WorldWideScience

Sample records for flows turbulence winds

  1. Flow Structure and Turbulence in Wind Farms

    Science.gov (United States)

    Stevens, Richard J. A. M.; Meneveau, Charles

    2017-01-01

    Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned and built. From a fluid mechanics perspective, wind farms encompass turbulent flow phenomena occurring at many spatial and temporal scales. Of particular interest to understanding mean power extraction and fluctuations in wind farms are the scales ranging from 1 to 10 m that comprise the wakes behind individual wind turbines, to motions reaching 100 m to kilometers in scale, inherently associated with the atmospheric boundary layer. In this review, we summarize current understanding of these flow phenomena (particularly mean and second-order statistics) through field studies, wind tunnel experiments, large-eddy simulations, and analytical modeling, emphasizing the most relevant features for wind farm design and operation.

  2. Turbulent oscillating channel flow subjected to wind stress

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.; Armenio, Vincenzo; Geurts, Bernard; Fröhlich, Jochen

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations (LES). a slowly pulsating mean flow occurs with the turbulent mechanics essentially being quasi steady. Logarithmic boundary layers are present at both th

  3. Turbulent flow and scalar transport in a large wind farm

    Science.gov (United States)

    Porte-Agel, F.; Markfort, C. D.; Zhang, W.

    2012-12-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface

  4. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...... of attack. Laminar-turbulent transition, generation of laminar boundary layer separation, and formation of stall cells are investigated. The simulated airfoil characteristics are validated against measurements. It is concluded that the LES computations and wind tunnel measurements are in good agreement...

  5. Flow Structure and Turbulence in Wind Farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2017-01-01

    Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned

  6. Flow Structure and Turbulence in Wind Farms

    NARCIS (Netherlands)

    Stevens, Richard J.A.M.; Meneveau, Charles

    2017-01-01

    Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned a

  7. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  8. RANS turbulence model form uncertainty quantification for wind engineering flows

    Science.gov (United States)

    Gorle, Catherine; Zeoli, Stephanie; Bricteux, Laurent

    2016-11-01

    Reynolds-averaged Navier-Stokes simulations with linear eddy-viscosity turbulence models are commonly used for modeling wind engineering flows, but the use of the results for critical design decisions is hindered by the limited capability of the models to correctly predict bluff body flows. A turbulence model form uncertainty quantification (UQ) method to define confidence intervals for the results could remove this limitation, and promising results were obtained in a previous study of the flow in downtown Oklahoma City. The objective of the present study is to further investigate the validity of these results by considering the simplified test case of the flow around a wall-mounted cube. DNS data is used to determine: 1. whether the marker, which identifies regions that deviate from parallel shear flow, is a good indicator for the regions where the turbulence model fails, and 2. which Reynolds stress perturbations, in terms of the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor, can capture the uncertainty in the flow field. A comparison of confidence intervals obtained with the UQ method and the DNS solution indicates that the uncertainty in the velocity field can be captured correctly in a large portion of the flow field.

  9. Modelling wind flow and vehicle-induced turbulence in urban streets

    Science.gov (United States)

    Solazzo, Efisio; Cai, Xiaoming; Vardoulakis, Sotiris

    Mechanically generated wind flow and turbulence in urban street canyons are the results of combined processes of atmospheric wind and vehicular traffic, both of which contribute to the transport and dilution of pollutants emitted by vehicles at street level. A good understanding of these processes is thus essential for predicting the spatial distribution of pollutants, and especially for deriving useful parameterisations to be included in urban air-quality models. In this study, a computational fluid dynamics (CFD) modelling methodology for the simulation of the flow and turbulence induced by wind and vehicle motion within an idealised street canyon is presented. Initially, a CFD methodology for analysing the contribution of vehicle's movement to the production of flow and turbulence near street level is introduced. The effects of vehicle's motion are characterised in terms of mean wind flow and turbulence. The results obtained from this analysis are then used for the modelling of the combined effects of wind and vehicular traffic in the street canyon. The CFD methodology is tested by comparing the model results against wind tunnel data of mean velocity and turbulence. Evaluation of the results shows the capability of the methodology to reproduce measured flow field and turbulence patterns. This methodology can be used to gain insights into the mechanically driven turbulence for the dispersion of pollutants within urban streets.

  10. Turbulent oscillating channel flow subjected to a wind stress

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2008-01-01

    The Westerschelde estuary in the Netherlands is characterized by a strong tidal driven flow with typical velocities in the range of 0.2 to 1 m/s. In addition to the tides the wind (5 m/s) exerts a stress at the free surface driving the upper fluid layers. To investigate this flow we performed resolv

  11. Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms

    CERN Document Server

    Meyers, Johan

    2012-01-01

    As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

  12. Turbulent flow and scalar flux through and over aligned and staggered wind farms

    Science.gov (United States)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.

    2012-04-01

    Wind farm-atmosphere interaction is complicated by the effect of turbine array configuration on momentum, scalar and kinetic energy fluxes. Wind turbine arrays are often arranged in rectilinear grids and, depending on the wind direction, may be perfectly aligned or perfectly staggered. The two extreme configurations make up the end members of a spectrum of infinite possible layouts. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux, including heat, evaporation and trace gas (e.g. CO2) fluxes affected by wind farms, need to be properly parameterized in large-scale models. Experiments involving model wind farms in aligned and staggered configurations, consisting of 13 rows with equivalent turbine density, were conducted in a thermally-controlled boundary-layer wind tunnel. Measurements of the turbulent flow were made using a custom x-wire/cold wire within and over the wind farms. Particular focus was placed on studying the effect of wind farm layout on flow adjustment, momentum and scalar fluxes, and turbulent kinetic energy distribution. Results show that the turbulence statistics of the flow exhibit similar turbulent transport properties to those of canopy flows, but retain some characteristic surface layer properties in a limited region above the wind farms as well. The initial wake growth over columns of turbines in the aligned wind farm is faster. However, the overall wake adjusts within and grows more rapidly over the staggered farm. The effective roughness of the staggered farm was found to be significantly larger than that of the aligned farm. The flow equilibrates faster, and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling. Lower surface heat flux was found for the wind farms compared to the boundary

  13. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    Science.gov (United States)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  14. Estimation of Wind Turbulence Using Spectral Models

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Bak, Thomas

    2011-01-01

    The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind. In thi...

  15. Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    CERN Document Server

    Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W

    2015-01-01

    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...

  16. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  17. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  18. Estimation of Wind Turbulence Using Spectral Models

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Bak, Thomas

    2011-01-01

    The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind....... In this paper, a method is presented for estimation of the turbulence. The spectral model of the wind is used in order to provide the estimations. The suggested estimation approach is applied to a case study in which the objective is to estimate wind turbulence at desired points using the measurements of wind...... speed outside the wind field. The results show that the method is able to provide estimations which explain more than 50% of the wind turbulence from the distance of about 300 meters....

  19. Wind-tunnel experiments of thermally-stratified turbulent boundary layer flow over a wall-mounted 2-D block

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-05-01

    Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and

  20. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrated...... by yawing the wind turbine in and out of the wind in stopped conditions. Wind speed was calibrated relative to a met mast in a wake-free wind sector during operation. The calibration measurements were used to determine the basic k1 and k2 constants of the spinner anemometer and a four parameter induction...

  1. Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets

    CERN Document Server

    Dobbie, Peter B; Bicknell, Geoffrey V; Salmeron, Raquel

    2009-01-01

    Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may...

  2. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    CERN Document Server

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  3. Energy dissipation processes in solar wind turbulence

    CERN Document Server

    Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B

    2015-01-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...

  4. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  5. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  6. Turbulent character of wind energy.

    Science.gov (United States)

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-29

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov's 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy.

  7. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    Energy Technology Data Exchange (ETDEWEB)

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-12-14

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empirical nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability

  8. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  9. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  10. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  11. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  12. 3D Wind: Quantifying wind speed and turbulence intensity

    Science.gov (United States)

    Barthelmie, R. J.; Pryor, S. C.; Wang, H.; Crippa, P.

    2013-12-01

    Integrating measurements and modeling of wind characteristics for wind resource assessment and wind farm control is increasingly challenging as the scales of wind farms increases. Even offshore or in relatively homogeneous landscapes, there are significant gradients of both wind speed and turbulence intensity on scales that typify large wind farms. Our project is, therefore, focused on (i) improving methods to integrate remote sensing and in situ measurements with model simulations to produce a 3-dimensional view of the flow field on wind farm scales and (ii) investigating important controls on the spatiotemporal variability of flow fields within the coastal zone. The instrument suite deployed during the field experiments includes; 3-D sonic and cup anemometers deployed on meteorological masts and buoys, anemometers deployed on tethersondes and an Unmanned Aerial Vehicle, multiple vertically-pointing continuous-wave lidars and scanning Doppler lidars. We also integrate data from satellite-borne instrumentation - specifically synthetic aperture radar and scatterometers and output from the Weather Research and Forecast (WRF) model. Spatial wind fields and vertical profiles of wind speed from WRF and from the full in situ observational suite exhibit excellent agreement in a proof-of-principle experiment conducted in north Indiana particularly during convective conditions, but showed some discrepancies during the breakdown of the nocturnal stable layer. Our second experiment in May 2013 focused on triangulating a volume above an area of coastal water extending from the port in Cleveland out to an offshore water intake crib (about 5 km) and back to the coast, and includes extremely high resolution WRF simulations designed to characterize the coastal zone. Vertically pointing continuous-wave lidars were operated at each apex of the triangle, while the scanning Doppler lidar scanned out across the water over 90 degrees azimuth angle. Preliminary results pertaining to

  13. Turbulence within variable-size wind turbine arrays

    Science.gov (United States)

    Chamorro, L. P.; Arndt, R. E. A.; Sotiropoulos, F.

    2014-12-01

    A wind tunnel experiment was performed to study turbulence processes within a model wind turbine array of 3 by 8 model wind turbines of alternating sizes placed aligned with the mean flow. The model wind farm was placed in a boundary layer developed over both smooth and rough surfaces under neutrally stratified conditions. Turbulence statistics, TKE budget terms, and the spectral structure of the turbulence generated within and above the wind farm reveal relevant information about the processes modulating the turbulent energy transfer from the boundary layer to the turbines. The results of the experiment suggest that heterogeneity in turbine size within a wind farm introduce complex flow interactions not seen in a homogeneous farm, and may have positive effects on turbulent loading on the turbines and turbulent exchange with the atmosphere. In general, large scale motions are heavily dampened behind the first row of turbines but a portion of such structures are generated far inside the wind farm, and the scale of the most energetic eddy motions was relatively consistent at different elevations. Overall, the experiment revealed the possibility that heterogeneity of wind turbine size within wind farms have the potential to change the overall potential to harvest energy from the wind, and alter the economics of a project.

  14. Large Eddy Simulation of Turbulence Modeling for wind Flow past Wall Mounted Cubical Building Using Smagorinsky Scheme and validation using Artificial Neural Network for Time Series Data

    OpenAIRE

    Bibhab Kumar Lodh; Ajoy K Das

    2015-01-01

    This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. ...

  15. Turbulence dependence on winds and stability in a weak-wind canopy sublayer over complex terrain

    Science.gov (United States)

    Russell, Eric S.; Liu, Heping; Gao, Zhongming; Lamb, Brian; Wagenbrenner, Natalie

    2016-10-01

    The daytime and nighttime turbulence profiles within a weak-wind forest canopy were investigated by using data collected within a temperate mixed conifer canopy in northern Idaho, USA. Turbulence measurements made at three heights on a single tower within a Douglas fir canopy were compared. Data were split between the daytime and nighttime to determine the relationships among the local temperature gradient, wind direction, wind speed, and turbulence levels. The total flow field distributions and vertical statistical profiles were determined for the overnight and daytime periods to observe how the overall flow changed with time of day. During the day, the wind probability distribution function was consistent between heights but depended on the canopy depth overnight. The skewness changed with the dominant wind direction. The kurtosis increased with depth into the canopy and from during the day to overnight. The range of wind speeds observed was higher under unstable conditions than stable conditions. Daytime turbulence had no dependence on wind direction. Overnight, the relationship between turbulence and wind speed changed with wind direction and canopy depth. The highest turbulence values were associated with downslope winds near the canopy top, but the wind direction for the highest turbulence was variable within the trunk space.

  16. Localized turbulence in pipe flow

    NARCIS (Netherlands)

    Kuik, D.J.

    2011-01-01

    In this thesis the transition to turbulence in pipe flow is investigated. At low Reynolds numbers, the flow returns to the laminar state spontaneously. At high Reynolds number a small perturbation causes the flow to suddenly become turbulent. In the intermediate regime localized turbulence is observ

  17. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  18. Ultimate Turbulent Taylor-Couette Flow

    CERN Document Server

    Huisman, Sander G; Grossmann, Siegfried; Sun, Chao; Lohse, Detlef

    2011-01-01

    The flow structure of strongly turbulent Taylor-Couette flow with Reynolds numbers up to Re_i = 2*10^6 of the inner cylinder is experimentally examined with high-speed particle image velocimetry (PIV). The wind Reynolds numbers Re_w of the turbulent Taylor-vortex flow is found to scale as Re_w ~ Ta^(1/2), exactly as predicted for the ultimate turbulence regime, in which the boundary layers are turbulent. The dimensionless angular velocity flux has an effective scaling of Nu_{\\omega} ~ Ta^0.38, also in correspondence with turbulence in the ultimate regime. The scaling of Nu_{\\omega} is confirmed by local angular velocity flux measurements extracted from high-speed PIV measurements: though the flux shows huge fluctuations, its spatial and temporal average nicely agrees with the result from the global torque measurements.

  19. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics....

  20. An experimental study on the aeromechanics and wake characteristics of a novel twin-rotor wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Wang, Zhenyu; Tian, Wei; Ozbay, Ahmet; Sharma, Anupam; Hu, Hui

    2016-09-01

    The aeromechanic performance and wake characteristics of a novel twin-rotor wind turbine (TRWT) design, which has an extra set of smaller, auxiliary rotor blades appended in front of the main rotor, was evaluated experimentally, in comparison with those of a conventional single-rotor wind turbine (SRWT) design. The comparative study was performed in a large-scale wind tunnel with scaled TRWT and SRWT models mounted in the same incoming turbulent boundary layer flow. In addition to quantifying power outputs and the dynamic wind loadings acting on the model turbines, the wake characteristics behind the model turbines were also measured by using a particle image velocimetry system and a Cobra anemometry probe. The measurement results reveal that, while the TRWT design is capable of harnessing more wind energy from the same incoming airflow by reducing the roots losses incurred in the region near the roots of the main rotor blades, it also cause much greater dynamic wind loadings acting on the TRWT model and higher velocity deficits in the near wake behind the TRWT model, in comparison with those of the SRWT case. Due to the existence of the auxiliary rotor, more complex vortex structures were found to be generated in the wake behind the TRWT model, which greatly enhanced the turbulent mixing in the turbine wake, and caused a much faster recovery of the velocity deficits in the turbine far wake. As a result, the TRWT design was also found to enable the same downstream turbine to generate more power when sited in the wake behind the TRWT model than that in the SRWT wake, i.e., by mitigating wake losses in typical wind farm settings.

  1. Profile of the horizontal wind variance near the ground in near neutral flow - K-theory and the transport of the turbulent kinetic energy

    Science.gov (United States)

    Yahaya, S.; Frangi, J. P.

    2009-05-01

    This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m) and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain). The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE) transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.

  2. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  3. Controllability of flow turbulence.

    Science.gov (United States)

    Guan, Shuguang; Wei, G W; Lai, C-H

    2004-06-01

    In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.

  4. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    Science.gov (United States)

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance.

  5. Masking of Wind Turbine Noise: Influence of wind turbulence on ambient noise fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier

    2002-07-01

    In the issue of noise annoyance generated by wind turbines, masking by ambient noise is of great importance. At wind turbine sites, the main source of ambient noise arises from the wind blowing on the vegetation. However, natural wind can barely be described as a steady flow and 'lulls' and 'gusts' are words used to describe its unsteady component. This latter, also called wind turbulence, may affect the masking effect, as the wind turbine may become audible during short laps of time of low wind speed, that is of low ambient noise. The aim of the present report is to study the influence of wind turbulence on ambient noise fluctuations. It is shown that these latter are governed not only by the turbulence intensity, but also by its temporal and spatial structure. This report provides some elements of atmospheric turbulence as well as techniques for the simulation of turbulent wind fields. Simulation results are given that illustrate how the standard deviation of the vegetation noise can vary as function of the canopy size and turbulence spatial patterns. Finally, ambient noise fluctuations and their statistical descriptions are also discussed, based on both theoretical considerations and empirical results.

  6. Turbulence Measurements in Swirling Flows

    Directory of Open Access Journals (Sweden)

    V. M. Domkundwar

    1981-10-01

    Full Text Available Investigation have been conducted to find out the region of high turbulent intensities in a swirling jet passing through a divergent passage. A hot wire anemometer is used to measure the turbulence intensity using a four position method. It has been concluded that the jet spreads with increasing diffuser angle and the region of high turbulent intensity also spreads. The high turbulence intensity region lies around the recirculation zone and it decays rapidly along the main flow direction.

  7. Nonaxisymmetric anisotropy of solar wind turbulence as a direct test for models of magnetohydrodynamic turbulence.

    Science.gov (United States)

    Turner, A J; Gogoberidze, G; Chapman, S C

    2012-02-24

    Single point spacecraft observations of the turbulent solar wind flow exhibit a characteristic nonaxisymmetric anisotropy that depends sensitively on the perpendicular power spectral exponent. We use this nonaxisymmetric anisotropy as a function of wave vector direction to test models of MHD turbulence. Using Ulysses magnetic field observations in the fast, quiet polar solar wind we find that the Goldreich-Sridhar model of MHD turbulence is not consistent with the observed anisotropy, whereas the observations are well reproduced by the "slab+2D" model. The Goldreich-Sridhar model alone cannot account for the observations unless an additional component is also present.

  8. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced...... downstream of the nozzle contraction. We used two different hot wire probes: a dual sensor miniature wire probe (Dantec 55P61) and a triple sensor fiber film probe (Dantec 55R91). The turbulence intensity measured with the dual sensor probe in the empty tunnel section was significantly lower than the one...... measured with the triple sensor probe. The turbulence intensity as well as the mean flow velocity downstream of the grids were not homogeneous in space. The grid with the finer mesh size created higher turbulence intensity. For both grids we found a functional form of the power spectral density...

  9. Turbulence and turbulence-generated structural loading in wind turbine clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Sten

    2007-01-15

    Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)

  10. Dissipation of turbulence in the wake of a wind turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2013-12-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.

  11. Detrended analysis of Reynolds stress in a decaying turbulent flow in a wind tunnel with active grids

    Institute of Scientific and Technical Information of China (English)

    黄永祥; 卢志明

    2014-01-01

    Multi-scale properties of Reynolds stress in decaying turbulence in a wind tunnel with high Reynolds number are investi-gated. Two filtering techniques i.e., the zeroth-order and first-order detrending methods are applied to the two velocity components, where the local mean value (resp. local linear trend) is removed in the former (latter) technique. Some basic statistics for thirty mea-surements show that the variation is very large at first two locations and relatively small at last two locations. Moderately good power law is found for the mean value of local Reynolds stress at last three measurement locations with scaling exponents approxi-mately being 1.0 and a dual power law exists for the mean value of standard deviation of local Reynolds stress at all four measureme-nt locations with scaling exponents being 0.53 and 0.58 for zeroth-and first-order filtering respectively. Present results about local Reynolds stress are useful to build and evaluate the model of sub-grid Reynolds stress in large eddy simulations.

  12. Numerical methods for turbulent flow

    Science.gov (United States)

    Turner, James C., Jr.

    1988-01-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  13. Large Eddy Simulation of Turbulence Modeling for wind Flow past Wall Mounted Cubical Building Using Smagorinsky Scheme and validation using Artificial Neural Network for Time Series Data

    Directory of Open Access Journals (Sweden)

    Bibhab Kumar Lodh

    2015-02-01

    Full Text Available This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. The results are discussed in terms of various parameters such as velocity profile around the cube and the computational domain, the pressure distribution over the cube, near wall velocity profile and the shear stress distribution and also the result of drag coefficient is verified by neural network time series analysis using MATLAB. In this present study we have used the OpenFoam platform for the computational and numerical analysis. The numerical scheme employed is the combination of the steady state incompressible Newtonian flow model using SIMPLE algorithm followed by the transient model of incompressible Newtonian flow using PISO algorithm. We have observed that there is a constant positive drag coefficient in case of steady state simulation where as there is a negative lift coefficient in the initial run and a very low lift coefficient at the end of the steady state simulation.

  14. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  15. Effects of Freestream Turbulence in a Model Wind Turbine Wake

    Directory of Open Access Journals (Sweden)

    Yaqing Jin

    2016-10-01

    Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .

  16. Simulation of shear and turbulence impact on wind turbine performance

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Larsen, Torben J.;

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of ...... may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements....

  17. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production....... However, numerous studies have shown that the power production depends on several variables, in particular turbulence intensity. This paper presents a model and a method that are computationally tractable and able to account for some of the influence of turbulence intensity on the power production...

  18. Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model

    Science.gov (United States)

    Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.

    2016-09-01

    Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.

  19. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  20. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan;

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented...

  1. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  2. Turbulence Analysis Upstream of a Wind Turbine: a LES Approach to Improve Wind LIDAR Technology

    Science.gov (United States)

    Calaf, M.

    2015-12-01

    Traditionally wind turbines learn about the incoming wind conditions by means of a wind vane and a cup anemometer. This approach presents two major limitations: 1) because the measurements are done at the nacelle, behind the rotor blades, the wind observations are perturbed inducing potential missalignement and power losses; 2) no direct information of the incoming turbulence is extracted, limiting the capacity to timely adjust the wind turbine against strong turbulent intensity events. Recent studies have explored the possibility of using wind LIDAR (Light Detection and Ranging) to overcome these limitations (Angelou et al. 2010 and Mikelsen et al., 2013). By installing a wind LIDAR at the nacelle of a wind turbine one can learn about the incoming wind and turbulent conditions ahead of time to timely readjust the turbine settings. Yet several questions remain to be answered such as how far upstream one should measure and what is the appropriate averaging time to extract valuable information. In light of recent results showing the relevance of atmospheric stratification in wind energy applications, it is expected that different averaging times and upstream scanning distances are advised for wind LIDAR measurements. A Large Eddy Simulation (LES) study exploring the use of wind LIDAR technology within a wind farm has been developed. The wind farm consists of an infinite array of horizontal axis wind turbines modeled using the actuator disk with rotation. The model also allows the turbines to dynamically adjust their yaw with the incoming wind vector. The flow is forced with a constant geostrophic wind and a time varying surface temperature reproducing a realistic diurnal cycle. Results will be presented showing the relevance of the averaging time for the different flow characteristics as well as the effect of different upstream scanning distances. While it is observed that within a large wind farm there are no-significant gains in power output by scanning further

  3. Measurement and Assessment of Flow Quality in Wind Tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New wind tunnel flow quality test and analysis procedures have been developed and will be used to establish standardized turbulent flow quality measurement...

  4. Turbulent transport in hydromagnetic flows

    CERN Document Server

    Brandenburg, A; Del Sordo, F; Hubbard, A; Käpylä, P J; Rheinhardt, M

    2010-01-01

    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.

  5. Reconnection outflow generated turbulence in the solar wind

    CERN Document Server

    Vörös, Z; Semenov, V S; Zaqarashvili, T V; Bruno, R; Khodachenko, M

    2014-01-01

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.

  6. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  7. Turbulence dynamics in unsteady atmospheric flows

    Science.gov (United States)

    Momen, Mostafa; Bou-Zeid, Elie

    2016-11-01

    Unsteady pressure-gradient forcing in geophysical flows challenges the quasi-steady state assumption, and can strongly impact the mean wind and higher-order turbulence statistics. Under such conditions, it is essential to understand when turbulence is in quasi-equilibrium, and what are the implications of unsteadiness on flow characteristics. The present study focuses on the unsteady atmospheric boundary layer (ABL) where pressure gradient, Coriolis, buoyancy, and friction forces interact. We perform a suite of LES with variable pressure-gradient. The results indicate that the dynamics are mainly controlled by the relative magnitudes of three time scales: Tinertial, Tturbulence, and Tforcing. It is shown that when Tf Tt , the turbulence is no longer in a quasi-equilibrium state due to highly complex mean-turbulence interactions; consequently, the log-law and turbulence closures are no longer valid in these conditions. However, for longer and, surprisingly, for shorter forcing times, quasi-equilibrium is maintained. Varying the pressure gradient in the presence of surface buoyancy fluxes primarily influences the buoyant destruction in the stable ABLs, while under unstable conditions it mainly influences the transport terms. NSF-PDM under AGS-10266362. Cooperative Institute for Climate Science, NOAA-Princeton University under NA08OAR4320752. Simulations performed at NCAR, and Della server at Princeton University.

  8. Chemically Reacting Turbulent Flow.

    Science.gov (United States)

    1987-04-14

    two stages of gen I tubes equipped with P-47 phosphor screens The detector chosen for the camera was a Reticon RL128S* line detectoI- .,hich consists...the Stud’, of Turbulent Mixing," William M. Pitts, Nuclear Engineering Seminar of the Department of Chemical and Nuclear Engineering, University of

  9. Influence of Turbulence Model for Wind Turbine Simulation in Low Reynolds Number

    Directory of Open Access Journals (Sweden)

    Masami Suzuki

    2016-01-01

    Full Text Available In designing a wind turbine, the validation of the mathematical model’s result is normally carried out by comparison with wind tunnel experiment data. However, the Reynolds number of the wind tunnel experiment is low, and the flow does not match fully developed turbulence on the leading edge of a wind turbine blade. Therefore, the transition area from laminar to turbulent flow becomes wide under these conditions, and the separation point is difficult to predict using turbulence models. The prediction precision decreases dramatically when working with tip speed ratios less than the maximum power point. This study carries out a steadiness calculation with turbulence model and an unsteadiness calculation with laminar model for a three-blade horizontal axis wind turbine. The validation of the calculations is performed by comparing with experimental results. The power coefficients calculated without turbulence models are in agreement with the experimental data for a tip speed ratio greater than 5.

  10. The Solar Wind as a Turbulence Laboratory

    Directory of Open Access Journals (Sweden)

    Vincenzo Carbone

    2013-05-01

    Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

  11. Non Axi-symmetric Anisotropy of Solar Wind Turbulence

    CERN Document Server

    Turner, A J; Chapman, S C; Hnat, B; Mueller, W -C

    2011-01-01

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, non- axisymmetry across the inertial and dissipation ranges is quantified using in-situ observations from Cluster. The observed inertial range non- axisymmetry is reproduced by a 'fly through' sampling of a Direct Numerical Simulation of MHD turbulence. Furthermore, 'fly through' sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in non- axisymmetry with power spectral exponent. The observed non-axisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.

  12. Microbubble clustering in turbulent flow

    CERN Document Server

    Calzavarini, E; Luther, S; Toschi, F; Van den Berg, T H; Berg, Thomas H. van den; Calzavarini, Enrico; Lohse, Detlef; Luther, Stefan; Toschi, Federico

    2006-01-01

    Single-point hot-wire measurements in the bulk of a turbulent channel have been performed in order to detect and quantify the phenomenon of preferential bubble accumulation. We show that statistical analysis of the bubble-probe colliding-times series can give a robust method for investigation of clustering in the bulk regions of a turbulent flow where, due to the opacity of the flow, no imaging technique can be employed. We demonstrate that micro-bubbles (radius R_0 ~ 0.1 mm) in a developed turbulent flow, where the Kolmogorov length-scale is, eta ~ R_0, display preferential concentration in small scale structures with a typical statistical signature ranging from the dissipative range, O(eta), up to the lower end of inertial range, O(100 eta). A comparison with Eulerian-Lagrangian numerical simulations is also performed and arising similarities and differences are discussed.

  13. Reduced order model of the inherent turbulence of wind turbine wakes inside an infinitely long row of turbines

    Science.gov (United States)

    Andersen, S. J.; Sørensen, J. N.; Mikkelsen, R.

    2014-12-01

    The turbulence in the interior of an idealised wind farm is simulated using Large Eddy Simulation and the Actuator Line technique implemented in the Navier-Stokes equations. The simulation is carried out for an 'infinitely' long row of turbines simulated by applying cyclic boundary conditions at the inlet and outlet. The simulations investigate the turbulence inherent to the wind turbines as no ambient turbulence or shear is added to this idealised case. A Reduced Order Model for the highly turbulent flow deep inside a wind farm is proposed based on a Proper Orthogonal Decomposition. The reconstructed flow is shown to capture the large scale motions of the highly turbulent flow.

  14. PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Servidio, S.; Valentini, F.; Perrone, D.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Osman, K. T.; Chapman, S. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Califano, F. [Dipartimento di Fisica and CNISM, Università di Pisa, I-56127 Pisa (Italy); Matthaeus, W. H., E-mail: sergio.servidio@fis.unical.it [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2014-02-01

    Kinetic plasma processes are investigated in the framework of solar wind turbulence, employing hybrid Vlasov-Maxwell (HVM) simulations. Statistical analysis of spacecraft observation data relates proton temperature anisotropy T /T {sub ∥} and parallel plasma beta β{sub ∥}, where subscripts refer to the ambient magnetic field direction. Here, this relationship is recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T /T {sub ∥} and β{sub ∥}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  15. Proton Kinetic Effects in Vlasov and Solar Wind Turbulence

    CERN Document Server

    Servidio, S; Valentini, F; Perrone, D; Califano, F; Chapman, S; Matthaeus, W H; Veltri, P

    2013-01-01

    Kinetic plasma processes have been investigated in the framework of solar wind turbulence, employing Hybrid Vlasov-Maxwell (HVM) simulations. The dependency of proton temperature anisotropy T_{\\perp}/T_{\\parallel} on the parallel plasma beta \\beta_{\\parallel}, commonly observed in spacecraft data, has been recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T_{\\perp}/T_{\\parallel} and \\beta_{\\parallel}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  16. Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1978-01-01

    The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity.

  17. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  18. CONTINUOUS WAVELET TRANSFORM OF TURBULENT BOUNDARY LAYER FLOW

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-zheng; KE Feng; CHEN Han-ping

    2005-01-01

    The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was extensively analyzed in terms of continuous wavelet transform coefficients and their auto-correlation. The results yielded a potential wealth of information on inherent characteristics of coherent structures embedded in turbulent boundary layer flow. Spatial and temporal variations of the low- and high- frequency motions were revealed.

  19. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Directory of Open Access Journals (Sweden)

    Andy M Reynolds

    Full Text Available Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic. In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction.

  20. Numerical experiments modelling turbulent flows

    Directory of Open Access Journals (Sweden)

    Trefilík Jiří

    2014-03-01

    Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  1. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  2. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging......, whereas they are up to 70% for the horizontal velocity variances. The systematic errors also vary with atmospheric stability, being lowest for the very unstable conditions. It is concluded that with the current measurement configuration, these lidars cannot be used to measure turbulence precisely....

  3. Decoupling of mass flux and turbulent wind fluctuations in drifting snow

    Science.gov (United States)

    Paterna, E.; Crivelli, P.; Lehning, M.

    2016-05-01

    The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.

  4. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  5. Simulation of turbulent magnetic reconnection in the smallscale solar wind

    Institute of Scientific and Technical Information of China (English)

    魏奉思; 胡强; R.Schwen; 冯学尚

    2000-01-01

    Some observational examples for the possible occurrence of the turbulent magnetic reconnection in the solar wind are found by analysing Helios spacecraft’s high resolution data. The phenom-ena of turbulent magnetic reconnections in small scale solar wind are simulated by introducing a third order accuracy upwind compact difference scheme to the compressible two-dimensional MHD flow. Numerical results verify that the turbulent magnetic reconnection process could occur in small scale in-terplanetary solar wind, which is a basic feature characterizing the magnetic reconnection in high-mag-netie Peynolds number ( RM = 2 000-10 000) solar wind. The configurations of the magnetic reconnection could evolve from a single X-line to a multiple X-line reconnection, exhibiting a complex picture of the formation, merging and evolution of magnetic islands, and finally the magnetic reconnection would evolve into a low-energy state. Its life-span of evolution is about one hour order of magnitude. Various magnetic and f

  6. Unraveling the Mysteries of Turbulence Transport in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Pankaj K. Jha

    2015-06-01

    Full Text Available A true physical understanding of the mysteries involved in the recovery process of the wake momentum deficit, downstream of utility-scale wind turbines in the atmosphere, has not been obtained to date. Field data are not acquired at sufficient spatial and temporal resolutions to dissect some of the mysteries of wake turbulence. It is here that the actuator line method has evolved to become the technology standard in the wind energy community. This work presents the actuator line method embedded into an Open source Field Operation and Manipulation (OpenFOAM large-eddy simulation solver and applies it to two small wind farms, the first one consisting of an array of two National Renewable Energy Laboratory 5 Megawatt (NREL 5-MW turbines separated by seven rotor diameters in neutral and unstable atmospheric boundary-layer flow and the second one consisting of five NREL 5-MW wind turbines in unstable atmospheric conditions arranged in two staggered arrays of two and three turbines, respectively. Detailed statistics involving power spectral density (PSD of turbine power along with standard deviations reveal the effects of atmospheric turbulence and its space and time scales. High-resolution surface data extracts provide new insight into the complex recovery process of the wake momentum deficit governed by turbulence transport phenomena.

  7. Numerical experiments for turbulent flows

    Directory of Open Access Journals (Sweden)

    Příhoda Jaromír

    2013-04-01

    Full Text Available The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.

  8. The turbulent flow generated by inhomogeneous multiscale grids

    Science.gov (United States)

    Zheng, Shaokai; Bruce, Paul J. K.; Graham, J. Michael R.; Vassilicos, John Christos

    2015-11-01

    A group of inhomogeneous multiscale grids have been designed and tested in a low speed wind tunnel in an attempt to generate bespoke turbulent shear flows. Cross-wire anemometry measurements were performed in different planes parallel to the grid and at various streamwise locations to study turbulence development behind each of the different geometry grids. Two spatially separated single hot wires were also used to measure transverse integral length scale at selected locations. Results are compared to previous studies of shearless mixing layer grids and fractal grids, including mean flow profiles and turbulence statistics.

  9. Large eddy simulation and wind tunnel experiment of turbulent boundary-layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    2014-01-01

    experiments. The computations were performed with the commercial CFD software ANSYS FLUENT at a Reynolds number at the cube height of Reh = 1.3x105. The object was to evaluate the numerically generated flow upstream and around the cube and the accuracy of the timeaveraged surface pressure on the cube...

  10. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  11. Solar wind magnetic turbulence: Inferences from spectral shape

    CERN Document Server

    Treumann, R A; Narita, Y

    2016-01-01

    Some differences between theoretical, numerical and observational determinations of spectral slopes of solar wind turbulence are interpreted in the thermodynamical sense. Confirmations of turbulent Kolmogorov slopes in solar wind magnetic turbulence and magnetohydrodynamic simulations exhibit tiny differences. These are used to infer about entropy generation in the turbulent cascade and to infer about the anomalous turbulent collision frequency in the dissipative range as well as the average energy input in solar wind turbulence. Anomalous turbulent collision frequencies are obtained of the order of v < 200 Hz. The corresponding stationary solar wind magnetic energy input into magnetic turbulence in the Kolmogorov inertial range is obtained to be of the order of 50 eV/s. Its thermal fate is discussed.

  12. Turbulent spots in hypervelocity flow

    Science.gov (United States)

    Jewell, Joseph S.; Leyva, Ivett A.; Shepherd, Joseph E.

    2017-04-01

    The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time-resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.

  13. Complexity induced solar wind turbulence and evolution

    Science.gov (United States)

    Chang, T.

    2003-04-01

    "Complexity" has become a hot topic in nearly every field of modern physics. Solar wind plasmas are of no exception. Recently, Chang [2002], in analogy with theories developed for phenomena observed in the magnetotail and the auroral zone [Chang, 1999; 2001], demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from plasma resonances could be the origin of "complexity" of nonresonant pseudo-2D spatiotemporal fluctuations in solar wind turbulence and in the coronal hole base. Such nonresonant fluctuations were shown to exist in the solar wind by Matthaeus et al. [1990] in terms of the two-dimensional correlation as a function of distance parallel and perpendicular to the mean magnetic field based on the ISEE-3 magnetometer data. Other evidences indicating the existence of such type of fluctuations in the solar wind have been reported by Tu et al. [1989], Tu and Marsch [1990, 1991], Bruno and Bavassano [1991], Bavassano and Bruno [1992], Bruno et al. [2001], and others. These results explain [Tu and Marsch, 1991] why the Alfvén ratio (a quantitative measure of Alfvénicity) is often found to be less than one in the solar wind [Belcher and Davis 1971, Solodyna et al., 1977, Bruno et al, 1985, Roberts et al., 1990], particularly for the space range farther than 0.3 AU. The above observational results are also consistent with the conclusions obtained from 2D MHD numerical simulations [Matthaeus and Larkin, 1986, Roberts and Goldstein, 1988, Goldstein et al., 1989, Roberts et al., 1991, and Roberts, 1992]. Such findings have led Chang [2002] to suggest the following evolutional scenario for the plasma turbulence in the generic fast solar wind. In and near the coronal hole base, the turbulent fluctuations are predominantly nonresonantly generated by pseudo-2D nonlinear interactions. As the fluctuations emerge from the coronal hole base, they propagate resonantly in the field-aligned direction primarily as Alfvén waves

  14. DEPOSITION OF PARTICLES IN TURBULENT PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Luo; Suyuan Yu

    2006-01-01

    The deposition of particles in turbulent pipe flow was investigated in terms of two mechanisms, turbulent and thermophoretic. A general equation incorporating these two mechanisms was formulated to calculate the deposition efficiency of aerosol particles in turbulent pipe flow together with thermophoretic deposition. The validity of the equation was confirmed by good agreement between calculated and measured results.

  15. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  16. Turbulent Transport in a Three-dimensional Solar Wind

    Science.gov (United States)

    Shiota, D.; Zank, G. P.; Adhikari, L.; Hunana, P.; Telloni, D.; Bruno, R.

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  17. Three Kinds of Velocity Structure Function in Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; JIANG Nan

    2004-01-01

    Based on the local multi-scale eddy structures in turbulent flows, we elucidate the essential difference between the real turbulent field with a finite Reynolds number and the Kolmogorov fully developed random field. The motion of fluid particles in the real turbulent field is not fully random. There exist multi-scale structures due to the effect of viscosity. Actually the movements of fluid particles in the turbulent field are restricted by such eddy structures. Furthermore, concept of the locally averaged velocity structure function is put forward to describe the relative strain distortion of two adjacent turbulent eddy structures at a certain scale. The time sequence of the longitudinal velocity component at different vertical locations in turbulent boundary layer has been elaborately measured by the constant temperature anemometry of model IFA-300 in a wind tunnel. The experiment proves that the locally averaged velocity structure function is in agreement with the wavelet-coefficient structure function.

  18. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  19. Investigation of wake characteristics in wind farm varying turbulent inflow condition

    Science.gov (United States)

    Na, Jisung; Koo, Eunmo; Domingo, Munoz-Esparza; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2016-11-01

    In this study, we investigate the wake characteristics in wind farm varying turbulent property at inlet condition. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM). The wake characteristics in wind farm is important mainly in performance of wind farm because non-fully recovered wake induced by upstream wind turbines interferes power generation at downstream wind turbines. Turbulent inflow which contains the information of turbulence in atmospheric boundary layer is one of the key factors for describing the wake in wind farm accurately. We perform the quantitative analysis of velocity deficit and turbulent intensity in whole cases. In the comparison between cases with and without turbulent inflow, we observe that wake in case with turbulent inflow is more diffused to span-wise direction. And we analyze the coherent structures behind wind turbines at each row. Through above-analysis, we reveal how the wake is interacted with performance of wind farm. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No.2015R1A5A1037668).

  20. Multiple collisions in turbulent flows

    CERN Document Server

    kuhle, Michel Voß; Wilkinson, Michael; Pumir, Alain

    2013-01-01

    In turbulent suspensions, collision rates determine how rapidly particles coalesce or react with each other. To determine the collision rate, many numerical studies rely on the 'Ghost Collision Approximation' (GCA), which simply records how often pairs of point particles come within a threshold distance. In many applications, the suspended particles stick (or in the case of liquid droplets, coalesce) upon collision, and it is the frequency of first contact which is of interest. If a pair of 'ghost' particles undergoes multiple collisions, the GCA may overestimate the true collision rate. Here, using fully resolved Direct Numerical Simulations of turbulent flows at moderate Reynolds number (R_\\lambda = 130), we investigate the prevalence and properties of multiple collisions. We demonstrate that the GCA leads to a systematic overestimate of the collision rate, which is of the order of 15% when the particle inertia is small, and slowly decreases when inertia increases. We investigate the probability P(N) for a ...

  1. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  2. Measuring the Turbulent Cascade in the Solar Wind

    Science.gov (United States)

    MacBride, B. T.; Forman, M. A.; Smith, C. W.

    2006-12-01

    Kolmogorov's famous 4/5 law for the Navier-Stokes equation states that in isotropic hydrodynamic (HD) turbulence, the third moment of longitudinal velocity fluctuations at a spatial distance L is (4/5) ɛ ěrt L ěrt where ɛ is the turbulent energy cascade rate = heating rate per unit mass. A definite, signed, third moment is a fundamental property of the turbulent velocity fluctuations arising from the non-linear term in the Navier-Stokes equation, the only direct indicator that a cascade exists, the only measure of what direction that cascade takes (to smaller or larger spatial scales), and the truest indication of the cascade rate. The solar wind is MHD, however, and its turbulence is anisotropic. Dasso et al. (2005) perform a study on the anisotropy in the solar wind as a function of flow speed and find that there exists "quasi-two-dimensional" turbulence in low speed streams and a one dimensional "slab" structure in high speed flow. Politano and Pouquet (1998; PP) have derived an exact expression, valid in anisotropic situations, for the divergence with lag vector L of a certain vector third moment of the fluctuations in the Elsasser variables as a function of L. We perform an analysis of the third-order moment derived by PP. We use 8 years of ACE combine 64-s magnetic field and plasma measurements in variably defined subsets to compute the Elsasser variables in mean-field coordinates for different solar wind conditions (high/low wind speed, yearly, etc.). Most significantly, we attempt to separately resolve parallel and perpendicular cascades relative to the mean magnetic field. We find (1) the third moment structure functions are approximately proportional to lag as expected, (2) the inferred energy dissipation rate for outward-moving waves is larger than for inward-moving waves with many intervals showing evidence of an inverse cascade of the minority component, (3) the total energy-dissipation rate inferred by this method is frequently in disagreement

  3. Numerical modeling of the wind flow over a transverse dune

    OpenAIRE

    Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.

    2013-01-01

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dep...

  4. Anisotropy in solar wind plasma turbulence.

    Science.gov (United States)

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  5. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  6. Turbulent fluctuations around Bjorken flow

    CERN Document Server

    Floerchinger, Stefan

    2011-01-01

    We study the evolution of local event-by-event deviations from smooth average fluid dynamic fields, as they can arise in heavy ion collisions from the propagation of fluctuating initial conditions. Local fluctuations around Bjorken flow are found to be governed by non-linear equations whose solutions can be characterized qualitatively in terms of Reynolds numbers. Perturbations at different rapidities decouple quickly, and satisfy (after suitable coordinate transformations) an effectively two-dimensional Navier-Stokes equation of non-relativistic form. We discuss the conditions under which non-linearities in these equations cannot be neglected and turbulent behavior is expected to set in.

  7. Approximate Model for Turbulent Stagnation Point Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  8. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    Science.gov (United States)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  9. ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto [Department of Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Inoue, Tsuyoshi [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Inutsuka, Shu-ichiro, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp, E-mail: inouety@phys.aoyama.ac.jp, E-mail: inutsuka@nagoya-u.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2012-08-10

    In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.

  10. Non-steady wind turbine response to daytime atmospheric turbulence.

    Science.gov (United States)

    Nandi, Tarak N; Herrig, Andreas; Brasseur, James G

    2017-04-13

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'.

  11. Non-steady wind turbine response to daytime atmospheric turbulence

    Science.gov (United States)

    Nandi, Tarak N.; Herrig, Andreas; Brasseur, James G.

    2017-03-01

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue 'Wind energy in complex terrains'.

  12. The Solar Wind as a Magnetofluid Turbulence Laboratory

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    The solar wind is the Sun's exosphere. As the solar atmosphere expands into interplanetary space, it is accelerated and heated. Data from spacecraft located throughout the heliosphere have revealed that this exosphere has velocities of several hundred kilometers/sec, densities at Earth orbit of about 5 particles/cu cm, and an entrained magnetic field that at Earth orbit that is about 5 10-5 Gauss. A fascinating feature of the solar wind is that the magnetic field fluctuates in a way that is highly reminiscent of "Alfven waves, i.e., the fluctuating magnetic fields are more-or-less aligned with fluctuations in the velocity of the plasma and, with proper normalization, have approximately equal magnitudes. The imperfect (observed) alignment leads to a variety of complex interactions. In many respects, the flow patterns appear to be an example of fully developed magneto fluid turbulence. Recently, the dissipation range of this turbulence has been studied using search coil magnetometer data from the STAFF instrument on the four Cluster spacecraft. I will attempt to give an overview of selected properties of this large-scale and small-scale turbulence.

  13. Improving lidar turbulence estimates for wind energy

    Science.gov (United States)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  14. Statistical parameters of thermally driven turbulent anabatic flow

    Science.gov (United States)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  15. The Nature of Subproton Scale Turbulence in the Solar Wind

    CERN Document Server

    Chen, C H K; Xia, Q; Perez, J C

    2013-01-01

    The nature of subproton scale fluctuations in the solar wind is an open question, partly because two similar types of electromagnetic turbulence can occur: kinetic Alfven turbulence and whistler turbulence. These two possibilities, however, have one key qualitative difference: whistler turbulence, unlike kinetic Alfven turbulence, has negligible power in density fluctuations. In this Letter, we present new observational data, as well as analytical and numerical results, to investigate this difference. The results show, for the first time, that the fluctuations well below the proton scale are predominantly kinetic Alfven turbulence, and, if present at all, the whistler fluctuations make up only a small fraction of the total energy.

  16. Turbulence characteristics in a supersonic cascade wake flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1994-10-01

    The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.

  17. Aeroacoustic Computations for Turbulent Airfoil Flows

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2009-01-01

    The How-acoustic splitting technique for aeroacoustic computations is extended to simulate the propagation of acoustic waves generated by three-dimensional turbulent flows. In the flow part, a subgrid-scale turbulence model (the mixed model) is employed for large-eddy simulations. The obtained in...

  18. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  19. An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2016-08-01

    Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.

  20. Solar Wind Turbulence and the Role of Ion Instabilities

    CERN Document Server

    Alexandrova, Olga; Sorriso-Valvo, Luca; Horbury, Timothy S; Bale, Stuart D

    2013-01-01

    Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: weakness of collisional dissipation and presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field. Solar wind turbulence is compressible in nature. The spectrum of velocity fluctuations do not follow magnetic field one. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuat...

  1. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  2. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    Science.gov (United States)

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  3. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    Science.gov (United States)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  4. Residual Energy Spectrum of Solar Wind Turbulence

    CERN Document Server

    Chen, C H K; Salem, C S; Maruca, B A

    2013-01-01

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 years of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of sigma_r = -0.19 and mean Alfven ratio of r_A = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cros...

  5. The Extraction of Anisotropic Contributions in Turbulent Flows

    CERN Document Server

    Arad, I; Kurien, S; Lvov, V S; Procaccia, I; Sreenivasan, K R; Arad, Itai; Dhruva, Brindesh; Kurien, Susan; L'vov, Victor S.; Procaccia, Itamar

    1998-01-01

    We analyze turbulent velocity signals measured by two probes in the atmosphere, both at the height of 35 meters but displaced by 40 cm nominally orthogonal to the mean wind. Choosing a suitable coordinate system with respect to that of the mean wind, we derive theoretical forms for second order structure functions, and fit them to experimental data. We show that the effect of flow anisotropy is small on the longitudinal component but significant on the transverse component. The data provide an estimate of a universal exponent from among a hierarchy that governs the decay of flow anisotropy with the scale-size.

  6. Effects of turbulence and flow inclination on the performance of cup anemometers in the field

    DEFF Research Database (Denmark)

    Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.

    2001-01-01

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...

  7. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    Science.gov (United States)

    Gogoberidze, G.; Voitenko, Y. M.

    2016-11-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfvén waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index -1 is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified -1 spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top of non-uniform plasma flows.

  8. Secondary turbulent flow in an infinte bend

    DEFF Research Database (Denmark)

    Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen

    1999-01-01

    The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... is formed near the surface at the outer bank. This cell might help to stabilise the bank and hereby be an important factor for the morphology in a meandering river. In the laminar runs stability criterion related to a Dean number was estabilshed. In the simulations with the k-e model and the Reynolds stress...... model, the influence of the curvature ratio and cross section geometry on the vortex pattern is investigated. Furthermore, it is demonstrated that an-isotropy of turbulence plays an important role for the structure of flow pattern and existence of an extra flow cell....

  9. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  10. Wind velocity measurements under turbulent conditions using a sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Heisselmann, Hendrik; Hoelling, Michael; Schulte, Bianca; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    A well known problem of cup anemometry is the so-called overspeeding due to its momentum of inertia. As in nature turbulent flow conditions are predominant, cup anemometry leads to a wrong estimation of wind speeds. While cup anemometers do not provide the necessary time resolution to measure high frequency wind fluctuations, hot-wire anemometers are easily damaged under rough weather conditions. Therefore a robust, fast responding sphere anemometer was developed. The anemometer uses the thrust generated by the drag force on a sphere mounted on a flexible rod to detect wind velocities in two dimensions. The deflection of the rod is proportional to the drag force and can be measured either by means of a light pointer or by use of strain gauges. The two different measurement techniques were compared. The dynamic behaviour of the thrust anemometer was studied under laboratory conditions using a wind gust generator. The characteristics of different sphere-types and different rod materials were evaluated in order to optimize the setup. Results of open air measurements with hot-wire anemometer, sonic anemometer and sphere anemometer were compared by statistical methods.

  11. Identifying turbulent flow in carbonate aquifers

    Science.gov (United States)

    Worthington, Stephen R. H.; Soley, Robert W. N.

    2017-09-01

    Turbulent flow has a different hydraulic response compared to laminar flow and so it is important to be able to identify its occurrence in an aquifer, and to predict where it is likely to be found. Turbulent flow is associated with large apertures and rapid velocities, and these occur most frequently in carbonate aquifers. Methods for identifying turbulent flow include correlating spring discharge with head variation, calculating Reynolds numbers from spring discharge and tracer velocity, and plotting the spatial variation of head differences between high flow and low flow. The probability of turbulent flow increases as a function of permeability and of spring discharge, and the probability increases in a downgradient direction in an aquifer. Spring discharge is a key parameter for evaluating the presence of turbulent flow, which is likely to occur where a spring with a discharge > 1 L/s is fed by a single channel. Turbulent flow appears to be a major contributing factor to the occurrence of groundwater flooding in carbonate aquifers.

  12. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be m

  13. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  14. 3-D Wind and Turbulence Measurement System for UAV Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ wind and turbulence measurements play a key role in the support and validation of Earth science missions using spaced-based technology. NASA has been using...

  15. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  16. On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    2015-01-01

    to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...

  17. On Electron-scale Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.; Nariyuki, Y.; Saito, S.; Gary, S. P.

    2016-08-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  18. Improving Lidar Turbulence Estimates for Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  19. Numerical simulation of turbulent slurry flows

    Science.gov (United States)

    Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.

    2016-11-01

    Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.

  20. Quantifying the Effect of Lidar Turbulence Error on Wind Power Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2016-01-01

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST

  1. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels;

    2014-01-01

    , superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...... as input for simulations with a wind turbine, represented by an actuator line model, to evaluate the development of turbulence in a wind turbine wake. The resulting turbulence intensity and spectral distribution, as well as the meandering of the wake, are compared to field data. Overall, the performance...

  2. Turbulence modelling of thermal plasma flows

    Science.gov (United States)

    Shigeta, Masaya

    2016-12-01

    This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.

  3. Using Dynamically Coupled Turbine/Wind Simulations to Investigate the Influence of Atmospheric Turbulence in Turbine Wake Recovery

    Science.gov (United States)

    Koo, E.; Linn, R.; Bossert, J. A.; Kelley, N. D.; Lundquist, J. K.

    2011-12-01

    Ambient atmospheric turbulence interacts with spinning turbines, which modify the intensity and spectra of the turbulence. This turbine-influenced turbulent wind field creates the environment surrounding downstream turbines in a wind farm, thus controlling the amount of wind energy available for harvesting as well as the nature of aerodynamic loads on the blades which cause wear-and-tear of the wind turbines. The conditions to which downstream turbines are exposed, their productivity, and potentially their lifespan is a function of their position within the turbulent wake of upstream turbines. In order to increase our efficiency of energy capture in wind farms and optimize turbine arrangements for both off-shore and terrestrial settings where the wind conditions can be very different, it is essential to understand the influences that various environmental conditions have on the turbulence within wind farms. It is important to find ways of studying the evolution of turbulence as it interacts with turbines and as it advects downstream. It is also important to connect properties of the turbulence with the dynamic and heterogeneous nature of the loads that are applied to turbine blades. Unfortunately, full-scale wind turbine experiments are costly and it is extremely difficult to analyze the dynamic evolution of the full three-dimensional flow field upwind and downwind of wind turbines for a broad set of operating conditions. Numerical simulation tools can be used to perform preliminary investigation of turbine wake flow fields, thus guiding and helping interpret measurement schemes for the limited number of experiments that will be performed. By using numerical models to study the influence of different ambient conditions for different turbine spacing it is possible to develop a better understanding of how terrestrial experiments might relate to off-shore conditions where experiments are more difficult. A numerical technique, WindBlade, has been developed for

  4. Turbulent pipe flows subjected to temporal decelerations

    Science.gov (United States)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  5. Numerical study of how stable stratification affects turbulence instabilities above a forest cover: application to wind energy

    Science.gov (United States)

    Chaudhari, A.; Conan, B.; Aubrun, S.; Hellsten, A.

    2016-09-01

    Forest areas are of increasing interest for the wind energy industry. However, they induce complex flows with strong shear and high turbulence levels. Stably stratified atmospheric conditions, typical during nighttime and especially in winter, add to the challenge of accurately estimating wind resources. Such conditions typically imply strong wind shear and cause larger structural fatigue loads to wind turbines. In this work, large-eddy simulations are performed in neutral and stable conditions over a forest to analyze the influence of the combined effect of forest and thermal stabilities on the unsteady characteristics of the wind flow. Taking advantage of the unsteady resolution provided by the simulations, turbulent characteristics of each thermal stability including the organization of turbulent structures are presented. The resulting comparison between the two cases is put into perspective for wind energy applications.

  6. Measurement of turbulence spectra using scanning pulsed wind lidars

    NARCIS (Netherlands)

    Sathe, A.; Mann, J.

    2012-01-01

    Turbulent velocity spectra, as measured by a scanning pulsed wind lidar (WindCube), are analyzed. The relationship between ordinary velocity spectra and lidar derived spectra is mathematically very complex, and deployment of the three-dimensional spectral velocity tensor is necessary. The resulting

  7. Instabilities of flows and transition to turbulence

    CERN Document Server

    Sengupta, Tapan K

    2012-01-01

    Introduction to Instability and TransitionIntroductionWhat Is Instability?Temporal and Spatial InstabilitySome Instability MechanismsComputing Transitional and Turbulent FlowsFluid Dynamical EquationsSome Equilibrium Solutions of the Basic EquationBoundary Layer TheoryControl Volume Analysis of Boundary LayersNumerical Solution of the Thin Shear Layer (TSL) EquationLaminar Mixing LayerPlane Laminar JetIssues of Computing Space-Time Dependent FlowsWave Interaction: Group Velocity and Energy FluxIssues of Space-Time Scale Resolution of FlowsTemporal Scales in Turbulent FlowsComputing Time-Averag

  8. Large-eddy simulation of turbulent flow using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R.C.

    1995-02-15

    The equations of motion describing turbulent flows (in both the low and high Reynolds-number regimes) are well established. However, present day computers cannot meet the enormous computational requirement for numerically solving the governing equations for common engineering flows in the high Reynolds number turbulent regime. The characteristics that make turbulent, high Reynolds number flows difficult to simulate is the extreme range of time and space scales of motion. Most current engineering calculations are performed using semi-empirical equations, developed in terms of the flow mean (average) properties. These turbulence{open_quote} models{close_quote} (semi-empirical/analytical approximations) do not explicitly account for the eddy structures and thus, the temporal and spatial flow fluctuations are not resolved. In these averaging approaches, it is necessary to approximate all the turbulent structures using semi-empirical relations, and as a result, the turbulence models must be tailored for specific flow conditions and geometries with parameters obtained (usually) from physical experiments. The motivation for this research is the development of a finite element turbulence modeling approach which will ultimately be used to predict the wind flow around buildings. Accurate turbulence models of building flow are needed to predict the dispersion of airborne pollutants. The building flow turbulence models used today are not capable of predicting the three-dimensional separating and reattaching flows without the manipulation of many empirical parameters. These empirical parameters must be set by experimental data and they may vary unpredictably with building geometry, building orientation, and upstream flow conditions.

  9. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge;

    2015-01-01

    This paper describes a new method to estimate the undisturbed inflow field of a wind turbine based on measurements obtained from one or more five-hole pitot tubes mounted directly on the blades. Based on the measurements, the disturbance caused by the wind turbine is estimated using aerodymanic...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...... profiles are derived. It is expected that this method will lead to a new and effective experimental method to characterize the incoming flow field to a wind turbine and thus contribute to the understanding of wind turbine loads....

  10. Generation of reproducible turbulent inflows for wind tunnel applications using active grids

    Science.gov (United States)

    Kroeger, Lars; Guelker, Gerd; Peinke, Joachim

    2016-11-01

    Turbulent flows are omnipresent in nature. In the case of wind energy applications, reproducible measurements in situ are quite difficult, therefore research in turbulence demands for experimental setups with reproducible turbulent flow fields. To simulate the situation from the outside in a wind tunnel an active grid can be used. It consists of horizontal and vertical rotating axes with attached square flaps which could be moved individually. This dynamically driven setup and the possibility to repeat the motions of the active grid axes permits to generate reproducible, statistically well defined turbulence with a wide range of statistical behavior. The objective of this work is to create turbulence with two active grids of different dimensions, to establish comparable setups in our available wind tunnel facilities. In this study the wake of the active grids was investigated by high speed PIV and hotwire measurements. To determine the similarities and limitations between the setups of different dimensions the hotwire data is compared using higher order statistics, increment analysis and the power spectra. The PIV data is used to observe spatial correlations and the prevailing length scales in the turbulent wakes. First results regarding this comparison are shown.

  11. Turbulent Flow Measurement in Vortex Settling Basin

    Directory of Open Access Journals (Sweden)

    Jafar Chapokpour

    2011-12-01

    Full Text Available This paper presents the findings of an experimental study on the three-dimensional turbulent flow field in vortex settling basin. An ADV (Acoustic Doppler Velocity Meter were used to catch 3D velocitycomponents inside the basin. Detailed measurements of time-averaged velocity components, turbulent intensity components and turbulent kinetic energy were determined at different radial sections of chamber. Also the normalized time averaged absolute velocity of 3D components in contour type exhibition were conducted and it was found that the absolute velocity generally is influenced by u component of flow. It trends from high magnitude in basin center to the constant magnitude in basin side wall. The normalized turbulent intensity ofthree components was investigated individually. It was found that intensity of 3D components in vicinity of central air core is higher than other regions, decreasing by moving towards basin sidewall except for the sections that influenced directly by entrance flow jet and sidewall exiting overflow. The results of turbulence kinetic energy also had the same interpretation like turbulence intensity and affected by the same boundary conditions which cover turbulence intensity of 3 velocity components overly.

  12. Turbulence Modulation and Particle Segregation in a Turbulent Channel Flow

    Science.gov (United States)

    Fong, Kee Onn; Toloui, Mostafa; Amili, Omid; Hong, Jiarong; Coletti, Filippo

    2016-11-01

    Particle-laden flows are ubiquitous in biological, environmental, and engineering flows, but our understanding of the mechanism by which particles modulate turbulence is incomplete. Simulations involve a wide range of scales, and shall be corroborated by measurements that reconstruct the motion of both the continuous and dispersed phases. We present experimental observations on the interaction between inertial particles and turbulent flow through a vertical channel in two-way coupled regime. The working fluid is air laden with size-selected glass particles, which we investigate by planar particle image velocimetry and digital inline holography. Unlike most previous experiments, we focus on a regime in which particle segregation and turbulence modulation are both strong. PIV shows that turbulence modulation is especially pronounced near the wall, where particles accumulate by turbophoresis. The segregation, however, is much weaker than what suggested by one-way coupled simulations. Results from digital holography confirm the trends in particle concentration and velocities, and additionally provide information on the three-dimensional clustering. The findings are compared to previous investigations and discussed in the context of modeling strategies.

  13. Crab Flares due to Turbulent Dissipation of the Pulsar Striped Wind

    Science.gov (United States)

    Zrake, Jonathan

    2016-05-01

    We interpret γ-ray flares from the Crab Nebula as the signature of turbulence in the pulsar’s electromagnetic outflow. Turbulence is triggered upstream by dynamical instability of the wind’s oscillating magnetic field and accelerates non-thermal particles. On impacting the wind-termination shock, these particles emit a distinct synchrotron component {F}ν ,{flare}, which is constantly modulated by intermittency of the upstream plasma flow. Flares are observed when the high-energy cutoff of {F}ν ,{flare} emerges above the fast-declining nebular emission around 0.1-1 GeV. Simulations carried out in the force-free electrodynamics approximation predict the striped wind to become fully turbulent well ahead of the wind-termination shock, provided its terminal Lorentz factor is ≲ {10}4.

  14. Wind flow conditions in offshore wind farms. Validation and application of a CFD wake model

    Energy Technology Data Exchange (ETDEWEB)

    Westerhellweg, Annette; Canadillas, Beatriz; Kinder, Friederike; Neumann, Thomas [Deutsches Windenergie-Institut GmbH (DEWI), Wilhelmshaven (Germany)

    2013-04-01

    Since August 2009, the first German offshore wind farm 'alpha ventus' is operating close to the wind measurement platform FINO1. Within the research project RAVE-OWEA the wind flow conditions in 'alpha ventus' were assessed in detail, simulated with a CFD wake model and compared with the measurements. Wind data measured at FINO1 have been evaluated for wind speed reduction and turbulence increase in the wake. Additionally operational data were evaluated for the farm efficiency. The atmospheric stability has been evaluated by temperature measurements of air and water and the impact of atmospheric stability on the wind conditions in the wake has been assessed. As an application of CFD models the generation of power matrices is introduced. Power matrices can be used for the continual monitoring of the single wind turbines in the wind farm. A power matrix based on CFD simulations has been created for 'alpha ventus' and tested against the measured data. (orig.)

  15. Optimization of a small passive wind turbine based on mixed Weibull-turbulence statistics of wind

    OpenAIRE

    2008-01-01

    A "low cost full passive structure" of wind turbine system is proposed. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. An original wind profile generation process mixing Weibull and turbulence statistics is presented. The optimization results are compared with those obtained from a particular but typical time cycle of wind speed.

  16. Recent progress in astrophysical plasma turbulence from solar wind observations

    CERN Document Server

    Chen, C H K

    2016-01-01

    This paper summarises some of the recent progress that has been made in understanding astrophysical plasma turbulence in the solar wind, from in situ spacecraft observations. At large scales, where the turbulence is predominantly Alfvenic, measurements of critical balance, residual energy, and 3D structure are discussed, along with comparison to recent models of strong Alfvenic turbulence. At these scales, a few percent of the energy is also in compressive fluctuations, and their nature, anisotropy, and relation to the Alfvenic component is described. In the small scale kinetic range, below the ion gyroscale, the turbulence becomes predominantly kinetic Alfven in nature, and measurements of the spectra, anisotropy, and intermittency of this turbulence are discussed with respect to recent cascade models. One of the major remaining questions is how the turbulent energy is dissipated, and some recent work on this question, in addition to future space missions which will help to answer it, are briefly discussed.

  17. Simulation of turbulent magnetic reconnection in the small-scale solar wind

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some observational examples for the possible occurrence of the turbulent magnetic reconnection in the solar wind are found by analysing Helios spacecraft's high resolution data. The phenomena of turbulent magnetic reconnections in small scale solar wind are simulated by introducing a third order accuracy upwind compact difference scheme to the compressible two_dimensional MHD flow. Numerical results verify that the turbulent magnetic reconnection process could occur in small scale interplanetary solar wind, which is a basic feature characterizing the magnetic reconnection in high_magnetic Reynolds number (RM=2 000-10 000) solar wind. The configurations of the magnetic reconnection could evolve from a single X_line to a multiple X-line reconnection, exhibiting a complex picture of the formation, merging and evolution of magnetic islands, and finally the magnetic reconnection would evolve into a low_energy state. Its life_span of evolution is about one hour order of magnitude. Various magnetic and flow signatures are recorded in the numerical test for different evolution stages and along different crossing paths, which could in principle explain and confirm the observational samples from the Helios spacecraft. These results are helpful for revealing the basic physical processes in the solar wind turbulence.

  18. Clustering of Aerosols in Atmospheric Turbulent Flow

    CERN Document Server

    Elperin, T; L'vov, V; Liberman, M A; Rogachevskii, I

    2007-01-01

    A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed...

  19. DISPERSION OF CYLINDRICAL PARTICLES IN TURBULENT FLOWS

    Institute of Scientific and Technical Information of China (English)

    GAO Zhen-yu; LIN Jian-zhong

    2004-01-01

    With consideration of the Stokes drag and virtual mass force, the equations for mean and fluctuating velocities in rotation and translation were given for rigid cylindrical particles moving in a turbulent flow. Then the rotational and translational dispersion coefficients of particle were derived. The relationships between the dispersion coefficients and flow length scale as well as particle characteristic parameters were analyzed. The resulting dispersion coefficients were proved to decrease as the particle length increases. The conclusions are helpful for the further research on the motion of cylindrical particles in turbulent flows.

  20. Controlling Flow Turbulence Using Local Pinning Feedback

    Institute of Scientific and Technical Information of China (English)

    TANG Guo-Ning; HU Gang

    2006-01-01

    Flow turbulence control in two-dimensional Navier-Stokes equation is considered.By applying local pinning control only to a sjngle component of flow velocity field,the flow turbulence can be controlled to desirable targets.It is found that with certain number of controllers there exist an optimal control strength at which control error takes minimum value,and larger and smaller control strengths give worse control efficiency.The phvsical mechanism underlying these strange control results is analysed based on the interactions between different types of modes.

  1. The pdf approach to turbulent flow

    Science.gov (United States)

    Kollmann, W.

    1990-01-01

    This paper provides a detailed discussion of the theory and application of probability density function (pdf) methods, which provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. The basic laws governing the flow of Newtonian fluids are set up in the Eulerian and the Lagrangian frame, and the exact and linear equations for the characteristic functionals in those frames are discussed. Pdf equations in both frames are derived as Fourier transforms of the equations of the characteristic functions. Possible formulations for the nonclosed terms in the pdf equation are discussed, their properties are assessed, and closure modes for the molecular-transport and the fluctuating pressure-gradient terms are reviewed. The application of pdf methods to turbulent combustion flows, supersonic flows, and the interaction of turbulence with shock waves is discussed.

  2. 1/f noise in turbulent flows

    CERN Document Server

    Herault, Johann; Fauve, Stephan

    2016-01-01

    We report the experimental observation of $1/f$ fluctuations in three different turbulent flow configurations: the large scale velocity driven by a two-dimensional turbulent flow, the magnetic field generated by a turbulent swirling flow of liquid sodium and the pressure fluctuations due to vorticity filaments in a swirling flow. For these three systems, $1/f$ noise is shown to result from the dynamics of coherent structures that display transitions between a small number of states. The interevent duration is distributed as a power-law. The exponent of this power-law and the nature of the dynamics (transition between symmetric states or asymmetric ones) select the exponent of the $1/f$ fluctuations.

  3. Turbulence in wind turbine wakes under different atmospheric conditions from static and scanning Doppler LiDARs

    Science.gov (United States)

    Kumer, Valerie; Reuder, Joachim

    2016-04-01

    Wake characteristics are of great importance for wind park performances and turbine loads. Wind tunnel experiments helped to validate wake model simulations under neutral atmospheric conditions. However, recent studies show strongest wake characteristics and power losses in stable atmospheric conditions. Considering all three occurring atmospheric conditions this study presents a turbulence analysis of wind turbine wake flows measured by static and scanning Doppler LiDARs at the coast of the Netherlands. We use data collected by three Windcubes v1, a scanning Windcube 100S and sonic anemometers during the Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W). Turbulence parameters such as Turbulence Intensity (TI) and turbulent kinetic energy (TKE) are retrieved from the collected raw data. Results show highest turbulence on the flanks of the wake where strong wind shear dominates. On average the spatial turbulence distribution becomes more homogeneous with conical areas of enhanced TI. Highest turbulence and strongest wind deficits occur during stable weather conditions. Despite the ongoing research on the reliability of turbulence retrievals of Doppler LiDAR data, the results are consistent with sonic anemometer measurements and show promising opportunities for a qualitative study of wake characteristics such as wake strength and wake peak frequencies.

  4. Turbulence measurements in axisymmetric supersonic boundary layer flow in adverse pressure gradients

    Science.gov (United States)

    Gootzait, E.; Childs, M. E.

    1977-01-01

    Mean flow and turbulence measurements are presented for adiabatic compressible turbulent boundary layer flow in adverse pressure gradients. The gradients were induced on the wall of an axially symmetric wind tunnel by contoured centerbodies mounted on the wind tunnel centerline. The boundary layer turbulence downstream of a boundary layer bleed section in a zero pressure gradient was also examined. The measurements were obtained using a constant temperature hot-wire anemometer. The adverse pressure gradients were found to significantly alter the turbulence properties of the boundary layer. With flow through the bleed holes there was a measureable decrease in the rms longitudinal velocity fluctuations near the wall and the turbulent shear stress in the boundary layer was reduced.

  5. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  6. The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process

    Science.gov (United States)

    Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.

    2012-12-01

    Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.

  7. Liquid infused surfaces in turbulent channel flow

    Science.gov (United States)

    Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus

    2014-11-01

    A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  8. Marine particle aggregate breakup in turbulent flows

    Science.gov (United States)

    Rau, Matthew; Ackleson, Steven; Smith, Geoffrey

    2016-11-01

    The dynamics of marine particle aggregate formation and breakup due to turbulence is studied experimentally. Aggregates of clay particles, initially in a quiescent aggregation tank, are subjected to fully developed turbulent pipe flow at Reynolds numbers of up to 25,000. This flow arrangement simulates the exposure of marine aggregates in coastal waters to a sudden turbulent event. Particle size distributions are measured by in-situ sampling of the small-angle forward volume scattering function and the volume concentration of the suspended particulate matter is quantified through light attenuation measurements. Results are compared to measurements conducted under laminar and turbulent flow conditions. At low shear rates, larger sized particles indicate that aggregation initially governs the particle dynamics. Breakup is observed when large aggregates are exposed to the highest levels of shear in the experiment. Models describing the aggregation and breakup rates of marine particles due to turbulence are evaluated with the population balance equation and results from the simulation and experiment are compared. Additional model development will more accurately describe aggregation dynamics for remote sensing applications in turbulent marine environments.

  9. A phenomenological model for the dynamic response of wind turbines to turbulent wind

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, Alexander; Peinke, Joachim [Institut fur Physik, Universitat Oldenburg, D-26111 Oldenburg (Germany)

    2004-02-01

    To predict the average power output of a wind turbine, a response model is proposed which takes into account: (1) the delayed response to the longitudinal wind speed fluctuations; (2) a response function of the turbine with arbitrary frequency dependence; and (3) wind fields of arbitrary turbulence intensity. In the limit of low turbulence intensity, the dynamical ansatz as proposed in 1992 by Rosen and Sheinman is reproduced. It is shown, how the response function of the turbine can be obtained from simulation experiments of a specific wind turbine. For two idealized situations the dynamic effect of fluctuating wind is estimated at turbulence intensities 0{<=}I{sub u}{<=}0.5. At the special mean wind speed V=8m/s, the turbine response function is determined from simulation data published by Sheinman and Rosen in 1992 and 1994.

  10. Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea

    Science.gov (United States)

    Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.

    2015-12-01

    The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass

  11. Tackling turbulent flows in engineering

    CERN Document Server

    Dewan, Anupam

    2011-01-01

    Focusing on the engineering aspects of fluid turbulence, this volume offers solutions to the problem in a number of settings. Emphasizing real-world applications rather than mathematics, it will be a must-read text in both industrial and academic environments.

  12. Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    CERN Document Server

    Osman, K T; Gosling, J T; Greco, A; Servidio, S; Hnat, B; Chapman, S C; Phan, T D

    2014-01-01

    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, $\\mathbf{B}$, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in $\\mathbf{B}$, we find 87%-92% of reconnection exhausts and $\\sim$9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which ...

  13. Scaling of the electron dissipation range of solar wind turbulence

    OpenAIRE

    2013-01-01

    Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the s...

  14. THE INFLUENCE OF INTERMITTENCY ON THE SPECTRAL ANISOTROPY OF SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart, E-mail: chuanyitu@pku.edu.cn [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)

    2014-03-01

    The relation between the intermittency and the anisotropy of the power spectrum in the solar wind turbulence is studied by applying the wavelet technique to the magnetic field and flow velocity data measured by the WIND spacecraft. It is found that when the intermittency is removed from the turbulence, the spectral indices of the power spectra of the field and velocity turn out to be independent of the angle θ{sub RB} between the direction of the local scale-dependent background magnetic field and the heliocentric direction. The spectral index becomes –1.63 ± 0.02 for magnetic field fluctuations and –1.56 ± 0.02 for velocity fluctuations. These results may suggest that the recently found spectral anisotropy of solar wind power spectra in the inertial range could result from turbulence intermittency. As a consequence, a new concept is here proposed of an intermittency-associated sub-range of the inertial domain adjacent to the dissipation range. Since spectral anisotropy was previously explained as evidence for the presence of a ''critical balance'' type turbulent cascade, and also for the existence of kinetic Alfvén waves, this new finding may stimulate fresh thoughts on how to analyze and interpret solar wind turbulence and the associated heating.

  15. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  16. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    Science.gov (United States)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.

  17. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær;

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... and momentum conservations, the selfsimilarity of mean velocity profile and the eddy viscosity closure. The theoretical approach is validated using the numerical results obtained from large eddy simulations with an actuator line technique at 0.1% and 3% ambient turbulence level and ambient wind velocity of 10....... Therefore the theoretical determination of the power law for the wake expansion and the decay of the wake velocity deficit may not be valid in the case of the wake generated behind a wind turbine with low ambient turbulence and high thrust coefficient. Although at higher ambient turbulence levels or lower...

  18. Measurement of turbulence spectra using scanning pulsed wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    Turbulent velocity spectra, as measured by a scanning pulsed wind lidar (WindCube), are analyzed. The relationship between ordinary velocity spectra and lidar derived spectra is mathematically very complex, and deployment of the three-dimensional spectral velocity tensor is necessary. The resulting...... scanning lidar spectra depend on beam angles, line-of-sight averaging, sampling rate, and the full three-dimensional structure of the turbulence being measured, in a convoluted way. The model captures the attenuation and redistribution of the spectral energy at high and low wave numbers very well...

  19. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    Science.gov (United States)

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140

  20. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2014-01-01

    Full Text Available Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation, and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.

  1. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  2. On the properties of energy transfer in solar wind turbulence.

    Science.gov (United States)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  3. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  4. Response of a wind turbine blade to seismic and turbulent wind excitations

    Science.gov (United States)

    Hong, R. C. Y.

    The purpose was to investigate the dynamic behavior of a wind turbine blade under seismic and turbulent wind excitations. Toward this goal a procedure was developed in which the Markov process theory and its stochastic differential equation are used to obtain equations for statistical moments of blade response variables. Such equations then can be used to determine certain moment stability conditions for any given set of parameters and moment responses if the system is stable. The results show that for a constant rpm wind turbine generator the uncoupled flapping, coupled flap lagging and coupled flap lag torsion of a wind turbine blade are very stable under normal operating conditions, and that torsion has little influence on the dynamic behavior of flapping and leadlagging motions. If the system is stable, the effect of turbulence on moment responses is greater than that of an earthquake, therefore, turbulence is likely the main cause for structural fatigue of wind turbine blades.

  5. Predicted Impacts of Proton Temperature Anisotropy on Solar Wind Turbulence

    OpenAIRE

    Klein, Kristopher G; Howes, Gregory G.

    2015-01-01

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated s...

  6. Study on steady state wind and turbulence environments. [structure of wakes near buildings

    Science.gov (United States)

    Brundidge, K. C.

    1977-01-01

    The structure of wakes and how this structure is related to the size and shape of buildings and other obstacles, and to ambient winds, was investigated. Mean values of natural atmospheric flow were obtained and used in conjunction with theoretical relationships developed by dimensional analysis to establish a model of the flow in the wake. Results indicate that conventional and V/STOL aircraft passing through the wake during takeoff and landing would experience not only a change in turbulence level, but also a change in mean wind speed of a magnitude roughly equivalent to that of the eddy components.

  7. A dynamical model of plasma turbulence in the solar wind.

    Science.gov (United States)

    Howes, G G

    2015-05-13

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.

  8. Wind direction variability in Afternoon and Sunset Turbulence

    Science.gov (United States)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations

  9. Particle spin in a turbulent shear flow

    NARCIS (Netherlands)

    Mortensen, P.H.; Andersson, H.I.; Gillissen, J.J.J.; Boersma, B.J.

    2007-01-01

    The translational and rotational motions of small spherical particles dilutely suspended in a turbulent channel flow have been investigated. Three different particle classes were studied in an Eulerian-Lagrangian framework to examine the effect of the response times on the particle statistics. The r

  10. Data-parallel DNS of turbulent flow

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Veldman, A.E.P.; Emerson, DR; Ecer, A; Periaux, J; Satofuka, N

    1998-01-01

    This contribution deals with direct numerical simulation (DNS) of incompressible turbulent flows on parallel computers. We make use of the data-parallel model on shared memory systems as well as on a distributed memory machine. The combination of fast parallel computers and efficient numerical algor

  11. Slip Effects in Compressible Turbulent Channel Flow

    CERN Document Server

    Skovorodko, P A

    2012-01-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  12. Slip effects in compressible turbulent channel flow

    Science.gov (United States)

    Skovorodko, P. A.

    2012-11-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  13. Optimum Pipe Size Selection for Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Timothy A. AKINTOLA

    2009-07-01

    Full Text Available Pipelines are normally designed to deliver fluid at the required head and flow rate in a cost effective manner. Increase in conduit diameter leads to increase in annual capital costs, and decrease in operating costs. Selection of an optimum conduit diameter for a particular fluid flow will therefore be a vital economic decision. This paper presents a computer aided optimisation technique for determination of optimum pipe diameter for a number of idealized turbulent flow. Relationships were formulated connecting theories of turbulent fluid flow with pipeline costing. These were developed into a computer program, written in Microsoft Visual C++ language, for a high-level precision estimate of the optimum pipe diameter, through the least total cost approach. The validity of the program was ascertained through case studies, representative of fluids with different densities and compressibility. The optimum conduit diameter was found to increase linearly with increase in compressibility.

  14. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  15. Digital simulation of 3D turbulence wind field of Sutong Bridge based on measured wind spectra

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhou-hong ZONG; Ai-qun LI; Teng TONG; Jie NIU; Wen-ping DENG

    2012-01-01

    Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges.The prerequisite of time domain analysis is the accurate description of 3D turbulence winds.In this paper,some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted,considering the structural characteristics.The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent ID univariate stochastic processes.Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge,China,the measured spectra expressions are then presented using the nonlinear least-squares fitting method.Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique,and the relevant results derived from target spectra including measured spectra and recommended spectra are compared.The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra).The obtained turbulence simulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge,but references for structural anti-wind design in adjacent regions.

  16. On Turbulent Contribution to Frictional Drag in Wall-Bounded Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    LI Feng-Chen; KAWAGUCHI Yasuo; HISHIDA Koichi; OSHIMA Marie

    2006-01-01

    @@ We propose a simple model for turbulent contribution to the frictional drag in a wall-bounded turbulent flow based on the characteristic parameters of turbulent bursting events. It is verified on water and drag-reducing surfactant solution flows investigated by particle image velocimetry in experiments. It is obtained that the turbulent contribution to the skin friction factor is linearly proportional to the product of the spatial frequency and strength of turbulent bursts originated from the wall.

  17. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  18. Observations and Simulations of Magnetohydrodynamic Turbulence in the Solar Wind

    Science.gov (United States)

    Goldstein, M. L.

    2006-12-01

    Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecraft indicates that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence. Of particular interest is the origin of the two-component correlation function of magnetic fluctuations that was deduced from ISEE-3 data. A central issue to be resolved is whether the correlation function indicates the existence of a quasi-two- dimensional component of the turbulence, or reflects another origin, such as pressure-balanced structures or small velocity shears. In our efforts to simulate solar wind turbulence we have included a tilted rotating current heliospheric sheet as well as variety of waves (e.g., Alfvénic, quasi-two-dimensional, pressure balance structures) and microstreams. These simulations have replicated many of the observations, but challenges remain.

  19. Turbulence and Global Properties of the Solar Wind

    Science.gov (United States)

    Goldstein, Melvyn L.

    2010-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles the dayside cusps. Recently, new analyses of high time resolution magnetic field data from Cluster have offered a glimpse of how turbulence is dissipated, thus heating the ambient plasma.

  20. Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    王兵; 张会强; 王希麟

    2004-01-01

    The instantaneous and time-averaged statistic characteristics of the sub-grid scale (SGS) turbulent kinetic energy and SGS dissipation in a backward-facing step turbulent flow have been studied bylarge eddy simulation. The SGS turbulent kinetic energy and SGS turbulent dissipation vary in different flow regions and decrease with the flow developing spatially. The fluid molecular dissipation shares about 14% to 28% of the whole dissipation.

  1. Scaling of Compressible Magnetohydrodynamic Turbulence in the Fast Solar Wind

    Science.gov (United States)

    Banerjee, S.; Hadid, L. Z.; Sahraoui, F.; Galtier, S.

    2016-10-01

    The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently for compressible isothermal magnetohydrodynamics and in situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over a range of two decades of scales that is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify by two to four times the turbulent cascade rate with respect to the incompressible model in ∼ 10 % of the analyzed samples. This new estimated cascade rate is shown to provide the adequate energy dissipation required to account for the local heating of the non-adiabatic solar wind.

  2. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2011-12-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  3. Turbulent Poiseuille & Couette flows at high Re

    Science.gov (United States)

    Lee, Myoungkyu; Moser, Robert D.

    2016-11-01

    We present the results of direct numerical simulation (DNS) of high Re turbulent Poiseuille and Couette flows. Couette flow has been simulated with a streamwise (x) domain that is 100 πδ long at Reynolds number up to Reτ 500 . In addition Poiseuille flow simulations up to Reτ 5200 were performed. In Couette flow, extremely large scale motions, which are approximately 50 πδ long in the x-direction with very strong intensity, have been observed. In this presentation we will focus on a comparison between these two flows in terms of the vorticity-velocity co-spectra, which are interesting because of the relationship between the Reynolds stress and the velocity-vorticity correlation (∂y = - ). Also considered will be the spectra of the turbulent transport term in the evolution equation for the turbulent kinetic energy. In both (co)-spectra it is shown that the difference between the two flows at high Re are primarily at large scales. This work was supported by NSF (OCI-0749223 and PRAC Grant 0832634), and computation resources were provided by the Argonne Leadership Computing Facility through the Early Science, INCITE 2013 and Directors Discretionary Programs.

  4. Patterns of the turbulent Taylor-Couette flow

    Science.gov (United States)

    Prigent, Arnaud; Talioua, Abdessamad; Mutabazi, Innocent

    2016-11-01

    We are interested in the study of the transition to turbulence in the Taylor-Couette flow, the flow between two independently rotating coaxial cylinders. Once the geometry is fixed, the flow is controlled by the inner and outer Reynolds numbers and present a large variety of flow regimes. In counter-rotation, the transition is characterized by a succession of more or less turbulent flow regimes: intermittency with turbulent spots, spiral turbulence, featureless turbulence. For larger values of the inner Reynolds number, turbulent Taylor roll re-emerge from the featureless turbulence and remain for very large values of the Reynolds numbers. Bifurcations between different turbulent rolls states are even observed in the ultimate turbulence regime. Nevertheless the transition from the featureless turbulence to the turbulent rolls still requires a detailed study and the mechanism which causes and sustains turbulent spots or turbulent spirals remains unknown. In this study we present new experimental information on the organization of the flow for the different regimes with turbulence. The experiments are conducted in a Taylor-Couette flow with η = 0 . 8 . Stereo-Particle Image Velocimetry measurements and visualizations of the different flow regimes are realized and discussed. This work was supported by the ANR TRANSFLOW - ANR-13-BS09-0025.

  5. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    Science.gov (United States)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  6. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  7. Turbulent flow in longitudinally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.P.; Hirsa, A.; Jensen, M.K. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1996-09-01

    An experimental investigation of fully developed, steady, turbulent flow in longitudinally finned tubes has been performed. A two-channel, four-beam, laser-Doppler velocimeter was used to measure velocity profiles and turbulent statistics of air flow seeded with titanium dioxide particles. Mean velocities in axial, radial, and circumferential directions were measured over the tube cross sections and pressure drop in the tubes was measured at six stations along the test section length in order to calculate the fully developed friction factor. Four experimental tube geometries were studied: one smooth tube; two 8-finned tubes (fin height-to-radius ratios of 0.333 and 0.167), and one 16-finned tube (fin height-to-radius ratio of 0.167); detailed measurements were taken at air flow rates corresponding to Reynolds numbers of approximately 5,000, 25,000, and 50,000. Friction factor data were compared to literature results and showed good agreement for both smooth and finned tubes. The wall shear stress distribution varied significantly with reynolds number, particularly for Reynolds numbers of 25,000 and below. Maximum wall shear stress was found at the fin tip and minimum at the fin root. Four secondary flow cells were detected per fin (one in each interfin spacing and one in each core region for each fin); secondary flows were found to be small in comparison to the mean axial flow and relative magnitudes were unaffected by axial flow rate at Reynolds numbers above 25,000. The fluctuating velocities had a structure similar to that of the smooth tube in the core region while the turbulence in the interfin region was greatly reduced. The principal, primary shear stress distribution differed considerably from that of the smooth tube, particularly in the interfin region, and the orientation was found to be approximately in the same direction as the gradient of the mean axial velocity, supporting the use of an eddy viscosity formulation in turbulence modeling.

  8. DNS of turbulent flows of dense gases

    Science.gov (United States)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  9. Liquid Infused Surfaces in Turbulent Channel Flow

    Science.gov (United States)

    Fu, Matthew; Liu, Ying; Stone, Howard; Hultmark, Marcus

    2016-11-01

    Liquid infused surfaces have been proposed as a robust method for turbulent drag reduction. These surfaces consist of functionalized roughness elements wetted with a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates mobile, fluid-fluid interfaces, each of which can support a localized slip. Collectively, these interfaces yield a finite slip velocity at the effective surface, which has been demonstrated to reduce skin friction drag in turbulent flows. Retention of the lubricant layer is critical to maintaining the drag reduction effect. A turbulent channel-flow facility is used to characterize the drag reduction and robustness of various liquid infused surfaces. Micro-manufactured surfaces are mounted flush in the channel and exposed to turbulent flows. The retention of fluorescent lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Turbulence and entrainment length scales in large wind farms

    Science.gov (United States)

    Andersen, Søren J.; Sørensen, Jens N.; Mikkelsen, Robert F.

    2017-03-01

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue 'Wind energy in complex terrains'.

  11. Turbulence and entrainment length scales in large wind farms.

    Science.gov (United States)

    Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F

    2017-04-13

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'.

  12. Superhydrophobic surfaces in turbulent channel flow

    Science.gov (United States)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2016-11-01

    The drag reduction effect of superhydrophobic surfaces in turbulent channel flow is studied using direct numerical simulation. The volume of fluid (VOF) methodology is used to resolve the dynamics of the interface. Laminar flow simulations show good agreement with experiment, and illustrate the relative importance of geometry and interface boundary condition. An analytical solution for the multi-phase problem is obtained that shows good agreement with simulation. Turbulent simulations over a longitudinally grooved surface show drag reduction even in the fully wetted regime. The statistics show that geometry alone can cause an apparent slip to the external flow. Instantaneous plots indicate that the grooves prevent the penetration of near wall vorticity, yielding overall drag reduction. Results for spectra, wall pressure fluctuations and correlations will be presented. Unsteady effects on the air-vapor interface will be discussed. Results for random roughness surfaces will be presented. Supported by Office of Naval Research.

  13. Refinement of turbulent flow velocity characteristics

    Directory of Open Access Journals (Sweden)

    Y.V. Bryanskaya

    2013-10-01

    Full Text Available The basic laws of Prandtl semi-empirical turbulence theory were analyzed in the article. It was shown, that the Prandtl – Nikuradse logarithmic distribution of velocities are not strictly universal. The change of the first and second turbulence constants was analyzed on the basis of experimental data of I. Nikuradse. The logarithmic velocity profiles for smooth and rough pipes have been transformed. A united velocity logarithmic profile for flows in pipes, appropriate for any rate of hydraulic resistance was received. A more precise, consistent with the resistance laws, description of the kinematic structure of the flow with varying parameters of the velocity profiles was set. It was shown that the position of the average velocity point for the flow in pipe remained constant when the parameters of the velocity profile changed.

  14. Stochastic chaos in a turbulent swirling flow

    CERN Document Server

    Faranda, Davide; Saint-Michel, Brice; Wiertel, Cecile; Padilla, Vincent; Dubrulle, Berengere; Daviaud, Francois

    2016-01-01

    We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first reconstruct the associated turbulent attractor and then follow its route towards chaos. We further show that the experimental attractor can be modeled by stochastic Duffing equations, that match the quantitative properties of the experimental flow, namely the number of quasi-stationary states and transition rates among them, the effective dimensions, and the continuity of the first Lyapunov exponents. Such properties can neither be recovered using deterministic models nor using stochastic differential equations based on effective potentials obtained by inverting the probability distributions of the experimental global observables. Our findings open the way to low dimensional modeling of systems featuring a large number of degrees of freedom and multiple quasi-station...

  15. Relaminarisation of fully turbulent flow in pipes

    Science.gov (United States)

    Kuehnen, Jakob; Hof, Bjoern

    2014-11-01

    Drag reduction still remains one of the most alluring applications of turbulence control. We will show that flattening the streamwise velocity profile in pipes can force turbulent flow to decay and become laminar. Two different experimental control schemes are presented: one with a local modification of the flow profile by means of a stationary obstacle and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. Both control schemes act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. Since, in a smooth straight pipe, the flow remains laminar from that position a reduction in skin friction by a factor of 5 can be accomplished. We will present measurements with high-speed particle image velocimetry, measurements of the pressure drop and videos of the development of the flow during relaminarisation. The guiding fundamental principle behind our approach to control the velocity profile will be explained and discussed.

  16. Mirror Instability in the Turbulent Solar Wind

    Science.gov (United States)

    Hellinger, Petr; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Franci, Luca

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  17. Chirality, extended magnetohydrodynamics statistics and topological constraints for solar wind turbulence

    Science.gov (United States)

    Zhu, Jian-Zhou

    2017-09-01

    We unite the one-flow-dominated-state argument with the one-chiral-sector-dominated-state argument to form a non-linear extended-magnetohydrodynamics theory for the solar wind turbulence. Local minimal-energy rapid relaxation with topological/generalised-helicity constraints may work to reconcile strong and weak turbulence with consistent Alfvenicity and chirality features. The hodograph extracted from the data showing polarization characteristics with certain periods/frequencies can indicate non-linear nearly uni-chiral modes, not necessarily linear waves.

  18. Combined tidal and wind driven flows and residual currents

    Science.gov (United States)

    Holmedal, Lars Erik; Wang, Hong

    2015-05-01

    The effect of a residual current on the combined tidal and wind driven flow and the resulting bedload sediment transport in the ocean has been investigated, using a simple one dimensional two-equation turbulence closure model. Predictions of the combined tidal and wind driven flow with given residual currents are presented, showing that the residual current has a substantial effect on both the depth averaged mass transport and the mean bedload transport directions; in some cases the effect of the residual current is to almost reverse the mean bedload transport direction. The residual current affects the rotation of the flow due to the Coriolis effect in the lower part of the water column (the near-surface flow is wind dominated), causing a larger or smaller clockwise rotation of the depth averaged mass transport, depending on the direction of the residual current.

  19. On stability and turbulence of fluid flows

    Science.gov (United States)

    Heisenberg, Werner

    1951-01-01

    This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.

  20. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  1. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    Science.gov (United States)

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  2. The Level of Turbulence in the Solar Wind and the Driving of the Earth's Magnetosphere

    Science.gov (United States)

    Borovsky, J. E.; Gosling, J. T.

    2001-05-01

    Times when the level of magnetic-field fluctuations in the solar wind are very small (IMF calm) are compared with "normal" times (IMF noisy). Using ISEE-3 and ISEE-2 data, for a given value of solar-wind vBz, it is found that the auroral electrojet indices AE, AU, and AL and the planetary index KP are substantial reduced in magnitude when the IMF is calm. This is particularly true for times when the IMF Bz is northward. An analogy is explored between the solar-wind-driven magnetosphere and laboratory fluid-flow experiments in which the drag on an obstacle in the flow and the structure of the fluid wake behind the obstacle are varied by injecting turbulence of various amplitudes in the upstream fluid. The laboratory results are explained with the concept that turbulent eddy viscosity, which is a function of the turbulence amplitude, controls the coupling of the fluid to the obstacle. This eddy-viscosity-coupling concept is explored for the solar-wind driving the magnetosphere via the magnetosheath. A clue as to why SMCs (steady magnetospheric convection events) occur may be uncovered.

  3. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  4. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Science.gov (United States)

    Yahaya, S.; Frangi, J.

    2004-10-01

    This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance) with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers).

  5. Observations of turbulence and fluctuations in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Klein, L.W.

    1987-01-01

    Observational and theoretical studies of turbulent fluctuations in space plasma have been ongoing for many years. There are still many unanswered questions about the origin and evolution of the fluctuations in the heliosphere. This work pursues the subject and uses Voyage 1 and 2, and ISEE-3 measurements to study the evolution of solar-wind plasma and the magnetic field between heliocentric distances of 1 and 20 AU and to more than 25/sup 0/ in latitude above the ecliptic plane. Parker's 1958 solar-wind model is found to be accurate to within 5% in predicting the behavior of long-term (solar rotation) averages in the interplanetary magnetic field when time dependencies in the bulk plasma speed are included. No evidence was found of flux loss in the outer heliosphere as recently reported in the literature. Methods of turbulence analysis and are used to organize the observations and several predictions and expectations of ideal MHD turbulence theory are tested. Spectral indices expected for inertial-range turbulence are present in much of the data analyzed, and this inertial range is found in increasingly larger spatial scales with increasing radial distance from the sun. Evidence for inverse cascade of magnetic helicity is observed in selected intervals, although this was not found to be true in general in the solar wind.

  6. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  7. Micro-swimmer dynamics in free-surface turbulence subject to wind stress

    Science.gov (United States)

    Marchioli, Cristian; Lovecchio, Salvatore; Soldati, Alfredo

    2016-11-01

    We examine the effect of wind-induced shear on the orientation and distribution of motile micro-swimmers in free-surface turbulence. Winds blowing above the air-water interface can influence the distribution and productivity of motile organisms via the shear generated just below the surface. Swimmer dynamics depend not only by the advection of the fluid but also by external stimuli like nutrient concentration, light, gravity. Here we focus on gyrotaxis, resulting from the gravitational torque generated by an asymmetric mass distribution within the organism. The combination of such torque with the viscous torque due to shear can re-orient swimmers, reducing their vertical migration and causing entrapment in horizontal fluid layers. Through DNS-based Euler-Lagrangian simulations we investigate the effect of wind-induced shear on the motion of gyrotactic swimmers in turbulent open channel flow. We consider different wind directions and swimmers with different reo-rientation time (reflecting the ability to react to turbulent fluctuations). We show that only stable (high-gyrotaxis) swimmers may reach the surface and form densely concentrated filaments, the topology of which depends on the wind direction. Otherwise swimmers exhibit weaker vertical fluxes and segregation at the surface.

  8. Spatial Convergence of Three Dimensional Turbulent Flows

    Science.gov (United States)

    Park, Michael A.; Anderson, W. Kyle

    2016-01-01

    Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

  9. Mathematical and Numerical Modeling of Turbulent Flows

    Directory of Open Access Journals (Sweden)

    João M. Vedovoto

    2015-06-01

    Full Text Available The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solu- tions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan.

  10. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.

    Science.gov (United States)

    Goldstein, M L; Wicks, R T; Perri, S; Sahraoui, F

    2015-05-13

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics.

  11. Multiscale nature of the dissipation range in solar wind turbulence

    CERN Document Server

    Told, D; TenBarge, J M; Howes, G G; Hammett, G W

    2015-01-01

    Nonlinear energy transfer and dissipation in Alfv\\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range $k_\\perp\\rho_i\\gtrsim 1$. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\\'enic turbulence.

  12. The role of turbulent mixing in wind turbine wake recovery and wind array performance

    Science.gov (United States)

    Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan

    2014-05-01

    The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Früh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Früh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11

  13. Effects of Turbulence and Flow Inclination on the Performance of Cup Anemometers in the Field

    Science.gov (United States)

    Papadopoulos, K.H.; Stefantos, N.C.; Paulsen, U.S.; Morfiadakis, E.

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean windspeed reading between the anemometers was as much as 2% for wind directions where the mean flow was horizontal. This difference was large enough to be attributed to the well-known overspeeding effect related to the differing distance constant (ranging from 1.7 to 5 m) of the cup anemometers. The application of a theoretical model of the cup-anemometer behaviour in athree-dimensional turbulent wind field proved successful in explaining theobserved differences.Additional measurements were taken with the anemometers tilted at known angles into and out of the incident wind flow. Thus, a field-derived angular response curve is constructed for each anemometer and the deviations from publishedwind-tunnel results are discussed.

  14. Model Polyelectrolytes in Turbulent Couette Flow

    Science.gov (United States)

    Price, Brian; Hoagland, David A.

    1997-03-01

    Isolated polymer chains in strong flow are deformed significantly from their equilibrium conformations, imparting a pronounced change in the local velocity field. Turbulent drag reduction by dilute polymer solutions is an important example. The onset of drag reduction appears dependent on a characteristic shear stress at the wall τw for a given polymer. (Virk, P.S. AIChE Journal 21 1975) Length and time scales formed from τw and solvent kinematic viscosity provide different scalings of the onset with chain length. It is likely that length polydispersity could be responsible for the disparity among the previously reported results concerning the correct onset condition. We have employed preparative gel electrophoresis to produce samples of very low polydispersity to determine the onset scaling of drag reduction in turbulent couette flow. The same technique provides information about chain scission in turburlence, yielding an indirect indication of chain conformation.

  15. Oblique Laminar-Turbulent Interfaces in Plane Shear Flows

    Science.gov (United States)

    Duguet, Yohann; Schlatter, Philipp

    2013-01-01

    Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.

  16. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  17. Statistical theory of turbulent incompressible multimaterial flow

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a

  18. Suprathermal Solar Wind Electrons and Langmuir Turbulence

    Science.gov (United States)

    Kim, Sunjung; Yoon, Peter H.; Choe, G. S.; moon, Y.-J.

    2016-09-01

    The steady-state model recently put forth for the solar wind electron velocity distribution function during quiet time conditions, was originally composed of three population electrons (core, halo, and superhalo) with the core remaining nonresonant with any plasma waves while the halo and superhalo separately maintained steady-state resonance with whistler- and Langmuir-frequency range fluctuations, respectively. However, a recent paper demonstrates that whistler-range fluctuations in fact have no significant contribution. The present paper represents a consummation of the model in that a self-consistent model of the suprathermal electron population, which encompasses both the halo and the superhalo, is constructed solely on the basis of the Langmuir fluctuation spectrum. Numerical solutions to steady-state particle and wave kinetic equations are obtained on the basis of an initial trial electron distribution and Langmuir wave spectrum. Such a finding offers a self-consistent explanation for the observed steady-state electron distribution in the solar wind.

  19. Fractal flow design how to design bespoke turbulence and why

    CERN Document Server

    Vassilicos, Christos

    2016-01-01

    This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.

  20. Driver gas flow with fluctuations. [shock tube turbulent bursts

    Science.gov (United States)

    Johnson, J. A., III; Jones, W. R.; Santiago, J.

    1980-01-01

    A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.

  1. Turbulent Structure Under Short Fetch Wind Waves

    Science.gov (United States)

    2015-12-01

    Layers and Air -Sea Transfer, wind stress 15. NUMBER OF PAGES 77 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...dimensional ABL atmospheric boundary layer ASIT Air -Sea Interactions Tower BCDVP Bistatic Coherent Acoustic Doppler Velocity Profiler BLT boundary...Equation 1.24). The pressure spectrum at frequencies above 2 rad s-1 is dominated by white noise , causing the lack of agreement between the spectra

  2. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    Science.gov (United States)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  3. INVESTIGATION OF TURBULENCE STRUCTURES AND TURBULENT COUNTER-GRADIENT TRANSPORT PROPERTIES IN STRATIFIED FLOWS

    Institute of Scientific and Technical Information of China (English)

    QIU Xiang

    2006-01-01

    Turbulence structures and turbulent Counter-Gradient Transport(CGT) properties in the stratified flows with a sharp temperature interface are investigated by experimental measurements using LIF and PIV, by LES and by correlation analysis.

  4. PDF approach for compressible turbulent reacting flows

    Science.gov (United States)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  5. Observational Test for a Random Sweeping Model in Solar Wind Turbulence.

    Science.gov (United States)

    Perschke, C; Narita, Y; Motschmann, U; Glassmeier, K H

    2016-03-25

    Evidence of frequency broadening at ion kinetic scales due to large-scale eddies and waves is found in solar wind turbulence by a test for a random sweeping model using the magnetic energy spectrum in the frequency vs wave number domain in the comoving frame of the flow obtained from multispacecraft observations. The statistical analysis of the frequency vs wave number spectra without using Taylor's hypothesis shows Gaussian frequency broadening around nearly zero frequencies that increases for larger wave numbers and non-Gaussian tails at higher frequencies. Comparison of the observed frequency broadening with a random sweeping model derived from hydrodynamic turbulence reveals similarities with respect to the Gaussian shape. The standard deviation of the broadening scales with ∼k^{1.6±0.2} and differs from the hydrodynamic turbulence model that predicts ∼k^{2/3}. We interpret this stronger increasing broadening as a consequence of the more diverse large scale structures (eddies and waves) in plasma turbulence and the accompanied more complex sweeping. Consequently, an identification and association of waves with normal modes based on their dispersion relation only, in particular at ion kinetic scales and below, is not possible in solar wind turbulence.

  6. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  7. Coherent structure and Intermittent Turbulence in the Solar Wind Plasma

    Science.gov (United States)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma

  8. Turbulent pipe flow: Statistics, Re-dependence, structures and similarities with channel and boundary layer flows

    National Research Council Canada - National Science Library

    El Khoury, George K; Schlatter, Philipp; Brethouwer, Geert; Johansson, Arne V

    2014-01-01

    Direct numerical simulation data of fully developed turbulent pipe flow are extensively compared with those of turbulent channel flow and zero-pressure-gradient boundary layer flow for Re-tau up to 1 000...

  9. Turbulence and entrainment length scales in large wind farms

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2017-01-01

    be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex...... orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could...

  10. Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind

    CERN Document Server

    Banerjee, Supratik; Sahraoui, Fouad; Galtier, Sebastien

    2016-01-01

    The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently (Banerjee and Galtier, PRE, 2013) for compressible isothermal magnetohydrodynamics and in-situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over two decades of scales, which is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify (2 to 4 times) the turbulent cascade rate with respect to the incompressible model in 10 % of the analyzed samples. This new estimated cascade rate is shown to provide the adequate energy dissipation required.

  11. Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind

    Science.gov (United States)

    Sahraoui, F.; Banerjee, S.; Galtier, S.; Hadid, L.

    2015-12-01

    The role of compressible uctuations in the energy cascade of fast solar wind turbulence is studiedusing an exact law derived recently for compressible isothermal magnetohydrodynamics and in-situobservations of the THEMIS spacecraft. For the first time, a direct turbulent energy cascade isevidenced over three decades of scales which is signicantly broader than the previous estimatesmade from an exact incompressible law or from a compressible heuristic model. Unlike previousworks, our evaluation gives an energy ux which keeps a constant sign over the inertial range. Aterm-by-term analysis reveals that the dominant contribution to the energy ux comes from purecompressible uctuations. Furthermore, the compressible turbulent cascade rate is shown to providethe adequate energy dissipation required to account for the local heating of the non-adiabatic solarwind.

  12. Anisotropic electrostatic turbulence and zonal flow generation

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium); Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I.Cuza Str., 200585 Craiova (Romania); Negrea, M [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I.Cuza Str., 200585 Craiova (Romania)

    2005-12-15

    In this paper we analyse the running and asymptotic diffusion coefficients of a plasma in the case of zonal flow generation by an anisotropic stochastic electrostatic potential. Both the weak and relatively strong turbulence regimes were analysed. The analysis of the diffusion coefficients in wave vector space provides an illustration of the fragmentation of drift wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows. We have shown that the fragmentation of drift wave structures is strongly influenced by the anisotropy parameter, the electrostatic Kubo number and by the initial values of the wave vector.

  13. Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock; Fischer, Paul F.; Grout, Ray; Gustafson, William I.; Hittinger, Jeffrey A.; Merzari, Elia; Moser, Robert

    2016-06-17

    This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  14. Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    CERN Document Server

    Osman, K T; Hnat, B; Chapman, S C

    2012-01-01

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3--4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  15. Kinetic signatures and intermittent turbulence in the solar wind plasma.

    Science.gov (United States)

    Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C

    2012-06-29

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  16. Wind shear and turbulence on Titan: Huygens analysis

    Science.gov (United States)

    Lorenz, Ralph D.

    2017-10-01

    Wind shear measured by Doppler tracking of the Huygens probe is evaluated, and found to be within the range anticipated by pre-flight assessments (namely less than two times the Brunt-Väisälä frequency). The strongest large-scale shear encountered was ∼5 m/s/km, a level associated with 'Light' turbulence in terrestrial aviation. Near-surface winds (below 4 km) have small-scale fluctuations of ∼0.1 m/s on 1 s timescales, indicated both by probe tilt and Doppler tracking, and the characteristics of the fluctuation, of interest for future missions to Titan, can be reproduced with a simple autoregressive (AR(1)) model. The turbulent dissipation rate at an altitude of ∼500 m is found to be ∼0.2 cm2/s3, which may be a useful benchmark for atmospheric circulation models.

  17. The dissipation of solar wind turbulent fluctuations at electron scales

    CERN Document Server

    Camporeale, Enrico

    2011-01-01

    We present two-dimensional fully-kinetic Particle-in-Cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the ion to electron mass ratio is physical. The understanding of the dissipation of turbulent fluctuations at small scales is thought to be a crucial mechanism for solar wind acceleration and coronal heating. The computational results suggest that a power law cascade of magnetic fluctuations could be sustained up to scales of the electron Larmor radius and smaller. We analyse the simulation results in the light of the Vlasov linear theory, and we comment on the particle heating. The dispersion curves of lightly damped modes in this regime suggest that a linear mechanism could be responsible for the observed steepening of power spectra at electron scales, but a straightforward identification of turbulent fluctuations as an ensemble of linear mod...

  18. Turbulent unsteady flow profiles over an adverse slope

    National Research Council Canada - National Science Library

    Bose, Sujit K; Dey, Subhasish

    2013-01-01

    .... The time dependent turbulent flow is treated here by appropriately reducing the two-dimensional Reynolds averaged Navier-Stokes equation along with the equation of continuity considering turbulence closure...

  19. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    Science.gov (United States)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca

    2017-07-01

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as -1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.

  20. Two-Dimensional Turbulent Separated Flow. Volume 1

    Science.gov (United States)

    1985-06-01

    of detached turbulent boundary layers, even when the sign of U is changed to account for mean backflows. Thus, earlier researchers, such as Kuhn and...Turbulent Shear Layer," Third Symposium on Turbulent Shear Flows, pp. 16.23-16.29. Hillier, R., Latour , M.E.M.P., and Cherry, N.J. (1983), "Unsteady...344. Kuhn , G.D. and Nielsen, J.N. (1971), "An Analytical Method for Calculating Turbulent Separated Flows Due to Adverse Pressure Gradients

  1. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V.

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  2. Elastically bound particle in a turbulent flow

    Science.gov (United States)

    Gudmundsson, Kristjan; Prosperetti, Andrea

    2011-11-01

    The results of a direct numerical simulation of the behavior of a finite-size spherical particle subject to a linear elastic force in a turbulent flow are described. The turbulence is obtained by a physical space linear forcing due to Lundgren (see also Rosales and Meneveau, PoF 2005). The fluid-particle interaction is simulated by means of the Physalis method which permits the accurate calculation of hydrodynamic forces and couples acting on the particle using a fixed Cartesian grid. We vary the particle size with respect to the integral length scale along with the spring constant and therefore the natural frequency of the oscillator. Some results of a similar calculation with torsional springs and a fixed particle center will also be described. Funding provided by the IMPACT institute, the Netherlands.

  3. Adaptive LES Methodology for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic

  4. Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico

    Science.gov (United States)

    Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.

    2014-12-01

    A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.

  5. Investigation of Strouhal number of ice-accreted bridge cables at moderate flow turbulence

    Directory of Open Access Journals (Sweden)

    Gόrski Piotr

    2017-01-01

    Full Text Available This paper is concerned with the investigation of the Strouhal number (St for a stationary iced cable model of cable-supported bridges using wind tunnel tests with respect to three principal angles of wind attack. The investigations were carried out in the Climatic Wind Tunnel Laboratory of the Czech Academy of Sciences in Telč. The St values were determined at the flow turbulence intensity of the order of 12%, within the range of the Reynolds number from 2.4·104 to 12.9·104, based on the dominant vortex shedding frequencies measured in the wake of the model. The obtained experimental St values of the iced cable of a cable-supported bridge will allow to determine the critical wind velocity as well as will be helpful for prediction of the cable response due to the vortex excitation phenomenon at moderate flow turbulence condition.

  6. Observations and Analysis of Turbulent Wake of Wind Turbine by Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Turbulent wake of wind turbine will reduce the power output of wind farm. The access to real turbulent wake of wind turbine blades with different spatial and temporal scales is provided by the pulsed Coherent Doppler Lidar (CDL which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. In this paper, the authors discuss the possibility of using lidar measurements to characterize the complicated wind field, specifically wind velocity deficit by the turbine wake.

  7. Incompressible Turbulent Wing-Body Junction Flow

    Science.gov (United States)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    -stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive

  8. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical

  9. Simulating radially outward winds within a turbulent gas clump

    CERN Document Server

    Arreaga-Garcia, Guillermo

    2016-01-01

    By using the particle-based code Gadget2, we follow the evolution of a gas clump, in which a gravitational collapse is initially induced. The particles representing the gas clump have initially a velocity according to a turbulent spectrum built in a Fourier space of 64$^3$ grid elements. In a very early stage of evolution of the clump, a set of gas particles representing the wind, suddenly move outwards from the clump's center. We consider only two kinds of winds, namely: one with spherical symmetry and a second one being a bipolar collimated jet. In order to assess the dynamical change in the clump due to interaction with the winds, we show iso-velocity and iso-density plots for all our simulations.

  10. Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows

    Science.gov (United States)

    Gai, Jie; Xia, Zhenhua; Cai, Qingdong; Chen, Shiyi

    2016-09-01

    A series of direct numerical simulations of spanwise-rotating turbulent plane Couette flows at a Reynolds number of 1300 with rotation numbers Ro between 0 and 0.9 is carried out to investigate the effects of anticyclonic rotation on turbulent statistics and flow structures. Several typical turbulent statistics are presented, including the mean shear rate at the centerline, the wall-friction Reynolds number, and volume-averaged kinetic energies with respect to the secondary flow field, turbulent field, and total fluctuation field. Our results show that the rotation changes these quantities in different manners. Volume-averaged balance equations for kinetic energy are analyzed and it turns out that the interaction term acts as a kinetic energy bridge that transfers energy from the secondary flow to the turbulent fluctuations. Several typical flow regimes are identified based on the correlation functions across the whole channel and flow visualizations. The two-dimensional roll cells are observed at weak rotation Ro=0.01 , where alternant clustering of vortices appears. Three-dimensional roll cells emerge around Ro≈0.02 , where the clustering of vortices shows the meandering and bifurcating behavior. For moderate rotation 0.07 ≲Ro≲0.36 , well-organized structures are observed, where the herringbonelike vortices are clustered between streaks from the top view of three-dimensional flow visualization and form annuluses. More importantly, the vortices are rather confined to one side of the walls when Ro≤0.02 and are inclined from the bottom to upper walls when Ro≥0.07 .

  11. Taylor–Couette turbulence at radius ratio η=0.5: scaling, flow structures and plumes

    NARCIS (Netherlands)

    Veen, van der R.C.A.; Huisman, S.G.; Merbold, S.; Harlander, U.; Egbers, C.; Lohse, D.; Sun, C.

    2016-01-01

    Using high-resolution particle image velocimetry, we measure velocity profiles, the wind Reynolds number and characteristics of turbulent plumes in Taylor–Couette flow for a radius ratio of 0.5 and Taylor number of up to 6:2 109. The extracted angular velocity profiles follow a log law more closely

  12. Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...

  13. Multiple states in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Sun, Chao; Lohse, Detlef

    2016-01-01

    The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and its large fluctuations, there would only be \\emph{one} turbulent state as the large fluctuations would explore the entire higher-dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number $\\text{Re}=\\mathcal{O}(10^6)$ (Taylor number $\\text{Ta}=\\mathcal{O}(10^{12})$) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque and local velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows i.e. very large $\\text{Re}$) and questions Kolmogorov's paradigm.

  14. Linearized simulation of flow over wind farms and complex terrains

    Science.gov (United States)

    Segalini, Antonio

    2017-03-01

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.

  15. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  16. Blade manipulators in turbulent channel flow

    Science.gov (United States)

    Vasudevan, B.; Prabhu, A.; Narasimha, R.

    1992-01-01

    We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.

  17. 4. Large-Eddy Simulation of Turbulent Channel Flow

    OpenAIRE

    Yasuaki, DOI; Tsukasa, KIMURA; Hiroshima University; Mitsubishi Precision

    1989-01-01

    Turbulent channel flow is studied numerically by using Large-Eddy Simulation (LES). Finite difference method is employed in the LES. The simulation is stably executed by using the 3rd order upwind difference scheme which dissipate numerical errors. Several pilot tests are performed in order to investigate the effect of numerical dissipation and the wall damping function on the calculated results. Time dependent feature and turbulent flow structures in a turbulent channel flow are numerically ...

  18. High Resolution Simulation of Turbulent Flow in a Channel.

    Science.gov (United States)

    1987-09-25

    chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity

  19. CISM-IUTAM School on Advanced Turbulent Flow Computations

    CERN Document Server

    Krause, Egon

    2000-01-01

    This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

  20. Experimental Study of Homogeneous Isotropic Slowly-Decaying Turbulence in Giant Grid-Wind Tunnel Set Up

    Science.gov (United States)

    Aliseda, Alberto; Bourgoin, Mickael; Eswirp Collaboration

    2014-11-01

    We present preliminary results from a recent grid turbulence experiment conducted at the ONERA wind tunnel in Modane, France. The ESWIRP Collaboration was conceived to probe the smallest scales of a canonical turbulent flow with very high Reynolds numbers. To achieve this, the largest scales of the turbulence need to be extremely big so that, even with the large separation of scales, the smallest scales would be well above the spatial and temporal resolution of the instruments. The ONERA wind tunnel in Modane (8 m -diameter test section) was chosen as a limit of the biggest large scales achievable in a laboratory setting. A giant inflatable grid (M = 0.8 m) was conceived to induce slowly-decaying homogeneous isotropic turbulence in a large region of the test section, with minimal structural risk. An international team or researchers collected hot wire anemometry, ultrasound anemometry, resonant cantilever anemometry, fast pitot tube anemometry, cold wire thermometry and high-speed particle tracking data of this canonical turbulent flow. While analysis of this large database, which will become publicly available over the next 2 years, has only started, the Taylor-scale Reynolds number is estimated to be between 400 and 800, with Kolmogorov scales as large as a few mm . The ESWIRP Collaboration is formed by an international team of scientists to investigate experimentally the smallest scales of turbulence. It was funded by the European Union to take advantage of the largest wind tunnel in Europe for fundamental research.

  1. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  2. Reducing Wind Turbine Load Simulation Uncertainties by Means of a Constrained Gaussian Turbulence Field

    OpenAIRE

    Dimitrov, Nikolay Krasimirov; Lazarov, Boyan Stefanov

    2015-01-01

    We demonstrate a method for incorporating wind measurements from multiple-point scanning lidars into the turbulence fields serving as input to wind turbine load simulations. The measurement values are included in the analysis by applying constraints to randomly generated turbulence fields. A numerical study shows the application of the constrained turbulence method to load simulations on a 10MW wind turbine model, using two example lidar patterns – a 5-point pattern forming a square with a ce...

  3. Current status of droplet evaporation in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, Madjid [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada); Goekalp, Iskender [Laboratoire de Combustion et Systemes Reactifs, Centre National de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2006-07-01

    This article reviews the available literature results concerning the effects of turbulence on the transport (heat and mass transfer) rates from a droplet. The survey emphasizes recent findings related specifically to physical models and correlations for predicting turbulence effects on the vaporization rate of a droplet. In addition, several research challenges on the vaporization of fuel droplets in turbulent flow environments are outlined. (author)

  4. ON THE EDDY VISCOSITY MODEL OF PERIODIC TURBULENT SHEAR FLOWS

    Institute of Scientific and Technical Information of China (English)

    王新军; 罗纪生; 周恒

    2003-01-01

    Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account.

  5. Observations of Anisotropic Scaling of Solar Wind Turbulence

    Science.gov (United States)

    Luo, Q. Y.; Wu, D. J.

    2010-05-01

    Using high-speed solar wind data recorded by the Ulysses spacecraft, we investigate and estimate the anisotropic inertial range scaling of the interplanetary magnetic field. We apply the method of the magnetic structure function (MSF), Sn (τ) = lang|b(t + τ) - b(t)| n rang vprop τζ(n), to analyze the scaling of solar wind turbulence over the range from 1 s to 104 s. By sorting the fluctuations according to the direction of the local mean magnetic field, we obtain a second-order structure function in (r, Θ) coordinates that reveals the scale-dependent anisotropy of the power spectrum. The scale-dependent anisotropy of the MSF indicates that the fluctuation energy tends to cascade toward the direction perpendicular to the local field. The dependence of the MSF scaling index ζ on the direction of the local field is found to be similar to that reported in Horbury et al. and Podesta, with ζbottom = 0.53 ± 0.18 and ζpar = 1.00 ± 0.14. Furthermore, we estimate and find the scaling law between the perpendicular and parallel scales r par vprop r 0.614 bottom, which implies the elongation along the parallel direction as the turbulence eddy evolves toward the small lengthscales. These results are in agreement with the predictions of magnetohydrodynamic turbulence theory.

  6. Modelling wind turbine wakes using the turbulent entrainment hypothesis

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo

    2015-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. Jensen (1983; see also Katić et al. 1986) developed a model assuming that the wake radius grows linearly with distance x, approximating the velocity deficit with a top-hat profile. While this model has been widely implemented in the wind energy community, recently Bastankhah & Porté-Agel (2014) showed that it does not conserve momentum. They proposed a momentum-conserving theory, which assumed a Gaussian velocity deficit and retained the linear-spreading assumption, significantly improving agreement with experiments and LES. While the linear spreading assumption facilitates conceptual modeling, it requires empirical estimates of the spreading rate, and does not readily enable generalizations to other turbine designs. Furthermore, field measurements show sub-linear wake growth with x in the far-wake, consistently with results from fundamental turbulence studies. We develop a model by relying on a simple and general turbulence parameterization, namely the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. Without assuming similarity, we derive an analytical solution for a circular turbine wake, which predicts a far-wake radius increasing with x 1 / 3, and is consistent with field measurements and fundamental turbulence studies. Finally, we discuss developments accounting for effects of stratification, as well as generalizations to other turbine designs.

  7. Turbulent bands in a planar shear flow without walls

    CERN Document Server

    Chantry, Matthew; Barkley, Dwight

    2015-01-01

    Turbulent bands are a ubiquitous feature of transition in wall-bounded shear flows. We show that these are also a robust feature of Waleffe flow -- a shear flow driven by a sinusoidal body force between stress-free boundaries -- thus demonstrating that rigid walls are not a prerequisite for band formation. Exploiting the Fourier dependence of Waleffe forcing, we construct a model flow that uses only four wavenumbers in the shear direction and yet captures uniform turbulence, turbulent bands, and spot expansion. The model is simultaneously a reduction of the full Navier-Stokes equations and an extension of minimal models of the self-sustaining process of shear turbulence.

  8. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  9. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.

    Science.gov (United States)

    Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C

    2015-05-13

    The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular.

  10. LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    ZOU Li-yong; LIU Nan-sheng; LU Xi-yun

    2004-01-01

    Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.

  11. Flow reversals in thermally driven turbulence

    CERN Document Server

    Sugiyama, Kazuyasu; Stevens, Richard J A M; Chan, Tak Shing; Zhou, Sheng-Qi; Xi, Heng-Dong; Sun, Chao; Grossmann, Siegfried; Xia, Ke-Qing; Lohse, Detlef; 10.1103/PhysRevLett.105.034503

    2011-01-01

    We analyze the reversals of the large scale flow in Rayleigh-B\\'enard convection both through particle image velocimetry flow visualization and direct numerical simulations (DNS) of the underlying Boussinesq equations in a (quasi) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diagonal large scale convection roll and two smaller secondary rolls in the two remaining corners diagonally opposing each other. These corner flow rolls play a crucial role for the large scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from the boundary layers up to the time that they take over the main, large scale diagonal flow, thus leading to reversal. Based on this mechanism we identify a typical time scale for the reversals. We map out the Rayleigh number vs Prandtl number phase space and find that the occurrence of reversals very sensitively depends on these parameters.

  12. The pressure distribution in thermally bistable turbulent flows

    OpenAIRE

    2005-01-01

    We present a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal pressure distribution in thermally bistable flows. The simulations employ a random turbulent driving generated in Fourier space rather than star-like heating. The turbulent fluctuations are characterized by their rms Mach number M and the energy injection wavenumber, k_for. Our results are consistent with the picture that as either of these parameters is increased, the local ratio of turbul...

  13. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  14. Drag reduction in turbulent MHD pipe flows

    Science.gov (United States)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  15. TWO MODIFICATORY K-ε TURBULENCE MODELS FOR TURBULENT SWIRLING FLOWS

    Institute of Scientific and Technical Information of China (English)

    Wang Ze; Liu Wei-ming

    2003-01-01

    Since the standard K-ε model used to predict the strongly swirling flow leads to a large deviation from experimental results, it is necessary to introduce modification to the standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulent length scale modification conception, we present two modified K-ε models. To investigate the behaviour of the modified turbulence models, they are used to predict two representative turbulent swirling flows. The computational results, after compared with the experimental data, show that the modified K-ε models substantially improve the prediction of the standard K-ε model for the turbulent swirling flows.

  16. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  17. Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    CERN Document Server

    Kiyani, K H; Khotyaintsev, Yu V; Turner, A; Hnat, B; Sahraoui, F

    2010-01-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest a possible phase space mechanism for this, based on nonlinear wave-particle interactions, operating in this scale-invariant isotropic manner.

  18. The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Aasen, S.E.

    1995-10-01

    This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.

  19. Directional Profiles of Wind Speed and Turbulence Intensity over Forest and Open Land

    Science.gov (United States)

    Beyer, Elisabeth; Dietz, Sebastian; Pinter, Anna

    2014-05-01

    More and more wind turbines are built onshore and reduce the available areas for wind energy. Forests are additional potential for wind energy priority areas. But the high roughness of wooden areas and the resulting turbulences make it difficult to assess sites in forests. In order to cope with this problem some measurements were done inside and outside wooden areas. Therefore met masts equipped with ultra sonic and cup anemometers and LIDAR were used. With the measured wind speed and its standard deviation the turbulence intensity was calculated. The results are direction dependent profiles of wind speed and turbulence intensity.

  20. BOOK REVIEW: Statistical Mechanics of Turbulent Flows

    Science.gov (United States)

    Cambon, C.

    2004-10-01

    This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their

  1. Applications of URANS on predicting unsteady turbulent separated flows

    Institute of Scientific and Technical Information of China (English)

    Jinglei Xu; Huiyang Ma

    2009-01-01

    Accurate prediction of unsteady separated turbu-lent flows remains one of the toughest tasks and a practi-cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evalu-ated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.

  2. Applications of URANS on predicting unsteady turbulent separated flows

    Science.gov (United States)

    Xu, Jinglei; Ma, Huiyang

    2009-06-01

    Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practical challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.

  3. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  4. Predicted Impacts of Proton Temperature Anisotropy on Solar Wind Turbulence

    CERN Document Server

    Klein, Kristopher G

    2015-01-01

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space, and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the \\Alfvenic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scal...

  5. Experimental studies of occupation times in turbulent flows

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.;

    2003-01-01

    The motion of passively convected particles in turbulent flows is studied experimentally in approximately homogeneous and isotropic turbulent flows, generated in water by two moving grids. The simultaneous trajectories of many small passively convected, neutrally buoyant, polystyrene particles ar....... In the present formulation, the results of the analysis are relevant for understanding details in the feeding rate of micro-organisms in turbulent waters, for instance....

  6. Turbulence measurements in shock induced flow using hot wire anemometry

    Science.gov (United States)

    Hartung, Lin C.; Duffy, Robert E.; Trolier, James W.

    1988-01-01

    Heat transfer measurements over various geometric shapes have been made by immersing models in shock-induced flows. The heat transfer to a body is strongly dependent on the turbulence level of the stream. The interpretation of such heat transfer measurements requires a knowledge of the turbulence intensity. Turbulence intensity measurements, using hot-wire anemometry, have been successfully carried out in shock-induced flows. The experimental procedures for making such measurements and the techniques required are discussed.

  7. Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics

    Science.gov (United States)

    Waggy, Scott B.

    With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi

  8. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  9. A PDF closure model for compressible turbulent chemically reacting flows

    Science.gov (United States)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  10. On laminar-turbulent transition in nanofluid flows

    Science.gov (United States)

    Rudyak, V. Ya.; Minakov, A. V.; Guzey, D. V.; Zhigarev, V. A.; Pryazhnikov, M. I.

    2016-09-01

    The paper presents experimental data on the laminar-turbulent transition in the nanofluid flow in the pipe. The transition in the flows of such fluids is shown to have lower Reynolds numbers than in the base fluid. The degree of the flow destabilization increases with an increase in concentration of nanoparticles and a decrease in their size. On the other hand, in the turbulent flow regime, the presence of particles in the flow leads to the suppression of smallscale turbulent fluctuations. The correlation of the measured viscosity coefficient of considered nanofluids is presented.

  11. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  12. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)

    2000-07-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.

  13. Five layers in a turbulent pipe flow

    Science.gov (United States)

    Lee, Jinyoung; Ahn, Junsun; Sung, Hyung Jin

    2016-11-01

    The scaling laws governing the five layers of the mean velocity distribution of a turbulent pipe flow were characterized using the available DNS data (Reτ = 544 , 934, 3008). Excluding the very near-wall and core regions, the buffer, meso- and log layers were identified by examining the streamwise mean momentum equation and the net force spectra. The (outer) log layer was located in the overlap region where the viscous force was negligible. Another (inner) log layer was observed in the buffer layer, in which the viscous force was directly counterbalanced by the turbulent inertia. A meso-layer between the buffer and outer log layers was found to feature viscous effects. The acceleration force of the large-scale motions (LSMs) penetrated the outer log layer at higher Reynolds numbers, as observed in the net force spectra. The acceleration force of the LSMs became strong and was counterbalanced by the deceleration force of the small-scale motions (SSMs), indicating that the inner and outer length scales contributed equally to the meso-layer. The outer log layer was established by forming an extended connection link between the meso- and outer layers. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  14. Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry

    Science.gov (United States)

    Fulghum, Matthew R.

    Characterization of freestream disturbances and their effect on laminar boundary layer transition is of great importance in high-speed wind tunnel testing, where significant differences between the behavior of scale-model and free-flight transition have long been noted. However, the methods traditionally used to perform this characterization in low-speed flows present significant difficulties when applied to supersonic and especially hypersonic wind tunnels. The design and theory of a focusing laser differential interferometer (FLDI) instrument, originally invented by Smeets at the Institut Saint-Louis in the 1970s and used recently by Parziale in the CalTech T5 shock tunnel, is presented. It is a relatively-simple, non-imaging common-path interferometer for measuring refractive signals from transition and turbulence, and it has a unique ability to look through facility windows, ignore sidewall boundary-layers and vibration, and concentrate only on the refractive signal near a pair of sharp beam foci in the core flow. The instrument's low cost and ease of implementation make it a promising alternative to traditional hot-wire anemometry and particle-based methods for turbulence characterization. Benchtop experiments using a turbulent supersonic air jet demonstrate its focusing ability, frequency response, unwanted signal rejection, and ease of use. The instrument is used to optically interrogate the flow in the Penn State University Supersonic Wind Tunnel and USAF AEDC Hypervelocity Tunnel 9 for measurement of the overall intensity and spectra of freestream disturbances. Precise characterization of the strength and spectral content of the disturbances provides insight into their nature and potential effect upon boundary layer transition. A special feature of the FLDI instrument used here is the replacement of traditional fixed Wollaston prisms with variable Sanderson prisms for laser-beam separation and recombination.

  15. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States); Fischer, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gustafson, Jr., William I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moser, Robert [Univ. of Texas, Austin, TX (United States)

    2017-01-01

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  16. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Science.gov (United States)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S.

    2009-09-01

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector.

  17. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  18. Plasma Beta Dependence of Magnetic Compressibility in Solar Wind Turbulence

    Science.gov (United States)

    Chapman, S. C.; Hnat, B.; Kiyani, K. H.; Sahraoui, F.

    2014-12-01

    The turbulent signature of MHD scales in the near-Earth solar wind are known to be primarily incompressible which manifests itself in magnetic field fluctuation vector components to be aligned primarily perpendicular to the background magnetic field -- so-called "Variance Anisotropy". This, and other facts, have been seen as evidence for a majority Alfvenic turbulence cascade; with a small component (10%) of compressible fluctuations. When one approaches scales on the order of the ion-inertial length and the Larmor radius, this behaviour changes and it is now becoming increasingly evident that the spectral break at these scales is also accompanied by an increase in magnetic compressibility. This has been attributed to a phase change in the physics at these scales -- from fluid to kinetic -- and in particular to the dominant role of the Hall-effect at sub-ion scales. We will be presenting results from the Cluster mission to show how this increase in the compressibility is dependent on the ion plasma beta and what implications this has for the physics at sub-ion scales in the context of prominent theories and models for kinetic plasma turbulence.

  19. Energy spectrum transfer equations of solar wind turbulence

    Science.gov (United States)

    Tu, C.-Y.

    1995-01-01

    The recent studies of transfer equations for solar wind magnetohydrodynamic (MHD) turbulence are reviewed with emphasis on the comparison with the statistical observational results. Helios and Voyager missions provide an opportunity to study the the radial evolution of the power spectrum. the cross-helicity the Alfven ratio and the minimum variance direction. Spectrum transfer equations are considered as a tool to explore the nature of this radial evolution of the fluctuations. The transfer equations are derived from incompressible MHD equations. Generally one needs to make assumptions about the nature of the fluctuations and the nature of the turbulent non-linear interactions to obtain numerical results which can be compared with the observations. Some special model results for several simple cases SUCH as for structures or strong mixing. for Alfven waves with weak turbulent interactions. and for a superposition of structures and Alfven waves. are discussed. The difference between the various approaches to derive and handle the transfer equations are also addressed. Finally some theoretical description of the compressible fluctuations are also briefly reviewed.

  20. Scaling of the electron dissipation range of solar wind turbulence

    CERN Document Server

    Sahraoui, F; De Patoul, J; Belmont, G; Goldstein, M L; Retino, A; Robert, P; Cornilleau-Wehrlin, N; Canu, P

    2013-01-01

    Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the solar wind and perform a statistical study of the magnetic energy spectra in the frequency range [$1, 180$]Hz. We show that a large fraction of the spectra exhibit clear breakpoints near the electon gyroscale $\\rho_e$, followed by steeper power-law like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that will be discussed in detail. We compare our results to recent ones reported in other studies and discuss their implication on the physical...

  1. Predicted impacts of proton temperature anisotropy on solar wind turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Klein, K. G., E-mail: kristopher.klein@unh.edu [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2015-03-15

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the Alfvénic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scale cascade. We find that the nonlinear dynamics of the large-scale cascade is insensitive to the proton temperature anisotropy and that the instability-driven fluctuations are unlikely to cause significant nonlinear evolution of either the instability-driven fluctuations or the turbulent fluctuations of the large-scale cascade.

  2. Predicted impacts of proton temperature anisotropy on solar wind turbulence

    Science.gov (United States)

    Klein, K. G.; Howes, G. G.

    2015-03-01

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the Alfvénic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scale cascade. We find that the nonlinear dynamics of the large-scale cascade is insensitive to the proton temperature anisotropy and that the instability-driven fluctuations are unlikely to cause significant nonlinear evolution of either the instability-driven fluctuations or the turbulent fluctuations of the large-scale cascade.

  3. Turbulent flows and intermittency in laboratory experiments

    Science.gov (United States)

    Anselmet, F.; Antonia, R. A.; Danaila, L.

    2001-10-01

    In turbulent flows, the transfer of energy from large to small scales is strongly intermittent, in contradiction with Kolmogorov's (Dokl. Akad. Nauk. SSSR 30 (1941) 299; hereafter K41) assumptions. The statistical properties associated with these energy transfer fluctuations at a given scale r have been widely studied theoretically, experimentally and numerically over the last 30 years or so. Such fluctuations are also encountered in various Planetary and Space Science domains. The present paper presents a review of laboratory experiments which clearly display the fractal nature of the (spatial or temporal) energy distribution at scale r, the departures from the K41 predictions being generally quantified through high-order moments of velocity increments.

  4. Crab flares due to turbulent dissipation of the pulsar striped wind

    CERN Document Server

    Zrake, Jonathan

    2015-01-01

    We interpret $\\gamma$-ray flares from the Crab Nebula as the signature of turbulence in the pulsar's electromagnetic outflow. Turbulence is triggered upstream by dynamical instability of the wind's oscillating magnetic field, and accelerates non-thermal particles. On impacting the wind termination shock, those particles emit a distinct synchrotron component $F_{\

  5. Reducing Wind Turbine Load Simulation Uncertainties by Means of a Constrained Gaussian Turbulence Field

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Lazarov, Boyan Stefanov

    2015-01-01

    We demonstrate a method for incorporating wind measurements from multiple-point scanning lidars into the turbulence fields serving as input to wind turbine load simulations. The measurement values are included in the analysis by applying constraints to randomly generated turbulence fields...

  6. Accounting for the effect of turbulence on wind turbine power curves

    DEFF Research Database (Denmark)

    Clifton, A.; Wagner, Rozenn

    2014-01-01

    in turbulence; the turbulence renormalization method cannot account for changes in shear other than by using the the equivalent wind speed, which is derived from wind speed data at multiple heights in the rotor disk. The machine learning method is best able to predict the power as conditions change, and could...

  7. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  8. Measurement of the Turbulence Kinetic Energy Budget of a Turbulent Planar Wake Flow in Pressure Gradients

    Science.gov (United States)

    Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.

  9. Atmospheric cross-wind and turbulence measurements using turbulence-induced scintillations

    Science.gov (United States)

    Shapira, J.; Porat, O.; Livneh, M.; Wies, Z.; Heflinger, D.; Fastig, S.; Glick, Y.; Engel, A.

    2010-04-01

    We report on remote measurements of cross-wind and atmospheric turbulence, using a one-station scheme. As most remote wind-sensing methods, our method is based on observing the drift of the scintillation pattern across the line of sight. The scintillations are caused by naturally-occurring turbulence-induced refractive index irregularities in the atmosphere, which drift at wind speed. Analyzing spatial-temporal cross-correlation function of the signals of two elements in the array, it is possible to obtain the cross-wind speed. We use the zero-crossings technique for measuring the cross-wind value, while the cross-wind direction is determined by comparing areas from both sides of the peak of the cross-correlation function. Here we present results obtained using these techniques in comparison to independent measurements of the anemometers. The experiments were performed along a uniform path over a flat beach parallel to the Mediterranean Sea shore. Four white-screen diffusive targets were placed at distances of 300, 600, 850 and 1200m. Five anemometers were placed along the laser beam path, one near each target and at the measurement station. Each target was illuminated with a beam from a glass fiber pulsed infrared laser with a repetition rate of several thousand Hz, and a sub-microsecond pulse-length, and output beam divergence of ~300 μrad. The receiver has an entrance aperture of 80mm, and the incoming radiation is focused onto an array of four 50×250um InGaAs detectors by a lens with f=500mm. The results show good agreement. From the fluctuations of the signal on the detector array, our system also measures the turbulence structure parameter Cn 2, using the angle-of arrival technique. The obtained results show reasonable agreement with independent scintillometer measurements of Cn2, performed with a CW He-Ne laser in a two-station setup with a detector at a distance of 60m from the laser.

  10. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob;

    2016-01-01

    From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...... types of turbulence are then used as input to wind turbine load simulations under normal operations with the HAWC2 software package. A slight increase in the extreme loads of the tower base fore-aft moment is observed for high wind speeds when using non-Gaussian turbulence but is insignificant when...

  11. Optimal transient growth in turbulent pipe flow

    Institute of Scientific and Technical Information of China (English)

    Yang SONG; Chunxiao XU; Weixi HUANG; Guixiang CUI

    2015-01-01

    The optimal transient growth process of perturbations driven by the pressure gradient is studied in a turbulent pipe flow. A new computational method is proposed, based on the projection operators which project the governing equations onto the sub-space spanned by the radial vorticity and radial velocity. The method is validated by comparing with the previous studies. Two peaks of the maximum transient growth am-plification curve are found at different Reynolds numbers ranging from 20 000 to 250 000. The optimal flow structures are obtained and compared with the experiments and DNS results. The location of the outer peak is at the azimuthal wave number n=1, while the location of the inner peak is varying with the Reynolds number. It is observed that the velocity streaks in the buffer layer with a spacing of 100δv are the most amplified flow structures. Finally, we consider the optimal transient growth time and its dependence on the azimuthal wave length. It shows a self-similar behavior for perturbations of different scales in the optimal transient growth process.

  12. Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

    CERN Document Server

    Heinzeller, Dominikus; Walsh, Catherine; Millar, Tom J

    2011-01-01

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line ...

  13. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  14. Hydrodynamic turbulence in quasi-Keplerian rotating flows

    Science.gov (United States)

    Shi, Liang; Hof, Björn; Rampp, Markus; Avila, Marc

    2017-04-01

    We report a direct-numerical-simulation study of the Taylor-Couette flow in the quasi-Keplerian regime at shear Reynolds numbers up to O (105) . Quasi-Keplerian rotating flow has been investigated for decades as a simplified model system to study the origin of turbulence in accretion disks that is not fully understood. The flow in this study is axially periodic and thus the experimental end-wall effects on the stability of the flow are avoided. Using optimal linear perturbations as initial conditions, our simulations find no sustained turbulence: the strong initial perturbations distort the velocity profile and trigger turbulence that eventually decays.

  15. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  16. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook

    OpenAIRE

    2015-01-01

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of tur...

  17. LACIS-T - A humid wind tunnel for investigating the Interactions between Cloud Microphysics and Turbulence

    Science.gov (United States)

    Voigtländer, Jens; Niedermeier, Dennis; Siebert, Holger; Shaw, Raymond; Schumacher, Jörg; Stratmann, Frank

    2017-04-01

    To improve the fundamental and quantitative understanding of the interactions between cloud microphysical and turbulent processes, the Leibniz Institute for Tropospheric Research (TROPOS) has built up a new humid wind tunnel (LACIS-T). LACIS-T allows for the investigation of cloud microphysical processes, such as cloud droplet activation and freezing, under-well defined thermodynamic and turbulent flow conditions. It therewith allows for the straight forward continuation, extension, and completion of the cloud microphysics related investigations carried out at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) under laminar flow conditions. Characterization of the wind tunnel with respect to flow, thermodynamics, and droplet microphysics is carried out with probes mounted inside (pitot tube and hot-wire anemometer for mean velocity and fluctuations, Pt100 sensor for mean temperature, cold-wire sensor for temperature fluctuations is in progress, as well as a dew-point mirror for mean water vapor concentration, a Lyman-alpha sensor for water vapor fluctuations is in progress) the measurement section, and from outside with optical detection methods (a laser light sheet is available for cloud droplet visualization, a digital holography system for detection of cloud droplet size distributions will be installed for tests in February 2017), respectively. Computational fluid dynamics (CFD) simulations have been carried out for defining suitable experimental conditions and assisting the interpretation of the experimental data. In this work, LACIS-T, its fundamental operating principle, and first preliminary results from ongoing characterization efforts will be presented.

  18. Criterion of Turbulent Transition in Pressure Driven Flows

    Science.gov (United States)

    Dou, Hua-Shu; Khoo, Boo Cheong

    2012-11-01

    It has been found from numerical simulations and experiments that velocity inflection could result in turbulent transition in viscous parallel flows. However, there are exceptions, for example, in the plane Poiseuille-Couette flow. Thus, whether velocity inflection necessarily leads to turbulent transition is still not clear. To-date, there is still no consensus on the physics of turbulence transition in the scientific community. In this study, the mechanism of turbulent transition is investigated using the energy gradient method. It is found that the transition to turbulence from a laminar flow depends on the magnitudes of the energy gradient function and the energy of the disturbance imposed (including both the amplitude and the frequency). Our study further reveals that the criterion of turbulent transition is different in pressure and shear driven flows. In pressure driven parallel flows, it is found that the necessary and sufficient condition of turbulent transition is the existence of an inflection point on the velocity profile. This criterion is found to be consistent with the available experimental data and numerical simulation results. On contrast, velocity inflection in shear driven flows does not necessarily lead to turbulent transition.

  19. The Implications of Discontinuities for Testing Theories of Turbulence in the Solar Wind

    CERN Document Server

    Turner, A J; Gogoberidze, G

    2012-01-01

    In-situ observations of magnetic field fluctuations in the solar wind show a broad continuum in the power spectral density (PSD) with a power-law range of scaling often identified as an inertial range of magnetohydrodynamic turbulence. However, both turbulence and discontinuities are present in the solar wind on these inertial range of scales. We identify and remove these discontinuities using a method which for the first time does not impose a characteristic scale on the resultant time-series. The PSD of vector field fluctuations obtained from at-a point observations is a tensor that can in principle be anisotropic with scaling exponents that depend on background field and flow direction. This provides a key test of theories of turbulence. We find that the removal of discontinuities from the observed time-series can significantly alter the PSD trace anisotropy. It becomes quasi-isotropic, in that the observed exponent does not vary with the background field angle once the discontinuities are removed. This is...

  20. Turbulence characteristics in skimming flows on stepped spillways

    Energy Technology Data Exchange (ETDEWEB)

    Carosi, G.; Chanson, H. [Queensland Univ., Brisbane (Australia). Div. of Civil Engineering

    2008-09-15

    Stepped spillways are used to increase the rate of energy dissipation of reinforced cement concrete (RCC) dams. Modern stepped spillways are often designed for large discharge capacities that correspond to skimming flow regimes. Skimming flows are non-aerated at the upstream end of the chute, while free-surface aeration occurs when turbulent shear next to the free surface is larger than the bubble resistance created by surface tension and buoyancy. This study investigated the air-water flow properties in skimming flows related to turbulent characteristics. Experiments were conducted at a hydraulics laboratory using a broad-crested weir with a stepped chute. Measurements were conducted using phase-detection intrusive probes. Air-water flow properties were recorded for several flow rates in order to determine the distributions of turbulence intensity and integral length scales. Air-water interfacial velocities were obtained using a basic correlation analysis between the 2 sensors of a double-tip probe. Turbulence levels were derived from the relative width of a cross-correlation function. Probability distribution functions of the air bubbles and water droplet chords were analyzed in terms of bubble chords in the bubbly flow. The study demonstrated that some turbulent energy was dissipated in the form of large vortices in the bull of the flow, while the stepped cavities contributed to turbulence production. It was concluded that the rate of energy dissipation on stepped spillways is related to high turbulence levels and large-scale vortical structures. 43 refs., 3 tabs., 9 figs.

  1. Small scale aspects of flows in proximity of the turbulent/non-turbulent interface

    CERN Document Server

    Holzner, M; Nikitin, N; Kinzelbach, W; Tsinober, A

    2007-01-01

    The work reported below is a first of its kind study of the properties of turbulent flow without strong mean shear in a Newtonian fluid in proximity of the turbulent/non-turbulent interface, with emphasis on the small scale aspects. The main tools used are a three-dimensional particle tracking system (3D-PTV) allowing to measure and follow in a Lagrangian manner the field of velocity derivatives and direct numerical simulations (DNS). The comparison of flow properties in the turbulent (A), intermediate (B) and non-turbulent (C) regions in the proximity of the interface allows for direct observation of the key physical processes underlying the entrainment phenomenon. The differences between small scale strain and enstrophy are striking and point to the definite scenario of turbulent entrainment via the viscous forces originating in strain.

  2. TurbEFA: an interdisciplinary effort to investigate the turbulent flow across a forest clearing

    Directory of Open Access Journals (Sweden)

    Ronald Queck

    2015-01-01

    Full Text Available It is assumed that the description of the exchange processes between heterogeneous natural surfaces and the atmosphere within turbulence closure models is mainly limited by a realistic three-dimensional (3D representation of the vegetation architecture. Within this contribution we present a method to record the 3D vegetation structure and to use this information to derive model parameters that are suitable for numerical flow models. A mixed conifer forest stand around a clearing was scanned and represented by a dense 3D point cloud applying a terrestrial laser scanner. Thus, the plant area density (PAD with a resolution of one cubic meter was provided for analysis and for numerical simulations. Multi-level high-frequency wind velocity measurements were recorded simultaneously by 27 ultrasonic anemometers on 4 towers for a period of one year. The relationship between wind speed, Reynolds stress and PAD was investigated and a parametrization of the drag coefficient CD$C_D$ by the PAD is suggested. The derived 3D vegetation model and a simpler model (based on classical forest assessments of the site were applied in a boundary layer model (BLM and in large-eddy simulations (LES. The spatial development of the turbulent flow over the clearing is further demonstrated by the results of a wind tunnel experiment. The project showed, that the simulation results were improved significantly by the usage of realistic vegetation models. 3D simulations are necessary to depict the influence of heterogeneous canopies on the turbulent flow. Whereas we found limits for the mapping of the vegetation structure within the wind tunnel, there is a considerable potential for numerical simulations. The field measurements and the LES gave new insight into the turbulent flow in the vicinity and across the clearing. The results show that the zones of intensive turbulence development can not be restricted to the locations found in previous studies with more idealized

  3. Improving wind turbine array efficiency through active flow control

    Science.gov (United States)

    Velarde, John-Michael; Wang, Guannan; Shea, Patrick; Glauser, Mark; Castillo, Luciano

    2013-11-01

    We attempted to demonstrate the capability of instrumenting three wind turbine blades with an air delivery system that provided active flow control in an effort to improve turbine performance in the presence of the wake turbulence that is inherent in a turbine array. Presently, turbines are being designed for set conditions, such as steady incoming wind and a set velocity profile, however conditions can be drastically different in the field - thus causing poor performance from the turbines. The blades were instrumented with pressure transducers which measured the suction surface pressure; the sensor setup was such that three unique blade configurations existed: spanwise sensors, chord-wise sensors, and a reference sensor. The compressed air was delivered through a rotary union connected to the turbine hub with tubing attached to the suction side of the blades. The primary purpose of this test was to demonstrate the ability to deliver air to a rotating frame for active flow control. We collected data under three test conditions using an open-section wind tunnel, courtesy of Texas Tech University: static with no flow control, rotation with no flow control, and rotation with active flow control.

  4. On the interaction of turbulence and flows in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Manz, P; Ramisch, M [Institut fuer Plasmaforschung, Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-02-15

    In toroidally confined plasmas, background E x B flows, microturbulence and zonal flows constitute a tightly coupled dynamic system and the description of confinement transitions needs a self-consistent treatment of these players. The background radial electric field, linked to neoclassical ambipolar transport, has an impact on the interaction between zonal flows and turbulence by tilting and anisotropization of turbulent eddies. Zonal-flow drive is shown to be non-local in wavenumber space and is described as a straining-out process instead as a local inverse cascade. The straining-out process is also discussed as an option to explain turbulence suppression in sheared flows and could be the cause of predator-prey oscillations in the turbulence zonal-flow system.

  5. Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator

    Science.gov (United States)

    Moallemi, Nima; Brinkerhoff, Joshua

    2016-11-01

    The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.

  6. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana [Centro de Radioastronomia y Astrofisica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacan (Mexico); Kim, Jongsoo, E-mail: a.gazol@crya.unam.mx, E-mail: jskim@kasi.re.kr [Korea Astronomy and Space Science Institute, 61-1, Hwaam-Dong, Yuseong-Ku, Daejeon 305-348 (Korea, Republic of)

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  7. Three-Dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport

    Science.gov (United States)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2012-01-01

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.

  8. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  9. Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer

    Science.gov (United States)

    Feist, Christopher J.

    An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..

  10. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    CERN Document Server

    Fraternale, F; Iovieno, M; Opher, M; Richardson, J D; Tordella, D

    2015-01-01

    The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between -2.1 and -1.1, depending on frequency subranges. PDFs and correlations indicate that the flow has a significant intermittency.

  11. The wall shear rate in non-Newtonian turbulent pipe flow

    CERN Document Server

    Trinh, K T

    2010-01-01

    This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer

  12. Simulation of Mean Flow and Turbulence over a 2D Building Array Using High-Resolution CFD and a Distributed Drag Force Approach

    Science.gov (United States)

    2016-06-16

    rough- walled turbulent boundary-layer flow . The model used for the simulation was the steady-state Reynolds-averaged Navier-Stokes equations with...detailed and comprehensive wind tunnel data set. Vertical profiles of the mean streamwise velocity and the turbulence kinetic energy are presented and...Journal of Wind Engineering ELSEVIER and Industrial Aerodynamics 92 (2004) 117-158 www.elsevier.com/locate/jweia Simulation of mean flow and

  13. Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery

    2009-01-01

    Embedded vortices in turbulent wall-bounded flow over a flat plate, generated by a passive rectangular vane-type vortex generator with variable angle \\beta to the incoming flow in a low-Reynolds number flow (Re = 2600 based on the inlet grid mesh size L = 0:039 m and free stream velocity U......_{\\infty} = 1.0 ms^{-1}) have been studied with respect to helical symmetry. The studies were carried out in a low-speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV). The vortices have been shown to possess helical symmetry, allowing the flow to be described in a simple...

  14. Anisotropic character of low-order turbulent flow descriptions through the proper orthogonal decomposition

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-01-01

    Proper orthogonal decomposition (POD) is applied to distinct data sets in order to characterize the propagation of error arising from basis truncation in the description of turbulence. Experimental data from stereo particle image velocimetry measurements in a wind turbine array and direct numerical simulation data from a fully developed channel flow are used to illustrate dependence of the anisotropy tensor invariants as a function of POD modes used in low-order descriptions. In all cases, ensembles of snapshots illuminate a variety of anisotropic states of turbulence. In the near wake of a model wind turbine, the turbulence field reflects the periodic interaction between the incoming flow and rotor blade. The far wake of the wind turbine is more homogenous, confirmed by the increased magnitude of the anisotropy factor. By contrast, the channel flow exhibits many anisotropic states of turbulence. In the inner layer of the wall-bounded region, one observes one-component turbulence at the wall; immediately above, the turbulence is dominated by two components, with the outer layer showing fully three-dimensional turbulence, conforming to theory for wall-bounded turbulence. The complexity of flow descriptions resulting from truncated POD bases can be greatly mitigated by severe basis truncations. However, the current work demonstrates that such simplification necessarily exaggerates the anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three-dimensionality. Application of simple corrections to the low-order descriptions of the Reynolds stress tensor significantly reduces the residual root-mean-square error. Similar error reduction is seen in the anisotropy tensor invariants. Corrections of this form reintroduce three-dimensionality to severe truncations of POD bases. A threshold for truncating the POD basis based on the equivalent anisotropy factor for each measurement set required many more modes than a threshold based on energy. The mode

  15. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large......An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind......-Eddy Simulation and those observed in the measurements, than predicted by the original k-ε model. Copyright © 2014 John Wiley & Sons, Ltd....

  16. Investigation of the turbulent wind field below 500 feet altitude at the Eastern Test Range, Florida

    Science.gov (United States)

    Blackadar, A. K.; Panofsky, H. A.; Fiedler, F.

    1974-01-01

    A detailed analysis of wind profiles and turbulence at the 150 m Cape Kennedy Meteorological Tower is presented. Various methods are explored for the estimation of wind profiles, wind variances, high-frequency spectra, and coherences between various levels, given roughness length and either low-level wind and temperature data, or geostrophic wind and insolation. The relationship between planetary Richardson number, insolation, and geostrophic wind is explored empirically. Techniques were devised which resulted in surface stresses reasonably well correlated with the surface stresses obtained from low-level data. Finally, practical methods are suggested for the estimation of wind profiles and wind statistics.

  17. Turbulence-driven Polar Winds from T Tauri Stars Energized by Magnetospheric Accretion

    CERN Document Server

    Cranmer, Steven R

    2008-01-01

    Pre-main-sequence stars are observed to be surrounded by both accretion flows and some kind of wind or jet-like outflow. Recent work by Matt and Pudritz has suggested that if classical T Tauri stars exhibit stellar winds with mass loss rates about 0.1 times their accretion rates, the wind can carry away enough angular momentum to keep the stars from being spun up unrealistically by accretion. This paper presents a preliminary set of theoretical models of accretion-driven winds from the polar regions of T Tauri stars. These models are based on recently published self-consistent simulations of the Sun's coronal heating and wind acceleration. In addition to the convection-driven MHD turbulence (which dominates in the solar case), we add another source of wave energy at the photosphere that is driven by the impact of plasma in neighboring flux tubes undergoing magnetospheric accretion. This added energy, determined quantitatively from the far-field theory of MHD wave generation, is sufficient to produce T Tauri-l...

  18. Speed and structure of turbulent fronts in pipe flow

    CERN Document Server

    Song, Baofang; Hof, Björn; Avila, Marc

    2016-01-01

    The dynamics of laminar-turbulent fronts in pipe flow is investigated for Reynolds numbers between Re=1900 and Re=5500 using extensive direct numerical simulations. In this range the flow undergoes a continuous transition from localised puffs to weakly expanding and ultimately to strongly expanding turbulent slugs (Barkley et al. 2015). We here investigate the physical distinction between these two types of slug by analysing time-resolved statistics of their downstream fronts in the frame moving at the bulk turbulent advection speed. While weak fronts travel slower than the bulk turbulent advection speed, implying local relaminarisation, strong fronts travel faster and so feed on the laminar flow ahead. At Re$\\approx$2900 the downstream front speed becomes faster than the advection speed, marking the onset of strong fronts. We argue that large temporal fluctuations of production and dissipation at the laminar-turbulent interface drive the dynamical switches between the two types of front observed up to Re$\\si...

  19. Numerical simulation of wall-bounded turbulent shear flows

    Science.gov (United States)

    Moin, P.

    1982-01-01

    Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.

  20. Interaction between mean flow and turbulence in two dimensions

    Science.gov (United States)

    Falkovich, Gregory

    2016-07-01

    This short note is written to call attention to an analytic approach to the interaction of developed turbulence with mean flows of simple geometry (jets and vortices). It is instructive to compare cases in two and three dimensions and see why the former are solvable and the latter are not (yet). We present the analytical solutions for two-dimensional mean flows generated by an inverse turbulent cascade on a sphere and in planar domains of different aspect ratios. These solutions are obtained in the limit of small friction when the flow is strong while turbulence can be considered weak and treated perturbatively. I then discuss when these simple solutions can be realized and when more complicated flows may appear instead. The next step of describing turbulence statistics inside a flow and directions of possible future progress are briefly discussed at the end.

  1. Three-Dimensional Structure of Solar Wind Turbulence

    CERN Document Server

    Chen, C H K; Schekochihin, A A; Horbury, T S; Wicks, R T; Bale, S D

    2011-01-01

    We have measured, for the first time, the three-dimensional structure of inertial range plasma turbulence in the fast solar wind with respect to a local, physically motivated coordinate system. We found that the incompressible Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy changing from large to small scales. At the largest scales, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the smallest scales, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean magnetic field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped.

  2. Advances in the analysis and prediction of turbulent viscoelastic flows

    Science.gov (United States)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  3. Two-equation turbulence modeling for 3-D hypersonic flows

    Science.gov (United States)

    Bardina, J. E.; Coakley, T. J.; Marvin, J. G.

    1992-01-01

    An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.

  4. Proton Heating in Solar Wind Compressible Turbulence with Collisions between Counter-propagating Waves

    CERN Document Server

    He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D

    2015-01-01

    Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...

  5. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J. [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Route de Saclay, F-92120 Palaiseau (France); Huang, S. Y. [School of Electronics and Information, Wuhan University, Wuhan (China); Goldstein, M. L., E-mail: fouad.sahraoui@lpp.polytechnique.fr [NASA Goddard Space Flight Center, Code 672, Greenbelt, MD 20771 (United States)

    2013-11-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ{sub e}, followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW.

  6. Scaling of the Electron Dissipation Range of Solar Wind Turbulence

    Science.gov (United States)

    Sahraoui, F.; Huang, S. Y.; Belmont, G.; Goldstein, M. L.; Rétino, A.; Robert, P.; De Patoul, J.

    2013-11-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW.

  7. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  8. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  9. Winding number instability in the phase-turbulence regime of the complex Ginzburg-Landau equation

    CERN Document Server

    Montagne, R; San Miguel, M

    1996-01-01

    We give a statistical characterization of states with nonzero winding number in the Phase Turbulence (PT) regime of the one-dimensional Complex Ginzburg-Landau equation. We find that states with winding number larger than a critical one are unstable, in the sense that they decay to states with smaller winding number. The transition from Phase to Defect Turbulence is interpreted as an ergodicity breaking transition which occurs when the range of stable winding numbers vanishes. Asymptotically stable states which are not spatio-temporally chaotic are described within the PT regime of nonzero winding number.

  10. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    Science.gov (United States)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Numerical simulation of incompressible turbulent flows in presence of laminar to turbulent transition

    Science.gov (United States)

    Satish, G.; Vashista, G. A.; Majumdar, Sekhar

    2017-04-01

    Most of the widely used popular mathematical models of turbulence use a judicious combination of intuition, empiricism and the governing equations of instantaneous and mean motion-valid strictly for fully developed turbulence without any laminar region. In reality however, any wall bounded or free shear flow may consist of some laminar flow patches which eventually undergo transition over a finite length to grow into fully turbulent flows. Most of the turbulence models used in commercial CFD codes, are unable to predict the dynamics of turbulent flows with laminar patches. However, accurate prediction of transitional flows is often essential to estimate the pressure losses and/or heat transfer in industrial applications. The present paper implements two different transition models in an existing finite volume URANS-based code RANS3D, developed in house and validated against reliable measurement data for flow past flat plates with different free stream turbulence levels and flow past SD7003 aerofoil at a chord-based Reynolds number of 60,000.

  12. Organized Oscillations of Initially-Turbulent Flow Past a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell

    2002-09-17

    Flow past an open cavity is known to give rise to self-sustained oscillations in a wide variety of configurations, including slotted-wall, wind and water tunnels, slotted flumes, bellows-type pipe geometries, high-head gates and gate slots, aircraft components and internal piping systems. These cavity-type oscillations are the origin of coherent and broadband sources of noise and, if the structure is sufficiently flexible, flow-induced vibration as well. Moreover, depending upon the state of the cavity oscillation, substantial alterations of the mean drag may be induced. In the following, the state of knowledge of flow past cavities, based primarily on laminar inflow conditions, is described within a framework based on the flow physics. Then, the major unresolved issues for this class of flows will be delineated. Self-excited cavity oscillations have generic features, which are assessed in detail in the reviews of Rockwell and Naudascher, Rockwell, Howe and Rockwell. These features, which are illustrated in the schematic of Figure 1, are: (i) interaction of a vorticity concentration(s) with the downstream corner, (ii) upstream influence from this corner interaction to the sensitive region of the shear layer formed from the upstream corner of the cavity; (iii) conversion of the upstream influence arriving at this location to a fluctuation in the separating shear layer; and (iv) amplification of this fluctuation in the shear layer as it develops in the streamwise direction. In view of the fact that inflow shear-layer in the present investigation is fully turbulent, item (iv) is of particular interest. It is generally recognized, at least for laminar conditions at separation from the leading-corner of the cavity, that the disturbance growth in the shear layer can be described using concepts of linearized, inviscid stability theory, as shown by Rockwell, Sarohia, and Knisely and Rockwell. As demonstrated by Knisely and Rockwell, on the basis of experiments interpreted

  13. Final Report - Investigation of Intermittent Turbulence and Turbulent Structures in the Presence of Controlled Sheared Flows

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark A. [University of New Mexico

    2013-06-27

    Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.

  14. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  15. Structures and scaling laws of turbulent Couette flow

    Science.gov (United States)

    Oberlack, Martin; Avsarkisov, Victor; Hoyas, Sergio; Rosteck, Andreas; Garcia-Galache, Jose P.; Frank, Andy

    2014-11-01

    We conducted a set of large scale DNS of turbulent Couette flow with the two key objectives: (i) to better understand large scale coherent structures and (ii) to validate new Lie symmetry based turbulent scaling laws for the mean velocity and higher order moments. Though frequently reported in the literature large scale structures pose a serious constraint on our ability to conduct DNS of turbulent Couette flow as the largest structures grow with increasing Re#, while at the same time Kolmogorov scale decreases. Other than for the turbulent Poiseuille flow a too small box is immediately visible in low order statistics such as the mean and limited our DNS to Reτ = 550 . At the same time we observed that scaling of the mean is peculiar as it involves a certain statistical symmetry which has never been observed for any other parallel wall-bounded turbulent shear flow. Symmetries such as Galilean group lie at the heart of fluid dynamics, while for turbulence statistics due to the multi-point correlation equations (MPCE) additional statistical symmetries are admitted. Most important, symmetries are the essential to construct exact solutions to the MPCE, which with the new above-mentioned special statistical symmetry led to a new turbulent scaling law for the Couette flow. DFG Grant No; KH 257/2-1.

  16. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    Science.gov (United States)

    Wilson, Jordan M.

    of mean shear and buoyancy frequency, S and N, respectively. Length scale estimates for LM are given by LkS ≡ k1/2/S and LkN ≡ k1/2/N, where LkS provides an accurate estimate for eddy viscosity, nut, under neutral to strongly stable conditions for SABL data. The relative influence of shear and buoyancy are given by the ratio of the respective time scales, S--1 and N--1, with the pertinent time scale of the large-scale motions, TP ≡ k/P, through the parameters STP and NTP. L kS's range of applicability is further assessed in a STP-NTP parameter space. In developing these parameterizations, the stress-intensity ratio, c2 , is evaluated using high-Re stably stratified data and is shown to exhibit a near constant value (c2 ≈ 0.25) for stably stratified geophysical turbulence. These findings provide a clear trajectory for numerical modeling of stably stratified geophysical shear turbulence without reliance on stability or damping functions, tuning parameters, or artificial parameterizations. An initial modeling study of moderate-Re channel and Ekman layer flows using the proposed parameterizations confirms this supposition. Finally, it is in this new light that large-scale implications of wind energy can now be considered. As a first step in this process, computational fluid dynamics (CFD) studies of wind turbine interactions are carried out under neutrally stratified conditions. Simulations clearly show that actuator line models provide efficacy in wake generation, interaction, and restoration and highlight model requirements for stably stratified conditions. Results suggest that standard horizontal spacings of 5--10 rotor diameters yield significant reductions in power output and increases turbulence intensity and fatigue loading.

  17. Numerical modeling of the wind flow over a transverse dune

    Science.gov (United States)

    Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.

    2013-01-01

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456

  18. Numerical modeling of the wind flow over a transverse dune.

    Science.gov (United States)

    Araújo, Ascânio D; Parteli, Eric J R; Pöschel, Thorsten; Andrade, José S; Herrmann, Hans J

    2013-10-04

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee - the separation bubble - displays a surprisingly strong dependence on the wind shear velocity, u: it is nearly independent of u for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u is larger than approximately 0.39 m/s, whereas a larger value of u (about 0.49 m/s) is required to initiate this reverse transport.

  19. The average output power of a wind turbine in a turbulent wind

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.; Sheinman, Y. (Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, Haifa (Israel))

    1994-05-01

    Turbulence has an important influence on the average output power of a wind turbine taken over a certain period of time. The wind dynamics is coupled to the turbine dynamic characteristics and results in a fairly complicated behavior. Thus, the common 'static' model of calculating the average power, which is based on the turbine power curve and the average wind speed, may result in increasing errors. This paper presents three different models for calculating the average output power, taking into account the dynamic characteristics of the phenomenon. These models include direct time integration using accurate wind data and a detailed dynamic model of the turbine, a quasi-steady approach which is much simpler to apply and takes into account the wind dynamics, and an improved efficient model that also includes the influence of the dynamic characteristics of the turbine. The last improved model is based on a study of the turbine response to a sinusoidal gust. All models are compared with field measurements in order to study their accuracy. The comparison exhibits the importance of including all the dynamic effects in the calculations

  1. Effects of subgrid-scale modeling on wind turbines flows

    Science.gov (United States)

    Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2015-11-01

    The increased demand for wind energy had led to a continuous increase in the size of wind turbines and, consequently, of wind farms. A potential drawback of such large clusters lies in the decrease in the efficiency due to the wake interference. Large-Eddy Simulations (LES) coupled with blade models have shown the capability of resolving the unsteady nature of wind turbine wakes. In LES, subgrid-scale (SGS) models are needed to introduce the effect of the turbulence small scales not resolved by the computational grid. Many LES of wind farms employ the classic Smagorinsky model, despite it suffers from some major drawbacks, e.g. (i) the presence of an input tuning parameter and (ii) the wrong behaviour near solid walls. In the present work an analysis of the effects of various SGS models is carried out for LES in which the turbine tower and nacelle are directly simulated with the Immersed Boundaries method. Particular attention is dedicated to the region of separated flow behind the tower where the impact of the SGS models is expected to be important. We focus herein on non-dynamic eddy-viscosity models, which have proven to have a correct behaviour near solid walls. A priori and a posteriori tests are performed for a configuration reproducing an experiment conducted at NTNU. The work is partially supported by the NSF PIRE Award IIA 1243482. TACC is acknowledged for providing computational time.

  2. Modeling of short scale turbulence in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Krishan

    2005-01-01

    Full Text Available The solar wind serves as a laboratory for investigating magnetohydrodynamic turbulence under conditions irreproducible on the terra firma. Here we show that the frame work of Hall magnetohydrodynamics (HMHD, which can support three quadratic invariants and allows nonlinear states to depart fundamentally from the Alfvénic, is capable of reproducing in the inertial range the three branches of the observed solar wind magnetic fluctuation spectrum - the Kolmogorov branch f -5/3 steepening to f -α1 with on the high frequency side and flattening to f -1 on the low frequency side. These fluctuations are found to be associated with the nonlinear Hall-MHD Shear Alfvén waves. The spectrum of the concomitant whistler type fluctuations is very different from the observed one. Perhaps the relatively stronger damping of the whistler fluctuations may cause their unobservability. The issue of equipartition of energy through the so called Alfvén ratio acquires a new status through its dependence, now, on the spatial scale.

  3. Zonal Flows and Turbulence in Fluids and Plasmas

    CERN Document Server

    Parker, Jeffrey B

    2015-01-01

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flow...

  4. Elastic Turbulence in Channel Flows at Low Reynolds number

    CERN Document Server

    Qin, Boyang

    2016-01-01

    We experimentally demonstrate the existence of elastic turbulence in straight channel flow at low Reynolds numbers. Velocimetry measurements show non-periodic fluctuations in the wake of curved cylinders as well as in a parallel shear flow region. The flow in these two locations of the channel is excited over a broad range of frequencies and wavelengths, consistent with the main features of elastic turbulence. However, the decay of the initial elastic turbulence around the cylinders is followed by a growth downstream in the straight region. The emergence of distinct flow characteristics both in time and space suggests a new type of elastic turbulence, markedly different from that near the curved cylinders. We propose a self-sustaining mechanism to explain the sustained fluctuations in the parallel shear region.

  5. A κ-ε Turbulence Model Considering Compressibility in Three-Dimensional Transonic Turbulent Flow Calculation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the standark κ-ε turbulence model,a new compressible κ-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and aplied to the simulation of 3D transonic turbulent flows in a nozzle and a cascade.The Reynolds averaged N-S equations in generalized curvilinear coordinates are solved with implementation of the new model,the high resolution TVD scheme is used to discretize the convective terms.The numerical results show that the compressible κ-ε odel behaves well in the simulation of transonic internal turbulent flows.

  6. Influence of turbulence on power quality. Comparative study between constant and variable wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Longatt, Francisco M. [Universidad Nacional Experimental Politecnica de la Fuerza Armada Nacional (UNEFA), Aragua (Venezuela). Grupo de Investigaciones Avanzadas en Energia

    2008-07-01

    Turbulence is clearly a complex process, and one which cannot be represented simply in terms of deterministic equations. The main objective of this paper is a comparative study of impact on dynamic behavior on constant and variable speed wind turbines considering several turbulence sceneries. We consider integration on a test system of squirrel cage induction generator for constant speed wind turbine, and doubly fed induction generator for variable speed wind turbine. Several simulations with different intensity of turbulences were developed, and conclusions are presented. Good dynamic behavior is evident on doubly fed induction generator, with controls. (orig.)

  7. Symmetry plane model for turbulent flows with vortex generators

    Science.gov (United States)

    Arnaud, Gilles L.; Russell, David A.

    1991-01-01

    An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

  8. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.

  9. Flow Separation and Turbulence in Jet Pumps for Thermoacoustic Applications

    NARCIS (Netherlands)

    Oosterhuis, Joris P.; Verbeek, Anton A.; Bühler, Simon; Wilcox, Douglas; Meer, van der Theo H.

    2016-01-01

    The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be

  10. Consequences of variations in spatial turbulence characteristics for fatigue life time of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.

    1998-09-01

    The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.

  11. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  12. Rainfall effect on wind waves and the turbulence beneath air-sea interface

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongliang; MA Xin; LIU Bin; XIE Lian

    2013-01-01

    Rainfall effects on wind waves and turbulence are investigated through the laboratory experiments in a large wind-wave tank. It is found that the wind waves are damped as a whole at low wind speeds, but are enhanced at high wind speeds. This dual effect of rain on the wind waves increases with the increase of rain rate, while the influence of rainfall-area length is not observable. At the low wind speed, the corresponding turbulence in terms of the turbulent kinetic energy (TKE) dissipation rate is significantly enhanced by rain-fall as the waves are damped severely. At the high wind speed, the augment of the TKE dissipation rate is suppressed while the wind waves are enhanced simultaneously. In the field, however, rainfall usually hin-ders the development of waves. In order to explain this contradiction of rainfall effect on waves, a possibility about energy transfer from turbulence to waves in case of the spectral peak of waves overlapping the inertial subrange of turbulence is assumed. It can be applied to interpret the damping phenomenon of gas trans-fer velocity in the laboratory experiments, and the variation of the TKE dissipation rates near sea surface compared with the law of wall.

  13. Fully developed turbulence in slugs of pipe flows

    Science.gov (United States)

    Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.

  14. Impact of large scale flows on turbulent transport

    Science.gov (United States)

    Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Fleurence, E.; Garbet, X.; Ghendrih, Ph; Bertrand, P.; Besse, N.; Crouseilles, N.; Sonnendrücker, E.; Latu, G.; Violard, E.

    2006-12-01

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  15. Impact of large scale flows on turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)

    2006-12-15

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  16. Behaviour of organised disturbances in fully developed turbulent channel flow

    Indian Academy of Sciences (India)

    P K Sen; Srinivas V Veeravali

    2000-10-01

    In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the stability characteristics in the two flows are nearly identical although the boundary conditions (at the edge of the boundary layer and at the centre of the channel) are different. Comparisons with the experiments of Hussain and Reynolds are also presented.

  17. A streamwise constant model of turbulence in plane Couette flow

    OpenAIRE

    Gayme, D. F.; McKeon, B. J.; Papachristodoulou, A.; Bamieh, B; Doyle, J. C.

    2010-01-01

    Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behaviour of fully turbulent plane Couette flow using a streamwise constant projection of the Navier–Stokes equations. This results in a two-dimensional three-velocity-component (2D/3C) model. We first use a steady-state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity p...

  18. Effect of particle clustering on radiative transfer in turbulent flows

    CERN Document Server

    Liberman, M; Rogachevskii, I; Haugen, N E L

    2016-01-01

    The effect of particle clustering on the radiation penetration length in particle laden turbulent flows is studied using a mean-field approach. Particle clustering in temperature stratified turbulence implies the formation of small-scale clusters with a high concentration of particles, exceeding the mean concentration by a few orders of magnitude. We show that the radiative penetration length increases by several orders of magnitude due to the particle clustering in a turbulent flow. Such strong radiative clearing effect plays a key role in a number of atmospheric and astrophysical phenomena, and can be of fundamental importance for understanding the origin of dust explosions.

  19. MODELLING AND COMPUTATION OF UNSTEADY TURBULENT CAVITATION FLOWS

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; LU Chuan-jing; WU Lei

    2006-01-01

    Unsteady turbulent cavitation flows in a Venturi-type section and around a NACA0012 hydrofoil were simulated by two-dimensional computations of viscous compressible turbulent flow model.The Venturi-type section flow proved numerical precision and reliability of the physical model and the code, and further the cavitation around NACA0012 foil was investigated.These flows were calculated with a code of SIMPLE-type finite volume scheme, associated with a barotropic vapor/liquid state law which strongly links density and pressure variation.To simulate turbulent flows, modified RNG k- ε model was used.Numerical results obtained in the Venturi-type flow simulated periodic shedding of sheet cavity and was compared with experiment data, and the results of the NACA0012 foil show quasi-periodic vortex cavitation phenomenon.Results obtained concerning cavity shape and unsteady behavior, void ratio, and velocity field were found in good agreement with experiment ones.

  20. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  1. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    Science.gov (United States)

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  2. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    CERN Document Server

    Pushkarev, Andrey V; Nazarenko, Sergey V

    2012-01-01

    Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices.

  3. Impact of Winds from Intermediate-Mass Stars on Molecular Cloud Structure and Turbulence

    CERN Document Server

    Offner, S S R

    2015-01-01

    Observations of nearby molecular clouds detect "shells", which are likely caused by winds from young main sequence stars. However, the progenitors of these observed features are not well characterized and the mass-loss rates inferred from the gas kinematics are several orders of magnitude greater than those predicted by atomic line-driven stellar wind models. We use magnetohydrodynamic simulations to model winds launching within turbulent molecular clouds and explore the impact of wind properties on cloud morphology and turbulence. We find that winds do not produce clear features in turbulent statistics such as the Fourier spectra of density and momentum but do impact the Fourier velocity spectrum. The density and velocity distribution functions, especially as probed by CO spectral lines, strongly indicate the presence and influence of winds. We show that stellar mass-loss rates for individual stars must be $\\dot m_w \\gtrsim 10^{-7}$ Msun yr$^{-1}$, similar to those estimated from observations, to reproduce s...

  4. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  5. Intermittent Turbulence in Stratified Flow over a Canopy

    NARCIS (Netherlands)

    Boing, S.; Jonker, H.J.J.; Wiel, van de B.J.H.; Moene, A.F.

    2010-01-01

    During the night turbulence can often be very intermittent, occurring in sudden vigorous bursts after prolonged periods of low-intensity. Several mechanisms have been proposed to explain intermittency. The present study focuses on the role of porous surface elements, which influence the mean wind

  6. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.

  7. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  8. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  9. Studies of compressible shear flows and turbulent drag reduction

    Science.gov (United States)

    Orszag, S. A.

    1981-04-01

    Compressible shear flows and drag reduction were examined and three methods are addressed: (1) the analytical and numerical aspects of conformal mapping were summarized and a new method for computation of these maps is presented; (2) the computer code SPECFD for solution of the three dimensional time dependent Navier-Stokes equations for compressible flow on the CYBER 203 computer is described; (3) results of two equation turbulence modeling of turbulent flow over wavy walls are presented. A modified Jones-Launder model is used in two dimensional spectral code for flow in general wavy geometries.

  10. The Solar Wind as a Laboratory for the Study of Magnetofluid Turbulence

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    The solar wind is the Sun's exosphere. As the solar atmosphere expands into interplanetary space, it is accelerated and heated. Data from spacecraft located throughout the heliosphere have revealed that this exosphere has velocities of several hundred kilometers/sec, densities at Earth orbit of about 5 particles/cm(exp 3), and an entrained magnetic field that at Earth orbit that is about 5 X 10(exp 5) Gauss. A fascinating feature of this magnetized plasma, which is a gas containing both charged particles and magnetic field, is that the magnetic field fluctuates in a way that is highly reminiscent of "Alfven waves", first defined by Hannes Alfven in 1942. Such waves have the defining property that the fluctuating magnetic fields are aligned with fluctuations in the velocity of the plasma and that, when properly normalized, the fluctuations have equal magnitudes. The observed alignment is not perfect and the resulting mismatch leads to a variety of complex interactions. In many respects, the flow patterns appear to be an example of fully developed magnetofluid turbulence. Recently, the dissipation range of this turbulence has been revealed by Search Coil magnetometer data from the four Cluster spacecraft. This tutorial will describe some of the properties of the large-scale and small-scale turbulence.

  11. DNSLab: A gateway to turbulent flow simulation in Matlab

    Science.gov (United States)

    Vuorinen, V.; Keskinen, K.

    2016-06-01

    Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to

  12. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  13. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  14. Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation

    Science.gov (United States)

    Banerjee, Tirtha; Muste, Marian; Katul, Gabriel

    2015-02-01

    The problem of wind-induced flow in inland waters is drawing significant research attention given its relevance to a plethora of applications in wetlands including treatment designs, pollution reduction, and biogeochemical cycling. The present work addresses the role of wind induced turbulence and waves within an otherwise static water body in the presence of rigid and flexible emergent vegetation through flume experimentation and time series analysis. Because no prior example of Particle Imaging Velocimetry (PIV) experiments involving air-water and flexible oscillating components have been found in the literature, a spectral analysis framework is needed and proposed here to guide the analysis involving noise, wave and turbulence separation. The experiments reveal that wave and turbulence effects are simultaneously produced at the air-water interface and the nature of their coexistence is found to vary with different flow parameters including water level, mean wind speed, vegetation density and its flexibility. For deep water levels, signature of fine-scaled inertial turbulence is found at deeper layers of the water system. The wave action appears stronger close to the air-water interface and damped by the turbulence deeper inside the water system. As expected, wave action is found to be dominated in a certain frequency range driven by the wind forcing, while it is also diffused to lower frequencies by means of (wind-induced) oscillations in vegetation. Regarding the mean water velocity, existence of a counter-current flow and its switching to fully forward flow in the direction of the wind under certain combinations of flow parameters were studied. The relative importance of wave and turbulence to the overall energy, degree of anisotropy in the turbulent energy components, and turbulent momentum transport at different depths from the air-water interface and flow combinations were then quantified. The flume experiments reported here differ from previous laboratory

  15. Experimental characterization of turbulent inflow noise on a full-scale wind turbine

    Science.gov (United States)

    Buck, Steven; Oerlemans, Stefan; Palo, Scott

    2016-12-01

    An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.

  16. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  17. Subcritical transition to turbulence in plane channel flows

    Science.gov (United States)

    Orszag, S. A.; Patera, A. T.

    1980-01-01

    A linear three dimensional mechanism for the transition of plane Poiseuille flows to turbulence is presented which provides good agreement with experimental observations. The mechanism is based on the evolution of states within a band of quasi-equilibria which slowly approach the stable upper branch solutions for the evolution of flow energy but which are strongly unstable to infinitesimal three-dimensional disturbances. Numerical simulation has shown that if two-dimensional flow persists long enough for the three-dimensional perturbations to attain finite amplitude, the resulting three dimensional flow quickly develops a turbulent character with nonperiodic behavior, and thus transition can be predicted from knowledge of the initial two- and three-dimensional energies and time scales. The mechanism predicts transition to turbulence at Reynolds numbers greater than 1000, as observed in experiments, and implies higher threshold three-dimensional energies in plane Couette flow.

  18. Multiscale modeling of turbulent channel flow over porous walls

    Science.gov (United States)

    Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin

    2016-11-01

    We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.

  19. Controlling a Linear Process in Turbulent Channel Flow

    Science.gov (United States)

    Lim, Junwoo; Kim, John

    1999-11-01

    Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.

  20. Space-Time Correlations and Dynamic Coupling in Turbulent Flows

    Science.gov (United States)

    He, Guowei; Jin, Guodong; Yang, Yue

    2017-01-01

    Space-time correlation is a staple method for investigating the dynamic coupling of spatial and temporal scales of motion in turbulent flows. In this article, we review the space-time correlation models in both the Eulerian and Lagrangian frames of reference, which include the random sweeping and local straining models for isotropic and homogeneous turbulence, Taylor's frozen-flow model and the elliptic approximation model for turbulent shear flows, and the linear-wave propagation model and swept-wave model for compressible turbulence. We then focus on how space-time correlations are used to develop time-accurate turbulence models for the large-eddy simulation of turbulence-generated noise and particle-laden turbulence. We briefly discuss their applications to two-point closures for Kolmogorov's universal scaling of energy spectra and to the reconstruction of space-time energy spectra from a subset of spatial and temporal signals in experimental measurements. Finally, we summarize the current understanding of space-time correlations and conclude with future issues for the field.

  1. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Maldonado, Victor Hugo

    Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness

  2. Wake flow variability in a wind farm throughout the diurnal cycle

    Science.gov (United States)

    Abkar, Mahdi; Sharifi, Ahmad; Porté-Agel, Fernando

    2015-04-01

    The atmospheric boundary layer (ABL) undergoes substantial changes in its structure and dynamics in the course of a day due to the transient nature of forcing factors such as the surface fluxes of heat and momentum. The non-stationary nature of the mean wind and turbulence in the ABL, associated with the diurnal cycle, can in turn affect the structure of wind turbine wakes and their effects on power losses within wind farms. In this research, large-eddy simulation (LES) is used to study the evolution of the turbine wakes and their effects on power losses inside an idealized finite-size wind farm in the course of two full diurnal cycles. In the LES, turbulent subgrid-scale stresses are modeled using tuning-free Lagrangian scale-dependent dynamic models, while the turbine-induced forces are parameterized using a dynamic actuator disk model with rotation. To minimize the effects of the initial conditions on the results, our analysis is focused on the second diurnal cycle. The simulation results show a strong effect of atmospheric stability on the wind farm wakes and associated power losses. During the night, the relatively low turbulence intensity of the ambient ABL flow results in a relatively slow rate of entrainment of momentum into the wake and, consequently, a slow wake recovery. In contrast, during the day the positive buoyancy flux and associated turbulence production lead to a relatively high turbulence level in the background ABL flow, which enhances turbulent mixing and wake recovery. As a result, the averaged power deficit in the wind farm is found to increase with increasing thermal stability. In particular for that day, the averaged power deficit increased from 28% under the most convective condition to about 66% under the most stable condition.

  3. Examining the k-ε(RNG)model and LES of flow feature and turbulence dispersion around a building by means of wind tunnel tests%k-ε(RNG)、LES模拟建筑物周围气流特征及湍流扩散的风洞试验验证

    Institute of Scientific and Technical Information of China (English)

    郭栋鹏; 乔清党; 姚仁太

    2011-01-01

    Flow and dispersion of gases emitted by vents located on its roof was simulated using the k-ε(RNG)and the LES turbulence model in different wind direction,and numerical results were compared with wind-tunnel tests.The result of simulation shows that numerical simulation can better simulate flow field structure around the building,especially the downwind horseshoe vortex,upwind face stagnation location,roof-top vortex and reattachment lengths were reproduced almost exactly by all turbulence models,etc.The result of concentration shows that for an oblique wind angle,the differences among the predicted concentrations of the turbulence models are small on the roof and behind the cube.This tendency is contrary to that for a 90° wind angle.It was confirmed that the prediction accuracy of the velocity field strongly affected that of the concentration field.Analysis shows that numerical simulation results are in good agreement with the wind tunnel tests in the windward side and the roof-top backflow of the building.However,numerical simulation results are slightly higher than ones from wind tunnel tests in the rear cavity.As a whole,compared with wind tunnel tests,the LES model can better simulate the flow field and concentration field around the cube.In general,in order to estimate the environmental impact of building effectively,it is necessary to combine wind tunnel test with numerical simulation.%采用k-ε(RNG)与LES湍流模型在来流与建筑物迎风侧呈不同角度的情形下,模拟了位于立方体建筑物顶部污染源所排放污染物的流动和扩散规律,并与相应的风洞试验结果进行了比较.流场分析结果表明:数值模拟能够较好地模拟建筑物顶部回流、背风侧空腔区以及再附着点等.浓度场分析结果表明:来流与建筑物成45°时,建筑物顶部回流区与背风侧空腔区的数值模拟结果略低于风洞试验结果;来流与建筑物成90°时,建筑物顶部回流区数值模拟结果略

  4. Stochastic Modeling of Turbulence-Driven Systems: Application to Wind Energy

    Science.gov (United States)

    Milan, P.; Waechter, M.; Peinke, J.

    2010-11-01

    The recent increase in the exploitation of the wind energy resource stresses the need for fundamental research in fluid dynamics. The complex wind inflows that drive wind turbines affect their availability in terms of electric power production, as well as in operation lifetime. Short-scale turbulent effects in the wind such as intermittency, as well as large-scale atmospheric non-stationarity lead to ever-changing power signals fed into the electric grid. This calls for a theoretical classification of wind energy phenomena into complex, turbulence-driven systems. Our raising dependence on wind energy requires a better understanding of these phenomena, as well as reliable models. A stochastic model is proposed as an alternative to standard wind energy models that often neglect turbulent effects or CFD models that cannot decribe large wind turbines yet. This model is based on the stochastic equation of Langevin that can simulate these complex systems after their proper characterization. This stochastic model can be applied separately on both atmospheric wind speed signals as well as wind turbine power production signals, after the wind turbine was characterized properly. The signals generated display the proper statistics and represent fast and flexible models for wind energy applications such as monitoring, availability prediction or grid integration. A future analysis of fatigue loads is also under development.

  5. Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    Turbulence time series are needed for wind turbine load simulation. The multivariate Fourier simulation method often used for this purpose is extended for inhomogeneous and non-stationary processes of general probability distribution. This includes optional conditional simulation matching simulated...... series to field measurements at selected points. A probability model for the application of turbine wind loads is discussed, and finally the technique for non-stationary processes is illustrated by turbulence simulation during a front passage....

  6. Turbulence feature modifications from high to low wind conditions: results from the CCT observations at Ny-Ålesund, Svalbard.

    Science.gov (United States)

    Schiavon, Mario; Mazzola, Mauro; Tampieri, Francesco; Pietro Viola, Angelo; Choi, Taejin

    2017-04-01

    The turbulence features in the quasi neutral surface layer are investigated as the intensity of the wind decreases, i.e. as the forcing due to the shear decreases. In this aim, a 5-year (2012-2016) set of observations of meteorological and micro-meteorological parameters acquired on the Climate Change Tower (CCT) in Ny-Ålesund, Svalbard Islands, is used. The 34-m high tower, operated by the Italian National Council of Research (CNR) is equipped with four slow response wind and temperature probes and three fast response sonic anemometers and is located on heterogeneous terrain. One of the fast sensors was installed by KOPRI since 2012. The observations are averaged over 10 and 30 minutes intervals. The analysis addresses the share of the mean turbulent kinetic energy (TKE) among the along-wind, cross-wind and vertical velocity variances (respectively u2 >, , ), with attention to the parameterizations of the boundary layer commonly used in NWP models: the classical Mellor-Yamada (1982) scheme with the return-to-isotropy term by Rotta(1951) and its modifications, and the recent approach by Zilitinkevich and coworkers (2013). The results show that the share of TKE among the vertical and the total horizontal variance u2 > + is weakly dependent on the wind velocity while the share of the total horizontal variance between the along-wind and cross-wind components depends on wind speed. At high velocity (and large wind shear) a clear anisotropy , with u2 >≈ 2 , is observed, quite consistent with literature (Tampieri, 2017, pag. 69). As the velocity decreases, the ratio u2 > /(u2 > + ) displays a wide flat distribution between 0.2 and 0.8 with median values corresponding approximately to horizontal isotropy: u2 >≈. These features can be parameterized using suitable coefficients, function of the wind intensity in the equations for the TKE share, capturing the average behaviour of the flow. A further investigation based on estimates of the relative importance of the high

  7. Turbulent flow over a house in a simulated hurricane boundary layer

    CERN Document Server

    Taylor, Zachary; Gurka, Roi; Kopp, Gregory

    2009-01-01

    Every year hurricanes and other extreme wind storms cause billions of dollars in damage worldwide. For residential construction, such failures are usually associated with roofs, which see the largest aerodynamic loading. However, determining aerodynamic loads on different portions of North American houses is complicated by the lack of clear load paths and non-linear load sharing in wood frame roofs. This problem of fluid-structure interaction requires both wind tunnel testing and full-scale structural testing. A series of wind tunnel tests have been performed on a house in a simulated atmospheric boundary layer (ABL), with the resulting wind-induced pressures applied to the full-scale structure. The ABL was simulated for flow over open country terrain where both velocity and turbulence intensity profiles, as well as spectra, were matched with available full scale measurements for this type of terrain. The first set of measurements was 600 simultaneous surface pressure measurements over the entire house. A key...

  8. Wind farm power optimization including flow variability

    DEFF Research Database (Denmark)

    Herp, Jürgen; Poulsen, Uffe Vestergaard; Greiner, Martin

    2015-01-01

    an optimized wind-farm control strategy, derived from a fixed wake parameter, is facing this flow variability, the potential gain reduces to 0.3–0.5%. An omnipotent control strategy, which has real-time knowledge of the actual wake flow, would be able to increase the gain in wind-farm power to 4.9%.......A model-based optimisation approach is used to investigate the potential gain of wind-farm power with a cooperative control strategy between the wind turbines. Based on the Jensen wake model with the Katic wake superposition rule, the potential gain for the Nysted offshore wind farm is calculated...... to be 1.4–5.4% for standard choices 0.4 ≥ k ≥ 0.25 of the wake expansion parameter. Wake model fits based on short time intervals of length 15sec ≤ T ≤ 10 min within three months of data reveal a strong wake flow variability, resulting in rather broad distributions for the wake expansion parameter. When...

  9. Effect of passive flow-control devices on turbulent low-speed base flow

    Science.gov (United States)

    Heidari-Miandoab, Farid

    Some configurations of blunt trailing-edge airfoils are known to have a lower pressure drag compared to sharp trailing-edge airfoils. However, this advantage in addition to the structural advantage of a thick trailing-edge airfoil is offset by its high base drag. At subsonic velocities, this is attributed to the low-pressure base flow dominated by a Karman vortex street. In the limiting case, the steady separated flow over a rearward-facing step is attained if the periodically shed vortices from a blunt trailing-edge are suppressed by the addition of a base spiltter-plate. Experimental studies in the Old Dominion University Low-Speed Closed-Circuit Wind Tunnel were conducted to examine the effect of several passive flow-control devices such as Wheeler doublets and wishbone vortex generators, longitudinal surface grooves, base cavities, and serrations on the characteristics of two- and three-dimensional base flows. Flow over flat-plate airfoil and rearward-facing step models was studied in the turbulent incompressible subsonic flow regime. Models with trailing-edge and step-sweep angles of 0, 30, and 45 degrees with respect to the crossflow direction were considered. Constant-temperature hot-wire anemometry, infrared surface thermography, and pitot-static probes were used to conduct flow measurements. The parameters measured included vortex shedding frequency, convective heat-transfer rates, base pressure, and flow reattachment distance. Surveys of mean velocity profiles in the wake were also conducted. Results have shown that most of the flow control devices tested increased the base pressure of the 2-D and 3-D flat-plate airfoils. Use of longitudinal surface grooves resulted in shorter flow reattachment distances and higher convective heat transfer rates downstream of the 2-D rearward-facing steps.

  10. An improved turbulence model for rotating shear flows*

    Science.gov (United States)

    Nagano, Yasutaka; Hattori, Hirofumi

    2002-01-01

    In the present study, we construct a turbulence model based on a low-Reynolds-number non-linear k e model for turbulent flows in a rotating channel. Two-equation models, in particular the non-linear k e model, are very effective for solving various flow problems encountered in technological applications. In channel flows with rotation, however, the explicit effects of rotation only appear in the Reynolds stress components. The exact equations for k and e do not have any explicit terms concerned with the rotation effects. Moreover, the Coriolis force vanishes in the momentum equation for a fully developed channel flow with spanwise rotation. Consequently, in order to predict rotating channel flows, after proper revision the Reynolds stress equation model or the non-linear eddy viscosity model should be used. In this study, we improve the non-linear k e model so as to predict rotating channel flows. In the modelling, the wall-limiting behaviour of turbulence is also considered. First, we evaluated the non-linear k e model using the direct numerical simulation (DNS) database for a fully developed rotating turbulent channel flow. Next, we assessed the non-linear k e model at various rotation numbers. Finally, on the basis of these assessments, we reconstruct the non-linear k e model to calculate rotating shear flows, and the proposed model is tested on various rotation number channel flows. The agreement with DNS and experiment data is quite satisfactory.

  11. Compressible Turbulent Channel Flows: DNS Results and Modeling

    Science.gov (United States)

    Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.

  12. Macroscopic effects of the spectral structure in turbulent flows

    Science.gov (United States)

    Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.

    2010-11-01

    There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).

  13. New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

    CERN Document Server

    Nicolleau, FCGA; Redondo, J-M

    2012-01-01

    This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic

  14. Similarity considerations for a turbulent axisymmetric wake with rotation subjected to a boundary layer flow

    Science.gov (United States)

    Wosnik, Martin

    2015-11-01

    Recently an analytical and experimental investigation of the turbulent axisymmetric wake with rotation found a new asymptotic scaling function for the mean swirl, Wmax ~Uo3/ 2 ~x-1 (Dufresne and Wosnik, Mar Technol Soc J, 47, no.4, 193-205, 2013). An equilibrium similarity theory derived scaling functions from the conditions for the existence of similarity directly from the equations of motion. Axial and azimuthal (swirl) velocities were measured in the wake of a single 3-bladed wind turbine in a free stream up to 20 diameters downstream, and the data were found to support the theoretical results. The scaling implies that the mean swirl decays faster, with x-1, than the mean velocity deficit, with x - 2 / 3. Real wind turbines, however, operate in the atmospheric boundary layer. They are subjected to mean shear and turbulence, both have been observed to improve wake recovery. Similarity considerations are extended to place a turbulent axisymmetric wake with rotation in a boundary layer flow, and the scaling implications are examined. Corresponding experiments were carried out in the UNH Flow Physics Facility, using model wind turbines of various sizes as swirling wake generators. Supported by NSF CBET grant 1150797.

  15. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    Science.gov (United States)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  16. A Large Eddy Simulation to determine the effect of trees on wind and turbulence over a suburban surface

    Science.gov (United States)

    Egli, P. E.; Giometto, M. G.; Tooke, T. R.; Krayenhoff, S.; Christen, A.; Parlange, M. B.

    2014-12-01

    Robust modeling of flow and turbulence within and over urban canopies is required to properly predict air pollution and dispersion in cities. Trees are an integral part of the urban landscape. In many suburban neighbourhoods, tree cover is 10 to 30% and trees are often taller than buildings. Effects of trees on drag, mean wind and turbulence in cities are not accounted for in current weather, air pollution and dispersion models. Our goal is to use high-resolution Large Eddy Simulations (LES) over a realistic urban canopy to determine the effects of trees on drag, mean wind and turbulence in the urban roughness sublayer (RSL). The simulated area is part of the Sunset-Neighbourhood in Vancouver, Canada. In this area, long-term wind and turbulence measurements are available from instruments on a 28m-tall tower. Further, a three-dimensional point cloud was captured from high precision airborne Light Detection and Ranging (LiDAR), and analyzed to represent the structural characteristics of both buildings and trees at high spatial resolution. Trees are described by location-specific leaf area density (LAD) profiles. LES simulations are performed over a 512 x 512m characteristic subset of the city that contains the tower location and predominant source area. In the LES, buildings are accounted for with an immersed boundary method, adopting a zero level-set distance function to localize the surface, whereas drag forces from trees are parametrized as a function of the height-dependent LAD. Spectra of streamwise and vertical velocity components compare well between tower data and the model data, confirming the good performance of LES in simulations of flow over fully rough surfaces. We show how the presence of trees impacts mean velocity and computed momentum flux profiles; they significantly decrease dispersive terms in the bulk of the flow. The impact of trees on integral length scales in the flow is discussed.

  17. Numerical Simulation of the Turbulent Flow around an Oval-Sail

    Directory of Open Access Journals (Sweden)

    Ouahiba Guerri

    2016-01-01

    Full Text Available This paper presents numerical study of an oval-sail, a bluff-body equipped with a grid all along the span. Suction based flow control is applied to this body that is developed for wind assisted ship propulsion. First, a choice of numerical turbulence model is discussed through results of an oval-sail without suction. Three turbulence models are applied: the Ri j SSG, the Ri j EBRSM and the v2 f model. Then, computations are performed for the oval-sail fitted with suction grid. These last simu- lations are carried out with the low-Reynolds-number Ri j EBRSM turbulence model. The influence of the grid geometry on the oval-sail aerodynamic performances is highlighted. All simulations are carried out for the sail set at zero incidence. The Reynolds number based on the free stream velocity and the profile chord is Re = 5105. Results are compared to available experimental data.

  18. Investigation of Turbulent Laminar Patterns in Poiseuille-Couette flow

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2014-11-01

    Laminar-turbulent intermittency has recently been observed in the transitional regime of pipe ... and plane Couette flow .... While many works focus on behavior of these patterns in plane Couette flow, little attention has been paid to Poiseuille flow and transition from Couette to Poiseuille flow. In this study, we investigate behavior of turbulent laminar patterns in Poiseuille-Couette flow, including pure Poiseuille and Couette flows at two limits. Direct Numerical Simulation (DNS) is used to simulate a Poiseuille-Couette channel at a size of 16 πh × 2h × 2 πh (corresponding to a resolution of 512 × 129 × 128 in x, y and z directions), with periodic boundary condition applied in the x and z directions (h is half of the channel height). The Reynolds number is 300, and the flow is at transitional regime in all simulations. Behavior of laminar turbulent patterns as the flow goes from Couette to Poiseuille flow will be presented in details. This would shed some light on the effect of different types of flow on these patterns, as well as how these patterns vary from fully Poiseuille flow to fully Couette flow.

  19. Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows

    CERN Document Server

    Blonigan, Patrick; Wang, Qiqi

    2014-01-01

    Computational methods for sensitivity analysis are invaluable tools for aerodynamics research and engineering design. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in turbulent fluid flow fields, specifically those obtained using high-fidelity turbulence simulations. This is because of a number of dynamical properties of turbulent and chaotic fluid flows, most importantly high sensitivity of the initial value problem, popularly known as the "butterfly effect". The recently developed least squares shadowing (LSS) method avoids the issues encountered by traditional sensitivity analysis methods by approximating the "shadow trajectory" in phase space, avoiding the high sensitivity of the initial value problem. The following paper discusses how the least squares problem associated with LSS is solved. Two methods are presented and are demonstrated on a simulation of homogeneous isotropic turbulence and the Kuramoto-Sivashinsky (KS) equation, a 4th order c...

  20. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    Turbulent buoyant jets and plumes in flowing ambient environments have been studied theoretically and experimentally. The mechanics of turbulent buoyant jets and plumes in flowing ambients have been discussed. Dimensional analysis was employed to investigate the mean behaviour of the turbulent...... and the stage of plume. The stability criteria for the upstream wedge created by the submerged turbulent buoyant jet were established by applying the Bernoulli equations for a two-dimensional problem and by considering the front velocity driven by the buoyancy force for a three-dimensional problem...... in a crossflowing environment, have been presented and successfully correlated using momentum and buoyancy fluxes and length scales. The analysis demonstrates that the experimental data on the jet trajectories and dilutions can be well correlated using the momentum or buoyancy fluxes and length scales, depending...

  1. Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery

    Institute of Scientific and Technical Information of China (English)

    徐宇; 吴玉林

    2003-01-01

    Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.

  2. Modeling Rotating Turbulent Flows with the Body Force Potential Model.

    Science.gov (United States)

    Bhattacharya, Amitabh; Perot, Blair

    2000-11-01

    Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.

  3. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.;

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  4. Turbulence, flow and transport: hints from reversed field pinch

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2006-04-01

    The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.

  5. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  6. Cavitation Inception in Turbulent Flows Around a Hydrofoil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min-di; WANG Guo-yu; ZHANG Zhen; GAO Yuan-yin

    2006-01-01

    The phenomenon of cavitation inception around a hydrofoil is studied experimentally. The flow velocities around the foil are measured by a laser doppler velocimetry (LDV). The inception cavitation aspects are observed by using a high-speed video camera. In the experiment, the Reynolds number is fixed at a value of 7 .0×105. The boundary layer around the foil undergoes turbulent flow under the experiment condition. The LDV measurement results show that the flow in the boundary layer around the foil doesn't separate from the surface. It is found that the cavitation inception in non-separated turbulent flow is related to the coherent structures in the boundary layer. It is clear that the turbulent bursting and the hairpin-shaped vortex structure accompany the incipient cavitation.

  7. Numerical simulation of the characteristics of turbulent Taylor vortex flow

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiantao; PAN Jiazhen; CHEN Liqing; SHI Yan; CHEN Wenmei; CHU Liangyin

    2007-01-01

    Turbulent Taylor vortex flow,which is contained between a rotating inner cylinder and a coaxial fixed outer cylinder with fixed ends,is simulated by applying the development in Reynolds stress equations mold (RSM) of the micro-perturbation.This resulted from the truncation error between the numerical solution and exact solution of the Reynolds stress equations.Based on the numerical simulation results of the turbulent Taylor vortex flow,its characteristics such as the fluctuation of the flow field,the precipitous drop of azimuthal velocity,the jet flow of radial velocity,the periodicity of axial velocity,the wave periodicity of pressure distribution,the polarization of shear stress on the walls,and the turbulence intensity in the jet region,are discussed.Comparing the pilot results measured by previous methods,the relative error of the characteristics predicted by simulation is less than 30%.

  8. Dynamical-systems approach to localised turbulence in pipe flow

    CERN Document Server

    Ritter, Paul; Avila, Marc

    2015-01-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.

  9. Experimental Studies on Turbulence Kinetic Energy in Confined Vortex Flows

    Institute of Scientific and Technical Information of China (English)

    L.Yan; G.H.Vatistas; 等

    2000-01-01

    Turbulence kinetic energies in confined vortex flows have been studied.The studies were based on the experiments performed in a vortex chamber,In the experiments,a Laser Doppler Anemometry(LDA) was used to perform flow measurements inside the vortex chamber,which provided the data for the kinetic energy analysis.The studies concentrated on the influences of the contraction ratio and the inlet air flow rate on the kinetic energy,and analyzed the characteristics of the kinetic energy in the confined vortex flows,including the distributions of the tangential component,radial component and total turbulence kinetic energy,In the paper,both the experimental techniques and the experimental results were presented.Based on a similarity analyis and the experimental data,an empirical scaling formula was proposed so that the tangential component of the turbulence kinetic energy was dependent only on the parameter of the contraction ratio.

  10. Effects of spanwise rotation on turbulent channel flow

    CERN Document Server

    Brethouwer, Geert

    2016-01-01

    A study of fully developed plane turbulent channel flow subject to spanwise system rotation through direct numerical simulations is presented. In order to study both the influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds number $Re = U_b h/\

  11. Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L D

    2003-02-01

    We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.

  12. Wind sheltering of lakes and wetlands: the effect of stability on turbulent canopy wakes and evaporation

    Science.gov (United States)

    Markfort, C. D.; Porte-Agel, F.; Stefan, H. G.

    2010-12-01

    Topographic features and heterogeneous vegetation cover of the landscape, as well as atmospheric stability present significant challenges for predicting fluxes of momentum, heat, moisture, and climate-controlling trace gases across land and water surfaces from and into the atmospheric boundary layer (ABL). Changes in landscape roughness and boundary layer separation in the wake of canopies, buildings and large-scale topographic obstructions contribute to these challenges. The particular case of a canopy edge at the shoreline of a lake or wetland is known to significantly reduce momentum transport to the surface of these water bodies, especially if they are of small size. The wind sheltering effect of canopies must be considered to predict surface layer mixing as well as mass transfer at the air-water interface, but few studies have addressed how canopy heterogeneity affects the ABL. Finding ideal field cases, and uncertainty in numerical approaches to high Reynolds number simulation of separated flows within the ABL have been major obstacles. Atmospheric stability can also affect sheltering due to the suppression of turbulence, potentially decreasing surface flux. The effect of atmospheric stability is of particular interest because it poses significant challenges for subgrid-scale models in large-eddy simulations. Wind tunnel experiments provide an ideal environment to simulate a stationary stable boundary layer and test how the ABL adjusts across the transition from a canopy to a lake. We conducted experiments in the St. Anthony Falls Laboratory thermally stratified boundary layer wind tunnel to determine the effects of atmospheric stability on the boundary layer evolution in the wake of a homogeneous (2h x 1v) canopy patch over a smooth flat surface. We applied the findings to investigate the potential effect on wind sheltering of lakes. We compared results from PIV and custom x-wire/cold-wire anemometry for stable and neutral conditions and find marked

  13. Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    CERN Document Server

    Wächter, Matthias; Hölling, Michael; Morales, Allan; Milan, Patrick; Mücke, Tanja; Peinke, Joachim; Reinke, Nico; Rinn, Philip

    2012-01-01

    The challenge of developing a sustainable and renewable energy supply within the next decades requires collaborative efforts as well as new concepts in the fields of science and engineering. Here we give an overview on the impact of small-scale properties of atmospheric turbulence on the wind energy conversion process. Special emphasis is given to the noisy and intermittent structure of turbulence and its outcome for wind energy conversion and utilization. Experimental, theoretical, analytical, and numerical concepts and methods are presented. In particular we report on new aspects resulting from the combination of basic research, especially in the field of turbulence and complex stochastic systems, with engineering applications.

  14. Surface waves propagation on a turbulent flow forced electromagnetically

    CERN Document Server

    Gutiérrez, Pablo

    2015-01-01

    We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...

  15. Observed winds, turbulence, and dispersion in built-up downtown areas of Oklahoma City and Manhattan

    Science.gov (United States)

    Hanna, Steven; White, John; Zhou, Ying

    2007-12-01

    Wind and tracer data from the Oklahoma City Joint Urban 2003 (JU2003) and the Manhattan Madison Square Garden 2005 (MSG05) urban field experiments are being analyzed to aid in understanding air flow and dispersion near street-level in built-up downtown areas. The mean winds are separately calculated for groups of anemometers having similar exposures such as “near street level” and “on building top”. Several general results are found, such as the scalar wind speed at street level is about 1/3 of that at building top. Turbulent standard deviations of wind speed components and temperature, and vertical fluxes of momentum and sensible heat, are calculated from sonic anemometers near street level at 20 locations in JU2003 and five locations in MSG05, and from two rooftop locations in MSG05. The turbulence observations are consistent with observations in the literature at other cities, although the JU2003 and MSG05 data are unique in that many data are available near street level. For example, it is found that the local (i.e., at the measuring height) σw/u_{ast} averages about 1.5 and the local u_{ast}/u averages about 0.25 in the two cities, where σw is the standard deviation of vertical velocity fluctuations, u_{ast} is the friction velocity, and u is the wind speed. The ratio of temperature fluctuations to temperature scale, σT/T_{ast} , averages about -3 in both cities, consistent with similarity theory for slightly unstable conditions, where σT is the standard deviation of temperature fluctuations, and T_{ast} is the temperature scale. The calculated Obukhov length, L, is also consistent with slightly unstable conditions near street level, even at night during JU2003. The SF6 tracer concentration observations from JU2003 are analyzed. Values of uC_{max}/Q for the continuous releases are calculated for each release and arc distance, where C_{max} is the 30-min average arc maximum concentration, Q is the continuous source emission rate, and u is the

  16. Rpt Analysis of Turbulent Flows With Stable Stratification

    Science.gov (United States)

    Sukoriansky, S.; Galperin, B.

    The Renormalized Perturbation Technique of successive small scales elimination is applied to turbulent flows with stable stratification. This procedure results in derivation of scale-dependent anisotropic viscosities and diffusivities that naturally incorporate the combined effect of turbulence and internal waves. In addition, this procedure ren- ders means to analyze the fundamentals of the turbulence-internal waves interaction, derive the criterion of the threshold of the internal waves generation that fully accounts for the spectral anisotropy, and derive the dispersion relation for internal waves with turbulence. A closure assumption is then introduced relating the renormalized param- eters to global flow characteristics such as the gradient Richardson number (Ri) or local Froude number. Anisotropic turbulent Prandtl numbers are compared with lab- oratory and numerical experiments. The agreement is good in the entire range of Ri, from very small to large indicating that our model captures the physics of strongly stratified turbulent flows. This result has immediate application value for modeling of atmospheric and oceanic boundary layers.

  17. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  18. Turbulent mixing in nonreactive and reactive flows

    CERN Document Server

    1975-01-01

    Turbulence, mixing and the mutual interaction of turbulence and chemistry continue to remain perplexing and impregnable in the fron­ tiers of fluid mechanics. The past ten years have brought enormous advances in computers and computational techniques on the one hand and in measurements and data processing on the other. The impact of such capabilities has led to a revolution both in the understanding of the structure of turbulence as well as in the predictive methods for application in technology. The early ideas on turbulence being an array of complicated phenomena and having some form of reasonably strong coherent struc­ ture have become well substantiated in recent experimental work. We are still at the very beginning of understanding all of the aspects of such coherence and of the possibilities of incorporating such structure into the analytical models for even those cases where the thin shear layer approximation may be valid. Nevertheless a distinguished body of "eddy chasers" has come into existence. T...

  19. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    and dilution can be successfully correlated by use of momentum or buoyancy length scales. In addition the centerline density deficit and velocity decay are well predicted by using an integral and a k - ∈turbulence model. The results shown here help us to understand in a better way the physical phenornenon...

  20. Chemical Reactions in Turbulent Mixing Flows

    Science.gov (United States)

    1991-09-14

    signal amplifier incorporated a three-pole But- water tagged by a fluorescent laser dye (sodium fluores - terworth filter, with a cutoff frequency set...effects and large structure in turbulent mixing la vers. J, Fluid Mech. 64. 775-816. CHiA PMAN N. D. R. 1979 Computational aerodynamics development and

  1. The distinct character of anisotropy and intermittency in inertial and kinetic range solar wind plasma turbulence

    Science.gov (United States)

    Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan

    2014-05-01

    The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the

  2. Distorted Turbulent Flow in a Shear Layer

    Science.gov (United States)

    2014-03-01

    The prediction of broadband noise from wind turbines , Journal of Sound and Vibration 118(2), (1987) 217-239 13. Majumder S and Peake N, 1998, Noise...introduced by Amiet[5] and used by Glegg et al [12] for wind turbines . This approach only applies when the blade passing frequency is very much less than the...K A, and Morton, M A, 2013, The Kevlar-Walled Anechoic Wind Tunnel, Journal of Sound and Vibration , http://dx.doi.org/10.1016/ j.jsv.2013.02.043i

  3. Experimental test of the Gallavotti-Cohen fluctuation theorem in turbulent flows

    Science.gov (United States)

    Ciliberto, S.; Garnier, N.; Hernandez, S.; Lacpatia, C.; Pinton, J.-F.; Ruiz Chavarria, G.

    2004-09-01

    We test the fluctuation theorem from measurements in turbulent flows. We study the time fluctuations of the force acting on an obstacle, and we consider two experimental situations: the case of a von Kármán swirling flow between counter-rotating disks and the case of a wind tunnel jet. We first study the symmetries implied by the Gallavotti-Cohen fluctuation theorem (FT) on the probability density distributions of the force fluctuations; we then test the Sinai scaling. We observe that in both experiments the symmetries implied by the FT are well verified, whereas the Sinai scaling is established, as expected, only for long times.

  4. New DNS and modeling results for turbulent pipe flow

    Science.gov (United States)

    Johansson, Arne; El Khoury, George; Grundestam, Olof; Schlatter, Philipp; Brethouwer, Geert; Linne Flow Centre Team

    2013-11-01

    The near-wall region of turbulent pipe and channel flows (as well as zero-pressure gradient boundary layers) have been shown to exhibit a very high degree of similarity in terms of all statistical moments and many other features, while even the mean velocity profile in the two cases exhibits significant differences between in the outer region. The wake part of the profile, i.e. the deviation from the log-law, in the outer region is of substantially larger amplitude in pipe flow as compared to channel flow (although weaker than in boundary layer flow). This intriguing feature has been well known but has no simple explanation. Model predictions typically give identical results for the two flows. We have analyzed a new set of DNS for pipe and channel flows (el Khoury et al. 2013, Flow, Turbulence and Combustion) for friction Reynolds numbers up to 1000 and made comparing calculations with differential Reynolds stress models (DRSM). We have strong indications that the key factor behind the difference in mean velocity in the outer region can be coupled to differences in the turbulent diffusion in this region. This is also supported by DRSM results, where interesting differences are seen depending on the sophistication of modeling the turbulent diffusion coefficient.

  5. Statistical descriptions of polydisperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre

    2016-12-01

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results

  6. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    Science.gov (United States)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  7. Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance

    CERN Document Server

    Cranmer, Steven R

    2014-01-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfven waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo...

  8. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    CERN Document Server

    Gogoberidze, Grigol

    2016-01-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfv% \\'{e}n waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index $-1$ is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified $-1$ spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top ...

  9. Simulation of the inherent turbulence and wake interaction inside an infinitely long row of wind turbines

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2013-01-01

    The turbulence in the interior of awind farmis simulated using large eddy simulation and the actuator line technique implemented in the Navier–Stokes equations. The simulations are carried out for an infinitely long row of turbines simulated by applying cyclic boundary conditions at the inlet...... and outlet. The simulations investigate the turbulence inherent to the wind turbines as no ambient turbulence or shear is added to this idealised case. The simulated data give insight into the performance of thewind turbines operating in thewake of others aswell as details on key turbulent quantities. One...

  10. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  11. Influence of atmospheric stratification on the integral scale and fractal dimension of turbulent flows

    Science.gov (United States)

    Tijera, Manuel; Maqueda, Gregorio; Yagüe, Carlos

    2016-11-01

    In this work the relation between integral scale and fractal dimension and the type of stratification in fully developed turbulence is analyzed. The integral scale corresponds to that in which energy from larger scales is incoming into a turbulent regime. One of the aims of this study is the understanding of the relation between the integral scale and the bulk Richardson number, which is one of the most widely used indicators of stability close to the ground in atmospheric studies. This parameter will allow us to verify the influence of the degree of stratification over the integral scale of the turbulent flows in the atmospheric boundary layer (ABL). The influence of the diurnal and night cycles on the relationship between the fractal dimension and integral scale is also analyzed. The fractal dimension of wind components is a turbulent flow characteristic, as has been shown in previous works, where its relation to stability was highlighted. Fractal dimension and integral scale of the horizontal (u') and vertical (w') velocity fluctuations have been calculated using the mean wind direction as a framework. The scales are obtained using sonic anemometer data from three elevations 5.8, 13 and 32 m above the ground measured during the SABLES 98 field campaign (Cuxart et al., 2000). In order to estimate the integral scales, a method that combines the normalized autocorrelation function and the best Gaussian fit (R2 ≥ 0.70) has been developed. Finally, by comparing, at the same height, the scales of u' and w' velocity components, it is found that the turbulent flows are almost always anisotropic.

  12. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  13. Curvature effects on the velocity profile in turbulent pipe flow.

    Science.gov (United States)

    Grossmann, Siegfried; Lohse, Detlef

    2017-02-01

    Prandtl and von Kármán have developed the famous log-law for the mean velocity profile for turbulent flow over a plate. The log-law has also been applied to turbulent pipe flow, though the wall surface is curved (in span-wise direction) and has finite diameter. Here we discuss the theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile. When comparing with experimental data we confirm that the turbulent eddy viscosity must contain both curvature and finite-size contributions and that the usual ansatz for the turbulent eddy viscosity as being linear in the wall distance is insufficient, both for small and large wall distances. We analyze the experimental velocity profile in terms of an r-dependent generalized turbulent viscosity [Formula: see text] (with [Formula: see text] being the wall distance, a pipe radius, u * shear stress velocity, and g([Formula: see text]/a) the nondimensionalized viscosity), which reflects the radially strongly varying radial eddy transport of the axial velocity. After the near wall linear viscous sublayer, which soon sees the pipe wall's curvature, a strong transport (eddy) activity steepens the profile considerably, leading to a maximum in g([Formula: see text]/a) at about half radius, then decreasing again towards the pipe center. This reflects the smaller eddy transport effect near the pipe's center, where even in strongly turbulent flow (the so-called "ultimate state") the profile remains parabolic. The turbulent viscous transport is strongest were the deviations of the profile from parabolic are strongest, and this happens in the range around half radius.

  14. Large-scale stationary and turbulent flow over topography

    Science.gov (United States)

    Vallis, G. K.; Roads, J. O.

    1984-01-01

    The contributions made to the formation of stationary features of flow over topography by linear and nonlinear dynamics were examined with an integrated quasi-geostrophic model with idealized topographic forcing. The simulation was run out to several months and generated time-averaged values which were compared with those obtained with linear theory. Linear predictions were converted to turbulent features through the addition of stationary, nonlinear thermodynamic and transient vorticity fluxes. The turbulence features matched atmospheric data on energy spectra, the direction and magnitude of energy transfers, and the spatial magnitudes involved. Transient flow transferred the majority of energy absorbed by the upscale flow and, by absorbing energy, reduced the energy of stationary flow while retaining resonance signatures. Instability was a pervasive feature of the topographically forced flow except at high wavenumbers. The results confirm that transient eddies are interactive with both asymmetric and zonal flow and cannot be adequately described by linear theory.

  15. Lyapunov Exponents and Covariant Vectors for Turbulent Flow Simulations

    Science.gov (United States)

    Blonigan, Patrick; Murman, Scott; Fernandez, Pablo; Wang, Qiqi

    2016-11-01

    As computational power increases, engineers are beginning to use scale-resolving turbulent flow simulations for applications in which jets, wakes, and separation dominate. However, the chaotic dynamics exhibited by scale-resolving simulations poses problems for the conventional sensitivity analysis and stability analysis approaches that are vital for design and control. Lyapunov analysis is used to study the chaotic behavior of dynamical systems, including flow simulations. Lyapunov exponents are the growth or a decay rate of specific flow field perturbations called the Lyapunov covariant vectors. Recently, the authors have used Lyapunov analysis to study the breakdown in conventional sensitivity analysis and the cost of new shadowing-based sensitivity analysis. The current work reviews Lyapunov analysis and presents new results for a DNS of turbulent channel flow, wall-modeled channel flow, and a DNS of a low pressure turbine blade. Additionally, the implications of these Lyapunov analyses for computing sensitivities of these flow simulations will be discussed.

  16. Turbulence modelling of flow fields in thrust chambers

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  17. DNS and scaling law analysis of compressible turbulent channel flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fully developed compressible turbulent channel flow (Ma=0.8,Re=3300) is numerically simulated, and the data base of turbulence is established. The s tatistics such as density_weighted mean velocity and RMS velocity fluctuations i n semi_local coordinates agree well with those from other DNS data. High order s tatistics (skewness and flatness factors) of velocity fluctuations of compressib le turbulence are reported for the first time. Compressibility effects are also discussed. Pressure_dilatation absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth. The scaling laws of compressible channel flow are also discussed. The conclusi ons are: (a) Scaling law is found in the center area of the channel. (b) In this area, ESS is also found. (c) When Mach number is not ve ry high, compressibility has little effect on scaling exponents.

  18. Turbulent patterns in wall-bounded flows: a Turing instability?

    CERN Document Server

    Manneville, Paul

    2012-01-01

    In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An {\\it intrinsic} status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.

  19. Review and assessment of turbulence models for hypersonic flows

    Science.gov (United States)

    Roy, Christopher J.; Blottner, Frederick G.

    2006-10-01

    Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed

  20. Subcritical Transition to Turbulence in Couette-Poiseuille flow

    Science.gov (United States)

    Wesfreid, Jose Eduardo; Klotz, Lukasz

    2016-11-01

    We study the subcritical transition to turbulence in the plane Couette-Poiseuille shear flow with zero mean advection velocity. Our experimental configuration consists on one moving wall of the test section (the second one remains stationary), which acts like a driving force for the flow, imposing linear streamwise velocity profile (Couette) and adverse pressure gradient in the streamwise direction (Poiseuille) at the same time. This flow, which had only been studied theoretically up to now, is always linearly stable. The transition to turbulence is forced by a very well controlled finite-size perturbation by injection, into the test section, of a water jet during a very short time. Using PIV technique, we characterized quantitatively the initial development of the triggered turbulent spot and compared its energy evolution with the theoretical predictions of the transient growth theory. In addition, we show results concerning the importance of nonlinearities, when waviness of streaks in streamwise direction induced self-sustained process in the turbulent spot. We also measured precisely the large-scale flow which is generated around the turbulent spot and studied its strength as a function of the Reynolds number.

  1. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  2. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  3. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  4. On the Interpretation of Magnetic Helicity Signatures in the Dissipation Range of Solar Wind Turbulence

    CERN Document Server

    Howes, Gregory G

    2009-01-01

    Measurements of small-scale turbulent fluctuations in the solar wind find a non-zero right-handed magnetic helicity. This has been interpreted as evidence for ion cyclotron damping. However, theoretical and empirical evidence suggests that the majority of the energy in solar wind turbulence resides in low frequency anisotropic kinetic Alfven wave fluctuations that are not subject to ion cyclotron damping. We demonstrate that a dissipation range comprised of kinetic Alfven waves also produces a net right-handed fluctuating magnetic helicity signature consistent with observations. Thus, the observed magnetic helicity signature does not necessarily imply that ion cyclotron damping is energetically important in the solar wind.

  5. Turbulent Mixing and Flow Resistance over Dunes and Scours

    Science.gov (United States)

    Dorrell, R. M.; Arfaie, A.; Burns, A. D.; Eggenhuisen, J. T.; Ingham, D. B.; McCaffrey, W. D.

    2014-12-01

    Flows in both submarine and fluvial channels are subject to lower boundary roughness. Lower boundary roughness occurs as frictional roughness suffered by the flow as it moves over the bed (skin friction) or drag suffered by the flow as it moves past a large obstacle (form drag). Critically, to overcome such roughness the flow must expend (lose) energy and momentum. However, whilst overcoming bed roughness the degree of turbulent mixing in the flow may be enhanced increasing the potential energy of the flow. This is of key importance to density driven flows as the balance between kinetic energy lost and potential energy gained (through turbulent diffusion of suspended particulate material) may critically affect the criterion for autosuspension. Moreover, this effect of lower boundary roughness may go as far as helping to explain why, even on shallow slopes, channelized submarine density currents can run out over ultra long distances. Such effects are also important in fluvial systems, where they will be responsible for maximizing or minimizing sediment capacity and competence in different flow environments. Numerical simulations are performed at a high Reynolds number (O (106)) for a series of crestal length to height ratio (c/h) at a fixed width to height ratio (w/h). Here, we present key findings of shear flow over a range of idealized bedform shapes. We show how the total basal shear stress is split into skin friction and form drag and identify how the respective magnitudes vary as a function of bedform shape and scale. Moreover we demonstrate how said bedforms affect the balance of energy lost (frictional) and energy gained (turbulent mixing). Overall, results demonstrate a slow reduction in turbulent mixing and flow resistance with decreasing bedform side slope angle. This suggests that both capacity and competence of the flow may be reduced through decrease in of the potential energy of the flow as a result of change in slope angles.

  6. Study of Flow Deformation around Wind-Vane Mounted Three-Dimensional Hot-Wire Probes

    DEFF Research Database (Denmark)

    Rømer Rasmussen, K.; Larsen, Søren Ejling; Jørgensen, F. E.

    1981-01-01

    Open wind tunnel tests on several different sensor systems consisting of triaxial hot-wire probes mounted on wind vanes (DISA and Riso vanes) have shown that flow deformation around the hot-wire sensor introduces errors in the measured velocity components. Though changes in the horizontal...... components proved to be negligible, flow deformation resulted in an overestimation of the vertical component from 1.1 to 1.5, depending on the direction of the vertical component. Turbulence and mean value data were adjusted by use of a linear correction derived from the wind tunnel tests. Wind vane...... construction must strike a compromise between minor flow disturbance and sufficient probe support. The final version of the DISA vane resulted in an acceptable vertical correction of about 10%....

  7. Study of Flow Deformation around Wind-Vane Mounted Three-Dimensional Hot-Wire Probes

    DEFF Research Database (Denmark)

    Rømer Rasmussen, K.; Larsen, Søren Ejling; Jørgensen, F. E.

    1981-01-01

    Open wind tunnel tests on several different sensor systems consisting of triaxial hot-wire probes mounted on wind vanes (DISA and Riso vanes) have shown that flow deformation around the hot-wire sensor introduces errors in the measured velocity components. Though changes in the horizontal...... components proved to be negligible, flow deformation resulted in an overestimation of the vertical component from 1.1 to 1.5, depending on the direction of the vertical component. Turbulence and mean value data were adjusted by use of a linear correction derived from the wind tunnel tests. Wind vane...... construction must strike a compromise between minor flow disturbance and sufficient probe support. The final version of the DISA vane resulted in an acceptable vertical correction of about 10%....

  8. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  9. Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2007-01-01

    The wake of a wind turbine operating in an atmospheric turbulent inflow without mean shear is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. A turbulent inflow with the same spectral characteristics as the atmosphere is produced....... Furthermore, the results are used to verify the validity of some of the basic assumptions employed in simpler engineering models and to study their bounds of application. The large amount of data from the wake simulation can easily be used in simple engineering methods to model a wind turbine operating...... by introducing time varying body forces in a plane upstream the rotor. The results of the simulation are compared to those obtained on a wind turbine in uniform inflow at the same mean wind speed and from this comparison a number of features of the influence of inflow turbulence on wake dynamics are deduced...

  10. Permutation Entropy and Statistical Complexity Analysis of Turbulence in Laboratory Plasmas and the Solar Wind

    CERN Document Server

    Weck, Peter J; Brown, Michael R; Wicks, Robert T

    2014-01-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD) and fully-developed turbulent magnetic fluctuations of the solar wind taken from the WIND spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge fluctuations. The CH ...

  11. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    Directory of Open Access Journals (Sweden)

    Martin Felix Jørgensen

    2014-04-01

    Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.

  12. Interaction of monopoles, dipoles, and turbulence with a shear flow

    Science.gov (United States)

    Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2016-09-01

    Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.

  13. Model for vortex turbulence with discontinuities in the solar wind

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2003-01-01

    Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.

  14. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  15. A crossed hot-wire technique for complex turbulent flows

    Science.gov (United States)

    Cutler, A. D.; Bradshaw, P.

    1991-01-01

    This paper describes a crossed hot-wire technique for the measurement of all components of mean velocity, Reynolds stresses, and triple products in a complex turbulent flow. The accuracy of various assumptions usually implicit in the use of crossed hot-wire anemometers is examined. It is shown that significant errors can result in flow with gradients in mean velocity or Reynolds stress, but that a first-order correction for these errors can be made using available data. It is also shown how corrections can be made for high turbulence levels using available data.

  16. Unsteady turbulent shear flow in shock tube discontinuities

    Science.gov (United States)

    Johnson, J. A., III; Ramaiah, R.; Lin, I.

    1981-01-01

    A pressure-ruptured shock tube and an arc driven shock tube, have been used to study the evolution of turbulent fluctuations at contact surfaces with N2O4-2NO2 mixtures and at ionizing shock fronts in argon. The study has focused on point density diagnostics derived from crossed light beam correlations and electric probes. Turbulent bursts are found for which dynamical and spectral analyses suggest a particle-like evolution of fluctuation segments with a unique and characteristic frequency, independent of flow history and overall flow conditions.

  17. How does turbulence spread in plane Couette flows?

    CERN Document Server

    Couliou, Marie

    2015-01-01

    We investigate the growth in the spanwise direction of turbulent spots invading a laminar flow in a plane Couette flow. Direct Numerical Simulation is used to track the nucleation of streaks during the spot growth. Experiment and direct numerical simulation allow us to study the velocity of the spot fronts and of the vortices observed at the spots' edges. All these results show that two mechanisms are involved when turbulent spots grow: a formerly proposed local growth occurring at the spot spanwise tips but also in comparable proportion a global growth induced by large-scale advection identified in the present work.

  18. Particle Image Velocimetry Measurements of Turbulent Flow Within Outdoor and Indoor Urban Scale Models and Flushing Motions in Urban Canopy Layers

    Science.gov (United States)

    Takimoto, Hiroshi; Sato, Ayumu; Barlow, Janet F.; Moriwaki, Ryo; Inagaki, Atsushi; Onomura, Shiho; Kanda, Manabu

    2011-08-01

    We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed `flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

  19. Turbulence-radiation interactions in a particle-laden flow

    Science.gov (United States)

    Frankel, Ari; Pouransari, Hadi; Iaccarino, Gianluca; Mani, Ali

    2014-11-01

    Turbulent fluctuations in a radiatively participating medium can significantly alter the mean heat transfer characteristics in a manner that current RANS models cannot accurately capture. While turbulence-radiation interaction has been studied extensively in traditional combustion systems, such interactions have not yet been studied in the context of particle-laden flows. This work is motivated by applications in particle-based solar receivers in which external radiation is primarily absorbed by a dispersed phase and conductively exchanged with the carrier fluid. Direct numerical simulations of turbulence with Lagrangian particles subject to a collimated radiation source are performed with a flux-limited diffusion approximation to radiative transfer. The dependence of the turbulence-radiation interaction statistics on the particle Stokes number will be demonstrated. Supported by PSAAP II.

  20. Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds

    Institute of Scientific and Technical Information of China (English)

    Guo Weiwei; Xia He; Xu Youlin

    2010-01-01

    The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This model consists of a spatial finite element bridge model, a train model composed of eight 4-axle identical coaches of 27 degrees-of-freedom, and a turbulent wind model. The fluctuating wind forces, including the buffeting forces and the self-excited forces, act on the bridge only, since the train runs inside the bridge deck. The dynamic responses of the bridge are calculated and some results are compared with data measured from Typhoon York. The runnability of the train passing through the Tsing Ma suspension bridge at different speeds is researched under turbulent winds with different wind velocities. Then, the threshold curve of wind velocity for ensuring the running safety of the train in the bridge deck is proposed, from which the allowable train speed at different wind velocities can be determined. The numerical results show that rail traffic on the Tsing Ma suspension bridge should be closed as the mean wind velocity reaches 30 m/s.