 FR 21916 - Procurement List; Addition And Deletions

    Science.gov (United States)

    2013-04-12

    ..., the following service is added to the Procurement List: Service Service Type/Location: Laundry Service...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  1. 78 FR 53733 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-08-30

    .../Location: Industrial Laundry Service, Bureau of Engraving and Printing, 9000 Blue Mound Road, Fort Worth...: Additions to and Deletions from the Procurement List. SUMMARY: This action adds products and services to the... severe disabilities, and deletes services from the Procurement List previously provided by such agencies...

  2. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  3. Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness.

    Science.gov (United States)

    Pryce, Benjamin R; Al-Zahrani, Khalid N; Dufresne, Sébastien; Belkina, Natalya; Labrèche, Cédrik; Patino-Lopez, Genaro; Frenette, Jérôme; Shaw, Stephen; Sabourin, Luc A

    2017-02-02

    The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation.

  4. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma

    Science.gov (United States)

    Rusiniak, Michael E.; Kunnev, Dimiter; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.

    2011-01-01

    Mini-chromosome maintenance (Mcm) proteins are part of the replication licensing complex that is loaded onto chromatin during the G1-phase of the cell cycle and required for initiation of DNA replication in the subsequent S-phase. Mcm proteins are typically loaded in excess of the number of locations that are utilized during S-phase. Nonetheless, partial depletion of Mcm proteins leads to cancers and stem cell deficiencies. Mcm2 deficient mice, on a 129Sv genetic background, display a high rate of thymic lymphoblastic lymphoma. Here array comparative genomic hybridization (aCGH) is utilized to characterize the genetic damage accruing in these tumors. The predominant events are deletions averaging less than 0.5 Mb, considerably shorter than observed in prior studies using alternative mouse lymphoma models or human tumors. Such deletions facilitate identification of specific genes and pathways responsible for the tumors. Mutations in many genes that have been implicated in human lymphomas are recapitulated in this mouse model. These features, and the fact that the mutation underlying the accelerated genetic damage does not target a specific gene or pathway a priori, are valuable features of this mouse model for identification of tumor suppressor genes. Genes affected in all tumors include Pten, Tcfe2a, Mbd3 and Setd1b. Notch1 and additional genes are affected in subsets of tumors. The high frequency of relatively short deletions is consistent with elevated recombination between nearby stalled replication forks in Mcm2 deficient mice. PMID:22158038

  5. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  6. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  7. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors.

    Science.gov (United States)

    Tantra, M; Guo, L; Kim, J; Zainolabidin, N; Eulenburg, V; Augustine, G J; Chen, A I

    2018-02-15

    Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders. © 2018 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  8. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  9. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  10. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  11. Affective and cognitive effects of global deletion of alpha3-containing gamma-aminobutyric acid-A receptors.

    Science.gov (United States)

    Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive

  12. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  13. Indirect presentation in the thymus limits naive and regulatory T-cell differentiation by promoting deletion of self-reactive thymocytes.

    Science.gov (United States)

    Yap, Jin Yan; Wirasinha, Rushika C; Chan, Anna; Howard, Debbie R; Goodnow, Christopher C; Daley, Stephen R

    2018-02-07

    Acquisition of T-cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared with thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHC class II expression in bone marrow-derived antigen-presenting cells, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3 + regulatory T-cell differentiation increased. Indirect presentation increased the strength of T-cell receptor signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Hence, indirect presentation limits the differentiation of naive and regulatory T cells by promoting deletion of self-reactive thymocytes. © 2018 John Wiley & Sons Ltd.

  14. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  15. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah; Hsu, Mike S; Sidhu, Harpreet; Ethell, Iryna M; Binder, Devin K; Razak, Khaleel A

    2016-05-01

    Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits

  16. Usefulness of MLPA in the detection of SHOX deletions.

    Science.gov (United States)

    Funari, Mariana F A; Jorge, Alexander A L; Souza, Silvia C A L; Billerbeck, Ana E C; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2010-01-01

    SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3'M'34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. Conversion of Deletions during Recombination in Pneumococcal Transformation

    Science.gov (United States)

    Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365

  18. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  19. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory.

    Science.gov (United States)

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M; Brett, Ros R; Tossell, Kyoko; Ungless, Mark A; Plevin, Robin; Bushell, Trevor J

    2016-02-24

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. Copyright © 2016 Abdul Rahman et al.

  20. Hearing loss in a mouse model of 22q11.2 Deletion Syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer C Fuchs

    Full Text Available 22q11.2 Deletion Syndrome (22q11DS arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear, including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.

  1. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  2. Deletion of 2.7 kb near HOXD3 in an Arabian horse with occipitoatlantoaxial malformation.

    Science.gov (United States)

    Bordbari, M H; Penedo, M C T; Aleman, M; Valberg, S J; Mickelson, J; Finno, C J

    2017-06-01

    In the horse, the term occipitoatlantoaxial malformation (OAAM) is used to describe a developmental defect in which the first cervical vertebra (atlas) resembles the base of the skull (occiput) and the second cervical vertebra (axis) resembles the atlas. Affected individuals demonstrate an abnormal posture and varying degrees of ataxia. The homeobox (HOX) gene cluster is involved in the development of both the axial and appendicular skeleton. Hoxd3-null mice demonstrate a strikingly similar phenotype to Arabian foals with OAAM. Whole-genome sequencing was performed in an OAAM-affected horse (OAAM1) and seven unaffected Arabian horses. Visual inspection of the raw reads within the region of HOXD3 identified a 2.7-kb deletion located 4.4 kb downstream of the end of HOXD4 and 8.2 kb upstream of the start of HOXD3. A genotyping assay revealed that both parents of OAAM1 were heterozygous for the deletion. Additional genotyping identified two of 162 heterozygote Arabians, and the deletion was not present in 371 horses of other breeds. Comparative genomics studies have revealed that this region is highly conserved across species and that the entire genomic region between Hoxd4 and Hoxd3 is transcribed in mice. Two additional Arabian foals diagnosed with OAAM (OAAM 2 and 3) were genotyped and did not have the 2.7-kb deletion. Closer examination of the phenotype in these cases revealed notable variation. OAAM3 also had facial malformations and a patent ductus arteriosus, and the actual malformation at the craniocervical junction differed. Genetic heterogeneity may exist across the HOXD locus in Arabian foals with OAAM. © 2017 Stichting International Foundation for Animal Genetics.

  3. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  4. Brand deletion: How the decision-making approach affects deletion success

    OpenAIRE

    Víctor Temprano-García; Ana Isabel Rodríguez-Escudero; Javier Rodríguez-Pinto

    2018-01-01

    Literature on brand deletion (BD), a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also...

  5. 22q11.2 deletion syndrome

    Science.gov (United States)

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  6. Age-dependent impact of CaV3.2 T-type calcium channel deletion on myogenic tone and flow-mediated vasodilatation in small arteries

    DEFF Research Database (Denmark)

    Mikkelsen, Miriam F.; Björling, Karl; Jensen, Lars Jørn

    2016-01-01

    , structural remodeling, and mRNA + protein expression in small mesenteric arteries from CaV3.2 knock-out vs. wild-type mice at young vs. mature adult age. In young mice, only, deletion of CaV3.2 led to enhanced myogenic response and ∼50 % reduction of flow-mediated vasodilatation. Ni(2+) had both CaV3...

  7. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene.

    Science.gov (United States)

    Chao, B N; Baldwin, W H; Healey, J F; Parker, E T; Shafer-Weaver, K; Cox, C; Jiang, P; Kanellopoulou, C; Lollar, P; Meeks, S L; Lenardo, M J

    2016-02-01

    ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a

  8. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Additions and deletions to the known cerambycidae (Coleoptera) of Bolivia

    Science.gov (United States)

    An additional 137 species and two tribes are added to the known cerambycid fauna of Bolivia while 12 species are deleted. Comments and statistics regarding the growth of knowledge on the Bolivian Cerambycid fauna and species endemicity are included....

  10. 78 FR 75911 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-12-13

    ... persons who are blind or have other severe disabilities and to delete products and a service previously...: General Services Administration, New York, NY NSN: 8955-01-E61-3689--Coffee, Roasted, Ground, 39 oz. bag...

  11. 76 FR 37069 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-06-24

    ... Certification The following products and service are proposed for addition to Procurement List for production by... following product is proposed for deletion from the Procurement List: Product Detergent, Laundry NSN: 7930...

  12. Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward.

    Science.gov (United States)

    Sanders, Amy Cecilia; Hussain, Ali J; Hen, René; Zhuang, Xiaoxi

    2007-11-01

    The therapeutic effects of chronic selective serotonin reuptake inhibitors (SSRIs) are well documented, yet the elementary behavioral processes that are affected by such treatment have not been fully investigated. We report here the effects of chronic fluoxetine treatment and genetic deletion of the serotonin transporter (SERT) on food reinforced behavior in three paradigms: the progressive ratio operant task, the concurrent choice operant task, and the Pavlovian-to-Instrumental transfer task. We consistently find that chronic pharmacological blockade or genetic deletion of SERT result in similar behavioral consequences: reduced operant responding for natural reward. This is in line with previous studies reporting declines in operant responding for drugs and intracranial self-stimulation with fluoxetine treatment, suggesting that the effect of SERT blockade can be generalized to different reward types. Detailed analyses of behavioral parameters indicate that this reduction in operant responding affect both goal-directed and non-goal-directed behaviors without affecting the Pavlovian cue-triggered excessive operant responding. In addition, both pharmacological and genetic manipulations reduce locomotor activity in the open field novel environment. Our data contrast with the effect of dopamine in increasing operant responding for natural reward specifically in goal-directed behaviors and in increasing Pavlovian cue-triggered excessive operant responding. Serotonin and dopamine have been proposed to serve opposing functions in motivational processes. Our data suggest that their interactions do not result in simple opponency. The fact that pharmacological blockade and genetic deletion of SERT have similar behavioral consequences reinforces the utility of the SERT null mice for investigation of the mechanisms underlying chronic SSRIs treatment.

  13. Deletion of Nhlh2 results in a defective torpor response and reduced Beta adrenergic receptor expression in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Umesh D Wankhade

    2010-08-01

    Full Text Available Mice with a targeted deletion of the basic helix-loop-helix transcription factor, Nescient Helix-Loop-Helix 2 (Nhlh2, display adult-onset obesity with significant increases in their fat depots, abnormal responses to cold exposure, and reduced spontaneous physical activity levels. These phenotypes, accompanied by the hypothalamic expression of Nhlh2, make the Nhlh2 knockout (N2KO mouse a useful model to study the role of central nervous system (CNS control on peripheral tissue such as adipose tissue.Differences in body temperature and serum analysis of leptin were performed in fasted and ad lib fed wild-type (WT and N2KO mice. Histological analysis of white (WAT and brown adipose tissue (BAT was performed. Gene and protein level expression of inflammatory and metabolic markers were compared between the two genotypes.We report significant differences in serum leptin levels and body temperature in N2KO mice compared with WT mice exposed to a 24-hour fast, suggestive of a defect in both white (WAT and brown adipose tissue (BAT function. As compared to WT mice, N2KO mice showed increased serum IL-6 protein and WAT IL-6 mRNA levels. This was accompanied by slight elevations of mRNA for several macrophage markers, including expression of macrophage specific protein F4/80 in adipose, suggestive of macrophage infiltration of WAT in the mutant animals. The mRNAs for beta3-adrenergic receptors (beta3-AR, beta2-AR and uncoupling proteins were significantly reduced in WAT and BAT from N2KO mice compared with WT mice.These studies implicate Nhlh2 in the central control of WAT and BAT function, with lack of Nhlh2 leading to adipose inflammation and altered gene expression, impaired leptin response to fasting, all suggestive of a deficient torpor response in mutant animals.

  14. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  15. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  16. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  17. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  18. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury.

    Science.gov (United States)

    Gyoneva, Stefka; Kim, Daniel; Katsumoto, Atsuko; Kokiko-Cochran, O Nicole; Lamb, Bruce T; Ransohoff, Richard M

    2015-12-03

    Millions of people experience traumatic brain injury (TBI) as a result of falls, car accidents, sports injury, and blast. TBI has been associated with the development of neurodegenerative conditions such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). In the initial hours and days, the pathology of TBI comprises neuronal injury, breakdown of the blood-brain barrier, and inflammation. At the cellular level, the inflammatory reaction consists of responses by brain-resident microglia, astrocytes, and vascular elements as well as infiltration of peripheral cells. After TBI, signaling by chemokine (C-C motif) ligand 2 (CCL2) to the chemokine (C-C motif) receptor 2 (CCR2) is a key regulator of brain infiltration by monocytes. We utilized mice with one or both copies of Ccr2 disrupted by red fluorescent protein (RFP, Ccr2 (RFP/+) and Ccr2 (RFP/RFP) ). We subjected these mice to the mild lateral fluid percussion model of TBI and examined several pathological outcomes 3 days later in order to determine the effects of altered monocyte entry into the brain. Ccr2 deletion reduced monocyte infiltration, diminished lesion cavity volume, and lessened axonal damage after mild TBI, but the microglial reaction to the lesion was not affected. We further examined phosphorylation of the microtubule-associated protein tau, which aggregates in brains of people with TBI, AD, and CTE. Surprisingly, Ccr2 deletion was associated with increased tau mislocalization to the cell body in the cortex and hippocampus by tissue staining and increased levels of phosphorylated tau in the hippocampus by Western blot. Disruption of CCR2 enhanced tau pathology and reduced cavity volume in the context of TBI. The data reveal a complex role for CCR2(+) monocytes in TBI, as monitored by cavity volume, axonal damage, and tau phosphorylation.

  19. Sequence analysis of LACI mutations obtained from lung cells of control and radon-exposed Big Blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Jostes, R.F.; Cross, F.T.; Stillwell, L.

    1995-01-01

    We have exposed Stratagene Big Blue trademark transgenic mice by inhalation to 310, 640 and 960 Working Level Months (WLM) of radon progency. Twelve LacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM group and the LacI gene sequenced. Mutations are scored only if they occur unambiguously in both strands of the mutant gene; the entire gene is evaluated. In addition, sixteen LacI mutations were isolated from the lung tissue of a mouse from the 640-WLM group; seven have been completely sequenced. Nine LacI mutations from the lung tissue of unirradiated control mice have been sequenced. Sequence data from the unirradiated mice are similar to that found in lung tissue at Stratagene; predominately G:C to A:T transitions in the protein associated region. The mutation spectrum from radon-irradiated mice is markedly different from that obtained with the control, unirradiated mice. Small deletions and insertions compromise 53% of the mutations in the irradiated mice. No multiple events have been noted in the spontaneous mutations; six of the mutations obtained from radon-irradiated mice (26%) have multiple events within the gene. In some, deletions, insertions are base changes occur together. The mutational events in the irradiated mice are approximately equally distributed throughout the gene. The breakpoint rejoining regions of large deletions obtained from the radon-irradiated mice are being studied at the University of California, San Francisco

  20. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.

    Science.gov (United States)

    Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene

    2010-02-01

    The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.

  1. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  2. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Directory of Open Access Journals (Sweden)

    Kendall R Walker

    Full Text Available Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3 is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1, which is required for production of the Alzheimer's disease (AD-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC. Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  3. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Science.gov (United States)

    Walker, Kendall R; Modgil, Amit; Albrecht, David; Lomoio, Selene; Haydon, Philip G; Moss, Stephen J; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer's disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  4. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    Science.gov (United States)

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  5. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice

    Science.gov (United States)

    2014-01-01

    Introduction Previous observations implicate Indian hedgehog (Ihh) signaling in osteoarthritis (OA) development because it regulates chondrocyte hypertrophy and matrix metallopeptidase 13 (MMP-13) expression. However, there is no direct genetic evidence for the role of Ihh in OA, because mice with cartilage or other tissue-specific deletion of the Ihh gene die shortly after birth. We evaluated the role of Ihh in vivo via a Cre-loxP-mediated approach to circumvent the early death caused by Ihh deficiency. Methods To evaluate the role of Ihh in OA development, Ihh was specifically deleted in murine cartilage using an Ihh conditional deletion construct (Col2a1-CreERT2; Ihhfl/fl). The extent of cartilage degradation and OA progression after Ihh deletion was assessed by histological analysis, immunohistochemistry, real-time PCR and in vivo fluorescence molecular tomography (FMT) 2 months after OA was induced by partial medial meniscectomy. The effect of Ihh signaling on cartilage was compared between Ihh-deleted mice and their control littermates. Results Only mild OA changes were observed in Ihh-deleted mice, while control mice displayed significantly more cartilage damage. Typical OA markers such as type X collagen and MMP-13 were decreased in Ihh-deleted mice. In vivo FMT demonstrated decreased cathepsins and MMP activity in knee joints of animals with deletion of Ihh. Conclusions These findings support the protective role of Ihh deletion in surgically induced OA. Thus, our findings suggest the potential to develop new therapeutic strategies that can prevent and treat OA by inhibiting Ihh signaling in chondrocytes. PMID:24428864

  6. Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

    Science.gov (United States)

    Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.

    2012-01-01

    Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by

  7. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption.Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and

  8. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    Science.gov (United States)

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  9. 41 CFR 51-2.3 - Notice of proposed addition or deletion.

    Science.gov (United States)

    2010-07-01

    ... addition or deletion. 51-2.3 Section 51-2.3 Public Contracts and Property Management Other Provisions... or deletion. At least 30 days prior to the Committee's consideration of the addition or deletion of a... Register announcing the proposed addition or deletion and providing interested persons an opportunity to...

  10. 10 CFR 9.19 - Segregation of exempt information and deletion of identifying details.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Segregation of exempt information and deletion of... Information Act Regulations § 9.19 Segregation of exempt information and deletion of identifying details. (a... deletions are made from parts of the record by computer, the amount of information deleted will be indicated...

  11. Niacin and biosynthesis of PGD₂ by platelet COX-1 in mice and humans

    DEFF Research Database (Denmark)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela

    2012-01-01

    during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis....... Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased...... thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular...

  12. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  13. Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies

    DEFF Research Database (Denmark)

    Christensen, Henriette L; Nguyen, An T; Pedersen, Fredrik D

    2013-01-01

    The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells....... Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular p...

  14. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus

    DEFF Research Database (Denmark)

    Kalis, Martins; Bolmeson, Caroline; Esguerra, Jonathan L.S.

    2011-01-01

    -cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre(+/-) Dicer1(¿/wt)), RIP-Cre(+/-)Dicer1(flox/flox) mice (RIP-Cre Dicer1(¿/¿)) developed progressive hyperglycaemia and full...... revealed altered islet morphology, marked decreased ß-cell mass, reduced numbers of granules within the ß-cells and reduced granule docking in adult RIP-Cre Dicer1(¿/¿) mice. ß-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal ß-cell development as 2-week old RIP-Cre Dicer1...

  15. Cloning Mice.

    Science.gov (United States)

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  16. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amino-acid composition after loop deletion drives domain swapping.

    Science.gov (United States)

    Nandwani, Neha; Surana, Parag; Udgaonkar, Jayant B; Das, Ranabir; Gosavi, Shachi

    2017-10-01

    Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping. © 2017 The Protein Society.

  18. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  19. Molecular studies of deletions at the human steroid sulfatase locus

    International Nuclear Information System (INIS)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T.

    1989-01-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS - individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome

  20. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  1. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  2. Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease

    Directory of Open Access Journals (Sweden)

    Cristen Chafin

    2010-10-01

    Full Text Available Cristen Chafin2, Sarah Muse2, Raquel Hontecillas5, Josep Bassaganya-Riera5, David L Caudell2, Samuel K Shimp III4, M Nichole Rylander4, John Zhang6, Liwu Li3, Christopher M Reilly1,21Virginia College of Osteopathic Medicine, 2Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 3Department of Biological Sciences, 4Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 5Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 6Medical University of SC, Charleston, SC, USAAbstract: Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR-γ has been shown to be immunoregulatory in autoimmune diseases by inhibiting production of a number of inflammatory mediators. We investigated whether PPAR-γ gene deletion in hematopoietic cells would alter disease pathogenesis in the antiglomerular basement membrane (anti-GBM mouse model. PPAR-γ+/+ and PPAR-γ-/- mice were immunized with rabbit antimouse GBM antibodies and lipopolysaccharide and evaluated for two weeks. Although both the PPAR-γ+/+ and PPAR-γ-/- mice had IgG deposition in the glomerulus and showed proteinuria two weeks after injection, glomerular and tubulointerstitial disease in PPAR-γ-/- mice were significantly more severe compared with the PPAR-γ+/+ animals. We observed that the PPAR-γ-/- mice had decreased CD4+CD25+ regulatory T cells and an increased CD8+:CD4+ ratio as compared with the PPAR-γ+/+ mice, suggesting that PPAR-γ has a role in the regulation of T cells. Furthermore, plasma interleukin-6 levels were significantly increased in the PPAR-γ-/- mice at two weeks as compared with the PPAR-γ+/+ animals. Taken together, these studies show that

  3. Astrocytic beta 2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    NARCIS (Netherlands)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnes; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the beta

  4. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  5. Deletion of protease-activated receptor 2 prolongs survival of scrapie-inoculated mice

    Czech Academy of Sciences Publication Activity Database

    Matěj, R.; Olejár, Tomáš; Janoušková, O.; Holada, K.

    2012-01-01

    Roč. 93, č. 9 (2012), s. 2057-2061 ISSN 0022-1317 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * scrapie * neurodegenerative disorders Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.127, year: 2012

  6. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  7. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  8. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  9. Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation

    Science.gov (United States)

    Davis, Reema B.; Kechele, Daniel O.; Blakeney, Elizabeth S.; Pawlak, John B.

    2017-01-01

    Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor–like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation. PMID:28352669

  10. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Science.gov (United States)

    Ge, Xianpeng; Ritter, Susan Y; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM) surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  11. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  12. A Rare Syndrome of Deletion in 2 Siblings

    Directory of Open Access Journals (Sweden)

    Aravindhan Veerapandiyan MBBS

    2017-08-01

    Full Text Available The Glutamate receptor, ionotropic, delta 2 gene codes for an ionotropic glutamate delta-2 receptor, which is selectively expressed in cerebellar Purkinje cells, and facilitates cerebellar synapse organization and transmission. The phenotype associated with the deletion of Glutamate receptor, ionotropic, delta 2 gene in humans was initially defined in 2013. In this case report, the authors describe 2 brothers who presented with developmental delay, tonic upward gaze, nystagmus, oculomotor apraxia, hypotonia, hyperreflexia, and ataxia. They were found to have a homozygous intragenic deletion within the Glutamate receptor, ionotropic, delta 2 gene at exon 2. Our patients serve as an addition to the literature of previously reported children with this rare clinical syndrome associated with Glutamate receptor, ionotropic, delta 2 deletion.

  13. A local-world node deleting evolving network model

    International Nuclear Information System (INIS)

    Gu Yuying; Sun Jitao

    2008-01-01

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p a decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k max . Hence, the expanding local-world can compensate the infection of the node deleting

  14. A local-world node deleting evolving network model

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yuying [Department of Mathematics, Tongji University, Shanghai 200092 (China); Sun Jitao [Department of Mathematics, Tongji University, Shanghai 200092 (China)], E-mail: sunjt@sh163.net

    2008-06-16

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p{sub a} decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k{sub max}. Hence, the expanding local-world can compensate the infection of the node deleting.

  15. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  16. The diagnosis and molecular analysis of a novel 21.9kb deletion (Qinzhou type deletion) causing α+ thalassemia.

    Science.gov (United States)

    Long, Ju; Yan, Shanhuo; Lao, Kegan; Pang, Wanrong; Ye, Xuehe; Sun, Lei

    2014-04-01

    α-Thalassemia is a common single-gene genetic disease that can cause Hb Bart's hydrops fetalis and Hb H disease in tropical and subtropical regions. When examining conventional thalassemia genes, an only detected --(SEA) genotype sample needs further analysis. In doing so, we found a novel 21.9kb deletion (Qinzhou type deletion). The deletion position of the novel 21.9kb deletion is from 14373bp to 36299bp of the α-globin gene cluster (NG_000006.1); thus, there exists a 21927bp sequence deletion, into which a 29bp sequence is added. After sequence analysis, a group of Gap-PCR primers were synthesized to diagnose this novel thalassemia genotype. Through pedigree analysis, we deduced that the propositus obtained the novel alleles from her mother. The genotype of this propositus is --(SEA)/-α(21.9) and its phenotype conforms to the characteristics of Hb H disease, establishing that the combination between -α(21.9) genotype and α(0) genotype can lead to Hb H disease. By molecular analysis, we established that this case fits the characteristic of an α(+) thalassemia genotype. © 2013.

  17. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    Science.gov (United States)

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  18. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling.

    Science.gov (United States)

    Zhang, Yue; Pop, Ioana L; Carlson, Noel G; Kishore, Bellamkonda K

    2012-01-01

    Lithium (Li)-induced polyuria is due to resistance of the medullary collecting duct (mCD) to the action of arginine vasopressin (AVP), apparently mediated by increased production of PGE(2). We previously reported that the P2Y(2) receptor (P2Y(2)-R) antagonizes the action of AVP on the mCD and may play a role in Li-induced polyuria by enhancing the production of PGE(2) in mCD. Hence, we hypothesized that genetic deletion of P2Y(2)-R should ameliorate Li-induced polyuria. Wild-type (WT) or P2Y(2)-R knockout (KO) mice were fed normal or Li-added diets for 14 days and euthanized. Li-induced polyuria, and decreases in urine osmolality and AQP2 protein abundance in the renal medulla, were significantly less compared with WT mice despite the lack of differences in Li intake or terminal serum or inner medullary tissue Li levels. Li-induced increased urinary excretion of PGE(2) was not affected in KO mice. However, prostanoid EP(3) receptor (EP3-R) protein abundance in the renal medulla of KO mice was markedly lower vs. WT mice, irrespective of the dietary regimen. The protein abundances of other EP-Rs were not altered across the groups irrespective of the dietary regimen. Ex vivo stimulation of mCD with PGE(2) generated significantly more cAMP in Li-fed KO mice (130%) vs. Li-fed WT mice (100%). Taken together, these data suggest 1) genetic deletion of P2Y(2)-R offers significant resistance to the development of Li-induced polyuria; and 2) this resistance is apparently due to altered PGE(2) signaling mediated by a marked decrease in EP3-R protein abundance in the medulla, thus attenuating the EP3-mediated decrease in cAMP levels in mCD.

  19. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis

    Science.gov (United States)

    Guo, Hong; Cooper, Stacy; Friedman, Alan D.

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression, with enhancer deletion leading to impaired myelopoiesis and potentially preleukemic progenitor expansion. PMID:26937964

  20. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  1. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    DEFF Research Database (Denmark)

    Waeckel, L.; Badier-Commander, C.; Damery, T.

    2015-01-01

    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing...

  2. Pseudotumor of the pituitary due to PROP-1 deletion.

    Science.gov (United States)

    Teinturier, C; Vallette, S; Adamsbaum, C; Bendaoud, M; Brue, T; Bougnères, P F

    2002-01-01

    Hypopituitarism associated with pituitary mass in childhood is most frequently the consequence of craniopharyngioma or Rathke's cleft cyst. We report a patient with an intrasellar pseudotumor associated with hypopituitarism, which led us to a misdiagnosis of intrasellar craniopharyngioma. After spontaneous involution of the mass, diagnosis was revised. DNA analysis showed a deletion in the Prophet of Pit-1 (PROP-1) gene, a pituitary transcription factor. It is important to recognize that a PROP-1 deletion can cause pituitary pseudotumor that can be mistaken for a craniopharyngioma or Rathke's pouch cyst.

  3. Skin mites in mice (Mus musculus): high prevalence of Myobia sp. (Acari, Arachnida) in Robertsonian mice.

    Science.gov (United States)

    Sastre, Natalia; Calvete, Oriol; Martínez-Vargas, Jessica; Medarde, Nuria; Casellas, Joaquim; Altet, Laura; Sánchez, Armand; Francino, Olga; Ventura, Jacint

    2018-05-04

    Myobia sp. and Demodex sp. are two skin mites that infest mice, particularly immunodeficient or transgenic lab mice. In the present study, wild house mice from five localities from the Barcelona Roberstonian system were analysed in order to detect skin mites and compare their prevalence between standard (2n = 40) and Robertsonian mice (2n > 40). We found and identified skin mites through real-time qPCR by comparing sequences from the mitochondrial 16S rRNA and the nuclear 18S rRNA genes since no sequences are available so far using the mitochondrial gene. Fourteen positive samples were identified as Myobia musculi except for a deletion of 296 bp out to 465 bp sequenced, and one sample was identified as Demodex canis. Sampling one body site, the mite prevalence in standard and Robertsonian mice was 0 and 26%, respectively. The malfunction of the immune system elicits an overgrowth of skin mites and consequently leads to diseases such as canine demodicosis in dogs or rosacea in humans. In immunosuppressed mice, the probability of developing demodicosis is higher than in healthy mice. Since six murine toll-like receptors (TLRs) are located in four chromosomes affected by Robertsonian fusions, we cannot dismiss that differences in mite prevalence could be the consequence of the interruption of TLR function. Although ecological and/or morphological factors cannot be disregarded to explain differences in mite prevalence, the detection of translocation breakpoints in TLR genes or the analysis of TLR gene expression are needed to elucidate how Robertsonian fusions affect the immune system in mice.

  4. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  5. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  6. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  7. Genetics Home Reference: 22q13.3 deletion syndrome

    Science.gov (United States)

    ... 5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related Information How are genetic ... Veltman JA, de Vries BB. Molecular characterisation of patients with subtelomeric 22q ... L, Enns GM, Hoyme HE. Terminal 22q deletion syndrome: a newly recognized cause of ...

  8. 78 FR 21348 - Procurement List; Additions and Deletions; Recissions

    Science.gov (United States)

    2013-04-10

    ... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions; Recissions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Rescission of Previous Procurement List Decision. SUMMARY: The Committee for Purchase...

  9. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... on PubMed or Free article on PubMed Central Casas KA, Mononen TK, Mikail CN, Hassed SJ, Li S, ... 2005 Aug 18. Citation on PubMed Falk RE, Casas KA. Chromosome 2q37 deletion: clinical and molecular aspects. ...

  10. The detection of large deletions or duplications in genomic DNA.

    Science.gov (United States)

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  11. 78 FR 24733 - Procurement List, Additions and Deletions

    Science.gov (United States)

    2013-04-26

    ... Purchase From People Who Are Blind or Severely Disabled published notices of proposed additions to the... Services Administration. Portable Desktop Clipboard, 9\\1/2\\ W x 1\\1/2\\ D x 13\\1/2\\ H NSN: 7510-00-NIB-2133... for Purchase From People Who Are Blind or Severely Disabled published notices of proposed deletions...

  12. 76 FR 35415 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2011-06-17

    ... Command, Natick, MA. SERVICE: Service Type/Location: Laundry Services, Department of Veterans Affairs... proposing to add products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes products and a service...

  13. 76 FR 14942 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2011-03-18

    ... DFAC. Service Type/Location: Laundry & Dry Cleaning Service, F.E. Warren, AFB, WY. NPA: Goodwill... Service Type/Location: Laundry Service, Atlanta VA Medical Center, Decatur, GA. NPA: GINFL Services, Inc...: Additions to and deletions from the Procurement List. SUMMARY: This action adds services to the Procurement...

  14. 75 FR 41449 - Procurement List Additions and Deletion

    Science.gov (United States)

    2010-07-16

    ... Customs and Border Protection, Office of Procurement, Washington, DC Service Type/Locations: Laundry.../Locations: Laundry Service, Naval Hospital System, 2800 Child Street, Jacksonville, FL NPA: GINFL Services...: Additions to and deletion from the Procurement List. SUMMARY: This action adds products and services to the...

  15. 77 FR 31335 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2012-05-25

    .... Services Service Type/Location: Laundry and Dry Cleaning Service, Buckley Air Force Base Lodging & Medical... products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes a service previously provided by such...

  16. 76 FR 62391 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2011-10-07

    ... Investigation, Washington, DC Service Type/Location: Laundry Service, Stratton Medical Center, 113 Holland Ave... persons who are blind or have other severe disabilities, and deletes services previously furnished by such... entities to furnish the services to the Government. 3. There are no known regulatory alternatives which...

  17. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  18. 78 FR 17641 - Procurement List; Proposed Addition and Deletion

    Science.gov (United States)

    2013-03-22

    ... People Who Are Blind or Severely Disabled, 1401 S. Clarke Street, Suite 10800, Arlington, Virginia 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION...

  19. 78 FR 45183 - Procurement List; Proposed Addition and Deletions

    Science.gov (United States)

    2013-07-26

    ... People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia, 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled...

  20. 78 FR 68823 - Procurement List Proposed Additions and Deletions

    Science.gov (United States)

    2013-11-15

    ... for Purchase From People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled...

  1. 78 FR 32631 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-05-31

    ... People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY: Committee for Purchase from People Who are Blind or Severely Disabled...

  2. 78 FR 43180 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-07-19

    ... for Purchase From People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY: Committee for Purchase from People Who Are Blind or Severely Disabled...

  3. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  4. The insertion/deletion polymorphism of angiotensin-converting ...

    African Journals Online (AJOL)

    The association between type 2 diabetes mellitus (T2DM) and essential hypertension (EH) is not well understood. Both conditions result from an interaction of multiple genetic (ethnic) and environmental (geographical) factors. One possible genetic determinant is the angiotensin-converting enzyme (ACE) insertion/deletion ...

  5. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  6. Remarks on Causative Verbs and Object Deletion in English

    Science.gov (United States)

    Onozuka, Hiromi

    2007-01-01

    Rappaport Hovav and Levin [Rappaport Hovav, M., Levin, B., 1998. "Building verb meanings." In: Butt, M., Geuder, W. (Eds.), "The Projection of Arguments: Lexical and Compositional Factors." CSLI Publications, Stanford, pp. 97-134] contend that result verbs disallow object deletion because of their lexical semantic properties. Their point is that…

  7. [An updated review of 1p36 deletion (monosomy) syndrome].

    Science.gov (United States)

    Bello, Sabina; Rodríguez-Moreno, Antonio

    The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level. Approximately 100 cases have been documented since 1981. This rare disease is the most common subtelomeric-micro-deletion syndrome. In situ hybridization with fluorescence (FISH) and array-comparative genomic hybridization (CGH-array) are at present the two best diagnostic techniques. There is currently no effective medical treatment for this disease. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. 78 FR 73503 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-12-06

    ... by the General Services Administration. NSN: MR 376--Resealable Bags, Holiday, 6.5'' x 5.875''. NSN..., Holiday, 24PC. NPA: Winston-Salem Industries for the Blind, Inc., Winston-Salem, NC. Contracting Activity... disabilities, and deletes a product and services from the Procurement List previously furnished by such...

  9. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... 18q deletion syndrome chromosome 18q monosomy chromosome 18q- syndrome De Grouchy syndrome del(18q) syndrome monosomy 18q Related Information How ... MS, Tienari PJ, Wirtavuori KO, Valanne LK. 18q-syndrome: brain MRI shows poor differentiation of gray and white matter on ... RL, Hale DE, Rose SR, Leach RJ, Cody JD. The spectrum ...

  10. Construction of a psb C deletion strain in Synechocystis 6803.

    Science.gov (United States)

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  11. 77 FR 60969 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2012-10-05

    ...., Wichita, KS. Contracting Activity: Defense Logistics Agency Troop Support, Philadelphia, PA. Coverage: C-List for 100% of the requirement of the Department of Defense, as aggregated by the Defense Logistics...., Portsmouth, VA. Contracting Activity: Dept. of the Army, W071 Endist Kansas City, Kansas City, MO. Deletions...

  12. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  13. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    Science.gov (United States)

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  14. Deletion affecting band 7q36 not associated with holoprosencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  15. Rare copy number deletions predict individual variation in intelligence.

    Directory of Open Access Journals (Sweden)

    Ronald A Yeo

    2011-01-01

    Full Text Available Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in "mutation load" emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent copy number variations (CNVs, and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77 had been administered the Wechsler Abbreviated Scale of Intelligence (WASI. After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = -.30, p = .01. As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES, we also examined the impact of ethnicity (Anglo/White vs. Other, as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed.

  16. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Science.gov (United States)

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  17. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity.

    Directory of Open Access Journals (Sweden)

    Konstantin V Salojin

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.

  18. Deletion of psychiatric risk gene Cacna1c impairs hippocampal neurogenesis in cell-autonomous fashion.

    Science.gov (United States)

    Völkening, Bianca; Schönig, Kai; Kronenberg, Golo; Bartsch, Dusan; Weber, Tillmann

    2017-05-01

    Ca 2+ is a universal signal transducer which fulfills essential functions in cell development and differentiation. CACNA1C, the gene encoding the alpha-1C subunit (i.e., Ca v 1.2) of the voltage-dependent l-type calcium channel (LTCC), has been implicated as a risk gene in a variety of neuropsychiatric disorders. To parse the role of Ca v 1.2 channels located on astrocyte-like stem cells and their descendants in the development of new granule neurons, we created Tg GLAST-CreERT2 /Cacna1c fl/fl /RCE:loxP mice, a transgenic tool that allows cell-type-specific inducible deletion of Cacna1c. The EGFP reporter was used to trace the progeny of recombined type-1 cells. FACS-sorted Cacna1c-deficient neural precursor cells from the dentate gyrus showed reduced proliferative activity in neurosphere cultures. Moreover, under differentiation conditions, Cacna1c-deficient NPCs gave rise to fewer neurons and more astroglia. Similarly, under basal conditions in vivo, Cacna1c gene deletion in type-1 cells decreased type-1 cell proliferation and reduced the neuronal fate-choice decision of newly born cells, resulting in reduced net hippocampal neurogenesis. Unexpectedly, electroconvulsive seizures completely compensated for the proliferation deficit of Cacna1c deficient type-1 cells, indicating that there must be Ca v 1.2-independent mechanisms of controlling proliferation related to excitation. In the aggregate, this is the first report demonstrating the presence of functional L-type 1.2 channels on type-1 cells. Ca v 1.2 channels promote type-1 cell proliferation and push the glia-to-neuron ratio in the direction of a neuronal fate choice and subsequent neuronal differentiation. Ca v 1.2 channels expressed on NPCs and their progeny possess the ability to shape neurogenesis in a cell-autonomous fashion. © 2017 Wiley Periodicals, Inc.

  19. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer

    Science.gov (United States)

    Velázquez, Kandy T.; Enos, Reilly T.; McClellan, Jamie L.; Cranford, Taryn L.; Chatzistamou, Ioulia; Singh, Udai P.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Fan, Daping

    2016-01-01

    Clinical studies have linked microRNA-155 (miR-155) expression in the tumor microenvironment to poor prognosis. However, whether miR-155 upregulation is predictive of a pro- or antitumorigenic response is unclear, as the limited preclinical data available remain controversial. We examined miR-155 expression in tumor tissue from colon cancer patients. Furthermore, we investigated the role of this microRNA in proliferation and apoptosis, inflammatory processes, immune cell populations, and transforming growth factor-β/SMAD signaling in a chemically induced (azoxymethane-dextran sulfate sodium) mouse model of colitis-associated colon cancer. We found a higher expression of miR-155 in the tumor region than in nontumor colon tissue of patients with colon cancer. Deletion of miR-155 in mice resulted in a greater number of polyps/adenomas, an increased symptom severity score, a higher grade of epithelial dysplasia, and a decrease in survival. Surprisingly, these findings were associated with an increase in apoptosis in the normal mucosa, but there was no change in proliferation. The protumorigenic effects of miR-155 deletion do not appear to be driven solely by dysregulation of inflammation, as both genotypes had relatively similar levels of inflammatory mediators. The enhanced tumorigenic response in miR-155−/− mice was associated with alterations in macrophages and neutrophils, as markers for these populations were decreased and increased, respectively. Furthermore, we demonstrated a greater activation of the transforming growth factor-β/SMAD pathway in miR-155−/− mice, which was correlated with the increased tumorigenesis. Given the multiple targets of miR-155, careful evaluation of its role in tumorigenesis is necessary prior to any consideration of its potential as a biomarker and/or therapeutic target in colon cancer. PMID:26744471

  20. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  1. Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model

    Science.gov (United States)

    Poitras, Jennifer L.; Heiser, Diane; Li, Li; Nguyen, Bao; Nagai, Kozo; Duffield, Amy S.; Gamper, Christopher; Small, Donald

    2016-01-01

    Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts. PMID:27636998

  2. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  3. Loss of ATM kinase activity leads to embryonic lethality in mice

    DEFF Research Database (Denmark)

    Daniel, J.A.; Pellegrini, M.; Filsuf, D.

    2012-01-01

    whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice......, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate...

  4. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  5. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  6. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hannah Mary Grayton

    Full Text Available BACKGROUND: Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α knockout (KO mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS: We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex. RESULTS: In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS: These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.

  7. Altered Social Behaviours in Neurexin 1α Knockout Mice Resemble Core Symptoms in Neurodevelopmental Disorders

    Science.gov (United States)

    Grayton, Hannah Mary; Missler, Markus

    2013-01-01

    Background Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. Methods We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9–16 per genotype, per sex). Results In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. Conclusions These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder. PMID:23840597

  8. Differentiated psychopharmacological treatment in three genetic subtypes of 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Leeuw, N. de

    2017-01-01

    Introduction: The 22q11.2 deletion syndrome (22q11DS), mostly caused by the common deletion including the TBX- and COMT-genes (LCR22A-D), is highly associated with somatic anomalies. The distal deletion (distal of LCR22D) comprises the MAPK1-gene and is associated with specific heart defects. The

  9. 41 CFR 51-6.8 - Deletion of items from the Procurement List.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Deletion of items from...-PROCUREMENT PROCEDURES § 51-6.8 Deletion of items from the Procurement List. (a) When a central nonprofit... shall notify the Committee staff immediately. Before reaching a decision to request a deletion of an...

  10. 36 CFR 902.14 - Deletion of nondiscloseable information from requested records.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of nondiscloseable... AVENUE DEVELOPMENT CORPORATION FREEDOM OF INFORMATION ACT General Administration § 902.14 Deletion of... segregable after deletion of the nondiscloseable portions, will be released. If the information in the...

  11. 46 CFR 67.513 - Application for evidence of deletion from documentation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Application for evidence of deletion from documentation... AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Fees § 67.513 Application for evidence of deletion from documentation. An application fee is charged for evidence of deletion from documentation in...

  12. 14 CFR 1206.202 - Deletion of segregable portions of a record.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Deletion of segregable portions of a record... AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Records Available § 1206.202 Deletion of segregable... that indication would harm an interest protected by the exemption in Subpart 3 under which the deletion...

  13. 32 CFR 310.34 - Amendment and deletion of system notices.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Amendment and deletion of system notices. 310.34... (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Publication Requirements § 310.34 Amendment and deletion of... system. (see § 310.32(q)). (c) Deletion of system notices. (1) Whenever a system is discontinued...

  14. 19 CFR 176.22 - Deletion of protest or entry number.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Deletion of protest or entry number. 176.22... Facts § 176.22 Deletion of protest or entry number. If any protest number or entry number is to be... authorized official making and approving the deletion. [T.D. 70-181, 35 FR 13433, Aug. 22, 1970] ...

  15. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Deletion or repositioning of broadcast signals... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion or... to § 76.1601: No deletion or repositioning of a local commercial television station shall occur...

  16. Partial USH2A deletions contribute to Usher syndrome in Denmark

    DEFF Research Database (Denmark)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Kann, Erik

    2015-01-01

    deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.European Journal of Human Genetics advance online publication, 25 March 2015; doi:10.1038...

  17. 31 CFR 363.144 - May I delete a pending transaction involving a certificate of indebtedness?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May I delete a pending transaction... I delete a pending transaction involving a certificate of indebtedness? (a) You may delete a pending... a pending purchase of a security using a certificate of indebtedness as payment. (c) You may not...

  18. Detection of three-base deletion by exciplex formation with perylene derivatives.

    Science.gov (United States)

    Kashida, Hiromu; Kondo, Nobuyo; Sekiguchi, Koji; Asanuma, Hiroyuki

    2011-06-14

    Here, we synthesized fluorescent DNA probes labeled with two perylene derivatives for the detection of a three-base deletion mutant. One such probe discriminated the three-base deletion mutant from the wild-type sequence by exciplex emission, and the deletion mutant was identifiable even by the naked eye. This journal is © The Royal Society of Chemistry 2011

  19. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  20. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity.

    Directory of Open Access Journals (Sweden)

    Zhousheng Xiao

    Full Text Available Polycystin-1 (Pkd1 interacts with polycystin-2 (Pkd2 to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2 expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp, Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex, Dentin matrix protein 1 (Dmp1, Sclerostin (Sost, and Fibroblast growth factor 23 (FGF23 were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ and Yes-associated protein (YAP, reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone.

  1. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice

    Directory of Open Access Journals (Sweden)

    Flávia Rezende

    2018-05-01

    Innovation and conclusion: ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.

  2. Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, Devin P., E-mail: devin.champagne@uvm.edu; Shockett, Penny E., E-mail: pshockett@selu.edu

    2014-03-15

    Highlights: • Examines illegitimate V(D)J deletion junctions in Notch1 and Bcl11b. • Suggests little influence of deletions alone on clonal outgrowth in wild-type mice. • No age or sex biases in frequency, clonality, or junctional processing observed. • Contrasts with previous results at TCRβ and HPRT1 loci. • Deletions in Bcl11b may be tolerated more easily than those in Notch1. - Abstract: Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is

  3. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    Science.gov (United States)

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  4. Common Deletion (CD) in mitochondrial DNA of irradiated rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Raquel Gomes; Ferreira-Machado, Samara C.; Almeida, Carlos E.V. de, E-mail: raquelgsiqueira@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biologia Roberto Alcanatara Gomes. Lab. de Ciencias Radiologicas; Silva, Dayse A. da; Carvalho, Elizeu F. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biologia Roberto Alcanatara Gomes. Lab. de Diagnosticos por DNA; Melo, Luiz D.B. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biofisica Carlos Chagas Filho. Lab. de Parasitologia Molecular

    2014-05-15

    The purpose of this study was to map the common deletion (CD) area in mtDNA and investigate the levels of this deletion in irradiated heart. The assays were developed in male Wistar rats that were irradiated with three different single doses (5, 10 or 15 Gy) delivered directly to the heart and the analyses were performed at various times post-irradiation (3, 15 or 120 days). The CDs area were sequenced and the CD quantified by real-time PCR. Our study demonstrated that the CD levels progressively decreased from the 3rd until the 15th day after irradiation, and then increased thereafter. Additionally, it was observed that the levels of CD are modulated differently according to the different categories of doses (moderate and high). This study demonstrated an immediate response to ionizing radiation, measured by the presence of mutations in the CD area and a decrease in the CD levels. (author)

  5. Two novel deletions (array CGH findings) in pigment dispersion syndrome.

    Science.gov (United States)

    Mikelsaar, Ruth; Molder, Harras; Bartsch, Oliver; Punab, Margus

    2007-12-01

    We report the first male with pigment dispersion syndrome and a balanced translocation t(10;15)(p11.1;q11.1). Cytogenetic analyses using Giemsa banding and FISH methods, and array CGH were performed. Array CGH analyses did not show altered DNA sequences in the breakpoints of the translocation, but revealed two novel deletions in 2q22.1 and 18q22.1. We suppose that the coexistence of t(10;15) and pigment dispersion syndrome in our patient is a coincidence. The deletion in 2q22.1, where the gene LRP1B has been located, may play a major role in the dysembryogenesis of the eye and cause the disorder.

  6. Combinations of probabilistic and approximate quantum cloning and deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We first construct a probabilistic and approximate quantum cloning machine (PACM) and then clarify the relation between the PACM and other cloning machines. After that, we estimate the global fidelity of the approximate cloning that improves the previous estimation for the deterministic cloning machine; and also derive a bound on the success probability of producing perfect multiple clones. Afterwards, we further establish a more generalized probabilistic and approximate cloning and deleting machine (PACDM) and discuss the connections of the PACDM to some of the existing quantum cloning and deleting machines. Finally the global fidelity and a bound on the success probability of the PACDM are obtained. Summarily, the quantum devices established in this paper improve and also greatly generalize some of the existing machines

  7. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  8. Remarks on Causative Verbs and Object Deletion in English

    OpenAIRE

    Onozuka, Hiromi

    2007-01-01

    Rappaport Hovav and Levin (1998) contend that result verbs disallow object deletion becauseof their lexical semantic properties. Their point is that the distinction between result verbs andmanner verbs with their different event structure representation constitutes the important factorwhich dictates the possibility of the variation of argument realization, of which object deletionrepresents one instance. Responding to their claim, Goldberg (2001) presents the evidencewhich mainly concerns the...

  9. Attenuation of UVR-induced vitamin D3 synthesis in a mouse model deleted for keratinocyte lathosterol 5-desaturase.

    Science.gov (United States)

    Makarova, Anastasia M; Pasta, Saloni; Watson, Gordon; Shackleton, Cedric; Epstein, Ervin H

    2017-07-01

    The lower risk of some internal cancers at lower latitudes has been linked to greater sun exposure and consequent higher levels of ultraviolet radiation (UVR)-produced vitamin D 3 (D 3 ). To separate the experimental effects of sunlight and of all forms of D 3 , a mouse in which UVR does not produce D 3 would be useful. To this end we have generated mice carrying a modified allele of sterol C5-desaturase (Sc5d), the gene encoding the enzyme that converts lathosterol to 7-dehydrocholesterol (7-DHC), such that Sc5d expression can be inactivated using the Cre/lox site-specific recombination system. By crossing to mice with tissue-specific expression of Cre or CreER 2 (Cre/estrogen receptor), we generated two lines of transgenic mice. One line has constitutive keratinocyte-specific inactivation of Sc5d (Sc5d k14KO ). The other line (Sc5d k14KOi ) has tamoxifen-inducible keratinocyte-specific inactivation of Sc5d. Mice deleted for keratinocyte Sc5d lose the ability to increase circulating D 3 following UVR exposure of the skin. Thus, unlike in control mice, acute UVR exposure did not affect circulating D 3 level in inducible Sc5d k14KOi mice. Keratinocyte-specific inactivation of Sc5d was proven by sterol measurement in hair - in control animals lathosterol and cholesta-7,24-dien-3β-ol, the target molecules of SC5D in the sterol biosynthetic pathways, together constituted a mean of 10% of total sterols; in the conditional knockout mice these sterols constituted a mean of 56% of total sterols. The constitutive knockout mice had an even greater increase, with lathosterol and cholesta-7,24-dien-3β-ol accounting for 80% of total sterols. In conclusion, the dominant presence of the 7-DHC precursors in hair of conditional animals and the lack of increased circulating D 3 following exposure to UVR reflect attenuated production of the D 3 photochemical precursor 7-DHC and, consequently, of D 3 itself. These animals provide a useful new tool for investigating the role of D 3

  10. Conditional deletion of ERK5 MAP kinase in the nervous system impairs pheromone information processing and pheromone-evoked behaviors.

    Directory of Open Access Journals (Sweden)

    Junhui Zou

    Full Text Available ERK5 MAP kinase is highly expressed in the developing nervous system but absent in most regions of the adult brain. It has been implicated in regulating the development of the main olfactory bulb and in odor discrimination. However, whether it plays an essential role in pheromone-based behavior has not been established. Here we report that conditional deletion of the Mapk7 gene which encodes ERK5 in mice in neural stem cells impairs several pheromone-mediated behaviors including aggression and mating in male mice. These deficits were not caused by a reduction in the level of testosterone, by physical immobility, by heightened fear or anxiety, or by depression. Using mouse urine as a natural pheromone-containing solution, we provide evidence that the behavior impairment was associated with defects in the detection of closely related pheromones as well as with changes in their innate preference for pheromones related to sexual and reproductive activities. We conclude that expression of ERK5 during development is critical for pheromone response and associated animal behavior in adult mice.

  11. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  12. SHANK1 Deletions in Males with Autism Spectrum Disorder.

    Science.gov (United States)

    Sato, Daisuke; Lionel, Anath C; Leblond, Claire S; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E; Hamdan, Fadi F; Michaud, Jacques L; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A; Roberts, Wendy; Rappold, Gudrun A; Marshall, Christian R; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W

    2012-05-04

    Recent studies have highlighted the involvement of rare (number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. A Large PROP1 Gene Deletion in a Turkish Pedigree

    Directory of Open Access Journals (Sweden)

    Suheyla Gorar

    2018-01-01

    Full Text Available Pituitary-specific paired-like homeodomain transcription factor, PROP1, is associated with multiple pituitary hormone deficiency. Alteration of the gene encoding the PROP1 may affect somatotropes, thyrotropes, and lactotropes, as well as gonadotropes and corticotropes. We performed genetic analysis of PROP1 gene in a Turkish pedigree with three siblings who presented with short stature. Parents were first degree cousins. Index case, a boy, had somatotrope, gonadotrope, thyrotrope, and corticotrope deficiency. However, two elder sisters had somatotroph, gonadotroph, and thyrotroph deficiency and no corticotroph deficiency. On pituitary magnetic resonance, partial empty sella was detected with normal bright spot in all siblings. In genetic analysis, we found a gross deletion involving PROP1 coding region. In conclusion, we report three Turkish siblings with a gross deletion in PROP1 gene. Interestingly, although little boy with combined pituitary hormone deficiency has adrenocorticotropic hormone (ACTH deficiency, his elder sisters with the same gross PROP1 deletion have no ACTH deficiency. This finding is in line with the fact that patients with PROP1 mutations may have different phenotype/genotype correlation.

  14. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  15. Distinct phenotype of PHF6 deletions in females.

    Science.gov (United States)

    Di Donato, N; Isidor, B; Lopez Cazaux, S; Le Caignec, C; Klink, B; Kraus, C; Schrock, E; Hackmann, K

    2014-02-01

    We report on two female patients carrying small overlapping Xq26.2 deletions of 100 kb and 270 kb involving the PHF6 gene. Mutations in PHF6 have been reported in individuals with Borjeson-Forssman-Lehmann syndrome, a condition present almost exclusively in males. Two very recent papers revealed de novo PHF6 defects in seven female patients with intellectual disability and a phenotype resembling Coffin-Siris syndrome (sparse hair, bitemporal narrowing, arched eyebrows, synophrys, high nasal root, bulbous nasal tip, marked clinodactyly with the hypoplastic terminal phalanges of the fifth fingers and cutaneous syndactyly of the toes, Blaschkoid linear skin hyperpigmentation, dental anomalies and occasional major malformations). The clinical presentation of these patients overlaps completely with our first patient, who carries a germline deletion involving PHF6. The second patient has a mosaic deletion and presented with a very mild phenotype of PHF6 loss in females. Our report confirms that PHF6 loss in females results in a recognizable phenotype overlapping with Coffin-Siris syndrome and distinct from Borjeson-Forssman-Lehmann syndrome. We expand the clinical spectrum and provide the first summary of the recommended medical evaluation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Genomic interval engineering of mice identified a novel modulator of triglyceride production

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Jong, M.C.; Frazer, K.A.; Gong, E.; Krauss, R.M.; Cheng, J.F.; Boffelli, D.; Rubin, E.M.

    1999-10-01

    To accelerate the biological annotation of novel genes discovered in sequenced of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450 kb region on mouse chromosome 11 which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepatic very-low density lipoprotein (VLDL) triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450 kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine and hepatic triglyceride production is of particular importance due to the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.

  17. Allele-specific deletions in mouse tumors identify Fbxw7 as germline modifier of tumor susceptibility.

    Directory of Open Access Journals (Sweden)

    Jesus Perez-Losada

    Full Text Available Genome-wide association studies (GWAS have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5-10%. There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a signific