WorldWideScience

Sample records for flows electromechanical resonators

  1. A tunable electromechanical Helmholtz resonator

    Science.gov (United States)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  2. Electro-Mechanical Resonance Curves

    Science.gov (United States)

    Greenslade, Thomas B.

    2018-03-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This is the sort of project that should provide a fascinating research experience for the introductory physics student. In this article I will discuss the galvanometers that I used in this work, and will show a resonance curve for one of them.

  3. Electro-mechanical resonant magnetic field sensor

    International Nuclear Information System (INIS)

    Temnykh, A.B.; Lovelace, R.V.E.

    2002-01-01

    We describe a new type of magnetic field sensor, which is termed as an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore, a high Q fundamental mode of frequency f 1 . An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type by using for the elastic element, a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light-emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001 G for an applied magnetic field of ∼1 G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of ∼10-100 by a more sensitive measurement of the elastic element motion and by having the element in vacuum to reduce the drag force

  4. A multiple degree of freedom electromechanical Helmholtz resonator.

    Science.gov (United States)

    Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark

    2007-07-01

    The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.

  5. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  6. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Helbo, Bjarne

    2001-01-01

    A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us...... to calculate static magnitudes such as position and voltage of collapse or the voltage versus deflection characteristic. The model is used to demonstrate the theoretical sensitivity on the attogram scale of a mass sensor based on a nanometre-scale cantilever, and to analyse the effect of an extra feedback loop...

  7. Microwave electromechanical resonator consisting of clamped carbon nanotubes in an abacus arrangement

    Science.gov (United States)

    Peng, H. B.; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A.

    2007-07-01

    We describe nanoscale electromechanical resonators capable of operating in ambient-pressure air at room temperature with unprecedented fundamental resonance frequency of ˜4GHz . The devices are created from suspended carbon nanotubes loaded abacus style with inertial metal clamps, yielding short effective beam lengths. We examine the energy dissipation in the system due to air damping and contact loss. Such nanoabacus resonators open windows for immediate practical microwave frequency nanoelectromechanical system applications.

  8. On the electromechanical modelling of a resonating nano-cantilever-based transducer

    DEFF Research Database (Denmark)

    Teva, J.; Abadal, G.; Davis, Zachary James

    2004-01-01

    An electromechanical model for a transducer based on a lateral resonating cantilever is described. The on-plane vibrations of the cantilever are excited electrostatically by applying DC and AC voltages from a driver electrode placed closely parallel to the cantilever. The model predicts the stati...

  9. System-Level Design Considerations for Carbon Nanotube Electromechanical Resonators

    Directory of Open Access Journals (Sweden)

    Christian Kauth

    2013-01-01

    Full Text Available Despite an evermore complete plethora of complex domain-specific semiempirical models, no succinct recipe for large-scale carbon nanotube electromechanical systems design has been formulated. To combine the benefits of these highly sensitive miniaturized mechanical sensors with the vast functionalities available in electronics, we identify a reduced key parameter set of carbon nanotube properties, nanoelectromechanical system design, and operation that steers the sensor’s performance towards system applications, based on open- and closed-loop topologies. Suspended single-walled carbon nanotubes are reviewed in terms of their electromechanical properties with the objective of evaluating orders of magnitude of the electrical actuation and detection mechanisms. Open-loop time-averaging and 1ω or 2ω mixing methods are completed by a new 4ω actuation and detection technique. A discussion on their extension to closed-loop topologies and system applications concludes the analysis, covering signal-to-noise ratio, and the capability to spectrally isolate the motional information from parasitical feedthrough by contemporary electronic read-out techniques.

  10. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Moyet, Richard; Rossetti, George A., E-mail: george.rossetti-jr@uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Stace, Joseph; Amin, Ahmed [Sensors and Sonar Systems Department, Naval Undersea Warfare Center Newport, Newport, Rhode Island 02841 (United States); Finkel, Peter [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  11. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics

    Science.gov (United States)

    Ullah, Kamran; Jing, Hui; Saif, Farhan

    2018-03-01

    We show multiple electromechanically-induced transparency (EMIT) windows in a hybrid nano-electro-optomechanical system in the presence of two-level atoms coupled to a single-mode cavity field. The multiple EMIT-window profile can be observed by controlling the atom field coupling as well as Coulomb coupling between the two charged mechanical resonators. We derive the analytical expression of the multiple-EMIT-windows profile and describe the splitting of multiple EMIT windows as a function of optomechanical coupling, atom-field coupling, and Coulomb coupling. In particular, we discuss the robustness of the system against the cavity decay rate. We compare the results of identical mechanical resonators to different mechanical resonators. We further show how the hybrid nano-electro-optomechanics coupled system can lead to the splitting of the multiple Fano resonances (MFR). The Fano resonances are very sensitive to decay terms in such systems, i.e., atoms, cavities, and the mechanical resonators.

  12. Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.

    Science.gov (United States)

    Yang, Chuan; Guo, Can; Yuan, Xiaowei

    2011-12-01

    This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.

  13. Influence of the Δ E Effect on the Field Dependence of the Magnetoelectric Effect in the Region of Electromechanical Resonance

    Science.gov (United States)

    Laletin, V. M.; Filippov, D. A.

    2018-02-01

    The influence of the Δ E effect on the field dependence of the resonant magnetoelectric effect in bulk composite materials with a composition of ferrite nickel spinel-lead zirconate titanate has been investigated in the electromechanical resonance region. It has been shown that the field dependence of the effect is determined not only by the magnetic-field dependence of the piezomagnetic coefficient, but also by the field dependence of the Young modulus. The dependence of the resonance frequency of the effect on the bias field has been analyzed.

  14. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  15. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  16. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    International Nuclear Information System (INIS)

    Zhao Ji-Cong; Yuan Quan; Wang Feng-Xiang; Kan Xiao; Han Guo-Wei; Yang Jin-Ling; Yang Fu-Hua; Sun Ling; Sun Hai-Yan

    2017-01-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au–Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor ( Q -factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency–temperature ( f – T ) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q -factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. (paper)

  17. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    Science.gov (United States)

    Zhao, Ji-Cong; Yuan, Quan; Wang, Feng-Xiang; Kan, Xiao; Han, Guo-Wei; Sun, Ling; Sun, Hai-Yan; Yang, Jin-Ling; Yang, Fu-Hua

    2017-06-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au-Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor (Q-factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency-temperature (f-T) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q-factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. Project supported by the National Natural Science Foundation of China (Grant Nos. 61234007, 61404136, and 61504130), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ16055103), the Key Research & Development Program of Jiangsu Province, China (Grant No. BE2016007-2), and the Major Project of Natural Science Research of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJA510006).

  18. Electron fluctuation induced resonance broadening in nano electromechanical systems: the origin of shear force in vacuum.

    Science.gov (United States)

    Siria, A; Barois, T; Vilella, K; Perisanu, S; Ayari, A; Guillot, D; Purcell, S T; Poncharal, P

    2012-07-11

    This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.

  19. Negative membrane capacitance of outer hair cells: electromechanical coupling near resonance.

    Science.gov (United States)

    Iwasa, Kuni H

    2017-09-21

    Outer hair cells in the cochlea have a unique motility in their cell body based on mechanoelectric coupling, with which voltage changes generated by stimuli at their hair bundles drive the cell body and, in turn, it has been assumed, amplifies the signal. In vitro experiments show that the movement of the charges of the motile element significantly increases the membrane capacitance, contributing to the attenuation of the driving voltage. That is indeed the case in the absence of mechanical load. Here it is predicted, however, that the movement of motile charges creates negative capacitance near the condition of mechanical resonance, such as those in the cochlea, enhancing energy output.

  20. Nonlinear resonances in the ABC-flow

    Science.gov (United States)

    Didov, A. A.; Uleysky, M. Yu.

    2018-01-01

    In this paper, we study resonances of the ABC-flow in the near integrable case ( C ≪1 ). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest n :1 (n = 1, 2, 3) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest n :1 (n = 1, 2) resonances in the region of finite motion.

  1. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  2. Shear Layer Dynamics in Resonating Cavity Flows

    National Research Council Canada - National Science Library

    Ukeiley, Lawrence

    2004-01-01

    .... The PIV data was also combined with the surface pressure measurements through the application of the Quadratic Stochastic Estimation procedure to provide time resolved snapshots of the flow field. Examination of these results indicate the strong pumping action of the cavity regardless of whether resonance existed and was used to visualize the large scale structures interacting with the aft wall.

  3. Stochastic parametric resonance in shear flows

    Directory of Open Access Journals (Sweden)

    F. J. Poulin

    2005-01-01

    Full Text Available Time-periodic shear flows can give rise to Parametric Instability (PI, as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995. This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b explain that PI occurs because the snap-shots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003 studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003, but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.

  4. Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2017-02-01

    Full Text Available In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortunately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now available on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power network pollution analysis and fault response.

  5. Attenuation of spurious responses in electromechanical filters

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Roy H.; Hietala, Vincent M.

    2018-04-10

    A spur cancelling, electromechanical filter includes a first resonator having a first resonant frequency and one or more first spurious responses, and it also includes, electrically connected to the first resonator, a second resonator having a second resonant frequency and one or more second spurious responses. The first and second resonant frequencies are approximately identical, but the first resonator is physically non-identical to the second resonator. The difference between the resonators makes the respective spurious responses different. This allows for filters constructed from a cascade of these resonators to exhibit reduced spurious responses.

  6. Electromechanical Anisotropy at the Ferroelectric to Relaxor Transition of (Bi0.5Na0.50.94Ba0.06TiO3 Ceramics from the Thermal Evolution of Resonance Curves

    Directory of Open Access Journals (Sweden)

    Nicolás Pérez

    2018-01-01

    Full Text Available (Bi0.5Na0.50.94Ba0.06TiO3 dense ceramics were obtained from autocombustion sol-gel synthesized nanopowders and sintered at 1050 °C for 1–2 h for the study of the electromechanical anisotropy. Measurement of the complex impedance spectrum was carried out on thin ceramic disks, thickness-poled, as a function of the temperature from 16 °C up to the vanishing of the electromechanical resonances at the ferroelectric to relaxor transition near 100 °C. The spectrum comprises the fundamental radial extensional mode and three overtones of this, together with the fundamental thickness extensional mode, coupled with other complex modes. Thermal evolution of the spectrum shows anisotropic behavior. Piezoelectric, elastic, and dielectric material coefficients, including all losses, were determined from iterative analysis of the complex impedance curves at the planar, thickness, and shear virtually monomodal resonances of disks and shear plates, thickness-poled. d33 was measured quasi-statically at 100 Hz. This set of data was used as the initial condition for the optimization of the numerical calculation by finite elements of the full spectrum of the disk, from 100 kHz to 1.9 MHz, to determine the thermal evolution of the material coefficients. An appropriate measurement strategy to study electromechanical anisotropy of piezoelectric ceramics has been developed.

  7. Signal-flow graphs in coupled laser resonator analysis

    DEFF Research Database (Denmark)

    Pedersen, Christian; Skettrup, Torben

    1997-01-01

    Signal-flow graph analysis of coupled linear systems is introduced in order to find a simple method to treat systems of coupled optical resonators. The proposed method turns out to be well suited for this purpose, and the reflectance and transmittance of coupled resonator systems are easily found....... The expressions for amplitude reflectivity and transmittivity are derived for the simplest systems of coupled resonators for systems coupled both in series and in parallel. Some specific examples for the two- and three-mirror cases with beam splitters are given....

  8. Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance.

    Science.gov (United States)

    Kamphuis, Vivian P; Westenberg, Jos J M; van der Palen, Roel L F; Blom, Nico A; de Roos, Albert; van der Geest, Rob; Elbaz, Mohammed S M; Roest, Arno A W

    2017-07-01

    Knowledge of normal and abnormal flow patterns in the human cardiovascular system increases our understanding of normal physiology and may help unravel the complex pathophysiological mechanisms leading to cardiovascular disease. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has emerged as a suitable technique that enables visualization of in vivo blood flow patterns and quantification of parameters that could potentially be of prognostic value in the disease process. In this review, current image processing tools that are used for comprehensive visualization and quantification of blood flow and energy distribution in the heart and great vessels will be discussed. Also, imaging biomarkers extracted from 4D flow CMR will be reviewed that have been shown to distinguish between normal and abnormal flow patterns. Furthermore, current applications of 4D flow CMR in the heart and great vessels will be discussed, showing its potential as an additional diagnostic modality which could aid in disease management and timing of surgical intervention.

  9. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging

    NARCIS (Netherlands)

    Zeeman, Gerda G.; Hatab, MR; Twickler, DM

    2004-01-01

    Objective: The purpose of this study was to compare third trimester and nonpregnant cerebral blood flow of women with preeclampsia to normotensive control subjects with the use of magnetic resonance imaging techniques. Study design: Nine normotensive pregnant women and 12 untreated women with

  10. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    Science.gov (United States)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    provides the information for a designer that shows how design trade-offs can be used to satisfy specific design requirements. The optimization design of the EMHR with inductive loads aims at optimal tuning of these three resonant fiequencies. The results indicate that it is possible to keep the acoustic reactance of the resonator close to a constant over a given frequency range. An effort to mimic the second layer of the NASA 2DOF liner using a piezoelectric composite diaphragm has been made. The optimal acoustic reactance of the second layer of the NASA 2DOF liner is achieved using a thin PVDF composite diaphragm, but matching the acoustic resistance requires further investigation. Acoustic energy harvesting is achieved by connecting the EMHR to an energy reclamation circuit that converts the ac voltage signal across the piezoceramic to a conditioned dc signal. Energy harvesting experiment yields 16 m W continuous power for an incident SPL of 153 dB. Such a level is sufficient to power a variety of low power electronic devices. Finally, technology transfer has been achieved by converting the original NASA ZKTL FORTRAN code to a MATLAB code while incorporating the models of the EMHR. Initial studies indicate that the EMHR is a promising technology that may enable lowpower, light weight, tunable engine nacelle liners. This technology, however, is very immature, and additional developments are required. Recommendations for future work include testing of sample EMHR liner designs in NASA Langley s normal incidence dual-waveguide and the grazing-incidence flow facility to evaluating both the impedance characteristics as well as the energy reclamation abilities. Additional design work is required for more complex tuning circuits with greater performance. Poor electromechanical coupling limited the electromechanical tuning capabilities of the proof of concept EMHR. Different materials than those studies and perhaps novel composite material systems may dramatically improvehe

  11. Resonance Line Formation in Moving Gas Flows with High Porosity

    Science.gov (United States)

    Shulman, S. G.

    2017-06-01

    The formation of resonance lines in gas flows generated by interactions of circumstellar gas with a star's magnetosphere is examined. An effective method is proposed for calculating these lines when the magnetospheric wind is highly porous. The resonance sodium lines observed in the spectrum of UX Ori type star RZ Psc are modelled as an example. It is shown that the narrow absorptions observed in the short wavelength wings of these lines can be formed by scattering of the star's radiation in two gas jets that are semitransparent at the line frequencies when they cross the line of sight.

  12. Electromechanical systems and devices

    CERN Document Server

    Lyshevski, Sergey Edward

    2008-01-01

    ""The book begins with a good, well-written review of some of the basic equations used for electromechanical designs . . . There is very good technical depth to each of the sections in this book, giving the reader the ability to design real systems using the equations and examples from this book . . . aimed at electrical engineering students because it contains homework problems at the end of each chapter and is very instructive for power and electromechanical engineers."" - John J. Shea, in IEEE Electrical Insulation Magazine, March-April 2009, Vol. 25, No. 2

  13. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  14. Another look at zonal flows: Resonance, shearing, and frictionless saturation

    Science.gov (United States)

    Li, J. C.; Diamond, P. H.

    2018-04-01

    We show that shear is not the exclusive parameter that represents all aspects of flow structure effects on turbulence. Rather, wave-flow resonance enters turbulence regulation, both linearly and nonlinearly. Resonance suppresses the linear instability by wave absorption. Flow shear can weaken the resonance, and thus destabilize drift waves, in contrast to the near-universal conventional shear suppression paradigm. Furthermore, consideration of wave-flow resonance resolves the long-standing problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional drag, and also determines the ZF scale. We show that resonant vorticity mixing, which conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in an extended 0D predator-prey model of drift-ZF turbulence. This analysis determines the saturated ZF shear and shows that the mesoscopic ZF width scales as LZ F˜f3 /16(1-f ) 1 /8ρs5/8l03 /8 in the (relevant) adiabatic limit (i.e., τckk‖2D‖≫1 ). f is the fraction of turbulence energy coupled to ZF and l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In the frictionless limit, the results differ significantly from conventionally quoted scalings derived for frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence level scales as E ˜(γL/εc) 2 , which indicates the extent of the "near-marginal" regime to be γL<εc , for the case of avalanche-induced profile variability. Here, εc is the rate of dissipation of potential enstrophy and γL is the characteristic linear growth rate of fluctuations. The implications for dynamics near marginality of the strong scaling of saturated E with γL are discussed.

  15. Micro-electromechanical system

    NARCIS (Netherlands)

    Tolou, N.; Herder, J.L.

    2012-01-01

    Micro-electromechanical system (MEMS) comprising a substrate or substrate parts, and a compliant first segment or segments within the substrate or substrate parts with a predefined positive stiffness, wherein the first segment or segments is or are statically balanced. This is embodied by applying a

  16. Resonances in a Chaotic Attractor Crisis of the Lorenz Flow

    Science.gov (United States)

    Tantet, Alexis; Lucarini, Valerio; Dijkstra, Henk A.

    2018-02-01

    Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle-Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.

  17. Nano electro-mechanical optoelectronic tunable VCSEL.

    Science.gov (United States)

    Huang, Michael C Y; Zhou, Ye; Chang-Hasnain, Connie J

    2007-02-05

    We report a novel electrostatic actuated nano-electromechanical optoelectronic (NEMO) tunable vertical-cavity surface-emitting laser (VCSEL) centered at 850 nm. By integrating a movable, single-layer (230 nm), high-index-contrast subwavelength grating (HCG) as the VCSEL top mirror, single mode emission (SMSR >40 dB) and continuous wavelength tuning (~2.5 nm) was obtained at room temperature under CW operation. The small footprint of HCG enables the scaling down of each of the cantilever dimensions by a factor of 10, leading to 1000 times reduction in mass, which potentially increases the mechanical resonant frequency and tuning speed.

  18. Microwave Nano-abacus Electro-mechanical Oscillator

    Science.gov (United States)

    Peng, Haibing; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A.

    2007-03-01

    We describe nanoscale electromechanical oscillators capable of operating in ambient-pressure air at room temperature with unprecedented fundamental resonance frequency of ˜4 GHz. The devices, created from suspended carbon nanotubes loaded abacus-style with inertial metal clamps yielding short effective beam lengths, open windows for immediate practical microwave frequency nanoelectromechanical systems (NEMS) applications.

  19. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Shuyu Lin

    2017-02-01

    Full Text Available The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  20. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    Science.gov (United States)

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  1. Nonlinear Oscillations and Flow of Gas Within Closed and Open Conical Resonators

    Science.gov (United States)

    Daniels, Christopher; Finkbeiner, Joshua; Steinetz, Bruce; Li, Xiaofan; Raman, Ganesh

    2004-01-01

    A dissonant acoustic resonator with a conical shaped cavity was tested in four configurations: (A) baseline resonator with closed ends and no blockage; (B) closed resonator with internal blockage; (C) ventilated resonator with no blockage; and (D) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previously published studies due to the use of air instead of refrigerant as the working fluid. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes were reduced from baseline measurements. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when ventilation ports were added. With elevated pressure applied to one end of the resonator, flow was reduced by oscillating the cavity at the fluid fundamental resonant frequency compared to cases without oscillation and oscillation off-resonance.

  2. Electromechanical Drivetrain Simulation

    DEFF Research Database (Denmark)

    Gallego-Calderon, Juan; Branner, Kim; Natarajan, Anand

    2013-01-01

    The work presented in this paper is another step from the DTU Wind Energy efforts to advance understanding of the electromechanical drive-train loads and its interaction with the rest of the components in the wind turbine. The main objective of the PhD is to investigate the modelling and simulation...... of a wind turbine’s drivetrain using an integrated simulation approach where different simulation tools are interconnected. Matlab and HAWC2 are used for this purpose. A contribution is expected to be in the study of the interaction between the mechanical loads in the gearbox due to gear mesh and bearing...... flexibilities, the generator dynamics and the grid, along with the structural loads in the wind turbine. In this paper, two simulation approaches are presented and conclusions are made according to their advantages and disadvantages. The drive-train is described by means of a torsional model composed...

  3. Intelligent electromechanical actuators

    Science.gov (United States)

    Pfeufer, Thomas; Isermann, Rolf

    1996-05-01

    Servo systems play an important role in many automated processes. In order to fulfill the hard demands on reliability and fast and precise operation, intelligent concepts for the control, supervision and (re)configuration are necessary. In this paper, an approach is presented which integrates different levels of signal processing in an electromechanical servo system. The digital controller and the model-based fault detection scheme are designed taking into account model-uncertainty and the time variant process behavior, which is caused by temperature influences, wear, aging, etc. After a brief description of the theoretical basis an experimental application shows results for an automobile servo system which is driven by a d.c. motor.

  4. Smart electromechanical systems

    CERN Document Server

    2016-01-01

    This carefully edited book introduces the latest achievements of the scientists of the Russian Academy of Sciences in the field of theory and practice of Smart Electromechanical Systems (SEMS). The book also focuses on methods of designing and modeling of SEMS based on the principles of adaptability, intelligence, biomorphism of parallel kinematics and parallelism in information processing and control computation. The book chapters are dedicated to the following points of interest: - methods of design of SEMS modules and intelligent robots based on them; - synthesis of neural systems of automatic control over SEMS modules; - mathematical and computer modeling of SEMS modules and Cyber Physical Systems based on them; - vitality control and reliability analysis based on logic-and-probabilistic and logic-and-linguistic forecasting; - methods of optimization of SEMS control systems based on mathematical programming methods in ordinal scale and generalized mathematical programming; - information-measuring software...

  5. Electro-mechanical characteristics of myocardial infarction border zones and ventricular arrhythmic risk: novel insights from grid-tagged cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wong, Dennis T.L.; Weightman, Michael J.; Baumert, Mathias; Tayeb, Hussam; Richardson, James D.; Puri, Rishi; Bertaso, Angela G.; Roberts-Thomson, Kurt C.; Sanders, Prashanthan; Worthley, Matthew I.; Worthley, Stephen G.

    2012-01-01

    To investigate whether grid-tag myocardial strain evaluation can characterise 'border-zone' peri-infarct region and identify patients at risk of ventricular arrhythmia as the peri-infarct myocardial zone may represent an important contributor to ventricular arrhythmia following ST-segment elevation myocardial infarction (STEMI). Forty-five patients with STEMI underwent cardiac magnetic resonance (CMR) imaging on days 3 and 90 following primary percutaneous coronary intervention (PCI). Circumferential peak circumferential systolic strain (CS) and strain rate (CSR) were calculated from grid-tagged images. Myocardial segments were classified into 'infarct', 'border-zone', 'adjacent' and 'remote' regions by late-gadolinium enhancement distribution. The relationship between CS and CSR and these distinct myocardial regions was assessed. Ambulatory Holter monitoring was performed 14 days post myocardial infarction (MI) to estimate ventricular arrhythmia risk via evaluation of heart-rate variability (HRV). We analysed 1,222 myocardial segments. Remote and adjacent regions had near-normal parameters of CS and CSR. Border-zone regions had intermediate CS (-9.0 ± 4.6 vs -5.9 ± 7.4, P < 0.001) and CSR (-86.4 ± 33.3 vs -73.5 ± 51.4, P < 0.001) severity compared with infarct regions. Patients with 'border-zone' peri-infarct regions had reduced very-low-frequency power on HRV analysis, which is a surrogate for ventricular arrhythmia risk (P = 0.03). Grid-tagged CMR-derived myocardial strain accurately characterises the mechanical characteristics of 'border-zone' peri-infarct region. Presence of 'border-zone' peri-infarct region correlated with a surrogate marker of heightened arrhythmia risk following STEMI. (orig.)

  6. Electro-mechanical characteristics of myocardial infarction border zones and ventricular arrhythmic risk: novel insights from grid-tagged cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Dennis T.L.; Weightman, Michael J.; Baumert, Mathias; Tayeb, Hussam; Richardson, James D.; Puri, Rishi; Bertaso, Angela G.; Roberts-Thomson, Kurt C.; Sanders, Prashanthan; Worthley, Matthew I. [University of Adelaide, Cardiovascular Research Centre, Royal Adelaide Hospital and Discipline of Medicine, SA (Australia); Worthley, Stephen G. [University of Adelaide, Cardiovascular Research Centre, Royal Adelaide Hospital and Discipline of Medicine, SA (Australia); Royal Adelaide Hospital, Cardiovascular Investigational Unit, SA (Australia)

    2012-08-15

    To investigate whether grid-tag myocardial strain evaluation can characterise 'border-zone' peri-infarct region and identify patients at risk of ventricular arrhythmia as the peri-infarct myocardial zone may represent an important contributor to ventricular arrhythmia following ST-segment elevation myocardial infarction (STEMI). Forty-five patients with STEMI underwent cardiac magnetic resonance (CMR) imaging on days 3 and 90 following primary percutaneous coronary intervention (PCI). Circumferential peak circumferential systolic strain (CS) and strain rate (CSR) were calculated from grid-tagged images. Myocardial segments were classified into 'infarct', 'border-zone', 'adjacent' and 'remote' regions by late-gadolinium enhancement distribution. The relationship between CS and CSR and these distinct myocardial regions was assessed. Ambulatory Holter monitoring was performed 14 days post myocardial infarction (MI) to estimate ventricular arrhythmia risk via evaluation of heart-rate variability (HRV). We analysed 1,222 myocardial segments. Remote and adjacent regions had near-normal parameters of CS and CSR. Border-zone regions had intermediate CS (-9.0 {+-} 4.6 vs -5.9 {+-} 7.4, P < 0.001) and CSR (-86.4 {+-} 33.3 vs -73.5 {+-} 51.4, P < 0.001) severity compared with infarct regions. Patients with 'border-zone' peri-infarct regions had reduced very-low-frequency power on HRV analysis, which is a surrogate for ventricular arrhythmia risk (P = 0.03). Grid-tagged CMR-derived myocardial strain accurately characterises the mechanical characteristics of 'border-zone' peri-infarct region. Presence of 'border-zone' peri-infarct region correlated with a surrogate marker of heightened arrhythmia risk following STEMI. (orig.)

  7. Resonant laser techniques for combustion and flow diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Fritzon, Rolf

    1998-05-01

    This thesis presents results from two areas of research. Firstly, the resonant coherent laser techniques polarization spectroscopy (PS), degenerate four-wave mixing (DFWM) and stimulated emission (SE) have been developed in the general field of combustion diagnostics. Secondly, laser induced fluorescence (LIF) has been developed and applied for the visualization of mixture fractions in turbulent non reacting flows. PS was developed for instantaneous two-dimensional imaging of minor species in flames, the technique being demonstrated on OH and NO. Various aspects of imaging and of detection in general were investigated. Two-photon induced PS was demonstrated for the detection of NH{sub 3}, CO and N{sub 2} molecules. LIF was monitored simultaneously to allow a quantitative comparison between the techniques. Furthermore, PS and DFWM were developed for instantaneous two-dimensional OH temperature imaging. Through a novel experimental approach based on the use of a dual-wavelength dye laser and a diffraction grating the temperature imaging measurements were performed using only one laser and one CCD camera. A comparison between the two techniques was made. SE was through a crossed-beam arrangement developed for spatially resolved detection of flame species. Two-dimensional LIF was developed and applied for measuring mixture fractions in the shear layer between two co-flowing turbulent gaseous jets. The technique was further applied in a study of the mixing of a turbulent water jet impinging orthogonally onto a flat surface. Average concentration fields in the center-plane of the jet was compared with results from large eddy simulations and with data from the literature 221 refs, 48 figs, 5 tabs

  8. Magnetic resonance imaging of flow-distributed oscillations.

    Science.gov (United States)

    Britton, Melanie M; Sederman, Andy J; Taylor, Annette F; Scott, Stephen K; Gladden, Lynn F

    2005-09-22

    The formation of stationary concentration patterns in a packed-bed reactor (PBR), using a manganese-catalyzed Belousov-Zhabotinsky (BZ) reaction in a mixed sulfuric-phosphoric acid medium, was studied using magnetic resonance imaging (MRI). The PBR was composed of a column filled with glass beads, which was fed by a continuous stirred tank reactor (CSTR). As the reactor is optically opaque, investigation of the three-dimensional (3D) structure of these reaction-diffusion-advection waves is not possible using conventional image capture techniques. MRI has been used to probe this system and the formation, 3D structure, and development of these waves has been studied. At reactor startup, traveling waves were observed. After this initial period the waves stabilized and became stationary. Once fixed, they were found to be remarkably stable. There was significant heterogeneity of the reaction fronts, which were not flat, as would be expected from a plug-flow reactor. Instead, the reaction wave fronts were observed to be conical in shape due to the local hydrodynamics of the bed and specifically the higher velocities and therefore lower residence times close to the wall of the reactor.

  9. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  10. Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators

    Directory of Open Access Journals (Sweden)

    Mostafa R. A. Nabawy

    2016-01-01

    Full Text Available Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young’s modulus relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive

  11. Electromechanical models of the ventricles.

    Science.gov (United States)

    Trayanova, Natalia A; Constantino, Jason; Gurev, Viatcheslav

    2011-08-01

    Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electrical activation and mechanical contraction of the heart. The goal of this review is to provide an overview of the latest advancements in multiscale electromechanical modeling of the ventricles. We first detail the general framework of multiscale ventricular electromechanical modeling and describe the state of the art in computational techniques and experimental validation approaches. The powerful utility of ventricular electromechanical models in providing a better understanding of cardiac function is then demonstrated by reviewing the latest insights obtained by these models, focusing primarily on the mechanisms by which mechanoelectric coupling contributes to ventricular arrythmogenesis, the relationship between electrical activation and mechanical contraction in the normal heart, and the mechanisms of mechanical dyssynchrony and resynchronization in the failing heart. Computational modeling of cardiac electromechanics will continue to complement basic science research and clinical cardiology and holds promise to become an important clinical tool aiding the diagnosis and treatment of cardiac disease.

  12. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    Science.gov (United States)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  13. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance.

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  14. Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry.

    Science.gov (United States)

    Buchenberg, Waltraud B; Wassermann, Florian; Grundmann, Sven; Jung, Bernd; Simpson, Robin

    2016-07-01

    Proton resonance frequency thermometry is well established for monitoring small temperature changes in tissue. Application of the technique to the measurement of complex temperature distributions within fluid flow is of great interest to the engineering community and could also have medical applications. This work presents an experimental approach to reliably measure three-dimensional (3D) temperature fields in fluid flow using proton resonance frequency thermometry. A velocity-compensated three-dimensional gradient echo sequence was used. A flexible pumping system was attached to an MR compatible double pipe heat exchanger. The temperature of two separate flow circuits could be adjusted to produce various three-dimensional spatial temperature distributions within the fluid flow. Validation was performed using MR compatible temperature probes in a uniformly heated flow. A comparative study was conducted with thermocouples in the presence of a spatially varying temperature distribution. In uniformly heated flow, temperature changes were accurately measured to within 0.5 K using proton resonance frequency thermometry, while spatially varying temperature changes measured with MR showed good qualitative agreement with pointwise measurements using thermocouples. Proton resonance frequency thermometry can be used in a variety of complex flow situations to address medical as well as engineering questions. This work makes it possible to gain new insights into fundamental heat transfer phenomena. Magn Reson Med 76:145-155, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  16. Noninvasive cardiac flow assessment using high speed magnetic resonance fluid motion tracking.

    Directory of Open Access Journals (Sweden)

    Kelvin Kian Loong Wong

    Full Text Available Cardiovascular diseases can be diagnosed by assessing abnormal flow behavior in the heart. We introduce, for the first time, a magnetic resonance imaging-based diagnostic that produces sectional flow maps of cardiac chambers, and presents cardiac analysis based on the flow information. Using steady-state free precession magnetic resonance images of blood, we demonstrate intensity contrast between asynchronous and synchronous proton spins. Turbulent blood flow in cardiac chambers contains asynchronous blood proton spins whose concentration affects the signal intensities that are registered onto the magnetic resonance images. Application of intensity flow tracking based on their non-uniform signal concentrations provides a flow field map of the blood motion. We verify this theory in a patient with an atrial septal defect whose chamber blood flow vortices vary in speed of rotation before and after septal occlusion. Based on the measurement of cardiac flow vorticity in our implementation, we establish a relationship between atrial vorticity and septal defect. The developed system has the potential to be used as a prognostic and investigative tool for assessment of cardiac abnormalities, and can be exploited in parallel to examining myocardial defects using steady-state free precession magnetic resonance images of the heart.

  17. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  18. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  19. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  20. Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow.

    Science.gov (United States)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2012-11-01

    In this paper, a theoretical model is developed to study the acoustical response of a Helmholtz resonator as a duct-branched acoustic absorber subjected to both high-intensity sound and grazing flow. The present model is comprised of a discrete vortex model in combination with a one-dimensional duct sound propagation model. The present work is to study the overall effect of incident sound interacting with grazing flow but putting emphasis on the nonlinear or intermediate regime where the sound intensity has a marked or non-negligible influence on the acoustic behavior of the Helmholtz resonator. The numerical results reveal that the flow field around the orifice is dominated by the evolution of the vortex sheet and the flow pattern is influenced by the ratio of the orifice flow velocity to the grazing flow velocity. When the incident sound pressure is high or the resonance occurs, the resonator shows nonlinearity, i.e., the acoustic impedance and absorption coefficient vary not only with duct flow Mach number buy also with incident frequency and incident sound pressure level.

  1. Non-invasive measurements of granular flows by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  2. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  3. Resonant communicators, effective communicators. Communicator’s flow and credibility

    Directory of Open Access Journals (Sweden)

    Irene García-Ureta, Ph.D

    2012-01-01

    Full Text Available Communication studies have been integrating the latest developments in cognitive sciences and acknowledging the importance of understanding the subjective processes involved in communication. This article argues that communication studies should also take into account the psychology of the communicator. This article presents the theoretical basis and the results of a training programme designed for audiovisual communicators. The programme is based on the theories of self-efficacy and flow and seeks to improve students’ communication competencies through the use of presentation techniques and psychological skills to tackle communication apprehension. The programme involves an active methodology that is based on modelling, visualisation, immediate feedback and positive reinforcement. A repeated-measures ANOVA shows that the programme successfully decreases the level of communication apprehension, improves the perceived self-efficacy, improves the psychological state needed to perform better in front of the cameras (flow, and improves students’ communication skills. A path analysis proved that the perceived self-efficacy and anxiety levels predict the level of flow during the communication act. At the end of the training programme, those who experienced higher levels of flow and enjoyment during the communication task achieved higher quality levels in their communication exercise. It is concluded that the concepts of self-efficacy and flow facilitate advancing in the understanding of the factors that determine a communicator’s credibility and ability to connect with the audience.

  4. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  5. Ultrafast all-optical switching using signal flow graph for PANDA resonator.

    Science.gov (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P

    2013-04-20

    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  6. Electromechanical models of the ventricles

    OpenAIRE

    Trayanova, Natalia A.; Constantino, Jason; Gurev, Viatcheslav

    2011-01-01

    Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electrical activation and mechanical contraction of the heart. The goal of this review is to provide an ov...

  7. Screening of resonant magnetic perturbations by flows in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Bécoulet, M.; Orain, F.; Maget, P.; Mellet, N.; Garbet, X.; Nardon, E.; Huysmans, G.T.A.; Casper, T.; Loarte, A.; Cahyna, Pavel; Smolyakov, A.; Waelbroeck, F.L.; Schaffer, M.; Evans, T.; Liang, Y.; Schmitz, O.; Beurskens, M.; Rozhansky, V.; Kaveeva, E.

    2012-01-01

    Roč. 52, č. 5 (2012), s. 054003 ISSN 0029-5515. [Workshop on Stochasticity in Fusion Plasmas/5./. Jülich, 11.04.2011-14.04.2011] R&D Projects: GA ČR GAP205/11/2341 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * resonant magnetic perturbation * magnetohydrodynamics * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.734, year: 2012 http://iopscience.iop.org/0029-5515/52/5/054003/pdf/0029-5515_52_5_054003.pdf

  8. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring

    International Nuclear Information System (INIS)

    Lin, Shuyu; Hu, Jing; Fu, Zhiqiang

    2013-01-01

    A new type of piezoelectric ceramic transformer in radial vibration is presented. The piezoelectric transformer consists of a pairing of a concentric piezoelectric ceramic circular disk and ring. The inner piezoelectric ceramic disk is axially polarized and the outer piezoelectric ring is radially polarized. Based on the plane stress theory, the exact analytical theory for the piezoelectric transformer is developed and its electromechanical equivalent circuit is introduced. The resonance/anti-resonance frequency equations of the transformer are obtained and the relationship between the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient and the geometrical dimensions of the piezoelectric transformer is analyzed. The dependency of the voltage transformation ratio on the frequency is obtained. To verify the analytical theory, a numerical method is used to simulate the electromechanical characteristics of the piezoelectric transformer. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the numerical results. (paper)

  9. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    Science.gov (United States)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice Mach numbers up to 0.311. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500 - 4000 Hz for the overall liner for a septum porosity of 2% and orifice Mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum Mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 D 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  10. The Challenge of Fluid Flow -R-ES-ONANCE

    Indian Academy of Sciences (India)

    The four well-known water falls in Jog all leap over about the same depth. (about 260 my. ... nanDI". eyall; hi celasab. If. A strange ... that has fascinated all observers - ancient and modern. - is the strange mix of order and chaos that is their characteristic. At one extreme, a flow can be incredibly well-ordered. For example ...

  11. Multiphysics simulation electromechanical system applications and optimization

    CERN Document Server

    Dede, Ercan M; Nomura, Tsuyoshi

    2014-01-01

    This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma

  12. Metastable states and energy flow pathway in square graphene resonators

    Science.gov (United States)

    Wang, Yisen; Zhu, Zhigang; Zhang, Yong; Huang, Liang

    2018-01-01

    Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism. In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during thermalization process. The key is the development of a universal scheme that numerically characterizes the strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within a class than between classes. As a result, the equations for the normal modes in the same class as the initially excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously. Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of "natural package" and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution to heat conduction and nonlinear mechanical vibrations.

  13. Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry

    Science.gov (United States)

    Freudenhammer, Daniel; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Jung, Bernd; Grundmann, Sven

    2014-05-01

    Magnetic resonance velocimetry (MRV) measurements are performed in a 1:1 scale model of a single-cylinder optical engine to investigate the volumetric flow within the intake and cylinder geometry during flow induction. The model is a steady flow water analogue of the optical IC-engine with a fixed valve lift of mm to simulate the induction flow at crank-angle bTDC. This setup resembles a steady flow engine test bench configuration. MRV measurements are validated with phase-averaged particle image velocimetry (PIV) measurements performed within the symmetry plane of the optical engine. Differences in experimental operating parameters between MRV and PIV measurements are well addressed. Comparison of MRV and PIV measurements is demonstrated using normalized mean velocity component profiles and showed excellent agreement in the upper portion of the cylinder chamber (i.e., mm). MRV measurements are further used to analyze the ensemble average volumetric flow within the 3D engine domain. Measurements are used to describe the 3D overflow and underflow behavior as the annular flow enters the cylinder chamber. Flow features such as the annular jet-like flows extending into the cylinder, their influence on large-scale in-cylinder flow motion, as well as flow recirculation zones are identified in 3D space. Inlet flow velocities are analyzed around the entire valve curtain perimeter to quantify percent mass flow rate entering the cylinder. Recirculation zones associated with the underflow are shown to reduce local mass flow rates up to 50 %. Recirculation zones are further analyzed in 3D space within the intake manifold and cylinder chamber. It is suggested that such recirculation zones can have large implications on cylinder charge filling and variations of the in-cylinder flow pattern. MRV is revealed to be an important diagnostic tool used to understand the volumetric induction flow within engine geometries and is potentially suited to evaluate flow changes due to intake

  14. Continuous Flow-Resonance Raman Spectroscopy of an Intermediate Redox State of Cytochrome-C

    DEFF Research Database (Denmark)

    Forster, M.; Hester, R. E.; Cartling, B.

    1982-01-01

    An intermediate redox state of cytochrome c at alkaline pH, generated upon rapid reduction by sodium dithionite, has been observed by resonance Raman (RR) spectroscopy in combination with the continuous flow technique. The RR spectrum of the intermediate state is reported for excitation both...

  15. Continuous-flow protease assay based on fluorescence resonance energy transfer

    NARCIS (Netherlands)

    Hirata, J.; Ariese, F.; Gooijer, C.; Irth, H.

    2003-01-01

    A homogeneous continuous-flow assay using fluorescence resonance energy transfer (FRET) for detection was developed to measure the hydrolysis of HIV Protease Substrate 1 (to which two choromophores, EDANS and DABCYL are covalently attached) by a protease (e.g. Subtilisin Carlsberg) and the influence

  16. The blood flow in the posterior communicant artery. Angiographic study by using magnetic resonance

    CERN Document Server

    Portela, L A P

    1995-01-01

    did not change the direction of flow present, in the circumstances of this study. The arterial circle of Willis is the most important collateral pathway for the cerebral vessels when one the afferents is occluded. Its normal function, without vascular compromise, has been considered in conflicting ways in the literature. For centuries after its description by Thomas Willis in 1664 it was considered a flow equalizer, with free admixture of blood within it. Since the beginning of this century the dominant view is one of a potential value only, with null effective flow in the communicating arteries. The premise is included in different experimental models. Alternatively, it was considered that the normal direction of flow is antero-posterior, from carotid to posterior cerebral, since carotid flow is greater. Using phase-contrast magnetic resonance angiography, a non-invasive qualitative method, it was found in 40 patients without morphological brain abnormality and in 10 healthy volunteers that flow can be seen ...

  17. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism

    Science.gov (United States)

    Yang, B.; Guo, X.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s)2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  18. Electromechanical converters for electric vehicles

    Science.gov (United States)

    Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.

    2018-01-01

    The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.

  19. Four-dimensional magnetic resonance imaging-derived ascending aortic flow eccentricity and flow compression are linked to aneurysm morphology†.

    Science.gov (United States)

    Kari, Fabian A; Kocher, Nadja; Beyersdorf, Friedhelm; Tscheuschler, Anke; Meffert, Philipp; Rylski, Bartosz; Siepe, Matthias; Russe, Maximilian F; Hope, Michael D

    2015-05-01

    The impact of specific blood flow patterns within ascending aortic and/or aortic root aneurysms on aortic morphology is unknown. We investigated the interrelation of ascending aortic flow compression/peripheralization and aneurysm morphology with respect to sinotubuar junction (STJ) definition. Thirty-one patients (aortic root/ascending aortic aneurysm >45 mm) underwent flow-sensitive 4D magnetic resonance thoracic aortic flow measurement at 3 Tesla (Siemens, Germany) at two different institutions (Freiburg, Germany, and San Francisco, CA, USA). Time-resolved image data post-processing and visualization of mid-systolic, mid-ascending aortic flow were performed using local vector fields. The Flow Compression Index (FCI) was calculated individually as a fraction of the area of high-velocity mid-systolic flow over the complete cross-sectional ascending aortic area. According to aortic aneurysm morphology, patients were grouped as (i) small root, eccentric ascending aortic aneurysm (STJ definition) and (ii) enlarged aortic root, non-eccentric ascending aortic aneurysm with diffuse root and tubular enlargement. The mean FCI over all patients was 0.47 ± 0.5 (0.37-0.99). High levels of flow compression/peripheralization (FCI 0.8) occurred more often in Group B (n = 20). The FCI was 0.48 ± 0.05 in Group A and 0.78 ± 0.14 in Group B (P valve (P = 0.6) and type of valve dysfunction (P = 0.22 for aortic stenosis) was not found to be different between groups. Irrespective of aortic valve morphology and function, ascending aortic blood flow patterns are linked to distinct patterns of ascending aortic aneurysm morphology. Implementation of quantitative local blood flow analyses might help to improve aneurysm risk stratification in the future. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Electromechanical wave imaging for arrhythmias

    Science.gov (United States)

    Provost, Jean; Thanh-Hieu Nguyen, Vu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E.

    2011-11-01

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing.

  1. In vivo evaluation of femoral blood flow measured with magnetic resonance

    International Nuclear Information System (INIS)

    Henriksen, O.; Staahlberg, F.; Thomsen, C.; Moegelvang, J.; Persson, B.; Lund Univ.

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory arrest. The mean T2 of non-flowing blood was found to be 105±31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein. (orig.)

  2. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    Science.gov (United States)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  3. Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis.

    Science.gov (United States)

    Trieu, Khang; Heider, Emily C; Brooks, Scott C; Barbosa, Fernando; Campiglia, Andres D

    2014-10-01

    This article investigates the flow injection analysis of mercury (II) ions in tap water samples via surface Plasmon resonance detection. Quantitative analysis of mercury (II) is based on the chemical interaction of metallic mercury with gold nanorods immobilized on a glass substrate. A new flow cell design is presented with the ability to accommodate the detecting substrate in the sample compartment of commercial spectrometers. Two alternatives are here considered for mercury (II) detection, namely stop-flow and continuous flow injection analysis modes. The best limit of detection (2.4 ng mL(-1)) was obtained with the continuous flow injection analysis approach. The accurate determination of mercury (II) ions in samples of unknown composition is demonstrated with a fortified tap water sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Optical driven electromechanical transistor based on tunneling effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2015-04-15

    A new electromechanical transistor based on an optical driven vibrational ring structure has been postulated. In the device, optical power excites the ring structure to vibrate, which acts as the shuttle transporting electrons from one electrode to the other forming the transistor. The electrical current of the transistor is adjusted by the optical power. Coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity, i.e., the optical resonance enters nonperiodic states while the mechanical vibration of the ring is still periodic.

  5. Micro electro-mechanical heater

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2017-09-12

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  6. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  7. Parallel ion flow velocity measurement using laser induced fluorescence method in an electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Okamoto, Atsushi; Terasaka, Kenichiro; Ogiwara, Kohei; Tanaka, Masayoshi Y.; Aramaki, Mitsutoshi

    2010-01-01

    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model. (author)

  8. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    Science.gov (United States)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  9. Analysis of resonance oscillation of the neutron flow in a BWR-core

    International Nuclear Information System (INIS)

    Storm, J.

    1987-09-01

    This is a thesis which has been made within the institution of automatic control in Lund. Two programs, 'Blackie' and 'Test' have been written in Fortran. These two programs are to be used for the evaluation of ASEA-ATOMs resonance test in different nuclear reactors. In these tests the condition of the reactor becomes more and more unstable because the coolant flow decreases at the same time as the power gradually increases. This leads to resonance in the neutron flow. This flow is measured by detectors placed in different parts of the reactor core. 'Blackie' receives and stores the values sampled by the detectors. The same program also carries out a Fourier analysis. Amplitudes and phase angles from the different oscillations are calculated. These results are then used as inputs for 'Test'. 'Test' is a plotting program. It draws the reactor and plots arrows where the detectors are situated. The size and direction of the arrows are measurements of the amplitudes and phase angles of the neutron flow oscillations. From these arrow diagrams you can come to conclusions about the oscillations in the neutron flow and how the affect the reactor. (author)

  10. An advanced EPR stopped-flow apparatus based on a dielectric ring resonator

    Science.gov (United States)

    Lassmann, Günter; Schmidt, Peter Paul; Lubitz, Wolfgang

    2005-02-01

    A novel EPR stopped-flow accessory is described which allows time-dependent cw-EPR measurements of rate constants of reactions involving paramagnetic species after rapid mixing of two liquid reagents. The EPR stopped-flow design represents a state-of-the-art, computer controlled fluid driving system, a miniresonant EPR structure with an integrated small ball mixer, and a stopping valve. The X-band EPR detection system is an improved version of that reported by Sienkiewicz et al. [Rev. Sci. Instr. 65 (1994) 68], and utilizes a resonator with two stacked ceramic dielectric rings separated by a variable spacer. The resonator with the mode TE( H) 011 is tailored particularly for conditions of fast flowing and rapidly stopped aqueous solutions, and for a high time resolution. The short distance between the ball mixer and the small EPR active volume (1.8 μl) yields a measured dead time of 330 μs. A compact assembly of all parts results in minimization of disturbing microphonics. The computer controlled driving system from BioLogic with two independent stepping motors was optimized for EPR stopped-flow with a hard-stop valve. Performance tests on the EPR spectrometer ESP 300E from BRUKER using redox reactions of nitroxide radicals revealed the EPR stopped-flow accessory as an advanced, versatile, and reliable instrument with high reproducibility.

  11. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation

    Directory of Open Access Journals (Sweden)

    Stalder Aurelien F

    2008-06-01

    Full Text Available Abstract Aneurysm formation is a life-threatening complication after operative therapy in coarctation. The identification of patients at risk for the development of such secondary pathologies is of high interest and requires a detailed understanding of the link between vascular malformation and altered hemodynamics. The routine morphometric follow-up by magnetic resonance angiography is a well-established technique. However, the intrinsic sensitivity of magnetic resonance (MR towards motion offers the possibility to additionally investigate hemodynamic consequences of morphological changes of the aorta. We demonstrate two cases of aneurysm formation 13 and 35 years after coarctation surgery based on a Waldhausen repair with a subclavian patch and a Vosschulte repair with a Dacron patch, respectively. Comprehensive flow visualization by cardiovascular MR (CMR was performed using a flow-sensitive, 3-dimensional, and 3-directional time-resolved gradient echo sequence at 3T. Subsequent analysis included the calculation of a phase contrast MR angiography and color-coded streamline and particle trace 3D visualization. Additional quantitative evaluation provided regional physiological information on blood flow and derived vessel wall parameters such as wall shear stress and oscillatory shear index. The results highlight the individual 3D blood-flow patterns associated with the different vascular pathologies following repair of aortic coarctation. In addition to known factors predisposing for aneurysm formation after surgical repair of coarctation these findings indicate the importance of flow sensitive CMR to follow up hemodynamic changes with respect to the development of vascular disease.

  12. Lateral resonant Doppler flow measurement by spectral domain optical coherence tomography

    Science.gov (United States)

    Walther, Julia; Koch, Edmund

    2017-07-01

    In spectral domain optical coherence tomography (SD-OCT), any transverse motion component of a detected obliquely moving sample results in a nonlinear relationship between the Doppler phase shift and the axial sample velocity restricting phase-resolved Doppler OCT. To circumvent the limitation, we propose the lateral resonant Doppler flow quantification in spectral domain OCT, where the scanner movement velocity is matched to the transverse velocity component of the sample motion.

  13. Rapid Cellular Identification by Dynamic Electromechanical Response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, Maxim [ORNL; Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL; Reukov, Vladimir V [ORNL; Vertegel, Alexey [ORNL; Thompson, Gary L [ORNL

    2009-01-01

    Coupling between electrical and mechanical phenomena is ubiquitous in living systems. Here, we demonstrate rapid identification of cellular organisms using difference in electromechanical activity in a broad frequency range. Principal component analysis of the dynamic electromechanical response spectra bundled with neural network based recognition provides a robust identification algorithm based on their electromechanical signature, and allows unambiguous differentiation of model Micrococcus Lysodeikticus and Pseudomonas Fluorescens system. This methodology provides a universal pathway for biological identification obviating the need for well-defined analytical models of Scanning Probe Microscopy response.

  14. A visualization study of flow-induced acoustic resonance in a branched pipe

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tones. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous pressure field. High time-resolved PIV has a possibility to analyze the pressure field and the relation mentioned above. In this report, flow-induced acoustic resonances of piping system containing closed side-branches were investigated experimentally. A High-Time-Resolved PIV technique was applied to measure a gas-flow in a cavity-tone. Air flow containing an oil mist as tracer particles was measured using a high frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the flow field two-dimensionally and simultaneously with the pressure measurement at multi-points and to visualize the fluid flow in the cross-section by using PIV. The fluid flows at different points in the cavity interact with some phase differences and the relation should be clarified. (author)

  15. Creation of electromechanical device for electric vehicle traction

    Directory of Open Access Journals (Sweden)

    Денис Юрьевич Зубенко

    2016-10-01

    Full Text Available The problems of creation of electromechanical device for electric vehicle traction are considered in the article. The aim of creation this design are the replacement of the internal combustion engine on electromechanical device. For this electromechanical device are constructed model, which describe processes that occur in the electric drive of electromechanical device. Characteristics of the main modes of motion were recorded. The introduction of electromechanical device will reduce the level of emissions and reduce noise in the cities

  16. Flexoelectric MEMS: towards an electromechanical strain diode

    NARCIS (Netherlands)

    Bhaskar, U.K.; Banerjee, N.; Abdollahi, A.; Solanas, E.; Rijnders, Augustinus J.H.M.; Catalan, G.

    2016-01-01

    Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric

  17. Flexoelectric MEMS: towards an electromechanical strain diode

    Science.gov (United States)

    Bhaskar, U. K.; Banerjee, N.; Abdollahi, A.; Solanas, E.; Rijnders, G.; Catalan, G.

    2016-01-01

    Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric polarity and lead to a diode-like asymmetric (two-state) electromechanical response.Piezoelectricity and flexoelectricity are two independent but not incompatible forms of electromechanical response exhibited by nanoscale ferroelectrics. Here, we show that flexoelectricity can either enhance or suppress the piezoelectric response of the cantilever depending on the ferroelectric polarity and lead to a diode-like asymmetric (two-state) electromechanical response. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06514c

  18. Fully developed pipe and triangular channel flow measurement using Magnetic Resonance Velocimetry

    Science.gov (United States)

    Baek, Seungchan; Hwang, Wontae

    2017-11-01

    Magnetic resonance velocimetry (MRV) is a non-intrusive flow visualization method which is able to measure the 3 dimensional 3 component (3D3C) mean velocity field in complex geometries, using a healthcare MRI scanner. Since this technique is based on nuclear magnetic resonance (NMR), it is free from optical distortion and does not require tracer particles. Due to these powerful advantages, MRV usage is gradually expanding from biomedical fields to the engineering domain. In this study, we validate the performance of MRV by measuring fully developed pipe flow and compare measured data with time averaged DNS data. We then investigate the overall flow characteristics in a triangular channel with a sharp corner. At the sharp corner, boundary layer effects dominate and the effect of turbulence is reduced. This information has implications for engineering applications such as flow in a turbine blade internal cooling passage at the sharp trailing edge. This research was supported by the Seoul National University Research Grant in 2017, and Doosan Heavy Industries & Construction. (Contract No. 2016900298 and 2017900095).

  19. Numerical and Physical Modeling of the Response of Resonator Liners to Intense Sound and High Speed Grazing Flow, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative research program is proposed that numerically and physically models the response of resonator liners to intense sound and high speed grazing flow. The...

  20. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A study of intraluminal flow in patients with aortic disease by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ohnishi, Shusaku; Fukui, Sugao; Kusuoka, Hideo; Kitabatake, Akira; Kamada, Takenobu.

    1990-01-01

    To evaluate the usefulness of cine magnetic resonance (MR) imaging in the diagnosis of aortic disease, we applied cine MR sequences with conventional spin echo (SE) sequence to 15 patients with aortic aneurysm and 5 patients with aortic dissection. ECG gated multi slice SE images (single echo) were obtained in transverse plane and the planes along the long axis of aorta. TE of SE sequence ranged from 15 to 32 msec. Cine MR images were obtained in 17 frames, where TR ranged from 30 to 60 msec and TE from 10 to 22 msec. We got these results as follows. For aortic aneurysm, SE images showed aneurysmal dilatation in thoracic aorta in 9 cases, and in abdominal aorta in 6 cases. Cine MR images showed us the intraluminal flow with high signal intensity. We could differentiate the slow flow image from mural thrombus using SE and cine MR sequences in the same plane. We could evaluate the dynamic flow image within a cavity of aneurysm and in in-flow and out-flow portions of aorta by cine MR imaging. For aortic dissection, SE images delineated the intimal tear and two separated lumens in all cases. We could obtain flow images within true and false lumen by cine MR imaging. The signal intensity within true lumen was higher than that within false lumen. It seemed to be due to the difference of flow velocity and the turbulence within false lumen. Entry to false lumen was seen as the interruption of dissected intima on SE images. Cine MR images clearly depicted the blood flow communication between two lumens through the entry. In 3 of 5 cases the blood flow through the entry was seen in both directions, from true to false lumen in systole and inversely in diastole. Thus, cine MR imaging will add the useful hemodynamic information in the diagnosis of aortic disease by conventional MR imaging. (author)

  2. Intracranial 4D flow magnetic resonance imaging reveals altered haemodynamics in sickle cell disease.

    Science.gov (United States)

    Václavů, Lena; Baldew, Zelonna A V; Gevers, Sanna; Mutsaerts, Henri J M M; Fijnvandraat, Karin; Cnossen, Marjon H; Majoie, Charles B; Wood, John C; VanBavel, Ed; Biemond, Bart J; van Ooij, Pim; Nederveen, Aart J

    2018-02-01

    Stroke risk in children with sickle cell disease (SCD) is currently assessed with routine transcranial Doppler ultrasound (TCD) measurements of blood velocity in the Circle of Willis (CoW). However, there is currently no biomarker with proven prognostic value in adult patients. Four-dimensional (4D) flow magnetic resonance imaging (MRI) may improve risk profiling based on intracranial haemodynamics. We conducted neurovascular 4D flow MRI and blood sampling in 69 SCD patients [median age 15 years (interquartile range, IQR: 12-50)] and 14 healthy controls [median age 21 years (IQR: 18-43)]. We measured velocity, flow, lumen area and endothelial shear stress (ESS) in the CoW. SCD patients had lower haematocrit and viscosity, and higher velocity, flow and lumen area, with lower ESS compared to healthy controls. We observed significant age-related decline in haemodynamic 4D flow parameters; velocity (Spearman's ρ = -0·36 to -0·61), flow (ρ = -0·26 to -0·52) and ESS (ρ = -0·14 to -0·54) in SCD patients. Further analysis in only adults showed that velocity values were similar in SCD patients compared to healthy controls, but that the additional 4D flow parameters, flow and lumen area, were higher, and ESS lower, in the SCD group. Our data suggest that 4D flow MRI may identify adult patients with an increased stroke risk more accurately than current TCD-based velocity. © 2017 John Wiley & Sons Ltd.

  3. Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production

    Directory of Open Access Journals (Sweden)

    Patrik Aláč

    2017-03-01

    Full Text Available This paper proposes a multi-criteria decision-making model, for the selection and evaluation of the most valuable wooden input—resonant wood. Application of a given model can improve the process of input valuation as well as impact and improve particular economic indicators for the resonant wood manufacturer. We have tried to describe and evaluate the supply chain of resonant wood manufacturing and production of musical instruments. Particular value-added and non-value-added activities have been chosen according to the logical sequence of technology. Then, concrete criteria were specified and their significance weightings. Another important part of our paper is the description of resonant wood, specifications, and demands on log and wood species. There are some important physical and mechanical properties which should be taken into account and evaluated during the production of musical instruments. By the application of this model, a particular enterprise can reach an enhanced tool for the continuous evaluation of the product flowing through the supply chain. Visibility of particular operations and their logical sequence, presented by Petri nets, can lead to easier detection of possible defects in these operations and their origin. So, the main purpose of the paper lies in the suggestion of an objective and quantified managerial tool for the decision making.

  4. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  5. Perioperative evaluation of blood volume flow in high-flow cerebral arteriovenous malformation using phase-contrast magnetic resonance angiography

    Directory of Open Access Journals (Sweden)

    Shigeki Yamada

    2015-06-01

    Full Text Available Phase-contrast magnetic resonance angiography (PC-MRA is useful for the quantitative measurement of blood flow volume (BFV in the internal cerebral arteries (ICAs and basilar artery (BA. A 45-year-old man was diagnosed with a non-hemorrhagic high-flow arteriovenous malformation (AVM in the right temporal lobe. PC-MRA examinations of the bilateral ICAs and BA were conducted before treatment, at five days and at one and three months after the operation. The patient underwent preceding endovascular embolization of the deep part of the nidus and feeders. There were numerous feeders from the superior MCA trunk, which directly passed through the nidus to the normal brain. Therefore, the nidus was completely removed while maintaining the flow of the main superior MCA trunk in a passing artery. The BFV of the right ICA before AVM treatment was extremely high (mean: 675.7, systolic: 896.1, diastolic: 518.5 mL/min. Five days after the nidus resection, the BFV of the right ICA was decreased by almost half of that before treatment, and it was decreased even more at one month after the operation. The BFVs of the left ICA and BA were slightly increased before the operation and returned to normal values after the operation. The diastolic total BFV was immediately decreased after the operation, but the systolic total BFV was not sufficiently decreased at five days after the operation. Therefore, the difference between these systolic and diastolic total BFVs was higher at five days after the operation than before the operation. The systolic and diastolic total BFVs were decreased to normal levels one month after the operation. PC-MRA is a convenient and useful tool for quantifying BFVs in AVMs and can help plan the treatments. More research is needed to establish a definite role for PC-MRA in the quantification of flow changes in the treatment of high-flow AVMs.

  6. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  7. Differential flow improvements after valve replacements in bicuspid aortic valve disease: a cardiovascular magnetic resonance assessment.

    Science.gov (United States)

    Bissell, Malenka M; Loudon, Margaret; Hess, Aaron T; Stoll, Victoria; Orchard, Elizabeth; Neubauer, Stefan; Myerson, Saul G

    2018-02-08

    Abnormal aortic flow patterns in bicuspid aortic valve disease (BAV) may be partly responsible for the associated aortic dilation. Aortic valve replacement (AVR) may normalize flow patterns and potentially slow the concomitant aortic dilation. We therefore sought to examine differences in flow patterns post AVR. Ninety participants underwent 4D flow cardiovascular magnetic resonance: 30 BAV patients with prior AVR (11 mechanical, 10 bioprosthetic, 9 Ross procedure), 30 BAV patients with a native aortic valve and 30 healthy subjects. The majority of subjects with mechanical AVR or Ross showed normal flow pattern (73% and 67% respectively) with near normal rotational flow values (7.2 ± 3.9 and 10.6 ± 10.5 mm 2 /ms respectively vs 3.8 ± 3.1 mm 2 /s for healthy subjects; both p > 0.05); and reduced in-plane wall shear stress (0.19 ± 0.13 N/m 2 for mechanical AVR vs. 0.40 ± 0.28 N/m 2 for native BAV, p flow patterns (mainly marked right-handed helical flow), with comparable rotational flow values to native BAV (20.7 ± 8.8 mm 2 /ms and 26.6 ± 16.6 mm 2 /ms respectively, p > 0.05), and a similar pattern for wall shear stress. Data before and after AVR (n = 16) supported these findings: mechanical AVR showed a significant reduction in rotational flow (30.4 ± 16.3 → 7.3 ± 4.1 mm 2 /ms; p flow patterns in BAV disease tend to normalize after mechanical AVR or Ross procedure, in contrast to the remnant abnormal flow pattern after bioprosthetic AVR. This may in part explain different aortic growth rates post AVR in BAV observed in the literature, but requires confirmation in a prospective study.

  8. Preclinical 4D-flow magnetic resonance phase contrast imaging of the murine aortic arch.

    Directory of Open Access Journals (Sweden)

    Moritz Braig

    Full Text Available Cardiovascular diseases remain the number one death cause worldwide. Preclinical 4D flow phase contrast magnetic resonance imaging can provide substantial insights in the analysis of aortic pathophysiologies in various animal models. These insights may allow a better understanding of pathophysiologies, therapy monitoring, and can possibly be translated to humans. This study provides a framework to acquire the velocity field within the aortic arch. It analyses important flow values at different locations within the aortic arch. Imaging parameters with high temporal and spatial resolution are provided, that still allow combining this time-consuming method with other necessary imaging-protocols.A new setup was established where a prospectively gated 4D phase contrast sequence is combined with a highly sensitive cryogenic coil on a preclinical magnetic resonance scanner. The sequence was redesigned to maintain a close to steady state condition of the longitudinal magnetization and hence to overcome steady state artifacts. Imaging parameters were optimized to provide high spatial and temporal resolution. Pathline visualizations were generated from the acquired velocity data in order to display complex flow patterns.Our setup allows data acquisition with at least two times the rate than that of previous publications based on Cartesian encoding, at an improved image quality. The "steady state" sequence reduces observed artifacts and provides uniform image intensity over the heart cycle. This made possible quantification of blood speed and wall shear stress (WSS within the aorta and its branches. The highest velocities were observed in the ascending aorta with 137.5 ± 8 cm/s. Peak velocity values in the Brachiocephalic trunk were 57 ± 12 cm/s. Quantification showed that the peak flow occurs around 20 ms post R-wave in the ascending aorta. The highest mean axial wall shear stress was observed in the analysis plane between the left common carotid artery

  9. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...... of the book: how connotations of past meanings may resonate through time, in new contexts, assuming new meanings without surrendering the old....

  10. Electromechanical Properties of Bone Tissue.

    Science.gov (United States)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P load for a 3 day period. While it is thus demonstrated that the major inorganic and organic phases of bone are electromechanically coupled, a thermodynamic consideration of the data suggests that the nature of the bond is to preserve mineral and organic phase electroneutralities by participating in electrical double layer interactions. The results are discussed in terms of bone mechanical modeling, electrokinetic properties, aging, tissue-implant compatibility and the etiologies of bone pathologic conditions.

  11. Slow flow across macroscopically rectangular fiber lattices and an open region: Visualization by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bijeljic, B.; Mantle, M.D.; Sederman, A.J.; Gladden, L.F.; Papathanasiou, T.D.

    2001-01-01

    Creeping flow of a Newtonian fluid across aligned and staggered rows of cylinders (fiber lattices) bounded by an open region is studied experimentally by magnetic resonance imaging (MRI) velocimetry. The model systems are formed by circular cylindrical rods, macroscopically arranged in rectangular fashion and confined inside a Hele-Shaw cell. The thus formed fiber arrays are bounded by the open region from one side and the wall of the cell on the other side, thus forming a heterogeneous fibrous medium of dual porosity. The influence of the fiber lattice volume fraction and lattice unit-cell geometry on the local aspects of the flow in the interior of and exterior to the fiber arrays are investigated. The steady-state velocity maps of the longitudinal and, in particular, transverse velocity components are shown to be advantageous in studying the local aspects of the flow field in such a heterogeneous porous medium. The most important feature of local velocity distributions in the regions ahead of and behind the lattice-channel arrangements is evidenced as substantial transverse velocities. This local flow aspect is termed edge effect and found to be dependent on lattice porosity. Local flow disturbances are present on either side of the open channel-fiber lattice interfaces, at the length-scale corresponding to the size of unit cells of the fiber lattices. Regions with regular patterns of very low fluid velocities are identified throughout the fiber lattices. The local values for the velocity vector at the entrance/exit of the fiber lattices are considerably higher than the average values within the fiber arrangements. These local flow enhancements, which are caused by the proximity of velocity gradients in the adjoining free flow region, are termed entrance/exit effects

  12. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2009-01-01

    The detection of the onset of parametric roll resonance on ships is of a central importance in order to activate specific control strategies able to counteract the large roll motion. One of the main priorities is to have detectors with a small detection time, such that warnings can be issued when...... the roll oscillations are about 5◦. This paper proposes two different detection approaches: the first one based on sinusoidal detection in white gaussian noise; the second one utilizes an energy flow indicator in order to catch the onset of parametric roll based upon the transfer of energy from heave...... and pitch to roll. Both detectors have been validated against experimental data of a scale model of a container vessel excited with both regular and irregular waves. The detector based on the energy flow indicator proved to be very robust to different scenarios (regular/irregular waves) since it does...

  13. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    Science.gov (United States)

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow

  14. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  15. Experimental flow and perfusion measurement in an animal model with magnetic resonance tomography

    International Nuclear Information System (INIS)

    Schoenberg, S.O.; Bock, M.; Just, A.

    2001-01-01

    Aim. Validation of non-invasive methods for morphologic and functional imaging of the kidney under physiologic and pathophysiologic conditions. Material and Methods. In chronically instrumented animals (foxhounds) comparative measurements of renal flow and perfusion were performed. Magnetic resonance imaging techniques were compared to data obtained from implanted flow probes and total kidney weight post mortem. In the MR system, different degrees of renal artery stenosis could be induced by means of an implanted inflatable cuff. The degree of stenosis was verified with high-resolution 3D contrast-enhanced MR angiography (3D-CE-MRA) using an intravascular contrast agent. Results. The MR-data agreed well with the invasively obtained results. Artifacts resulting from the implanted flow probes and other devices could be kept to a minimum due to appropriate selection of the probe materials and measurement strategies. Stenoses could be reproduced reliably and quantified from the induced morphologic and functional changes. Conclusion. Morphologic and functional MR techniques are well suited for non-invasive in vivo assessment of renal blood flow physiology. (orig.) [de

  16. Cine magnetic resonance imaging for evaluation of cardiac structure and flow dynamics in congenital heart disease

    International Nuclear Information System (INIS)

    Akagi, Teiji; Kiyomatsu, Yumi; Ohara, Nobutoshi; Takagi, Junichi; Sato, Noboru; Kato, Hirohisa; Eto, Takaharu.

    1989-01-01

    Cine magnetic resonance imaging (Cine MRI) was performed in 20 patients aged 19 days to 13 years (mean 4.0 years), who had congenital heart disease confirmed at echocardiography or angiography. Prior to cine MRI, gated MRI was performed to evaluate for cardiac structure. Cine MRI was demonstrated by fast low fip angle shot imaging technique with a 30deg flip angle, 15 msec echo time, 30-40 msec pulse repetition time, and 128 x 128 acquisition matrix. Abnormalities of cardiac structure were extremely well defined in all patients by gated MRI. Intracardiac or intravascular blood flow were visualized in 17 (85%) of 20 patients by cine MRI. Left to right shunt flow through ventricular septal defect, atrial septal defect, and endocardial cushion defect were visualized with low signal intensity area. Low intensity jets flow through the site of re-coarctation of the aorta were also visualized. However, the good recording of cine MRI was not obtained because of artifacts in 3 of 20 patients (15%) who had severe congestive heart failure or respiratory arrhythmia. Gated MRI provides excellent visualization of fine structure, and cine MRI can provide high spatial resolution imaging of flow dynamic in a variety of congenital heart disease, noninvasively. (author)

  17. The Role of Cine Flow Magnetic Resonance Imaging in Patients with Chiari 0 Malformation.

    Science.gov (United States)

    Ozsoy, Kerem Mazhar; Oktay, Kadir; Cetinalp, Nuri Eralp; Gezercan, Yurdal; Erman, Tahsin

    2018-01-01

    To define the role of phase-contrast cine magnetic resonance imaging (MRI) in deciding the therapeutic strategy and underlying pathophysiology resulting in syrinx formation in patients with Chiari type 0 malformation. Seven patients who were admitted to our clinic with the diagnosis of Chiari 0 malformation from January 2005 to July 2016 were enrolled in the study. All patients underwent a detailed preoperative neurological examination. Entire neuroaxis MRI and phase-contrast cine MRI were obtained preoperatively and postoperatively. Seven patients (5 female and 2 male) with Chiari type 0 malformation fulfilled the inclusion criteria. All of the patients had absent cine flow at the craniovertebral junction except two patients. These five patients underwent surgical interventions; suboccipital decompression and duraplasty. All of them showed both clinical and radiological improvement in the postoperative period. Cine flow MRI appears to be a useful tool in the management of patients with Chiari 0 malformation. There was a good correlation between the clinical presentation and cine flow preoperatively, and between clinical improvement and cine flow in the postoperative period.

  18. Resonant Doppler velocimetry in supersonic nitrogen flow. Ph.D. Thesis. Final Report, 31 Oct. 1979 - 31 Jul. 1982

    Science.gov (United States)

    Cheng, S. W. S.

    1982-01-01

    The development of the Resonant Doppler Velocimeter (RDV) is discussed. It is a new nonintrusive laser technique for flow diagnosis. The RDV technique is applied to supersonic nitrogen flow with sodium atoms as tracer particles. The measurements are achieved by shining a tunable single frequency laser beam into the flow. The resonant absorption spectrum of the seeded species is determined by observing the fluorescence signal intensity as a function of excitation wavelength. By comparing the peak absorption wavelength with a reference frequency marker, the flow velocity along the excitation beam can be obtained through the Doppler shift relation. By fitting the spectrum with a theoretical line profile, the static temperature and pressure of the flow an be determined.

  19. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Electronic or electromechanical facsimile. 502.8 Section 502.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS OF THIS CHAPTER § 502.8 Electronic or electromechanical facsimile. Electronic or electromechanical...

  20. Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins.

    Science.gov (United States)

    Nagy, Peter; Bene, László; Hyun, William C; Vereb, György; Braun, Manuela; Antz, Christof; Paysan, Jacques; Damjanovich, Sándor; Park, John W; Szöllősi, János

    2005-10-01

    The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.

  1. RESONANCE

    Indian Academy of Sciences (India)

    maceutical, paper, food, dyes, petrochemi- cals, pigments, etc., to identify molecules, to monitor reaction products and so on. One of the most spectacular contributions of NMR has been in the development of magnetic resonance imaging (MRI), a method that has today revolutionized diagnosis and treatment of diseases in ...

  2. Electromechanical actuation for thrust vector control applications

    Science.gov (United States)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  3. Electromechanical mapping with MRI tagging and epicardial sock electrodes.

    Science.gov (United States)

    McVeigh, Elliot; Faris, Owen; Ennis, Dan; Helm, Patrick; Evans, Frank

    2002-01-01

    Methods currently exist for the precise measurement of local three-dimensional myocardial motion noninvasivly with magnetic resonace imaging tagging. From these motion estimates, strain images representing the local deformation of the myocardium can be formed to show local myocardial contraction. These images clearly show the sequence of mechanical events during the activation and relaxation of the heart, making them ideal to visualize abnormalities caused by asynchronous electrical activation or ischemia. Coupled with the near simultaneous mapping of electrical depolarization with a sock electrode array, we can investigate the relationship between electical activity and mechanical function on a local level in the in vivo heart. Registered fiber angle maps can be also be obtained in the same heart with diffusion magnetic resonance imaging to assist in the construction of the electromechanical model of the whole heart.

  4. Electron-electron attraction in an engineered electromechanical system

    Science.gov (United States)

    Széchenyi, Gábor; Pályi, András; Droth, Matthias

    2017-12-01

    Two electrons in a quantum dot repel each other: their interaction can be characterized by a positive interaction energy. From the theory of superconductivity, we also know that mechanical vibrations of the crystal lattice can make the electron-electron interaction attractive. Analogously, if a quantum dot interacts with a mechanical degree of freedom, the effective interaction energy can be negative; that is, the electron-electron interaction might be attractive. In this work, we propose and theoretically study an engineered electromechanical system that exhibits electron-electron attraction: a quantum dot suspended on a nonlinear mechanical resonator, tuned by a bottom and a top gate electrode. We focus on the example of a dot embedded in a suspended graphene ribbon, for which we identify conditions for electron-electron attraction. Our results suggest the possibility of electronic transport via tunneling of packets of multiple electrons in such devices, similar to that in superconducting nanostructures, but without the use of any superconducting elements.

  5. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  6. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  7. Advanced Controllers for Electromechanical Motion Systems

    NARCIS (Netherlands)

    Nguyen, Duy Cuong

    2008-01-01

    The aim of this research is to develop advanced controllers for electromechanical motion systems. In order to increase efficiency and reliability, these control systems are required to achieve high performance and robustness in the face of model uncertainty, measurement noise, and reproducible

  8. Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging.

    Science.gov (United States)

    Schob, Stefan; Weiß, Alexander; Surov, Alexey; Dieckow, Julia; Richter, Cindy; Pirlich, Mandy; Horvath-Rizea, Diana; Härtig, Wolfgang; Hoffmann, Karl-Titus; Krause, Matthias; Quäschling, Ulf

    2017-12-27

    Surfactant proteins (SPs) are a multifunctional group of proteins, responsible for the regulation of rheological properties of body fluids, host defense, and cellular waste clearance. Their concentrations are changed in cerebrospinal fluid (CSF) of patients suffering from communicating hydrocephalus. Hydrocephalic conditions are accompanied by altered CSF flow dynamics; however, the association of CSF-SP concentrations and CSF flow has not yet been investigated. Hence, the aim of this study was to evaluate the association between SP concentrations in the CSF and marked CSF flow phenomena at different anatomical landmarks of CSF spaces. Sixty-one individuals (15 healthy subjects and 46 hydrocephalus patients) were included in this study. CSF specimens were analyzed for SP-A, SP-B, SP-C, and SP-D concentrations by the use of enzyme-linked immunosorbent assays (ELISA). CSF flow was evaluated in axial T2_turbo inversion recovery magnitude (TIRM)-weighted and sagittal T2-weighted magnetic resonance imaging sections using a 4-grade scale (1-no flow, 2-subtle flow, 3-moderate flow, and 4-strong flow). CSF-SP concentrations (mean ± standard deviation) of the overall collective were as follows: SP-A = 0.73 ± 0.58 ng/ml, SP-B = 0.17 ± 0.93 ng/ml, SP-C = 0.95 ± 0.75 ng/ml, and SP-D = 7.43 ± 5.17 ng/ml. The difference between healthy controls and hydrocephalic patients regarding CSF concentrations of SP-A (0.34 ± 0.22 vs. 0.81 ± 0.59 ng/ml) and SP-C (0.48 ± 0.29 vs. 1.10 ± 0.79 ng/ml) revealed to be statistically significant as calculated by means of ANOVA (p values of 0.022 and 0.007, respectively). CSF flow voids were detectable at all investigated landmarks of the CSF spaces (foramina of Monro, third ventricle, mesencephalic aqueduct, prepontine cistern, fourth ventricle, cisterna magna, and craniocervical junction). CSF flow voids, reported as mean ± standard deviation, revealed to be significantly increased

  9. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  10. High-frequency electromechanical imaging of ferroelectrics in a liquid environment.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Chu, Ying-Hao; Kalinin, Sergei V

    2012-06-26

    The coupling between electrical and mechanical phenomena is a ubiquitous feature of many information and energy storage materials and devices. In addition to involvement in performance and degradation mechanisms, electromechanical effects underpin a broad spectrum of nanoscale imaging and spectroscopies including piezoresponse force and electrochemical strain microscopies. Traditionally, these studies are conducted under ambient conditions. However, applications related to imaging energy storage and electrophysiological phenomena require operation in a liquid phase and therefore the development of electromechanical probing techniques suitable to liquid environments. Due to the relative high conductivity of most liquids and liquid decomposition at low voltages, the transfer of characterization techniques from ambient to liquid is not straightforward. Here we present a detailed study of ferroelectric domain imaging and manipulation in thin film BiFeO(3) using piezoresponse force microscopy in liquid environments as model systems for electromechanical phenomena in general. We explore the use of contact resonance enhancement and the application of multifrequency excitation and detection principles to overcome the experimental problems introduced by a liquid environment. Understanding electromechanical sample characterization in liquid is a key aspect not only for ferroelectric oxides but also for biological and electrochemical sample systems.

  11. Electromechanical properties of biomembranes and nerves

    International Nuclear Information System (INIS)

    Heimburg, T; Blicher, A; Mosgaard, L D; Zecchi, K

    2014-01-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to

  12. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  13. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki

    2000-01-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year (ΔD) were significantly greater than in groups R and B (%TFV: 74.1±0.07 vs 15.2±0.03 vs 11.8±0.04, p<0.01; ΔD: 3.62±0.82 vs 0 vs 0.58±0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and ΔD (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  14. The Effect of Electrical Impedance Matching on the Electromechanical Characteristics of Sandwiched Piezoelectric Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-12-01

    Full Text Available For achieving the power maximum transmission, the electrical impedance matching (EIM for piezoelectric ultrasonic transducers is highly required. In this paper, the effect of EIM networks on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers is investigated in time and frequency domains, based on the PSpice model of single sandwiched piezoelectric ultrasonic transducer. The above-mentioned EIM networks include, series capacitance and parallel inductance (I type and series inductance and parallel capacitance (II type. It is shown that when I and II type EIM networks are used, the resonance and anti-resonance frequencies and the received signal tailing are decreased; II type makes the electro-acoustic power ratio and the signal tailing smaller whereas it makes the electro-acoustic gain ratio larger at resonance frequency. In addition, I type makes the effective electromechanical coupling coefficient increase and II type makes it decrease; II type make the power spectral density at resonance frequency more dramatically increased. Specially, the electro-acoustic power ratio has maximum value near anti-resonance frequency, while the electro-acoustic gain ratio has maximum value near resonance frequency. It can be found that the theoretically analyzed results have good consistency with the measured ones.

  15. Pulsatile flow of cerebrospinal fluid on magnetic resonance images and its relation to intracranial pressure

    International Nuclear Information System (INIS)

    Ohara, Shigeki

    1988-01-01

    In a retrospective study of the magnetic resonance (MR) images of 289 neurosurgical patients, loss of signal intensity (the signal void phenomenon) of cerebrospinal fluid (CSF) in the mesencephalic aqueduct was observed in 77 patients. This signal void phenomenon (SVP) was seen most frequently in patients suffering from communicating hydrocephalus (12 of 14), less frequently in patients with supratentorial tumors (7 of 50), and not at all in patients with noncommunicating hydrocephalus (none of 9). Eight of 19 patients with infratentorial lesions who did not demonstrate the SVP preoperatively, developed it after suboccipital craniectomy. It is known that CSF in the cranial cavity flows toward the spinal CSF space in a to and fro manner in response to the pulsations of the brain. The velocity of this flow is faster in the narrower parts in the ventricular system such as the aqueduct, Monro's foramen and the fourth ventricle. The SVP reflects CSF pulsatile flow forced out of the intracranial space into the intraspinal space by the brain's pulsations. The SVP was observed frequently in the MR images of patients with communicating hydrocephalus who showed normal intracranial mean pressure (mICP) and normal pulse pressure (PP), whereas the SVP was observed rarely in patients with high mICP and high PP, such as those with a supratentorial tumor. The SVP may reflect the capacity of the craniospinal cavity to buffer pressure within it. It may be possible to differentiate normal from increased intracranial pressure by detection of the SVP in CSF in the ventricular system. (author)

  16. Forced Responses of the Parametric Vibration System for the Electromechanical Integrated Magnetic Gear

    Directory of Open Access Journals (Sweden)

    Xiu-hong Hao

    2015-01-01

    Full Text Available Considering the magnetic fields modulating in the electromechanical integrated magnetic gear (EIMG, the electromagnetic coupling stiffnesses vary periodically and the expressions are given by the finite element method. The parametric vibration model and the dynamic differential equations are founded. The expressions of forced responses of EIMG system are deduced when the main resonances and the combination resonances occur. And then, the time and frequency responses are figured out. The dynamic characteristics of EIMG system are discussed. The results show that the dominant frequencies in the resonances are always the natural frequency of EIMG system. The relative amplitudes of the components have great difference and the components amplitudes of the main resonances are much bigger than the components amplitudes of the combination resonances. The time-varying meshing stiffness wave between the inner stator and the inner ferromagnetic pole-pieces has little influence on EIMG system.

  17. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  18. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  19. Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping.

    Science.gov (United States)

    Bächler, Pablo; Pinochet, Natalia; Sotelo, Julio; Crelier, Gérard; Irarrazaval, Pablo; Tejos, Cristián; Uribe, Sergio

    2013-02-01

    The purpose of this study was to analyze flow patterns in the pulmonary circulation of healthy volunteers by using 4D flow magnetic resonance imaging. The study was approved by the local ethics committee and all subjects gave written informed consent. Eighteen volunteers underwent a 4D flow scan of the whole-heart. Two patients with congenital heart disease were also included to detect possible patterns of flow abnormalities (Patient 1: corrected transposition of great arteries (TGA); Patient 2: partial anomalous pulmonary venous return and atrial septal defect). To analyze flow patterns, 2D planes were placed on the main pulmonary artery (PA), left and right PA. Flow patterns were assessed manually by two independent viewers using vector fields, streamlines and particle traces, and semi-automatically by vorticity quantification. Two counter-rotating helices were found in the main PA of volunteers. Right-handed helical flow was detected in the right PA of 15 volunteers. Analysis of the helical flow by particles traces revealed that both helices contributed mainly to the flow in the right PA. In the patient with corrected TGA helical flow was not detected. Abnormal vortical flow was visualized in the main PA of patient 2, suggesting elevated mean PA pressure. Helical flow is normally present in the main PA and right PA. 4D flow is an excellent tool to evaluate noninvasively complex blood flow patterns in the pulmonary circulation. Knowledge of normal and abnormal flow patterns might help to evaluate patients with congenital heart disease adding functional information undetectable with other imaging modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    , for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical......Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  1. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  2. A Fluidic Interface with High Flow Uniformity for Reusable Large Area Resonant Biosensors

    Directory of Open Access Journals (Sweden)

    Charles-Louis Azzopardi

    2017-10-01

    Full Text Available Resonant biosensors are known for their high accuracy and high level of miniaturization. However, their fabrication costs prevent them from being used as disposable sensors and their effective commercial success will depend on their ability to be reused repeatedly. Accordingly, all the parts of the sensor in contact with the fluid need to tolerate the regenerative process which uses different chemicals (H3PO4, H2SO4 based baths without degrading the characteristics of the sensor. In this paper, we propose a fluidic interface that can meet these requirements, and control the liquid flow uniformity at the surface of the vibrating area. We study different inlet and outlet channel configurations, estimating their performance using numerical simulations based on finite element method (FEM. The interfaces were fabricated using wet chemical etching on Si, which has all the desirable characteristics for a reusable biosensor circuit. Using a glass cover, we could observe the circulation of liquid near the active surface, and by using micro-particle image velocimetry (μPIV on large surface area we could verify experimentally the effectiveness of the different designs and compare with simulation results.

  3. Numerical and Physical Modeling of the Response of Resonator Liners to Intense Sound and Grazing Flow

    Science.gov (United States)

    Hersh, Alan S.; Tam, Christopher

    2009-01-01

    Two significant advances have been made in the application of computational aeroacoustics methodology to acoustic liner technology. The first is that temperature effects for discrete sound are not the same as for broadband noise. For discrete sound, the normalized resistance appears to be insensitive to temperature except at high SPL. However, reactance is lower, significantly lower in absolute value, at high temperature. The second is the numerical investigation the acoustic performance of a liner by direct numerical simulation. Liner impedance is affected by the non-uniformity of the incident sound waves. This identifies the importance of pressure gradient. Preliminary design one and two-dimensional impedance models were developed to design sound absorbing liners in the presence of intense sound and grazing flow. The two-dimensional model offers the potential to empirically determine incident sound pressure face-plate distance from resonator orifices. This represents an important initial step in improving our understanding of how to effectively use the Dean Two-Microphone impedance measurement method.

  4. Study on flow-induced acoustic resonance in symmetrically located side-branches using dynamic PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Inagaki, Terumi; Nishi, Yasuyuki; Someya, Satoshi; Okamoto, Koji

    2014-01-01

    Flow-induced acoustic resonance in a piping system containing closed coaxial side-branches was investigated experimentally. Resonance characteristics of the piping system were examined by a microphone. The results revealed that the resonance frequencies of the shear layer instability were locked in corresponding to the natural frequencies of the side-branches. Phase-averaged velocity fields were obtained two-dimensionally in the junction of coaxial side-branches by dynamic particle image velocimetry (PIV), while the acoustic resonance was induced at the first and second hydrodynamic modes. Patterns of jet correspond to two hydrodynamic modes were derived from the phase-averaged velocity fields. The dynamic PIV can acquire time-series velocity fluctuations, then, two-dimensional phase delay maps under resonance and off-resonance conditions in the junction of coaxial side-branches were obtained. Experimental results show that the proposed phase delay map method costs less experiment and computation time and achieves a better accuracy and repetition than the phase-locking technique. In addition, the phase delay map method can obtain phase difference under the different frequency components. This is important when two different acoustic modes were induced in one experimental condition. (author)

  5. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  6. Active Electromechanical Suspension System for Planetary Rovers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies, LLC proposes to adapt actively controlled suspension technology developed by The University of Texas at Austin Center for Electromechanics...

  7. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, M. A. A.

    2016-08-18

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  8. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.

    2018-01-12

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  9. Usefulness of four-dimensional flow-sensitive magnetic resonance imaging to evaluate hemodynamics in the pancreaticoduodenal artery.

    Science.gov (United States)

    Shibasaki, Yasushi; Sakaguchi, Takanori; Kitajima, Ryo; Furuhashi, Satoru; Kiuchi, Ryota; Takeda, Makoto; Hiraide, Takanori; Morita, Yoshifumi; Unno, Naoki; Takeuchi, Hiroya

    2018-03-05

    Pancreaticoduodenal artery (PDA) aneurysm associated with celiac axis compression by the median arcuate ligament (MAL) is a rare disorder, but may be lethal if ruptured. Therefore, prophylactic surgical treatments need to be considered when MAL compresses the celiac axis. We herein report the usefulness of an arterial flow analysis for objectively evaluating this pathophysiology under four-dimensional flow-sensitive magnetic resonance imaging (4D-flow MRI). Celiac artery stenosis was incidentally found under contrast-enhanced CT in a 50-year-old woman with symptomatic solitary pancreatic insulinoma. Under 4D-flow MRI, retrograde blood flow and aberrant wall shear stress were detected in the pancreaticoduodenal artery arcade. After obtaining informed consent, enucleation for insulinoma concomitant with MAL dissection was performed. Hypoglycemic attack completely resolved immediately after surgery. One month after surgery, 4D-flow MRI revealed normalized vectorial flow and wall shear stress in the PDA arcade without hypoglycemic attack. 4D-flow MRI is a very useful and non-invasive modality for objectively evaluating visceral artery hemodynamics.

  10. Tricuspid flow and regurgitation in congenital heart disease and pulmonary hypertension: comparison of 4D flow cardiovascular magnetic resonance and echocardiography.

    Science.gov (United States)

    Driessen, Mieke M P; Schings, Marjolijn A; Sieswerda, Gertjan Tj; Doevendans, Pieter A; Hulzebos, Erik H; Post, Marco C; Snijder, Repke J; Westenberg, Jos J M; van Dijk, Arie P J; Meijboom, Folkert J; Leiner, Tim

    2018-01-15

    Tricuspid valve (TV) regurgitation (TR) is a common complication of pulmonary hypertension and right-sided congenital heart disease, associated with increased morbidity and mortality. Estimation of TR severity by echocardiography and conventional cardiovasvular magnetic resonance (CMR) is not well validated and has high variability. 4D velocity-encoded (4D-flow) CMR was used to measure tricuspid flow in patients with complex right ventricular (RV) geometry and varying degrees of TR. The aims of the present study were: 1) to assess accuracy of 4D-flow CMR across the TV by comparing 4D-flow CMR derived TV effective flow to 2D-flow derived effective flow across the pulmonary valve (PV); 2) to assess TV 4D-flow CMR reproducibility, and 3) to compare TR grade by 4D-flow CMR to TR grade by echocardiography. TR was assessed by both 4D-flow CMR and echocardiography in 21 healthy subjects (41.2 ± 10.5 yrs., female 7 (33%)) and 67 RV pressure-load patients (42.7 ± 17.0 yrs., female 32 (48%)). The CMR protocol included 4D-flow CMR measurement across the TV, 2D-flow measurement across the PV and conventional planimetric measurements. TR grading on echocardiographic images was performed based on the international recommendations. Bland-Altman analysis and intra-class correlation coefficients (ICC) were used to asses correlations and agreement. TV effective flow measured by 4D-flow CMR showed good correlation and agreement with PV effective flow measured by 2D-flow CMR with ICC = 0.899 (p limits of agreement -20.39 to 16.81] (p = 0.084). Intra-observer agreement for effective flow (ICC = 0.981; mean difference - 1.51 ml [-12.88 to 9.86]) and regurgitant fraction (ICC = 0.910; mean difference 1.08% [-7.90; 10.06]) was good. Inter-observer agreement for effective flow (ICC = 0.935; mean difference 2.12 ml [-15.24 to 19.48]) and regurgitant fraction (ICC = 0.968; mean difference 1.10% [-7.96 to 5.76]) were comparable. In 25/65 (38.5%) TR

  11. Electromechanical engineering aspects of irradiator design

    International Nuclear Information System (INIS)

    Etienne, J.C.; Buyle, R.

    1984-01-01

    IRE, Institut National des Radioelements at Fleurus, has been irradiating foodstuffs since 1979. The steadily-increasing demands of the food industry led IRE to design and install a second, different type of irradiator. Selection criteria for choosing between the different alternatives or possibilities are given based on the primary consideration that a contract food irradiator must be able to provide a service in accordance with the requirements of his customers. The principal components - the radiation source geometry, the transport system and the control systems - are described. The choice of the major electromechanical components is discussed taking into account their susceptibility to radiation damage. (author)

  12. Electromechanical Peak Devices of Distributed Power Generation

    Directory of Open Access Journals (Sweden)

    S. V. Konstantinova

    2011-01-01

    Full Text Available The power world crises (1973, 1979 have demonstrated that mankind entered the expensive energy epoch. More and more attitude is given to power saving problem by including renewable power sources in energy balance of the countries. The paper analyzes a power system inBelarusand a typical chart of the active load is cited in the paper. Equalization of load chart is considered as one of measures directed on provision of higher operational efficiency of power system and power saving.  This purpose can be obtained while including electromechanical peak devices of the distributed generation in the energy balance.

  13. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  14. Analysis of blood flow patterns in aortic aneurysm by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi

    1993-01-01

    Cine MRI (0.5 T) using rephased gradient echo technique was performed to study the patterns of blood flow in the aortic aneurysm of 16 patients with aortic aneurysm, and the data were compared with those of 5 healthy volunteers. In the transaxial section, the blood flow in normal aorta appeared as homogeneous high intensity during systole. On the other hand, the blood flow in the aneurysm appeared as inhomogeneous flow enhancement with flow void. In the sagittal scan, the homogeneous flow enhancement in a normal aorta was also observed during systole and its apex of flow enhancement was 'taper'. The blood flow patterns in the aneurysm were classified as 'irregular', 'zonal', 'eddy', and 'obscure' depending on the contrast of flow enhancement and flow void. Their apexes were 'taper' or 'round'. The blood flow patterns in the aneurysm were related to the size of aneurysm. In patients with a large size 'aneurysm, their flow patterns were 'eddy' or 'obscure' and the flow enhancement was 'round'. On the other hand, in patients with a small size aneurysm, their flow patterns were 'irregular' or 'zonal', and their flow enhancement was 'taper'. Though the exact mechanism of abnormal flow patterns in an aortic aneurysm remains to be determined, cine MRI gives helpful informations in assessing blood flow dynamics in the aneurysm. (author)

  15. Common Carotid Artery Flow Measured by 3-D Ultrasonic Vector Flow Imaging and Validated with Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Bouzari, Hamed

    2017-01-01

    was observed for volume flow (r = 0.43). The overall standard deviations were ±5.7% and ±5.7% for volume flow and PSV with 3-D US, compared with ±2.7% and ±3.2% for MRI. Finally, the data were re-processed with a change in the parameter settings for the echo-canceling filter to investigate its influence...

  16. Magnetic Resonance-Assisted Imaging of Slow Flow in the Pancreatic and Common Bile Duct in Healthy Volunteers

    International Nuclear Information System (INIS)

    Hellund, J.C.; Storaas, T.; Gjesdal, K.I.; Klow, N.E.; Geitung, J.T.

    2007-01-01

    Background: Magnetic resonance cholangiopancreaticography (MRCP) is commonly used to evaluate the pancreatic (PD) and common bile duct (CBD), and the addition of secretin is used to obtain functional information (S-MRCP). Neither method gives any information on flow velocities within the ducts. Purpose: To evaluate a new, MRI diffusion-based, slow-flow-sensitive sequence for the detection of slow flow changes in the PD and CBD. Material and Methods: Seven healthy volunteers were examined. A modified single-shot turbo spin-echo sequence was used to detect slow flow changes. Three b factors (0, 6, and 12 s/mm 2 ) were used. The flow sensitivity was applied in two directions, vertically and horizontally. Scanning was performed before and after glucagon was given, and again after an intravenous injection of secretin. The sequence gives signal loss from a duct when flow increases, and such changes were recorded. Results: All images showed the PD with b = 0 (no flow sensitization). After administration of glucagon, artifacts from bowel movements were reduced and visibility of the PD was improved at both b = 6 and b 12. Significant reduction of the visibility of the PD, indicating increased flow, was recorded both at b = 6 and b = 12 after the administration of secretin. There were no changes in the visibility of the CBD. Conclusion: This study shows that MRI-based detection of slow flow changes inside the PD is possible. Due to the sequence's high sensitivity to any motion, further studies are required before adopting the method for clinical use

  17. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  18. Electromechanically active polymer transducers: research in Europe

    DEFF Research Database (Denmark)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin

    2013-01-01

    usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research...... worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial Muscles—ESNAM', entirely focused on EAPs and gathering the most active research institutes, as well as key industrial developers......Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified...

  19. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  20. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  1. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  2. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics - preliminary experience

    International Nuclear Information System (INIS)

    Karmonik, C.; Benndorf, G.; Klucznik, R.

    2008-01-01

    Purpose: computational fluid dynamics (CFD) simulations are increasingly used to model cerebral aneurysm hemodynamics. We investigated the capability of phase contrast magnetic resonance imaging (pcMRI), guided by specialized software for optimal slice definition (NOVA, Vassol Inc.) as a non-invasive method to measure intra-aneurysmal blood flow patterns in-vivo. In a novel approach, these blood flow patterns measured with pcMRI were qualitatively compared to the ones calculated with CFD. Materials end methods: the volumetric inflow rates into three unruptured cerebral aneurysms and the temporal variations of the intra-aneurysmal blood flow patterns were recorded with pcMRI. Transient CFD simulations were performed on geometric models of these aneurysms derived from 3D digital subtraction angiograms. Calculated intra-aneurysmal blood flow patterns were compared at the times of maximum and minimum arterial inflow to the ones measured with pcMRI and the temporal variations of these patterns during the cardiac cycle were investigated. Results: in all three aneurysms, the main features of intra-aneurysmal flow patterns obtained with pcMRI consisted of areas with positive velocities components and areas with negative velocities components. The measured velocities ranged from approx. ±60 to ±100 cm/sec. Comparison with calculated CFD simulations showed good correlation with regard to the spatial distribution of these areas, while differences in calculated magnitudes of velocities were found. (orig.)

  3. Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle.

    Science.gov (United States)

    Nadal, Clement; Pigache, Francois

    2009-11-01

    This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton's principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification.

  4. Myocardial blood flow estimates from dynamic contrast-enhanced magnetic resonance imaging: three quantitative methods

    Science.gov (United States)

    Borrazzo, Cristian; Galea, Nicola; Pacilio, Massimiliano; Altabella, Luisa; Preziosi, Enrico; Carnì, Marco; Ciolina, Federica; Vullo, Francesco; Francone, Marco; Catalano, Carlo; Carbone, Iacopo

    2018-02-01

    Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood flow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may influence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1  ±  0.05 mmol kg‑1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Student’s t-test, linear regression analysis, and Bland–Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not significantly different, and were in good agreement with the literature. The results obtained during the first-pass transit time (20 s) yielded p-values in the range 0.20–0.28 for Student’s t-test, linear regression analysis slopes between 0.98–1.03, and R values between 0.92–1.01. From the Bland–Altman plots, the paired comparisons yielded a bias (and a 95% CI)—expressed as ml/min/g—for FFM versus TM, ‑0.01 (‑0.20, 0.17) or 0.02 (‑0.49, 0.52) at rest or under stress respectively, for FFM versus GF, ‑0.05 (‑0.29, 0.20) or  ‑0.07 (‑0.55, 0.41) at rest or under stress, and for TM versus GF, ‑0.03 (‑0.30, 0.24) or  ‑0.09 (‑0.43, 0

  5. Mason's rule and signal flow graphs applied to subwavelength resonant structures.

    Science.gov (United States)

    Estruch, Thomas; Pardo, Fabrice; Portier, Benjamin; Jaeck, Julien; Derelle, Sophie; Haidar, Riad

    2012-11-19

    Widely used for the design of resonant electronic devices, Mason's scalar rule is adapted here to the study of resonant subwavelength optical structures. It turns out to be an efficient formalism, especially when dealing with multiple wave interference mechanisms. Indeed it allows to comprehend the underlying physical mechanisms of the structure in a straightforward way and fast analytical formulae can be retrieved. As an illustration, we apply it to the study of dual metallic gratings, which appear to be promissing optical filters as their spectral shape can be tailored according to needs.

  6. Measurement of aortic blood flow by magnetic resonance below and above the origin of the coronary arteries in postmenopausal hormone replacement therapy

    DEFF Research Database (Denmark)

    Sørensen, Morten Beck; Fritz-Hansen, Thomas; Jensen, Henrik Halvor

    2004-01-01

    PURPOSE: Principal blood flow measures might be assessable by velocity-encoded cine magnetic resonance (VENC MR) of aortic blood flow. The feasibility of using VENC MR for clinical research was tested in a contemporary and controversial human model: the effects of 17beta-estradiol (E) and cyclic...

  7. Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges

    NARCIS (Netherlands)

    Wexler, Adam D.; Drusová, Sandra; Fuchs, Elmar C.; Woisetschläger, Jakob; Reiter, Gert; Fuchsjäger, Michael; Reiter, Ursula

    2017-01-01

    Abstract: Here, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing,

  8. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    Science.gov (United States)

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all PTurner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  9. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Science.gov (United States)

    Jiang, Z. T.; Lv, Z. T.; Zhang, X. D.

    2017-06-01

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on-off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on-off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields.

  10. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    Science.gov (United States)

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  11. Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope

    CSIR Research Space (South Africa)

    Loveday, PW

    1996-01-01

    Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...

  12. Mathematical modeling of electromechanical processes in a brushless DC motor

    Directory of Open Access Journals (Sweden)

    V.I. Tkachuk

    2014-03-01

    Full Text Available On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.

  13. Electromechanical stability domain of dielectric elastomer film actuators

    Science.gov (United States)

    Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2009-07-01

    The dielectric elastomer film will encounter electrical breaking-down frequently in its working state due to the coupling effect of electric field and mechanical force field. Referring to the electromechanical coupling system stability theory of dielectric elastomer proposed by Suo and Zhao, the electromechanical stability analysis of dielectric elastomer has been investigated. The free energy function of dielectric elastomer can be represented by the principle of superposition based on Suo's theory. Unstable domain of electromechanical coupling system of Neo-Hookean type silicone was analyzed by R. Díaz-Calleja et al. In the current work, the elastic strain energy function with two material constants was used to analyze the stable domain of electromechanical coupling system of Mooney-Rivlin type silicone, and the results seem to support R. Díaz-Calleja's theory. These results provide useful guidelines for the design and fabrication of actuators based on dielectric elastomer.

  14. Prognostic Health-Management System Development for Electromechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMAs) have been gaining increased acceptance as safety-critical actuation devices in the next generation of aircraft and spacecraft....

  15. Unified model for the electromechanical coupling factor of orthorhombic piezoelectric rectangular bar with arbitrary aspect ratio

    Directory of Open Access Journals (Sweden)

    R. Rouffaud

    2017-02-01

    Full Text Available Piezoelectric Single Crystals (PSC are increasingly used in the manufacture of ultrasonic transducers and in particular for linear arrays or single element transducers. Among these PSCs, according to their microstructure and poled direction, some exhibit a mm2 symmetry. The analytical expression of the electromechanical coupling coefficient for a vibration mode along the poling direction for piezoelectric rectangular bar resonator is established. It is based on the mode coupling theory and fundamental energy ratio definition of electromechanical coupling coefficients. This unified formula for mm2 symmetry class material is obtained as a function of an aspect ratio (G where the two extreme cases correspond to a thin plate (with a vibration mode characterized by the thickness coupling factor, kt and a thin bar (characterized by k33′. To optimize the k33′ value related to the thin bar design, a rotation of the crystallogaphic axis in the plane orthogonal to the poling direction is done to choose the highest value for PIN-PMN-PT single crystal. Finally, finite element calculations are performed to deduce resonance frequencies and coupling coefficients in a large range of G value to confirm developed analytical relations.

  16. Magnetic Resonance Imaging Measurement of Left Ventricular Blood Flow and Coronary Flow Reserve in Patients with Chronic Heart Failure due to Coronary Artery Disease

    Energy Technology Data Exchange (ETDEWEB)

    Aras, A.; Anik, Y.; Demirci, A.; Balci, N.C.; Kozdag, G.; Ural, D.; Komsuoglu, B. (Radiology Dept. and Cardiology Dept., Kocaeli Univ. School of Medicine, Kocaeli (Turkey))

    2007-11-15

    Background: Coronary sinus flow reflects global cardiac perfusion and has been used for the assessment of myocardial flow reserve, which is reduced in chronic heart failure (CHF). Coronary flow reserve (CFR) can be measured by using phase-contrast (PC) velocity-encoded cine (VEC) magnetic resonance imaging (MRI). Purpose: To quantify and compare global left ventricular (LV) perfusion and CFR in patients with CHF and in a healthy control group by measuring coronary sinus flow with PC VEC MRI, and to correlate this with global LV perfusion, segmental first-pass perfusion, and viability in the same patients. Material and Methods: Cardiac MRI was performed in 20 patients with CHF of ischemic origin and in a control group of healthy subjects (n 11) at rest and after pharmacological stress induced by i.v. dipyridamole. The MRI protocol included cine MRI, VEC MRI, first-pass perfusion, and delayed contrast-enhanced MRI for viability. Global LV perfusion was quantified by measuring coronary sinus flow on VEC MRI at rest in all subjects. CFR was determined as the ratio of global LV perfusion before and after pharmacologic stress. Results: At rest, global LV perfusion was not significantly different in patients with CHF and the control group. After administration of dipyridamole, global LV perfusion and CFR were significantly lower in patients with CHF compared to the control group (P<0.001). An inverse correlation was observed between CFR and the number of infarcted and/or ischemic segments (P = 0.083, P = 0.037). Conclusion: A combined cardiac MRI protocol including function and perfusion techniques together with VEC MRI can be used to evaluate global LV perfusion and CFR in patients with CHF. Global LV perfusion and CFR measurements may have potential in the monitoring of CHF. Impaired CFR may contribute to progressive decline in LV function in patients with CHF

  17. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Kazuya [Matto-Ishikawa Central Hospital, Department of Neurosurgery, Hakusan, Ishikawa (Japan); Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi [Kanazawa University School of Medicine, Department of Neurosurgery, Kanazawa, Ishikawa (Japan)

    2017-04-15

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  18. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    International Nuclear Information System (INIS)

    Futami, Kazuya; Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi

    2017-01-01

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  19. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  20. Non-invasive measurements of granular flows by magnetic resonance imaging. Technical progress report for the quarter ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  1. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Raoul [University Medical Center Heidelberg, Department of Congenital Heart Disease and Pediatric Cardiology, Heidelberg (Germany); Neu, Marie [University Medical Center, Department of Pediatric Hematology/Oncology/Hemostaseology, Mainz (Germany); Hirtler, Daniel [University of Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology, Heart Center, Freiburg im Breisgau (Germany); Gimpel, Charlotte [Center for Pediatrics, Medical Center - University of Freiburg, Department of General Pediatrics, Adolescent Medicine and Neonatology, Freiburg im Breisgau (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Geiger, Julia [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Children' s Hospital, Department of Radiology, Zuerich (Switzerland)

    2017-04-15

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections. (orig.)

  2. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  3. Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction

    Science.gov (United States)

    Costet, Alexandre; Melki, Lea; Sayseng, Vincent; Hamid, Nadira; Nakanishi, Koki; Wan, Elaine; Hahn, Rebecca; Homma, Shunichi; Konofagou, Elisa

    2017-12-01

    Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n  =  5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.

  4. On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows

    International Nuclear Information System (INIS)

    Lemonnier, H.; Jullien, P.

    2011-01-01

    Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.

  5. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray (Argonne National Laboratory, Argonne, IL); Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong (Cedarville University, Cedarville, OH)

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  6. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  7. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  8. Flywheel energy storage for electromechanical actuation systems

    Science.gov (United States)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  9. Finite element analysis of coupled electromechanical problems

    International Nuclear Information System (INIS)

    Melgoza-Vazquez, E.

    2001-01-01

    The modeling of electromechanical problems is discussed. The simultaneous consideration of two distinct phenomena is required, as the evolution of the electromagnetic and the mechanical parts are influenced by each other. In this work the equations of the coupled problem are described and possible methods of solution are considered. Three general approaches with varying degrees of detail are considered. In the first, a lumped parameter model of the device is constructed from the finite element solution of the electromagnetic problem. A second approach links the electromagnetic field directly with the lumped mechanical part. Lastly, both the electromagnetic and the mechanical systems are considered to be distributed, with the individual domains solved by using the finite element method. In the process of solution of transient problems the need to solve differential-algebraic systems of equations arises and some approaches are presented. It is shown that traditional finite difference formulas may be applied as long as the discretization is made at the element level. Higher order methods and step adaptation are discussed. (author)

  10. A TECHNIQUE OF EXPERIMENTAL INVESTIGATIONS OF LINEAR IMPULSE ELECTROMECHANICAL CONVERTERS

    Directory of Open Access Journals (Sweden)

    V.F. Bolyukh

    2017-04-01

    Full Text Available Purpose. Development of a technique of experimental studies linear pulse electromechanical converters parameters, which are used as shock-power devices and electromechanical accelerators, and comparing the experimental results with the calculated indices obtained using the mathematical model. Methodology. Method of experimental investigations of linear electromechanical converter is that the electrical parameters are recorded simultaneously (inductor winding current and mechanical parameters characterizing the power and speed indicators of the joke with actuator. Power indicators are primarily important for shock-power devices, and high velocity - for electromechanical accelerators. Power indices were investigated using piezoelectric sensors, a system of strain sensors, pressure pulsation sensor and high-speed videorecording. Velocity indicators were investigated using a resistive movement sensor which allows to record character of the armature movement with actuating element in each moment. Results. The technique of experimental research, which is the simultaneous recording of electrical and mechanical power and velocity parameters of the linear electromechanical converter pulse, is developed. In the converter as a shock-power device power indicators are recorded using a piezoelectric transducer, strain sensors system, pressure pulsation sensor and high-speed video. The parameters of the inductor winding current pulse, the time lag of mechanical processes in relation to the time of occurrence of the inductor winding current, the average speed of the joke, the magnitude and momentum of electrodynamics forces acting on the plate strikes are experimentally determined. In the converter as an electromechanical accelerator velocity performance recorded using resistive displacement sensors. It is shown that electromechanical converter processes have complex spatial-temporal character. The experimental results are in good agreement with the calculated

  11. Flow velocity and volume measurement of superior and inferior mesenteric artery with cine phase contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Cooper, T.G.; Jenner, G.; Potchen, E.J.; Ishigaki, Takeo.

    1994-01-01

    The flow velocity and volume of the superior and inferior mesenteric arteries (SMA, IMA) were measured with cine phase contrast magnetic resonance (MR) imaging in five healthy volunteers. Each volunteer was first measured in a fasting state, and then one, two, and three hours after a meal. The average SMA flow volume of the volunteers was 230.3±46.8 ml/min (mean±standard error) during the fasting state, and 714.7±207.7 ml/min, 339.2±85.7 ml/min, and 263.8±21.0 ml/min, respectively, at one, two, and three hours postmeal. The increase at one hour postmeal was statistically significant (p<0.05). The corresponding flow measurements in the IMA were 63.1±11.2 ml/min, 67.6±11.2 ml/min, 57.9±8.6 ml/min, and 53.2±6.8 ml/min. These values do not represent a statistically significant flow volume change in the IMA. In all volunteers, the SMA volumetric flow increased the most one hour after the food challenge (72-400% relative to baseline). Diastolic velocity in the SMA increased significantly one hour postmeal, but systolic velocity did not change significantly. The IMA did not demonstrate a significant change in either systolic or diastolic velocity. The difference between the SMA and IMA in the way of reacting against the food challenge is thought to represent the difference between the requirements of small and large intestine for blood supply after the food challenge. These data demonstrate the possibility of this modality for the assessment of conditions such as chronic mesenteric ischemia. (author)

  12. Three-dimensional Measurements of Flow Field and Contaminant Dispersion in Urban Environments using Magnetic Resonance Imaging

    Science.gov (United States)

    Prasad, Dipak; Divito, Nicholas; Byers, Matthew; White, William; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Containment Dispersion Team

    2017-11-01

    The dispersion of a scalar contaminant through an urban environment is complex to simulate and current modeling techniques lack detailed validation data necessary to assess accuracy. This work provides a detailed data set for Computational Fluid Dynamic simulations as well as an analysis of fluid flow and contaminant dispersion across two incident angles, 0 and 45 degrees from the freestream, across an array of cubical buildings, with one building in the center column three times as tall. The contaminant is injected from the base behind the tall building. Magnetic resonance imaging techniques are used to collect three-dimensional, time-averaged, three-component velocity and concentration field data. The flow is conducted in a water channel at a fully turbulent condition. The 0 degree case shows symmetrical velocity flow around each building with counter-rotating vortices immediately behind the tall building. Scalar contaminant dispersion in this array shows a rapid draw of higher concentration fluid up the back of the tall building, which is advected downstream. The 45 degree array shows similar patterns with vortices covering a larger area in the wake of the tall building. Analysis of the streamlines around the tall building indicate more `mechanical' dispersion due to the lateral spreading of the streamlines. These experiments should help improve prediction performance.

  13. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  14. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    Science.gov (United States)

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  15. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    Science.gov (United States)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  16. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  17. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  18. Hemodynamic assessment in patients with one-and-a-half ventricle repair revealed by four-dimensional flow magnetic resonance imaging.

    Science.gov (United States)

    Uribe, Sergio; Bächler, Pablo; Valverde, Israel; Crelier, Gérard R; Beerbaum, Philipp; Tejos, Cristian; Irarrazaval, Pablo

    2013-02-01

    We report hemodynamic findings in two patients with pulmonary atresia and intact ventricular septum (PAIVS) after "one-and-a-half ventricle repair" and placement of a bidirectional Glenn shunt using four-dimensional (4D) flow magnetic resonance imaging. Quantification of flow and analysis of flow patterns revealed the hemodynamic "battle" between the right ventricle (RV) and the Glenn shunt. Moreover, with a novel approach we calculated during Glenn anastomosis the flow distribution from the superior vena cava (SVC) to the pulmonary arteries. Our results showed a highly asymmetric flow distribution, with most of the flow from the SVC toward the RV and not to the lungs. The evidence provided by 4D flow demonstrates poor efficiency of this system and suggests that both patients might benefit from adding an artificial pulmonary valve to avoid right heart failure.

  19. Relationship between coronary flow reserve evaluated by phase-contrast cine cardiovascular magnetic resonance and serum eicosapentaenoic acid

    Science.gov (United States)

    2013-01-01

    Background Long-term intake of long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs), especially eicosapentaenoic acid (EPA) is associated with a low risk for cardiovascular disease. Phase-contrast cine cardiovascular magnetic resonance (PC cine CMR) can assess coronary flow reserve (CFR). The present study investigates the relationship between CFR evaluated by PC cine CMR and the serum EPA. Methods We studied 127 patients (male, 116 (91%); mean age, 72.2 ± 7.4 years) with known or suspected coronary artery disease (CAD). X-ray coronary angiography revealed no significant coronary arterial stenoses (defined as luminal diameter reduction ≥50% on quantitative coronary angiogram (QCA) analysis) in all study participants. Breath-hold PC cine CMR images of the coronary sinus (CS) were acquired to assess blood flow of the CS both at rest and during adenosine triphosphate (ATP) infusion. We calculated CFR as CS blood flow during ATP infusion divided by that at rest. Patients were allocated to groups according to whether they had high (n = 64, EPA ≥ 75.8 μg/mL) or low (n = 63, EPA  2.5, which is the previously reported lower limit of normal flow reserve without obstructive CAD. Multivariate analysis revealed that EPA is an independent predictor of CFR > 2.5 (odds ratio, 1.01; 95% confidence interval, 1.00 – 1.02, p = 0.008). Conclusions The serum EPA is significantly correlated with CFR in CAD patients without significant coronary artery stenosis. PMID:24359564

  20. Development of a Semi-Automatic Technique for Flow Estimation using Optical Flow Registration and k-means Clustering on Two Dimensional Cardiovascular Magnetic Resonance Flow Images

    DEFF Research Database (Denmark)

    Brix, Lau; Christoffersen, Christian P. V.; Kristiansen, Martin Søndergaard

    was then categorized into groups by the k-means clustering method. Finally, the cluster containing the vessel under investigation was selected manually by a single mouse click. All calculations were performed on a Nvidia 8800 GTX graphics card using the Compute Unified Device Architecture (CUDA) extension to the C...... promising because it saves time for post-processing. However, the k-means cluster approach is not comprehensive for quantitative flow estimations as it is but seems feasible for a subsequent segmentation algorithm like deformable contours (i.e. snakes). Future work may overcome this manual part and make...... programming language. Results: Seven clusters were created and identification of the one including the aorta was hereafter trivial. However, a part of the rim of the aortic vessel was excluded from the main aortic cluster. Conclusion: The registration and clustering approach for analyzing CMR flow data seems...

  1. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  2. Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.

    Science.gov (United States)

    Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo

    2017-08-15

    Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Heave and Flow: Understanding the role of resonance and shape evolution for heaving flexible panels

    Science.gov (United States)

    Hoover, Alexander; Cortez, Ricardo; Tytell, Eric; Fauci, Lisa

    2017-11-01

    Many animals that swim or fly use their body to accelerate the fluid around them, transferring momentum from their bodies to the surrounding fluid. The emergent kinematics from this transfer are a result of the coupling between the fluid and the material properties of the body. Here we present a computational study of a 3-dimensional flexible panel that is heaved at its leading edge in an incompressible, viscous fluid. These high-fidelity numerical simulations enable us to examine the role of resonance, fluid forces, and panel deformations have on swimming performance. Varying both the passive material properties and the heaving frequency of the panel, we find peaks in trailing edge amplitude and forward swimming speed are determined by a dimensionless quantity, the effective flexibility. Modal decompositions of panel deflections reveal that the strength of each mode is related to the effective flexibility and peaks in the swimming speed and trailing edge amplitude correspond to peaks in the contributions of different modes. Panels of different material properties but with similar effective flexibilities have modal contributions that evolve similarly over the phase of the heaving cycle and agreement in dominant vortex structures generated by the panel. NSF RTG 1043626.

  4. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  5. Superconducting Quantum Interference based Electromechanical Systems

    NARCIS (Netherlands)

    Etaki, S.

    2012-01-01

    Mechanical sensors are essential tools for the detection of small forces. This thesis presents the dc SQUID as a detector for the displacement of embedded micromechanical resonators. The device geometry and basic operating principle are described. The SQUID displacement detector reaches an excellent

  6. Design and development of multi-lane smart electromechanical actuators

    CERN Document Server

    Annaz, Fawaz Yahya

    2014-01-01

    Design and Development of Multi-Lane Smart Electromechanical Actuators presents the design of electromechanical actuators in two types of architectures, namely, Torque Summed Architecture (TSA) and Velocity Summed Architecture, (VSA). It examines them in: * Hardware redundancy, where the architecture is made up of 3 or 4 lanes. * Digital Math Model redundancy, where a more compact two lanes architectures will be presented. The book starts with the very basic concepts and introduces the design process logically so that an understanding of the smart multi-lane systems that drive an aileron

  7. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  8. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  9. Coupled electromechanical modeling of piezoelectric disc transducers for low-frequency ultrasonic collimated beam generation

    Science.gov (United States)

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    2017-04-01

    Low-frequency ultrasonic collimated beam generation from radial modes of piezoelectric disc transducers is studied using a coupled electromechanical finite element approach. First, resonance and vibration characteristics of the radial modes of the disc transducers are obtained using an eigenfrequency analysis. The vibration patterns obtained from numerical simulation are compared with those obtained from experiments and are in good agreement. Next, ultrasonic beam profiles in water generated from the radial modes of a piezo-disc are studied. It was found that a free piezo-disc generates a Bessel-beam with multiple side-lobes. In contrast, clamping the lateral edges of the piezo-disc results in a well-collimated central beam with reduced side-lobes. This provides a novel transducer design for low-frequency collimated beam generation for imaging through highly attenuating materials

  10. Method for leveling the power output of an electromechanical battery as a function of speed

    Science.gov (United States)

    Post, R.F.

    1999-03-16

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

  11. Method for leveling the power output of an electromechanical battery as a function of speed

    Science.gov (United States)

    Post, Richard F.

    1999-01-01

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

  12. Abdominal aorta: characterisation of blood flow and measurement of its regional distribution by cine magnetic resonance phase-shift velocity mapping

    Energy Technology Data Exchange (ETDEWEB)

    Amanuma, M. [Dept. of Radiology, Saitama Medical School (Japan); Mohiaddin, R.H. [Magnetic Resonance Unit, Royal Brompton Hospital, London (United Kingdom); Hasegawa, M. [Dept. of Radiology, Saitama Medical School (Japan); Heshiki, A. [Dept. of Radiology, Saitama Medical School (Japan); Longmore, D.B. [Magnetic Resonance Unit, Royal Brompton Hospital, London (United Kingdom)

    1992-12-01

    Magnetic resonance phase-shift-induced velocity mapping is a powerful technique for measuring in vivo blood velocity and flow non-invasively. Using this method we examined dimensions, distensibility, blood flow and its regional distribution in the abdominal aorta in 10 normal volunteers. Data were acquired at three levels of the descending aorta. Thirty percent reduction in diastolic cross sectional area was observed in the caudal direction between these levels. Total blood flow (ml/min) in the abdominal aorta at the three sites was 4094{+-}1600, 2339{+-}910 and 1602{+-}549 respectively. Flows in the coeliac trunk, superior mesenteric artery and renal arteries were also calculated. The net flow in the abdominal aorta above the coeliac trunk was persistently forward, while there was considerable backflow (13% of total instantaneous flow) below the renal arteries during early diastole. Magnetic resonance imaging is a non-invasive technique for quantitative assessment of blood flow in the abdominal aorta and its main branches. (orig.)

  13. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators

    International Nuclear Information System (INIS)

    Singh, Vibhor; Sengupta, Shamashis; Solanki, Hari S; Dhall, Rohan; Allain, Adrien; Dhara, Sajal; Deshmukh, Mandar M; Pant, Prita

    2010-01-01

    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.

  14. EWE: Toward electro-mechanical cardiac simulations with MOOSE

    OpenAIRE

    Ruprecht, D; Winkel, M; Krause, R

    2015-01-01

    We present the software framework EWE, which is designed for coupled electromechanical simulations in computational cardiology. EWE is build on the multi-physics framework MOOSE. Numerical simulations of coupled problems on an idealized geometry for a left ventricle are shown.

  15. a comparison of performances of electronic and electromechanical

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The Ferraris (electromechanical) energy meter has had predominance in the metering of energy consumption using the alternating current supply system. Electronic energy meters are gaining popularity because of the possibility of remote reading and controllable non uniform rate of billing. In this work, an.

  16. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    Administrator

    temperature much lower than the ferroelectric to paraelectric phase transition of the material. The same behaviour is observed for the overtones also. However, the piezoelectric response of the overtones disappears at a lower temperature than the fundamental mode. The quantity, Δfps, depends on the electromechanical.

  17. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    Administrator

    behaviour is observed for the overtones also. However, the piezoelectric response of the overtones disappears at a lower temperature than the fundamental mode. The quantity, Δfps, depends on the electromechanical coupling coefficient as well as geometry of the piezo- ceramic material (Jaffe et al 1971). The behaviour of ...

  18. Multiscale and probabilistic modelling of micro electromechanical systems

    NARCIS (Netherlands)

    Verhoosel, C.V.

    2009-01-01

    Micro electromechanical systems (MEMS) are nowadays used in many applications, such as airbag accelerometers and inkjet printer heads. With the number of applications growing, the need for advanced numerical tools to aid in the design of MEMS increases. The development of such tools is far from

  19. A variational approach to the analysis of dissipative electromechanical systems.

    Directory of Open Access Journals (Sweden)

    Andrew Allison

    Full Text Available We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package.

  20. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  1. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  2. Atrial electromechanical abnormalities in hypertensive patients with diastolic dysfunction

    Directory of Open Access Journals (Sweden)

    Mohamed Hussien Ali Abass

    2014-03-01

    Conculsion: The Inter-AEMD was significantly higher in hypertensive patients with diastolic dysfunction compared with those without diastolic dysfunction and controls. Intra-left AEMD was significantly higher in hypertensive patients with diastolic dysfunction and without diastolic dysfunction compared with normotensives, suggesting that diastolic dysfunction is associated with atrial electromechanical abnormalities.

  3. A Comparison of Performances of Electronic and Electromechanical ...

    African Journals Online (AJOL)

    The Ferraris (electromechanical) energy meter has had predominance in the metering of energy consumption using the alternating current supply system. Electronic energy meters are gaining popularity because of the possibility of remote reading and controllable non uniform rate of billing. In this work, an electronic energy ...

  4. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  5. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot

    Science.gov (United States)

    2012-01-01

    Background To assess changes in right heart flow and pulmonary artery hemodynamics in patients with repaired Tetralogy of Fallot (rTOF) we used whole heart, four dimensional (4D) velocity mapping (VM) cardiovascular magnetic resonance (CMR). Methods CMR studies were performed in 11 subjects with rTOF (5M/6F; 20.1 ± 12.4 years) and 10 normal volunteers (6M/4F; 34.2 ± 13.4 years) on clinical 1.5T and 3.0T MR scanners. 4D VM-CMR was performed using PC VIPR (Phase Contrast Vastly undersampled Isotropic Projection Reconstruction). Interactive streamline and particle trace visualizations of the superior and inferior vena cava (IVC and SVC, respectively), right atrium (RA), right ventricle (RV), and pulmonary artery (PA) were generated and reviewed by three experienced readers. Main PA net flow, retrograde flow, peak flow, time-to-peak flow, peak acceleration, resistance index and mean wall shear stress were quantified. Differences in flow patterns between the two groups were tested using Fisher's exact test. Differences in quantitative parameters were analyzed with the Kruskal-Wallis rank sum test. Results 4D VM-CMR was successfully performed in all volunteers and subjects with TOF. Right heart flow patterns in rTOF subjects were characterized by (a) greater SVC/IVC flow during diastole than systole, (b) increased vortical flow patterns in the RA and in the RV during diastole, and (c) increased helical or vortical flow features in the PA's. Differences in main PA retrograde flow, resistance index, peak flow, time-to-peak flow, peak acceleration and mean wall shear stress were statistically significant. Conclusions Whole heart 4D VM-CMR with PC VIPR enables detection of both normal and abnormal right heart flow patterns, which may allow for comprehensive studies to evaluate interdependencies of post-surgically altered geometries and hemodynamics. PMID:22313680

  6. To the Problem of Electromechanical Interaction in Elevators with Controlled Electric Drive and Fuzzy Speed Controller

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2010-01-01

    Full Text Available The paper considers problems concerning electromechanical interaction in elevators with an adjustable asynchronous electric drive equipped with the vector control systems under direct torque control and direct torque control with pulse-width modulator. A mathematical description of electromechanical elevator system with due account of nonlinearity of the worm gear is given in the paper. The paper presents a simplified circuit design of a control system with a fuzzy speed controller. It has been established that the factor of electromechanical interaction in electromechanical system with the adjustable asynchronous electric drive and an fuzzy speed controller is within the range which corresponds to existence of the essential electromechanical interaction.

  7. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  8. Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow

    Science.gov (United States)

    Richter, J.; Mayer, J.; Weigand, B.

    2018-02-01

    Non-resonant laser-induced thermal acoustics (LITA) was applied to measure Mach number, temperature and turbulence level along the centerline of a transonic nozzle flow. The accuracy of the measurement results was systematically studied regarding misalignment of the interrogation beam and frequency analysis of the LITA signals. 2D steady-state Reynolds-averaged Navier-Stokes (RANS) simulations were performed for reference. The simulations were conducted using ANSYS CFX 18 employing the shear-stress transport turbulence model. Post-processing of the LITA signals is performed by applying a discrete Fourier transformation (DFT) to determine the beat frequencies. It is shown that the systematical error of the DFT, which depends on the number of oscillations, signal chirp, and damping rate, is less than 1.5% for our experiments resulting in an average error of 1.9% for Mach number. Further, the maximum calibration error is investigated for a worst-case scenario involving maximum in situ readjustment of the interrogation beam within the limits of constructive interference. It is shown that the signal intensity becomes zero if the interrogation angle is altered by 2%. This, together with the accuracy of frequency analysis, results in an error of about 5.4% for temperature throughout the nozzle. Comparison with numerical results shows good agreement within the error bars.

  9. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  10. Hemoglobin, hematocrit, and changes in cerebral blood flow: the Second Manifestations of ARTerial disease-Magnetic Resonance study.

    Science.gov (United States)

    van der Veen, Pieternella H; Muller, Majon; Vincken, Koen L; Westerink, Jan; Mali, Willem P T M; van der Graaf, Yolanda; Geerlings, Mirjam I

    2015-03-01

    Hemoglobin and hematocrit are important determinants of blood viscosity and arterial oxygen content and may therefore influence cerebral blood flow (CBF). We examined cross-sectional and prospective associations of hemoglobin and hematocrit with CBF in 569 patients with manifest arterial disease (mean age 57 ± 10 years) with available data on magnetic resonance angiography to measure parenchymal CBF. Mean (SD) parenchymal CBF at baseline was 52.3 (9.8) mL/min/100 mL and decreased with 1.5 (11.0) mL/min/100 mL after on average 3.9 years of follow-up. Linear regression analyses showed that greater hemoglobin and hematocrit values were associated with lower baseline parenchymal CBF and more decline in parenchymal CBF over time, independent of cardiovascular risk factors, use of antiplatelet drugs, anticoagulants, or diuretics, and brain measures: adjusted mean differences (95% confidence interval [CI]) in decline in parenchymal CBF between patients in the lower and upper quartiles of hemoglobin and hematocrit were -2.48 (95% CI -3.70 to -1.25) and -3.69 (95% CI -5.45 to -1.94) mL/min/100 mL. Higher hemoglobin and hematocrit were associated with lower baseline parenchymal CBF and a greater decline in parenchymal CBF over time, possibly as a result of physiological compensating mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  12. Enhancing detection sensitivity of piezoelectric plate sensor by increasing transverse electromechanical coupling constant

    Science.gov (United States)

    Wu, Wei; Shih, Wan Y.; Shih, Wei-Heng

    2013-08-01

    In this study, we examined how the materials' properties of a lead magnesium niobate-lead titanate solid solution, [Pb(Mg1/3Nb2/3)O3]0.63[PbTiO3]0.37 (PMN-PT) piezoelectric plate sensor (PEPS) affected the enhancement of the relative detection resonance frequency shift, -Δf/f of the sensor, where f and Δf were the resonance frequency and resonance frequency shift of the sensor, respectively. Specifically, the electromechanical coupling constant, -k31, of the PMN-PT PEPS was varied by changing the grain size of the piezoelectric layer as well as by applying a bias direct current electric field. Detection of streptavidin at the same concentration was carried out with biotin covalently immobilized on the surface of PEPS. It is shown that the -Δf/f of the same streptavidin detection was increased by more than 2-fold when the -k31 increased from 0.285 to 0.391.

  13. Characteristics of intra-left atrial flow dynamics and factors affecting formation of the vortex flow – analysis with phase-resolved 3-dimensional cine phase contrast magnetic resonance imaging.

    Science.gov (United States)

    Suwa, Kenichiro; Saitoh, Takeji; Takehara, Yasuo; Sano, Makoto; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Sugiyama, Masataka; Wakayama, Tetsuya; Alley, Marcus; Sakahara, Harumi; Hayashi, Hideharu

    2015-01-01

    The intra-left atrial (LA) blood flow from pulmonary veins (PVs) to the left ventricle (LV) changes under various conditions and might affect global cardiac function. By using phase-resolved 3-dimensional cine phase contrast magnetic resonance imaging (4D-Flow), the intra-LA vortex formation was visualized and the factors affecting the intra-LA flow dynamics were examined. Thirty-two patients with or without organic heart diseases underwent 4D-Flow and transthoracic echocardiography. The intra-LA velocity vectors from each PV were post-processed to delineate streamline and pathline images. The vector images revealed intra-LA vortex formation in 20 of 32 patients. All the vortices developed during the late systolic and early diastolic phases and were directed counter-clockwise when viewed from the subjects' cranial side. The flow vectors from the right PVs lengthened predominantly toward the mitral valves and partly toward the LA appendage, whereas those from the left PVs directed rightward along the posterior wall and joined the vortex. Patients with vortex had less organic heart diseases, smaller LV and LA volume, and greater peak flow velocity and volume mainly in the left PVs, although the flow directions from each PV or PV areas did not differ. 4D-Flow can clearly visualize the intra-LA vortex formation and analyze its characteristic features. The vortex formation might depend on LV and LA volume and on flow velocity and volume from PVs.

  14. Portal hypertension in patients with cirrhosis: indirect assessment of hepatic venous pressure gradient by measuring azygos flow with 2D-cine phase-contrast magnetic resonance imaging.

    Science.gov (United States)

    Gouya, Hervé; Grabar, Sophie; Vignaux, Olivier; Saade, Anastasia; Pol, Stanislas; Legmann, Paul; Sogni, Philippe

    2016-07-01

    To measure azygos, portal and aortic flow by two-dimensional cine phase-contrast magnetic resonance imaging (2D-cine PC MRI), and to compare the MRI values to hepatic venous pressure gradient (HVPG) measurements, in patients with cirrhosis. Sixty-nine patients with cirrhosis were prospectively included. All patients underwent HVPG measurements, upper gastrointestinal endoscopy and 2D-cine PC MRI measurements of azygos, portal and aortic blood flow. Univariate and multivariate regression analyses were used to evaluate the correlation between the blood flow and HVPG. The performance of 2D-cine PC MRI to diagnose severe portal hypertension (HVPG ≥ 16 mmHg) was determined by receiver operating characteristic curve (ROC) analysis, and area under the curves (AUC) were compared. Azygos and aortic flow values were associated with HVPG in univariate linear regression model. Azygos flow (p cine PC MRI is a promising technique to evaluate significant portal hypertension in patients with cirrhosis. • Noninvasive HVPG assessment can be performed with MRI azygos flow. • Azygos MRI flow is an easy-to-measure marker to detect significant portal hypertension. • MRI flow is more specific that varice grade to detect portal hypertension.

  15. A 2:1 MUX Based on Multiple MEMS Resonators

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-09

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. This paper reports a realization of a 2:1 MUX, a concatenable digital logic element, based on electrothermal frequency tuning of electrically connected multiple arch resonators. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  16. Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.; Svechnikov, G. S.; Kalinin, S. V.

    2011-07-01

    Nanoscale enables a broad range of electromechanical coupling mechanisms that are forbidden or are negligible in the materials. We conduct a theoretical study of the electromechanical response of thin paraelectric films with mobile vacancies (or ions) paradigmatic for capacitor-type measurements in x-ray scattering, piezoresponse force microscopy (PFM), and electrochemical strain microscopy (ESM). Using a quantum paraelectric SrTiO3 (STO) film as a model material with well-known electromechanical, electronic, and electrochemical properties, we evaluate the contributions of electrostriction, Maxwell stress, flexoelectric effect, deformation potential, and compositional Vegard strains caused by mobile vacancies (or ions) and electrons to the electromechanical response. The local electromechanical response manifests strong size effects, the scale of which is determined by the ratio of the STO film thickness and PFM/ESM tip size to the carriers’ screening radius. Due to the strong dielectric nonlinearity effect inherent in quantum paraelectrics, the dependence of the STO film electromechanical response on the applied voltage demonstrates a pronounced crossover from the linear to the quadratic law and then to the sublinear law with a factor of 2/3 under the voltage increase. The temperature dependence of the electromechanical response as determined by the interplay between the dielectric susceptibility and the screening radius is nonmonotonic and has pronounced maxima, the position and width of which can be tuned by film thickness. This paper provides a comparative framework for the analysis of electromechanical coupling in the nonpiezoelectric nanosystems.

  17. Electromechanical coupling in electrostatic micro-power generators

    International Nuclear Information System (INIS)

    Mahmoud, M A E; El-Saadany, E F; Mansour, R R; Abdel-Rahman, E M

    2010-01-01

    Electrostatic micro-power generators (MPGs) are modeled and analyzed with particular emphasis on electromechanical coupling and its impact on the system dynamics. We identify two qualitatively different regimes in the MPG response, dubbed slow and fast. A linearized electromechanically coupled model of an electrostatic MPG and two simplified linear models are used to study the response of the MPG. Linear models are found adequate to represent the dynamic response of fast MPGs but inadequate to represent the response of slow and mixed domain MPGs. A nonlinear model is developed and validated to describe the response of those MPGs under moderately large excitations. On the basis of this analysis, we describe a method and provide design rules for realizing wideband electrostatic MPGs, and develop closed-form formulae for the extracted power for MPGs under moderately large excitations

  18. Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements

    Science.gov (United States)

    Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh

    2014-01-01

    Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.

  19. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  20. Piezoelectric effects and electromechanical theories at the nanoscale.

    Science.gov (United States)

    Zhang, Jin; Wang, Chengyuan; Bowen, Chris

    2014-11-21

    Considerable effort has been made to study the piezoelectric effect on the nanoscale, which serves as a physical basis for a wide range of smart nanodevices and nanoelectronics. This paper reviews recent progress in the research on the piezoelectric properties and electromechanical effects of piezoelectric nanomaterials (PNs). The review begins with an introduction to existing PNs which exhibit a diverse range of atomic structures and configurations. The nanoscale measurement of their effective piezoelectric coefficients (EPCs) is summarised with an emphasis on the major factors determining the piezoelectric properties of PNs. The paper concludes with a review of the electromechanical theories that are able to capture the small-scale effects on PNs, which include the surface piezoelectricity, flexoelectricity and Eringen's nonlocal theory. In contrast to the classical theories, two types of EPCs are defined, which were found to be size-dependent and loading condition-selective.

  1. A triple quantum dot based nano-electromechanical memory device

    International Nuclear Information System (INIS)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-01-01

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM

  2. Some Considerations Regarding The Efficiency Of The Electromechanical Motion

    Directory of Open Access Journals (Sweden)

    Eric DESTOBBELEER

    2002-12-01

    Full Text Available Control techniques for servo drive which run at variable speed for prolonged time is developed on the base of minimum energy dissipation in a feed-forward structure. The optimal control laws are determinate using the estimated values of the main perturbation - the load torque. Different aspects of the electromechanical motion efficiency are presented regarding the influence of the desired time of execution, the shape of trajectory and the last torque.

  3. Effects of springs on a pendulum electromechanical energy harvester

    Directory of Open Access Journals (Sweden)

    Arnaud Notué Kadjie

    2014-01-01

    Full Text Available This paper studies a model of energy harvester that consists of an electromechanical pendulum system subjected to nonlinear springs. The output power is analyzed in terms of the intrinsic parameters of the device leading to optimal parameters for energy harvesting. It is found that in an appropriate range of the springs constant, the power attains higher values as compared to the case without springs. The dynamical behavior of the device shows transition to chaos.

  4. Effects of springs on a pendulum electromechanical energy harvester

    OpenAIRE

    Arnaud Notué Kadjie; Paul Woafo

    2014-01-01

    This paper studies a model of energy harvester that consists of an electromechanical pendulum system subjected to nonlinear springs. The output power is analyzed in terms of the intrinsic parameters of the device leading to optimal parameters for energy harvesting. It is found that in an appropriate range of the springs constant, the power attains higher values as compared to the case without springs. The dynamical behavior of the device shows transition to chaos.

  5. Electromechanical manipulator for the Hot-Cell Verification Facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.; Brownstein, M.

    1982-01-01

    An electromechanical manipulator was deSigned and built to perform prototypic prequalification testing of FMEF equipment in the HCVF. Significant performance improvements were achieved; for example, 1360 kg (3000 lb) hoist capability and a 180 kg (400 lb) tool capacity anywhere within the manipulator reach and moving at full speed. New remote maintenance features were incorporated in the design including the ability to remove all active components on the bridge, which precludes the need to remove the bridge structure. 8 figures

  6. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam

    2011-04-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  7. Flow characteristics and exchange in complex biological systems as observed by pulsed-field-gradient magnetic-resonance imaging

    NARCIS (Netherlands)

    Homan, N.; Venne, B.B.; As, van H.

    2010-01-01

    Water flow through model porous media was studied in the presence of surface relaxation, internal magnetic field inhomogeneities and exchange with stagnant water pools with different relaxation behavior, demonstrating how the apparent flow parameters average velocity, volume flow and flow conducting

  8. In situ TEM electromechanical testing of nanowires and nanotubes.

    Science.gov (United States)

    Espinosa, Horacio D; Bernal, Rodrigo A; Filleter, Tobin

    2012-11-05

    The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in-situ mechanical deformation and electrical characterization in the emerging field of in-situ TEM electromechanical testing. This has enabled researchers to establish unambiguous synthesis-structure-property relations for one-dimensional nanostructures. In this article, the development and latest advances of several in-situ TEM techniques to carry out mechanical and electromechanical testing of nanowires and nanotubes are reviewed. Through discussion of specific examples, it is shown how the merging of several microsystems and TEM has led to significant insights into the behavior of nanowires and nanotubes, underscoring the significant role in-situ techniques play in the development of novel nanoscale systems and materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Frydrychowicz, Alex [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Berger, Alexander; Russe, Maximilian F.; Bock, Jelena [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Munoz del Rio, Alejandro [University of Wisconsin - Madison, Departments of Radiology and Medical Physics, Madison, WI (United States); Harloff, Andreas [University Hospital Freiburg, Department of Neurology and Clinical Neurophysiology, Freiburg (Germany); Markl, Michael [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States)

    2012-05-15

    It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 {+-} 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P {>=} 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)

  10. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla

    International Nuclear Information System (INIS)

    Frydrychowicz, Alex; Berger, Alexander; Russe, Maximilian F.; Bock, Jelena; Munoz del Rio, Alejandro; Harloff, Andreas; Markl, Michael

    2012-01-01

    It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 ± 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P ≥ 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)

  11. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    International Nuclear Information System (INIS)

    Töger, Johannes; Carlsson, Marcus; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2011-01-01

    Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle

  12. Instabilities and prediction of the acoustic resonance of flows with wall injection; Instabilites et prevision de l'accrochage acoustique des ecoulements avec injection parietale

    Energy Technology Data Exchange (ETDEWEB)

    Avalon, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 91 - Palaiseau (France); Casalis, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 91 - Palaiseau (France)

    1998-07-01

    Aero-acoustic coupling that occurs inside solid propellant rocket engines can lead to a longitudinal acoustic mode resonance of the combustion chamber. This phenomenon, which can have various origins, in analyzed using the Vecla test facility and the theory of linear stability of flows. Different comparisons between the hot-wire measurements performed and the theory of stability confirm the presence of intrinsic instabilities for this type of flow. The instability allows to selectively amplify a given range of frequencies which depends on the injection velocity and on the conduit height. The results obtained seem to indicate that when this frequency range does not comprise the longitudinal acoustic mode or the first harmonics, the flow becomes turbulent downstream. (J.S.)

  13. Design and construction of an electromechanical velocity modulator for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, A. A., E-mail: avelas26@eafit.edu.co; Carmona, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Velasquez, D.; Angel, L. [Universidad EAFIT, Grupo de Optica Aplicada (Colombia)

    2011-11-15

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Moessbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson-Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  14. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    Science.gov (United States)

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R 2 =0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electromechanical Actuation of Highly Conductive PEDOT/PSS-coated Cellulose Papers

    OpenAIRE

    Zhou, Jian; Kimura, Mutsumi

    2011-01-01

    The electromechanical properties of poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate), (PEDOT/PSS)-coated cellulose paper are investigated by varying the weight of PEDOT/PSS and frequencies of applied voltages. Through simple conformal coating, different weight of conductive PEDOT/PSS papers were fabricated and exhibited electromechanical actuation with stress generation controlled by low alternating applied voltage in ambient air. The dependence of electromechanical actuation on th...

  16. Pneumatic or electromechanical drives – a comparison regarding their exergy efficiency

    OpenAIRE

    Merkelbach, Stephan; Murrenhoff, Hubertus; Brecher, Christian; Fey, Marcel; Eßer, Bastian

    2016-01-01

    Pneumatic linear drives are widely used in manufacturing, mainly for handling tasks. Due to rising interest in environmental matters and increasing energy costs, energy efficiency has become a major issue in industrial applications. There is a growing competition between pneumatic and electromechanical drives. Pneumatic drives are said to have a lower efficiency while the initial costs of electromechanical drives are higher. The operating costs of electromechanical as well as pneumatic drives...

  17. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich

    2015-01-01

    arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq (15)O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one......Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed......, PET-IDIF overestimated CBF. Injected activity of 20 MBq (15)O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion....

  18. A Systems Engineering Approach to Electro-Mechanical Actuator Diagnostic and Prognostic Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The authors have formulated a Comprehensive Systems Engineering approach to Electro-Mechanical Actuator (EMA) Prognostics and Health Management (PHM) system...

  19. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Rasmusson, Allan; Sørensen, Thomas Sangild; Kim, W Yong

    2009-02-20

    Two-dimensional, unidirectionally encoded, cardiovascular magnetic resonance (CMR) velocity mapping is an established technique for the quantification of blood flow in large vessels. However, it requires an operator to correctly align the planes of acquisition. If all three directional components of velocity are measured for each voxel of a 3D volume through the phases of the cardiac cycle, blood flow through any chosen plane can potentially be calculated retrospectively. The initial acquisition is then more time consuming but relatively operator independent. To compare the curves and volumes of flow derived from conventional 2D and comprehensive 3D flow acquisitions in a steady state flow model, and in vivo through planes transecting the ascending aorta and pulmonary trunk in 10 healthy volunteers. Using a 1.5 T Phillips Intera CMR system, 3D acquisitions used an anisotropic 3D segmented k-space phase contrast gradient echo sequence with a short EPI readout, with prospective ECG and diaphragm navigator gating. The 2D acquisitions used segmented k-space phase contrast with prospective ECG and diaphragm navigator gating. Quantitative flow analyses were performed retrospectively with dedicated software for both the in vivo and in vitro acquisitions. Analysis of in vitro data found the 3D technique to have overestimated the continuous flow rate by approximately 5% across the entire applied flow range. In vivo, the 2D and the 3D techniques yielded similar volumetric flow curves and measurements. Aortic flow: (mean +/- SD), 2D = 89.5 +/- 13.5 ml & 3D = 92.7 +/- 17.5 ml. Pulmonary flow: 2D = 98.8 +/- 18.4 ml & 3D = 94.9 +/- 19.0 ml). Each in vivo 3D acquisition took about 8 minutes or more. Flow measurements derived from the 3D and 2D acquisitions were comparable. Although time consuming, comprehensive 3D velocity acquisition could be relatively operator independent, and could potentially yield information on flow through several retrospectively chosen planes, for

  20. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-11

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  1. Tailoring the nonlinear response of MEMS resonators using shape optimization

    DEFF Research Database (Denmark)

    Li, Lily L.; Polunin, Pavel M.; Dou, Suguang

    2017-01-01

    We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic...

  2. Combined Assessment of Stress Myocardial Perfusion Cardiovascular Magnetic Resonance and Flow Measurement in the Coronary Sinus Improves Prediction of Functionally Significant Coronary Stenosis Determined by Fractional Flow Reserve in Multivessel Disease.

    Science.gov (United States)

    Nakamori, Shiro; Sakuma, Hajime; Dohi, Kaoru; Ishida, Masaki; Tanigawa, Takashi; Yamada, Akimasa; Takase, Shinichi; Nakajima, Hiroshi; Sawai, Toshiki; Masuda, Jun; Nagata, Motonori; Ichikawa, Yasutaka; Kitagawa, Kakuya; Fujii, Eitaro; Yamada, Norikazu; Ito, Masaaki

    2018-01-26

    Recent studies using stress-rest perfusion cardiovascular magnetic resonance (CMR) demonstrated a close correlation between myocardial ischemia and reduced fractional flow reserve (FFR). However, its diagnostic concordance may be reduced in patients with multivessel disease. We sought to evaluate the concordance of adenosine stress-rest perfusion CMR for predicting reduced FFR, and to determine the additive value of measuring global coronary flow reserve (CFR) in the coronary sinus in multivessel disease. Ninety-six patients with angiographic luminal narrowing >50% underwent comprehensive CMR study and FFR measurements in 139 coronary vessels. FFR flow measured by phase-contrast cine CMR. In 25 patients with single-vessel disease, visual assessment of perfusion CMR yielded high diagnostic concordance for predicting flow-limiting stenosis, with the area under receiver operating characteristic curve of 0.93 on a per-patient basis. However, in 71 patients with multivessel disease, perfusion CMR underestimated flow-limiting stenosis, resulting in the reduced area under receiver operating characteristic curve of 0.74. When CFR of flow measurement in the coronary sinus is useful for detecting reduced FFR in multivessel disease. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Micro and Nano Electromechanical Systems for Near-Zero Power Infrared Detection

    Science.gov (United States)

    Qian, Zhenyun

    Light is one of the most important tools for human beings to probe and sense the physical world. Infrared (IR) radiation located in longer wavelengths than those of visible light carries rich information of an environment as it reveals the temperature distribution and chemical composition of objects. In addition, it has been utilized for communication and distance measurement owing to the atmospheric window and insensitiveness of human eyes to the IR radiation. As a result, IR detectors nowadays can be found in a wide variety of applications, including thermal imaging, automotive night vision, standoff chemical detection, remote control and laser ranging, just to mention a few. On the other hand, due to the recent fast development of the Internet of Things (IoT), there is a growing demand for miniaturized and power efficient unattended sensors that can be widely distributed in large volumes to form a wireless sensor networks capable of monitoring the environment with high accuracy and long lifetime. In this context, micro and nano electromechanical systems (MEMS/NEMS) may provide a huge impact, since they can be used for the implementation of miniaturized, low power, high-performance sensors and wireless communication devices fully compatible with standard integrated circuitry. This dissertation presents the design and the experimental verification of high performance uncooled IR detectors based on Aluminum Nitride (AlN) nano electromechanical resonators, and a first-of-its-kind near-zero power IR digitizer based on plasmonically-enhanced micromechanical photoswitches. The unique advantages of the piezoelectric AlN thin film in terms of scaling in thickness and transduction efficiency are exploited by the first experimental demonstration of ultra-fast (thermal time constant, tau ˜ 80 mus) and high resolution (noise equivalent power, NEP ˜ 656 pW/Hz1/2) AlN NEMS resonant IR detectors with reduced pixel size comparable to the state-of-the-art microbolometers

  4. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  5. Influence of passive muscle tension on electromechanical delay in humans.

    Directory of Open Access Journals (Sweden)

    Lilian Lacourpaille

    Full Text Available BACKGROUND: Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound. METHODS/RESULTS: First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension, with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p0.95. CONCLUSION: In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences.

  6. The association between atrium electromechanical interval and pericardial fat.

    Directory of Open Access Journals (Sweden)

    Tze-Fan Chao

    Full Text Available OBJECTIVES: Pericardial fat (PCF may induce local inflammation and subsequent structural remodeling of the left atrium (LA. However, the adverse effects of PCF on LA are difficult to be evaluated and quantified. The atrial electromechanical interval determined by transthoracic echocardiogram was shown to be a convenient parameter which can reflect the process of LA remodeling. The goal of the present study was to investigate the association between the electromechanical interval and PCF. METHODS AND RESULTS: A total of 337 patients with mean age of 51.9 ± 9.0 years were enrolled. The electromechanical interval (PA-PDI defined as the time interval from the initiation of the P wave deflection to the peak of the mitral inflow A wave on the pulse wave Doppler imaging was measured for every patient. The amount of PCF was determined by multi-detector computed tomography. The PA-PDI interval was significantly correlated with the amount of PCF (r = 0.641, p value <0.001. Graded prolongation of PA-PDI interval was observed across 3 groups of patients divided according to the tertile values of PCF. The AUC for the PA-PDI interval in predicting an increased amount of PCF (third tertile was 0.796. At a cutoff value of 130 ms identified by the ROC curve, the sensitivity and specificity of PA-PDI interval in identifying patients with a highest tertile of PCF were 63.4% and 85.3%, respectively. CONCLUSIONS: The PA-PDI intervals were longer in patients with an increased amount of PCF. It may be a useful parameter to represent the degree of PCF-related atrial remodeling.

  7. Modeling and Simulation of Nonlinear Micro-electromechanical Circular Plate

    Directory of Open Access Journals (Sweden)

    Chin-Chia Liu

    2013-09-01

    Full Text Available In the present study, the hybrid differential transformation and finite difference method is applied to analyze the dynamic behavior of the nonlinear micro-electromechanical circular plate actuated by combined DC / AC loading schemes. The analysis takes account of the axial residual stress and hydrostatic pressure acting on micro circular plate upper surface. The dynamic response of the plate as a function of the magnitude of the AC driving voltage is explored. Moreover, the effect of the initial gap height on the pull-in voltage of the plate is systematically explored.

  8. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  9. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Science.gov (United States)

    2010-10-01

    ... between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical...

  10. Electromechanical properties of nanotube-PVA composite actuator bimorphs

    International Nuclear Information System (INIS)

    Bartholome, Christele; Derre, Alain; Roubeau, Olivier; Zakri, Cecile; Poulin, Philippe

    2008-01-01

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol -1 ). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles

  11. Chaos in a new bistable rotating electromechanical system

    International Nuclear Information System (INIS)

    Tsapla Fotsa, R.; Woafo, P.

    2016-01-01

    Highlights: • A new electromechanical system with rotating arm and bistable potential energy is studied. • The bistability is generated by the interaction of three permanent magnets, one fixed at the end of the arm and two other fixed at equal distance relative to the central position of the arm. • It exhibits dissipative and Hamiltonian chaos. • Such a bistable electromechanical system can be used as the actuation part of chaotic sieves and mixers. - Abstract: A device consisting of an induction motor activating a rotating rigid arm is designed and comprises a bistable potential due to the presence of three permanent magnets. Its mathematical equations are established and the numerical results both in the absence and in the presence of magnets are compared. The generation of chaotic behavior is achieved using two different external excitations: sinewave and square wave. In the presence of magnets, the system presents periodic and dissipative chaotic dynamics. Approximating the global potential energy to a bistable quartic potential, the Melnikov method is used to derive the conditions for the appearance of Hamiltonian chaos. Such a device can be used for industrial and domestic applications for mixing and sieving activities.

  12. Electromechanical impedance response of a cracked Timoshenko beam.

    Science.gov (United States)

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification.

  13. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect

    Science.gov (United States)

    Zhou, Z. D.; Yang, C. P.; Su, Y. X.; Huang, R.; Lin, X. L.

    2017-09-01

    The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on an extension to the classical beam model, this paper investigates the electromechanical coupling response of piezoelectric nanobeams with different electrical boundary conditions including the effect of flexoelectricity. The electric Gibbs free energy and the variational principle are used to derive the governing equations with three types of electrical boundary conditions. Closed-form solutions are obtained for static bending of cantilever beams. The results show that the normalized effective stiffness increases with decreasing beam thickness in the open circuit electrical boundary conditions with or without surface electrodes. The induced electric potential due to the flexoelectric effect is obtained under the open circuit conditions, which may be important for sensing or energy harvesting applications. An intrinsic thickness depending on the material properties is identified for the maximum induced electric potential. The present results also show that flexoelectricity has a more significant effect on the electroelastic responses than piezoelectricity at the nanoscale. Our analysis in the present study can be useful for understanding of the electromechanical coupling in nanobeams with flexoelectricity.

  14. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    Science.gov (United States)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  15. Electromechanical Impedance Response of a Cracked Timoshenko Beam

    Directory of Open Access Journals (Sweden)

    Cuiqin Wu

    2011-07-01

    Full Text Available Typically, the Electromechanical Impedance (EMI technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1 the inertial forces affects significantly in high frequency band; and (2 the use of appropriate frequency range can improve the accuracy of damage identification.

  16. Unimodal optimal passive electromechanical damping of elastic structures

    Science.gov (United States)

    Ben Mekki, O.; Bourquin, F.; Maceri, F.; Merliot, E.

    2013-08-01

    In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed.

  17. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    Science.gov (United States)

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  18. Electrets in soft materials: Nonlinearity, size effects, and giant electromechanical coupling

    Science.gov (United States)

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  19. Design of Wireless Readout System for Resonant Gas Sensors

    OpenAIRE

    S. Mohamed Rabeek; Mi Kyoung Park; M. Annamalai Arasu

    2016-01-01

    This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readou...

  20. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  1. String-like lumen in below-the-knee chronic total occlusions on contrast-enhanced magnetic resonance angiography predicts intraluminal recanalization and better blood flow restoration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yue-Qi; Lu, Hai-Tao; Wei, Li-Ming; Cheng, Ying-Sheng; Wang, Jian-Bo; Zhao, Jun-Gong [Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Department of Diagnostic and Interventional Radiology, Shanghai (China); Liu, Fang [Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Department of Endocrinology, Shanghai (China)

    2017-07-15

    To determine whether string-like lumina (SLs) on contrast-enhanced magnetic resonance angiography (CE-MRA) predict better outcomes in diabetic patients with below-the-knee (BTK) chronic total occlusions (CTOs). This study involved 317 long-segment (>5 cm) BTK CTOs of 245 patients that were examined using CE-MRA and treated using endovascular angioplasty. An SL with a CTO was slowly filled with blood on conventional CE-MRA. Univariate and multivariate analyses were performed to identify predictors of procedural success, recanalisation method and immediate blood flow restoration. The target-lesion patency and limb-salvage rates were assessed. SL-positive CTOs (n = 60) achieved a higher technique success rate, preferred intraluminal angioplasty and better blood flow restoration than SL-negative CTOs (n = 257, P < 0.05). Multivariate analyses revealed that lesion length was the independent predictor of procedural success (P = 0.028). SL was a predictor of intraluminal angioplasty (P < 0.001) and good blood-flow restoration (P = 0.004). Kaplan-Meier analyses at 12 months revealed a higher target lesion patency rate (P = 0.04) and limb-salvage rate (P = 0.35) in SL-positive CTOs. In patients with BTK CTOs, SL predicted intraluminal angioplasty and good blood-flow restoration for BTK CTOs. (orig.)

  2. Influence of pre-infarction angina, collateral flow, and pre-procedural TIMI flow on myocardial salvage index by cardiac magnetic resonance in patients with ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Lønborg, Jacob; Kelbæk, Henning; Vejlstrup, Niels; Bøtker, Hans Erik; Kim, Won Yong; Holmvang, Lene; Jørgensen, Erik; Helqvist, Steffen; Saunamäki, Kari; Thuesen, Leif; Krusell, Lars Romer; Clemmensen, Peter; Engstrøm, Thomas

    2012-05-01

    In patients with ST-segment elevation myocardial infarction (STEMI) pre-infarction angina, pre-procedural TIMI flow and collateral flow to the myocardium supplied by the infarct related artery are suggested to be cardioprotective. We evaluated the effect of these factors on myocardial salvage index (MSI) and infarct size adjusting for area at risk in patients with STEMI treated with primary percutaneous coronary intervention. Cardiac magnetic resonance (CMR) was used to measure myocardial area at risk within 1-7 days and final infarct size 90 ± 21 days after the STEMI in 200 patients. MSI was calculated as (area-at-risk infarct size) / area-at-risk. Patients with pre-infarction angina had a median MSI of 0.80 (IQR 0.67 to 0.86) versus 0.72 (0.61 to 0.80) in those without pre-infarction angina, P = 0.004). In a regression analysis of the infarct size plotted against the area-at-risk there was a strong trend that the line for the pre-infarction angina group was below the one for the non-angina group (P = 0.05). Patients with pre-procedural TIMI flow 0/1, 2 and 3 had a median MSI of (0.69 (IQR 0.59 to 0.76), 0.78 (0.68 to 0.86) and 0.85 (0.77 to 0.91), respectively (PCollateral flow did not change MSI (P = 0.45) nor area-at-risk (P = 0.40) and no significant difference in infarct size adjusted for area at risk (P = 0.25) was observed. Pre-infarction angina increases MSI in patients with STEMI supporting the theory that pre-infarction angina leads to ischemic preconditioning. As opposed to the presence of angiographically visible collateral flow to the infarct area pre-procedural TIMI flow is strongly associated with MSI.

  3. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    Science.gov (United States)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times

  4. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  5. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  6. Favorable Effects of Oxygen Inhalation in Patients After Bidirectional Glenn Procedure as Assessed by Cardiovascular Magnetic Resonance Flow Measurement.

    Science.gov (United States)

    Ishikawa, Yu-Ichi; Ishikawa, Shiro; Sagawa, Ko-Ichi; Ushinohama, Hiroya; Nakamura, Makoto; Kado, Hideaki

    2016-05-25

    Home oxygen therapy (HOT) is used to adapt patients to the bidirectional Glenn (BDG) physiology. However, the precise cardiovascular effect of oxygen inhalation is still unknown. We used phase-contrast MRI to evaluate the cardiovascular effects of oxygen inhalation in young patients with BDG physiology. The 56 sessions of cardiac MRI were performed in 36 patients with BDG circulation. Oxygen saturation (SpO2) and heart rate (HR) were monitored under both room air and nasal 100% oxygen inhalation, and the blood flow volumes of the ascending aorta (AA), superior vena cava (SVC), and inferior vena cava (IVC) were measured by phase-contrast MRI. Systemic-to-pulmonary collateral flow (SPCF) volumes were calculated by subtracting the sum of flow volumes through the SVC and IVC from the flow volume through the AA, and used for further comparative examination. Under nasal oxygen inhalation, SpO2significantly increased from 82% to 89%, while HR decreased from 115 to 110 beats/min. AA (5.0 vs. 4.9 L·min(-1)·m(-2)), SVC (1.85 vs. 1.77 L·min(-1)·m(-2)), and systemic blood flow volume (=SVC+IVC) significantly decreased (3.60 vs. 3.46 L·min(-1)·m(-2)). In contrast, SPCF and the pulmonary-to-systemic blood flow ratio (Qp/Qs) remained unchanged. Oxygen inhalation improved arterial blood oxygenation and lowered HR in patients with BDG circulation without an increase in Qp/Qs. HOT would be protective of the cardiovascular system in patients with BDG circulation. (Circ J 2016; 80: 1378-1385).

  7. Evaluation of the electromechanical properties of the cardiovascular system

    Science.gov (United States)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  8. Electromechanics vs. Mechatronics –Points of View

    Directory of Open Access Journals (Sweden)

    Andrei Andras

    2005-10-01

    Full Text Available Mechatronics–this emerging boundary subject is largely disputed among scientific, business, and engineering collectivities both in the plane of methods and applications, and in the plane of concepts and approaches. From ideas which consider it as a make-up form of electromechanics or deny its scientific emerging character, until apologizing concepts declaring it as a philosophy of intelligent machines engineering of 21st century, a few dozen of concepts and opinions exist in formal and no formal debates among interested collectivities. The paper deals with an overview of these ideas, with pro and contra augments emerged from a particular topic- equipment for mining industry, the latest beneficiary of the topic.

  9. Friction characterization and compensation in electro-mechanical systems

    Science.gov (United States)

    Tjahjowidodo, Tegoeh; Al-Bender, Farid; Van Brussel, Hendrik; Symens, Wim

    2007-12-01

    Friction characterization is a prerequisite for an accurate control of electromechanical systems. This paper considers the identification and control of friction in a high load torque DC motor to the end of achieving accurate tracking. In the first place, model-based feedforward controllers for friction compensation are considered. For this purpose, friction model structures ranging from the classical Coulomb model through the recently developed generalized Maxwell slip (GMS) model are employed. The performance of those models is compared and contrasted in regard both to identification and to compensation. Subsequently, having an accurate model of the system, model-based feedback controllers are also considered, namely the DNPF and the gain scheduling controllers. We show further that the gain scheduling controller yields best performance.

  10. Electromechanical performance of piezoelectric scanning mirrors for medical endoscopy

    Science.gov (United States)

    Gilchrist, Kristin H.; Dausch, David E.; Grego, Sonia

    2012-01-01

    The electromechanical performance of piezoelectric scanning mirrors for endoscopy imaging is presented. The devices are supported by a single actuating cantilever to achieve a high fill factor, the ratio of mirror area to the combined mirror and actuator area. The largest fill factor devices (74%) achieved 10° mechanical scan range at +/−10V with a 300 μm long cantilever. The largest angular displacement of 30° mechanical scan range was obtained with a 500 μm long cantilever device with a 63% fill factor driven at 40 Vpp. A systematic investigation of device performance (displacement and speed) as a function of fabrication and operational parameters including the stress balance in the cantilever revealed unexpectedly large displacements with lack of inversion at the coercive field. An interpretation of the results is presented based on piezoelectric film domain orientation and clamping with supporting piezoelectric film characterization measurements. PMID:22773894

  11. The electro-mechanical behaviour of flexural ultrasonic transducers

    Science.gov (United States)

    Dixon, Steve; Kang, Lei; Ginestier, Michael; Wells, Christopher; Rowlands, George; Feeney, Andrew

    2017-05-01

    Flexural ultrasonic transducers are capable of high electro-mechanical coupling efficiencies for the generation or detection of ultrasound in fluids. They are the most common type of ultrasonic sensor, commonly used in parking sensors, because the devices are efficient, robust, and inexpensive. The simplest design consists of a piezoelectric disc, bonded to the inner surface of a metal cap, the face of which provides a vibrating membrane for the generation or detection of ultrasonic waves in fluids. Experimental measurements demonstrate that during the excitation of the piezoelectric element by an electrical voltage, there are three characteristic regions, where the frequency of the emitted ultrasonic wave changes during the excitation, steady-state, and the final decay process. A simple mechanical analogue model is capable of describing this behaviour.

  12. Complex structure of triangular graphene: electronic, magnetic and electromechanical properties.

    Science.gov (United States)

    Ezawa, Motohiko

    2012-01-01

    We have investigated electronic and magnetic properties of graphene nanodisks (nanosize triangular graphene) as well as electromechanical properties of graphene nanojunctions. Nanodisks are nanomagnets made of graphene, which are robust against perturbation such as impurities and lattice defects, where the ferromagnetic order is assured by Lieb's theorem. We can generate a spin current by spin filter, and manipulate it by a spin valve, a spin switch and other spintronic devices made of graphene nanodisks. We have analyzed nanodisk arrays, which have multi-degenerate perfect flat bands and are ferromagnet. By connecting two triangular graphene corners, we propose a nanomechanical switch and rotator, which can detect a tiny angle rotation by measuring currents between the two corners. By making use of the strain induced Peierls transition of zigzag nanoribbons, we also propose a nanomechanical stretch sensor, in which the conductance can be switched off by a nanometer scale stretching.

  13. A MANAGEMENT APPROACH TO RELIABILITY GROWTH FOR COMPLEX ELECTROMECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    A.C. Rooney

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper proposes a reliability management process for the development of complex electromechanical systems. Specific emphasis is the development of these systems in an environment of limited development resources, and where small production quantities are envisaged.
    The results of this research provides a management strategy for reliability engineering activities, within a systems engineering environment, where concurrent engineering techniques are used to reduce development cycles and costs.

    AFRIKAANSE OPSOMMING: Hierdie artikel stel 'n proses, vir die bestuur van die betroubaarheid gedurende die ontwikkeling van komplekse elektromeganiese stelsels voor. Die omgewing van beperkte ontwikkelingshulpbronne en klein produksie hoeveelhede word beklemtoon.
    Die resultate van hierdie navorsing stel 'n bestuurstrategie, vir betroubaarheidsbestuur in n stelselsingenieurswese omgewing waar gelyktydige ingenieurswese tegnieke gebruik word am die ontwikkelingsiklus en -kostes te beperk, voor.

  14. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  15. A study on electromechanical carbon nanotube memory devices

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2005-01-01

    Electromechanical operations of carbon-nanotube (CNT) bridge memory device were investigated by using atomistic simulations based on empirical potentials. The nanotube-bridge memory device was operated by the electrostatic and the van der Waals forces acting on the nanotube-bridge. For the CNT bridge memory device, the van der Waals interactions between the CNT bridge and the oxide were very important. As the distance between the CNT bridge and the oxide decreased and the van der Waals interaction energy increased, the pull-in bias of the CNT-bridge decreased and the nonvolatility of the nanotube-bridge memory device increased, while the pull-out voltages increased. When the materials composed of the oxide film are different, since the van der Waals interactions must be also different, the oxide materials must be carefully selected for the CNT-bridge memory device to work as a nonvolatile memory.

  16. An electromechanical, patient positioning system for head and neck radiotherapy

    Science.gov (United States)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  17. An electromechanical, patient positioning system for head and neck radiotherapy.

    Science.gov (United States)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-05

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  18. Dynamic Electromechanical Characterization of Axially Poled PZT 95/5

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Furnish, Michael D.; Montgomery, Stephen T.; Setchell, Robert E.

    1999-01-01

    We are conducting a comprehensive experimental study of the electromechanical behavior of poled PZT 95/5 (lead zirconate titanate). As part of this study, eight plane-wave tests have been conducted on axially poled PZT 95/5 at stress levels ranging from 0.9 to 4.6 GPa, using VISAR and electrical diagnostics. Observed wave velocities were slightly decreased from ultrasonic velocity, by contrast' with unpoled samples. Compression waveforms show a step at 0.6 GPa more marked than for normally poled or unpoled samples; this may correspond to a poling effect on the ferroelectric/antiferroelectric transition. A similar step is observed on release. The released charge upon loading to 0.9 GPa is consistent with nearly complete depoling. Loading to higher stresses gave lower currents (factor of 10), suggesting shock-induced conductivity or electrical breakdown

  19. Microelectromechanical resonator based digital logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-10-20

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  20. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition

    Directory of Open Access Journals (Sweden)

    Valverde Israel

    2012-04-01

    Full Text Available Abstract Background Systemic-to-pulmonary collateral flow (SPCF may constitute a risk factor for increased morbidity and mortality in patients with single-ventricle physiology (SV. However, clinical research is limited by the complexity of multi-vessel two-dimensional (2D cardiovascular magnetic resonance (CMR flow measurements. We sought to validate four-dimensional (4D velocity acquisition sequence for concise quantification of SPCF and flow distribution in patients with SV. Methods 29 patients with SV physiology prospectively underwent CMR (1.5 T (n = 14 bidirectional cavopulmonary connection [BCPC], age 2.9 ± 1.3 years; and n = 15 Fontan, 14.4 ± 5.9 years and 20 healthy volunteers (age, 28.7 ± 13.1 years served as controls. A single whole-heart 4D velocity acquisition and five 2D flow acquisitions were performed in the aorta, superior/inferior caval veins, right/left pulmonary arteries to serve as gold-standard. The five 2D velocity acquisition measurements were compared with 4D velocity acquisition for validation of individual vessel flow quantification and time efficiency. The SPCF was calculated by evaluating the disparity between systemic (aortic minus caval vein flows and pulmonary flows (arterial and venour return. The pulmonary right to left and the systemic lower to upper body flow distribution were also calculated. Results The comparison between 4D velocity and 2D flow acquisitions showed good Bland-Altman agreement for all individual vessels (mean bias, 0.05±0.24 l/min/m2, calculated SPCF (−0.02±0.18 l/min/m2 and significantly shorter 4D velocity acquisition-time (12:34 min/17:28 min,p 2; Fontan 0.62±0.82 l/min/m2 and not in controls (0.01 + 0.16 l/min/m2, (3 inverse relation of right/left pulmonary artery perfusion and right/left SPCF (Pearson = −0.47,p = 0.01 and (4 upper to lower body flow distribution trend related to the weight (r = 0.742, p  Conclusions 4D

  1. Electromechanical response of (2–2) layered piezoelectric composites

    International Nuclear Information System (INIS)

    Kar-Gupta, Ronit; Venkatesh, T A

    2013-01-01

    Analytical and finite element models are developed to systematically characterize the effects of phase volume fraction and the relative orientations of the poling directions in two phases on the effective elastic, dielectric and piezoelectric properties of layered piezoelectric composites. Four classes of layered piezoelectric composites are identified based on the relative orientation of the poling directions in the two piezoelectric phases. Upon verifying that the results of the finite model compare well with that of analytical models for select layered composite systems, the finite element model is extended to characterize the electromechanical response of all four classes of piezoelectric composites. It is generally observed that the electromechanical properties of the layered composite along a direction perpendicular to the layer interface is largely influenced by the properties of the ‘softer’ phase whereas the in-plane response is modulated more by the ‘rule-of-mixtures’ theory. It is also observed that variations in the poling directions of the constituents can significantly influence the symmetry of the composite with composites that belong to Classes II and III (where the poling directions of the two phases are orthogonal to each other) exhibiting a relatively lower degree of material symmetry while the composites that belong to Classes I and IV (where the poling directions of the two phases are parallel to each other) exhibit a higher order symmetry. Furthermore, the best combination of figures of merit, i.e., enhanced coupling constant and reduced acoustic impedance, in a direction parallel to the layer interface is exhibited by Class I and Class II types of composite (where the piezoelectrically stiffer phase is poled along the layer interface). (paper)

  2. Quantifying errors in flow measurement using phase contrast magnetic resonance imaging: comparison of several boundary detection methods.

    Science.gov (United States)

    Jiang, Jing; Kokeny, Paul; Ying, Wang; Magnano, Chris; Zivadinov, Robert; Mark Haacke, E

    2015-02-01

    Quantifying flow from phase-contrast MRI (PC-MRI) data requires that the vessels of interest be segmented. The estimate of the vessel area will dictate the type and magnitude of the error sources that affect the flow measurement. These sources of errors are well understood, and mathematical expressions have been derived for them in previous work. However, these expressions contain many parameters that render them difficult to use for making practical error estimates. In this work, some realistic assumptions were made that allow for the simplification of such expressions in order to make them more useful. These simplified expressions were then used to numerically simulate the effect of segmentation accuracy and provide some criteria that if met, would keep errors in flow quantification below 10% or 5%. Four different segmentation methods were used on simulated and phantom MRA data to verify the theoretical results. Numerical simulations showed that including partial volumed edge pixels in vessel segmentation provides less error than missing them. This was verified with MRA simulations, as the best performing segmentation method generally included such pixels. Further, it was found that to obtain a flow error of less than 10% (5%), the vessel should be at least 4 (5) pixels in diameter, have an SNR of at least 10:1 and have a peak velocity to saturation cut-off velocity ratio of at least 5:3. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hemoglobin, hematocrit, and changes in cerebral blood flow : The Second Manifestations of ARTerial disease-Magnetic Resonance study

    NARCIS (Netherlands)

    van der Veen, Pieternella H.; Muller, Majon; Vincken, Koen L.; Westerink, Jan; Mali, Willem P. T. M.; van der Graaf, Yolanda; Geerlings, Mirjam I.; Doevendans, PAFM

    Hemoglobin and hematocrit are important determinants of blood viscosity and arterial oxygen content and may therefore influence cerebral blood flow (CBF). We examined cross-sectional and prospective associations of hemoglobin and hematocrit with CBF in 569 patients with manifest arterial disease

  4. Electro-mechanical properties of carbon black filled EP/PI conductive films

    Science.gov (United States)

    Ji, Xiaoyong; Li, Hui; Ou, Jinping

    2007-01-01

    The electro-mechanical properties of epoxy resin(EP)/polyimide(PI) composites containing conductive and sprayed carbon black(CB), respectively, are experimentally studied. The test results indicate that the value of the fractional change in electric resistance of the EP/PI composites containing conductive GB is too small ,and the electro-mechanical properties of the EP/PI composites containing sprayed GB under cyclic load is not good enough. However, the EP/PI composites containing the mixture of sprayed GB and conductive GB behave good electro-mechanical properties and this kind of conductive films can be used as monitoring material after they are trained through cyclic load.

  5. Unraveling the origins of electromechanical response in mixed-phase Bismuth Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Okatan, M. B. [University of New South Wales; Liu, Y. Y. [University of Washington, Seattle; Jesse, Stephen [ORNL; Yang, J.-C. [University of California, Berkeley; Liang, W. -I. [National Chiao Tung University, Hsinchu, Taiwan; Chu, Ying-Hao [National Chiao Tung University, Hsinchu, Taiwan; Li, J. Y. [University of Washington, Seattle; Kalinin, Sergei V [ORNL; Valanoor, Nagarajan V [ORNL

    2013-01-01

    The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using sub-coercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties.

  6. Branch companion modeling for diverse simulation of electromagnetic and electromechanical transients

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, Rachel; Strunz, Kai [SESAME Laboratory, Department of Electrical Engineering, University of Washington, Seattle (United States)

    2007-09-15

    Simulators of the Electromagnetic Transients Program (EMTP) type are widely used for the study of high-frequency transients in power electric systems. For the study of electromechanical transients, where the main interest is to focus only on deviations from the ac waveform, the EMTP approach is not efficient. In this paper, a branch companion model that is suitable for both electromagnetic and electromechanical transients simulation is proposed. It processes analytic signals whose Fourier spectrum can be shifted in accordance with the objective of the study. The proposed method opens the way for a unified description of electromagnetic and electromechanical transients simulation. (author)

  7. Comment on ``On electromechanical stability of dielectric elastomers'' [Appl. Phys. Lett. 93, 101902 (2008)

    Science.gov (United States)

    Liu, Yanju; Liu, Liwu; Sun, Shouhua; Shi, Liang; Leng, Jinsong

    2009-03-01

    We would like to thank Díaz-Calleja et al. [Appl. Phys. Lett. 93, 101902 (2008)] for their insight and help on "On electromechanical stability of dielectric elastomers;" unstable domain of electromechanical coupling system of neo-Hookean-type silicone was analyzed by Díaz-Calleja et al. Different from that given in the paper of Díaz-Calleja, in the current work, the elastic strain energy function with two material constants was used to analyze the stable domain of electromechanical coupling system of Mooney-Rivlin-type silicone, and the results seem to support the theory of Díaz-Calleja.

  8. Vortex Flow in the Right Atrium Surrogates Supraventricular Arrhythmia and Thrombus After Atriopulmonary Connection-Type Fontan Operation: Vortex Flow Analysis Using Conventional Cine Magnetic Resonance Imaging.

    Science.gov (United States)

    Shiina, Yumi; Inai, Kei; Takahashi, Tatsunori; Shimomiya, Yamato; Ishizaki, Umiko; Fukushima, Kenji; Nagao, Michinobu

    2018-02-01

    We developed a novel imaging technique, designated as vortex flow (VF) mapping, which presents a vortex flow visually on conventional two-dimensional (2D) cine MRI. Using it, we assessed circumferential VF patterns and influences on RA thrombus and supraventricular tachycardia (SVT) in AP connection-type Fontan circulation. Retrospectively, we enrolled 27 consecutive patients (25.1 ± 9.2 years) and 7 age-matched controls who underwent cardiac MRI. Conventional cine images acquired using a 1.5-Tesla scanner were scanned for axial and coronal cross section of the RA. We developed "vortex flow mapping" to demonstrate the ratio of the circumferential voxel movement at each phase to the total movement throughout a cardiac cycle towards the RA center. The maximum ratio was used as a magnitude of vortex flow (MVF%) in RA cine imaging. We also measured percentages of strong and weak VF areas (VFA%). Furthermore, in 10 out of 27, we compared VF between previous CMR (3.8 ± 1.5 years ago) and latest CMR. Of the patients, 15 had cardiovascular complications (Group A); 12 did not (Group B). A transaxial image showed that strong VFA% in Group A was significantly smaller than that in Group B or controls. A coronal view revealed that strong VFA% was also smaller, and weak VFA% was larger in Group A than in Group B or controls (P < 0.05, and P < 0.05). Maximum MVF% in Group A was significantly smaller than in other groups (P < 0.001). Univariate logistic analyses revealed weak VFA% on a coronal image, and serum total bilirubin level as factors affecting cardiovascular complications (Odds ratio 1.14 and 66.1, 95% CI 1.004-1.30 and 1.59-2755.6, P values < 0.05 and < 0.05, respectively). Compared to the previous CMR, smaller maximum VMF%, smaller strong VFA%, and larger weak VFA% were identified in the latest CMR. Circumferentially weak VFA% on a coronal image can be one surrogate marker of SVT and thrombus in AP connection-type Fontan circulation. This simple VF

  9. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device.

    Science.gov (United States)

    Zhang, Zhixin; Wang, Yanyan; Zhang, Hongxiang; Tang, Zifan; Liu, Wenpeng; Lu, Yao; Wang, Zefang; Yang, Haitao; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin

    2017-05-01

    Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Four-Dimensional Visualization of Thoracic Blood Flow by Magnetic Resonance Imaging in a Patient Following Correction of Transposition of the Great Arteries (d-TGA) and Uncorrected Aortic Coarctation

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Zaporozhan, J.; Rengier, F.; Tengg-Kobligk, H. von (German Cancer Research Center (DKFZ) Heidelberg, Radiology, Heidelberg (Germany)); Ley, S.; Unterhinninghofen, R. (Univ. of Karlsruhe, Inst. of Computer Science and Engineering, Karlsruhe (Germany)); Markl, M. (Dept. of Diagnostic Radiology, Medical Physics, Univ. Hospital Freiburg, Freiburg (Germany)); Eichhorn, J. (Univ. Hospital, Pediatric Cardiology, Heidelberg (Germany))

    2009-10-15

    Recent advances in flow-sensitive magnetic resonance imaging (MRI) and data analysis allow for comprehensive noninvasive three-dimensional (3D) visualization of complex blood flow. Electrocardiogram (ECG)-gated three-directional (3dir) flow measurements were employed to assess and visualize time-resolved 3D blood flow in the pulmonary arteries (PA) and thoracic aorta. We present findings in a juvenile patient with surgically corrected transposition of the great arteries (d-TGA) and aortic coarctation. For the first time, the complex flow patterns in the PA following d-TGA were visualized. Morphologically, a slight asymmetry of the PA was found, with considerable impact on vascular hemodynamics, resulting in diastolic retrograde flow in the larger vessel and diastolic filling of the smaller PA. Additionally, increased flow to the supraaortic vessels was found due to aortic coarctation.

  11. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    Science.gov (United States)

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  12. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration

    Science.gov (United States)

    Bradeško, A.; Juričić, Äń.; Santo Zarnik, M.; Malič, B.; Kutnjak, Z.; Rojac, T.

    2016-10-01

    Electrocaloric (EC) materials have shown the potential to replace some of the technologies in current commercial refrigeration systems. The key problem when fabricating an efficient EC refrigerator is the small adiabatic temperature change that current bulk materials can achieve. Therefore, such a solid-state EC refrigerator should be engineered to enhance the EC temperature change by rectifying the induced EC heat flow. Here, we present a numerical study of a device that couples the EC and electromechanical (EM) effects in a single active material. The device consists of several elements made from a functional material with coupled EC and EM properties, allowing the elements to bend and change their temperature with the application of an electric field. The periodic excitation of these elements results in a temperature span across the device. By assuming heat exchange with the environment and a low thermal contact resistivity between the elements, we show that a device with 15 elements and an EC effect of 1.2 K achieves a temperature span between the hot and cold sides of the device equal to 12.6 K. Since the temperature span can be controlled by the number of elements in the device, the results suggest that in combination with the so-called "giant" EC effect (ΔTEC ≥ 10 K), a very large temperature span would be possible. The results of this work should motivate the development of efficient EC refrigeration systems based on a coupling of the EC and EM effects.

  13. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    Science.gov (United States)

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and

  14. Experimental Validation of a Prognostic Health Management System for Electro-Mechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — The work described herein is aimed to advance prognostic health management solutions for electro-mechanical actuators and, thus, increase their reliability and...

  15. Electromechanical dynamic analysis for the drum driving system of the long-wall shearer

    Directory of Open Access Journals (Sweden)

    Changzhao Liu

    2015-10-01

    Full Text Available The drum driving system is one of the weakest parts of the long-wall shearer, and some methods are also needed to monitor and control the long-wall shearer to adapt to the important trend of unmanned operation in future mining systems. Therefore, it is essential to conduct an electromechanical dynamic analysis for the drum driving system of the long-wall shearer. First, a torsional dynamic model of planetary gears is proposed which is convenient to be connected to the electric motor model for electromechanical dynamic analysis. Next, an electromechanical dynamic model for the drum driving system is constructed including the electric motor, the gear transmission system, and the drum. Then, the electromechanical dynamic characteristics are simulated when the shock loads are acted on the drum driving system. Finally, some advices are proposed for improving the reliability, monitoring the operating state, and choosing the control signals of the long-wall shearer based on the simulation.

  16. A feasibility study on embedded micro-electromechanical sensors and systems (MEMS) for monitoring highway structures.

    Science.gov (United States)

    2011-06-01

    Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhan...

  17. Electromechanical Coupling In Free-Standing AlGaN/GaN Planar Structures

    National Research Council Canada - National Science Library

    Jogai, B

    2003-01-01

    .... It is shown that in the absence of free charges, the calculated strain and electric fields are substantially different from those obtained using the standard model without electromechanical coupling...

  18. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2006-01-01

    The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...

  19. Experimental and Analytical Development of a Health Management System for Electro-Mechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — Expanded deployment of Electro-Mechanical Actuators (EMAs) in critical applications has created much interest in EMA Prognostic Health Management (PHM), a key...

  20. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft...

  1. An inverse method for estimating the electromechanical parameters of moving-coil loudspeakers.

    Science.gov (United States)

    Tsai, Yu-Ting; Wang, Chi-Chang; Huang, Jin H

    2013-11-01

    This article presents an inverse method for estimating the electromechanical parameters of a moving-coil loudspeaker with or without the eddy current and suspension creep effects. With known voice-coil displacement, voice-coil current, and stimulus signal as inputs, four calculation procedures for the direct problem, adjoint problem, sensitivity problem, and conjugate gradient method are involved in inversely solving the unknown electromechanical parameters. The proposed method features high efficiency in solving the direct problem through a hybrid spline difference method. It requires a small number of iterations for the computational algorithm, while offering excellent accuracy in parameter estimations. Analysis results demonstrate small differences between the estimated and measured electromechanical parameters under a variety of stimulus signals, excitation times, and initial guesses. The results are also confirmed by experimental measurements. These results indicate that the proposed method has a strong potential for estimating the electromechanical parameters of moving-coil loudspeakers.

  2. Experimental Data Collection and Modeling for Nominal and Fault Conditions on Electro-Mechanical Actuators

    Data.gov (United States)

    National Aeronautics and Space Administration — Being relatively new to the field, electromechanical actuators in aerospace applications lack the knowledge base compared to ones accumulated for the other actuator...

  3. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS

    OpenAIRE

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B.; Chen, Pei

    2015-01-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus. Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, ...

  4. A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model.

    Science.gov (United States)

    Schuster, Andreas; Sinclair, Matthew; Zarinabad, Niloufar; Ishida, Masaki; van den Wijngaard, Jeroen P H M; Paul, Matthias; van Horssen, Pepijn; Hussain, Shazia T; Perera, Divaka; Schaeffter, Tobias; Spaan, Jos A E; Siebes, Maria; Nagel, Eike; Chiribiri, Amedeo

    2015-10-01

    To assess the feasibility of high-resolution quantitative cardiovascular magnetic resonance (CMR) voxel-wise perfusion imaging using clinical 1.5 and 3 T sequences and to validate it using fluorescently labelled microspheres in combination with a state of the art imaging cryomicrotome in a novel, isolated blood-perfused MR-compatible free beating pig heart model without respiratory motion. MR perfusion imaging was performed in pig hearts at 1.5 (n = 4) and 3 T (n = 4). Images were acquired at physiological flow ('rest'), reduced flow ('ischaemia'), and during adenosine-induced hyperaemia ('stress') in control and coronary occlusion conditions. Fluorescently labelled microspheres and known coronary myocardial blood flow represented the reference standards for quantitative perfusion validation. For the comparison with microspheres, the LV was divided into 48 segments based on a subdivision of the 16 AHA segments into subendocardial, midmyocardial, and subepicardial subsegments. Perfusion quantification of the time-signal intensity curves was performed using a Fermi function deconvolution. High-resolution quantitative voxel-wise perfusion assessment was able to distinguish between occluded and remote myocardium (P < 0.001) and between rest, ischaemia, and stress perfusion conditions at 1.5 T (P < 0.001) and at 3 T (P < 0.001). CMR-MBF estimates correlated well with the microspheres at the AHA segmental level at 1.5 T (r = 0.94, P < 0.001) and at 3 T (r = 0.96, P < 0.001) and at the subendocardial, midmyocardial, and subepicardial level at 1.5 T (r = 0.93, r = 0.9, r = 0.88, P < 0.001, respectively) and at 3 T (r = 0.91, r = 0.95, r = 0.84, P < 0.001, respectively). CMR-derived voxel-wise quantitative blood flow assessment is feasible and very accurate compared with microspheres. This technique is suitable for both clinically used field strengths and may provide the tools to assess extent and severity of myocardial ischaemia. Published on behalf of the European Society

  5. Topological design of electromechanical actuators with robustness toward over- and under-etching

    DEFF Research Database (Denmark)

    Qian, Xiaoping; Sigmund, Ole

    2013-01-01

    In this paper, we combine the recent findings in robust topology optimization formulations and Helmholtz partial differential equation based density filtering to improve the topological design of electromechanical actuators. For the electromechanical analysis, we adopt a monolithic formulation...... to model the coupled electrostatic and mechanical equations. For filtering, we extend the Helmholtz-based projection filter with Dirichlet boundary conditions to ensure appropriate design boundary conditions. For the optimization, we use the method of moving asymptotes, where the sensitivity is obtained...

  6. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    OpenAIRE

    John J. MOMOH; Lanre Y. SHUAIB-BABATA; Gabriel O. ADELEGAN

    2010-01-01

    Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will prov...

  7. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    Science.gov (United States)

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  8. Global chaos synchronization of electro-mechanical gyrostat systems via variable substitution control

    International Nuclear Information System (INIS)

    Chen Yun; Wu Xiaofeng; Liu Zhong

    2009-01-01

    This paper studies global synchronization of non-autonomous chaotic electro-mechanical gyrostat systems via variable substitution control. A master-slave non-autonomous synchronization scheme with variable substitution control is mathematically presented. Based on the scheme, some sufficient algebraic criteria for global chaos synchronization of master and slave electro-mechanical gyrostat systems via various single-variable coupling are derived. The effectiveness of the obtained criteria is numerically illustrated by the examples.

  9. Modernization of the Grinding Electromechanical Drive System of the Automated Coffee Machine

    Directory of Open Access Journals (Sweden)

    Ilie Nuca

    2014-09-01

    Full Text Available The paper refers to espresso coffee machines high quality and some possibilities to increase the level of automation and productivity. Existing machines require manual adjustment of coffee grinder depending on the quality of coffee beans. To eliminate this flaw has been developed and implemented an adjustable electromechanical system with DC servomotor and numerical control of coffee grinder. Computer simulation results demonstrate the functionality of the proposed electromechanical drive system of the coffee grinder

  10. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    Energy Technology Data Exchange (ETDEWEB)

    Dou Jianhong; Xia Ling; Zhang Yu; Shou Guofa [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Wei Qing; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Queensland 4072 (Australia)], E-mail: xialing@zju.edu.cn

    2009-01-21

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  11. Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity.

    Science.gov (United States)

    Murillo, Gonzalo; Blanquer, Andreu; Vargas-Estevez, Carolina; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme; Esteve, Jaume

    2017-06-01

    Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG-cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast-like cells (Saos-2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell-scale electrical stimulation of osteoblast-like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell-targeted electrical impulses. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fail safe controllable output improved version of the electromechanical battery

    Science.gov (United States)

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  13. Computer-aided Teaching of Math in Electromechanics Vocational Course

    Directory of Open Access Journals (Sweden)

    Eduardo Shigueo Hoji

    2013-03-01

    Full Text Available This paper describes the experience of teaching mathematics in the electromechanics vocational course with aid of the computer. Instead of giving a bunch of equations and a calculator to the students, as it is usual in vocational courses, we offer them Octave, which is a numerical computational tool. Furthermore, the mathematical concepts involved in the solution of applied problems are provided within a multidisciplinary framework. The proposed approach helped to reduce the abstraction of mathematics for the students. Despite the deficiencies the students in vocational courses have in their formation, we could notice that their perception regarding mathematics has changed after figuring out that “a bunch of numbers” can be useful in the solution of problems they shall face in their professional life. The approach was applied to three groups already. All of them are composed of mature students, who passed by a flawed basic educational system and stayed away from school for a long time.

  14. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.

    2016-01-01

    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  15. Electromechanical impedance method to assess dental implant stability

    International Nuclear Information System (INIS)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W

    2012-01-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone–implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare ® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant–bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity. (paper)

  16. In-vitro experiments to characterize ventricular electromechanics

    Directory of Open Access Journals (Sweden)

    Arnold Robert

    2016-09-01

    Full Text Available Computer simulation turns out to be beneficial when clinical data lack spatio-temporal resolution or parameters cannot be measured at all. To derive trustworthy results, these in-silico models have to thoroughly parameterized and validated. In this work we present data from a simplified in-vitro setup for characterizing ventricular electromechanics. Right ventricular papillary muscles from New Zealand rabbits were isolated and stretched from slack length to lmax, i.e. the muscle length at maximum active force development. Active stress development showed an almost linear increase for moderate strain (90–100% of lmax and a significant decrease for larger strain (100–105% of lmax. Passive strain development showed a nonlinear increase. Conduction velocity CV showed an increase of ≈10% between low and moderate strain and no significant decrease beyond. Fitting active active stress-strain relationship using a 5th-order polynomial yielded adequate results for moderate and high strain values, whereas fitting using a logistic function yielded more reasonable results for low strain values. Passive stress-strain relationship was satisfactorily fitted using an exponential function.

  17. Development of micro-electromechanical system (MEMS) cochlear biomodel

    Energy Technology Data Exchange (ETDEWEB)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira [Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  18. Electromechanical displacement of piezoelectric-electrostrictive monolithic bilayer composites

    Science.gov (United States)

    Ngernchuklin, P.; Akdoǧan, E. K.; Safari, A.; Jadidian, B.

    2009-02-01

    We examine the electromechanical displacement of piezoelectric-electrostrictive monolithic bilayer composites with various piezoelectric volume percentage obtained by cosintering piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 and electrostrictive 0.9Pb(Mg1/3Nb2/.3)O3-0.1PbTiO3 under unipolar and bipolar electric field excitation up to 10 kV/cm experimentally. It is shown that the effective d33 of the composites is limited by the electrostrictive layer, which acts as a capacitor in series to the piezoelectric layer, causing incomplete poling. We show that by controlling the volume content of the piezoelectric layer and constraining it with an electrostrictor, substantial strain amplification (15 μm for bipolar excitation) can be achieved while inducing asymmetry to the displacement with respect to the polarity of the applied field, which we discuss in the context of symmetry superposition.

  19. Electromechanical impedance method to assess dental implant stability

    Science.gov (United States)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W.

    2012-11-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone-implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant-bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.

  20. In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating

    DEFF Research Database (Denmark)

    Homann, Lasse Vinther; Booth, Tim; Lei, Anders

    2011-01-01

    Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical c...

  1. Magnetic Resonance Imaging Quantification of Regional Cerebral Blood Flow and Cerebrovascular Reactivity to Carbon Dioxide in Normotensive and Hypertensive Rats

    Science.gov (United States)

    Leoni, Renata F.; Paiva, Fernando F.; Henning, Erica C.; Nascimento, George C.; Tannús, Alberto; de Araujo, Draulio B.; Silva, Afonso C.

    2011-01-01

    Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBF), cerebrovascular resistance and CO2 reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, α-chloralose and 2% isoflurane (1.5 MAC). Repeated CBF measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under α-chloralose, whole brain CBF at normocapnia did not differ between groups (young WKY: 61±3ml/100g/min; adult WKY: 62±4ml/100g/min; young SHR: 70±9ml/100g/min; adult SHR: 69±8ml/100g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBF values increased significantly, and a linear relationship between CBF and PaCO2 levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBF in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139±25ml/100g/min; adult SHR: 104±23ml/100g/min; young WKY: 55±9ml/100g/min; adult WKY: 71±19ml/100g/min). CBF values increased significantly with increasing CO2; however, there was a clear saturation of CBF at PaCO2 levels greater than 70 mmHg in both young and adult rats, regardless of absolute CBF values, suggesting that isoflurane interferes with the vasodilatory mechanisms of CO2. This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO2 reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. PMID:21708273

  2. Longer electromechanical delay impairs hamstrings explosive force versus quadriceps.

    Science.gov (United States)

    Hannah, Ricci; Minshull, Claire; Smith, Stephanie L; Folland, Jonathan P

    2014-01-01

    Explosive neuromuscular performance refers to the ability to rapidly increase force in response to neuromuscular activation. The lower explosive force production of the hamstrings relative to the quadriceps could compromise knee joint stability and increase the risk of anterior cruciate ligament injury. However, the time course of the rise in explosive force of the hamstrings and quadriceps from their initial activation, and thus the explosive hamstrings-to-quadriceps (H/Q) force ratio, has not been documented. The neuromuscular performance of 20 untrained males was assessed during a series of isometric knee flexion and extension contractions, with force and surface EMG of the hamstrings and quadriceps recorded during explosive and maximum voluntary contractions. Hamstrings force was expressed relative to quadriceps force to produce hamstring-to-quadriceps ratios of explosive H/Q force and H/Q maximum voluntary force. For the explosive contractions, agonist electromechanical delay (EMD), agonist and antagonist neural activation were assessed. The quadriceps was 79% stronger than the hamstrings, but quadriceps explosive force was up to 480% greater than the hamstrings from 25 to 50 ms after first activation. Consequently, the explosive H/Q force ratio was very low at 25 and 50 ms (0%-17%) and significantly different from H/Q maximum voluntary force ratio (56%). Hamstrings EMD was 95% greater than quadriceps EMD (44.0 vs 22.6 ms), resulting in a 21-ms later onset of force in the hamstrings that appeared to explain the low explosive H/Q force ratio in the early phase of activation. Prolonged hamstrings EMD appears to impair early phase (0-50 ms) explosive force production relative to the quadriceps and may render the knee unstable and prone to anterior cruciate ligament injury during this period.

  3. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki

    2003-01-01

    The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)

  4. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    Science.gov (United States)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; hide

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, Pmeasurement methods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  5. Theoretical and Experimental Study on Electromechanical Coupling Properties of Multihammer Synchronous Vibration System

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2016-01-01

    Full Text Available Industrial simulation of real external load using multiple exciting points or increasing exciting force by synchronizing multiple exciting forces requires multiple vibration hammers to be coordinated and work together. Multihammer vibration system which consists of several hammers is a complex electromechanical system with complex electromechanical coupling. In this paper, electromechanical coupling properties of such a multihammer vibration system were studied in detail using theoretical derivation, numerical simulation, and experiment. A kinetic model of multihammer synchronous vibration system was established, and approximate expressions for electromechanical coupling strength were solved using a small parameter periodic averaging method. Basic coupling rules and reasons were obtained. Self-synchronization and frequency hopping phenomenon were also analyzed. Subsequently, numerical simulations were carried out and electromechanical coupling process was obtained for different parameters. Simulation results verify correctness of the proposed model and results. Finally, experiments were carried out, self-synchronization and frequency hopping phenomenon were both observed, and results agree well with theoretical deduction and simulation results. These results provide theoretical foundations for multihammer synchronous vibration system and its synchronous control.

  6. Parametric amplification in MoS2drum resonator.

    Science.gov (United States)

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  7. Thermal stabilities of electromechanical properties in cobalt-modified strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Cao, Zhao-Peng; Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn; Fu, Qing-Wei; Yin, De-Fu; Tian, Hu-He

    2016-07-25

    Bismuth layer-structured ferroelectric (BLSF) strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15}, SBT) ceramic oxides with B-site cobalt substitutions have been synthesized using conventional solid–state reaction. The dielectric, piezoelectric, and ferroelectric properties of cobalt-modified SBT are investigated in detail. The results indicate that cobalt is very effective in promoting the piezoelectric performance of SBT. The SBT modified with 3 mol% Co{sup 3+} (SBT-3Co) exhibits the optimized piezoelectric properties, with a piezoelectric constant d{sub 33} of 28 pC/N, which is the highest value among the modified SBT-based piezoelectric ceramics ever reported. The temperature-dependent electrical impedance, resonance frequencies, and electromechanical coupling factors (k{sub p} and k{sub t}) reveal that the cobalt-modified SBT ceramics have good thermal stabilities of electromechanical properties up to 300 °C. These results demonstrate that the cobalt-modified SBT ceramics are promising materials for high temperature piezoelectric sensors applications. - Graphical abstract: The manuscript deals with the thermal stabilities of piezoelectric properties of cobalt-modified SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) ceramics. The 3 mol% Co{sup 3+} modified SBT (SBT-3Co) ceramics exhibit a piezoelectric constant d{sub 33} of 28 pC/N and a Curie temperature T{sub c} of 528 °C. The SBT-3Co ceramics have good thermal stabilities of electromechanical properties up to 300 °C. - Highlights: • A high level of piezoelectric performance (d{sub 33}∼28 pC/N)is obtained. • High Curie temperature (T{sub c}∼528 °C) is acquired for the optimal composition. • The SBT-3Co exhibits good thermal stabilities of electromechanical properties. • The Co-modified SrBi{sub 4}Ti{sub 4}O{sub 15} is promising as high temperature piezoelectric material.

  8. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.; Wang, Chun-Ming

    2009-01-01

    The piezoelectric, dielectric, and electromechanical properties of the (KCe) co-substituted calcium bismuth niobate (CaBi 2 Nb 2 O 9 , CBN) were investigated. The piezoelectric activities of CBN ceramics were significantly enhanced and the dielectric loss tan δ decreased by (KCe) substitution. The Ca 0.9 (KCe) 0.05 Bi 2 Nb 2 O 9 ceramics possess the optimal piezoelectric properties, and the piezoelectric coefficient (d 33 ), Curie temperature (T C ), and electromechanical coupling factors (k p and k t ) were found to be 16 pC/N, 868 C, 8.6%, and 23.8%, respectively. The excellent dielectric and electromechanical spectra, together with the high piezoelectric activities and ultrahigh Curie temperature, make CBN ceramics promising candidates for high temperature piezoelectric applications. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  10. Electromechanical phase transition of a dielectric elastomer tube under internal pressure of constant mass

    Directory of Open Access Journals (Sweden)

    Song Che

    2017-05-01

    Full Text Available The electromechanical phase transition for a dielectric elastomer (DE tube has been demonstrated in recent experiments, where it is found that the unbulged phase gradually changed into bulged phase. Previous theoretical works only studied the transition process under pressure control condition, which is not consistent with the real experimental condition. This paper focuses on more complex features of the electromechanical phase transition under internal pressure of constant mass. We derive the equilibrium equations and the condition for coexistent states for a DE tube under an internal pressure, a voltage through the thickness and an axial force. We find that under mass control condition the voltage needed to maintain the phase transition increases as the process proceeds. We analyze the entire process of electromechanical phase transition and find that the evolution of configurations is also different from that for pressure control condition.

  11. Dynamic Modeling and Control of Electromechanical Coupling for Mechanical Elastic Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available The structural scheme of mechanical elastic energy storage (MEES system served by permanent magnet synchronous motor (PMSM and bidirectional converters is designed. The aim of the research is to model and control the complex electromechanical system. The mechanical device of the complex system is considered as a node in generalized coordinate system, the terse nonlinear dynamic model of electromechanical coupling for the electromechanical system is constructed through Lagrange-Maxwell energy method, and the detailed deduction of the mathematical model is presented in the paper. The theory of direct feedback linearization (DFL is applied to decouple the nonlinear dynamic model and convert the developed model from nonlinear to linear. The optimal control theory is utilized to accomplish speed tracking control for the linearized system. The simulation results in three different cases show that the proposed nonlinear dynamic model of MEES system is correct; the designed algorithm has a better control performance in contrast with the conventional PI control.

  12. Theoretical study of the electromechanical efficiency of a loaded tubular dielectric elastomer actuator

    DEFF Research Database (Denmark)

    Rechenbach, Björn; Willatzen, Morten; Lassen, Benny

    2016-01-01

    The electromechanical efficiency of a loaded tubular dielectric elastomer actuator (DEA) is investigated theoretically. In previous studies, the external system, on which the DEA performs mechanical work, is implemented implicitly by prescribing the stroke of the DEA in a closed operation cycle....... Here, a more generic approach, modelling the external system by a frequency-dependent mechanical impedance which exerts a certain force on the DEA depending on its deformation, is chosen. It admits studying the dependence of the electromechanical efficiency of the DEA on the external system. A closed...... operation cycle is realized by exciting the DEA electrically by a sinusoidal voltage around a bias voltage. A detailed parametric study shows that the electromechanical efficiency is highly dependent on the frequency, amplitude, and bias of the excitation voltage and the mechanical impedance of the external...

  13. Dynamic simulation of electromechanical systems: from Maxwell's theory to common-rail diesel injection.

    Science.gov (United States)

    Kurz, S; Becker, U; Maisch, H

    2001-05-01

    This paper describes the state-of-the-art of dynamic simulation of electromechanical systems. Electromechanical systems can be split into electromagnetic and mechanical subsystems, which are described by Maxwell's equations and by Newton's law, respectively. Since such systems contain moving parts, the concepts of Lorentz and Galilean relativity are briefly addressed. The laws of physics are formulated in terms of (partial) differential equations. Numerical methods ultimately aim at linear systems of equations, which can be solved efficiently on digital computers. The various discretization methods for performing this task are discussed. Special emphasis is placed on domain decomposition as a framework for the coupling of different numerical methods such as the finite element method and the boundary element method. The paper concludes with descriptions of some applications of industrial relevance: a high performance injection valve and an electromechanical relay.

  14. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  15. Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.; Bravina, S. L.; Ciucci, Francesco; Svechnikov, G. S.; Chen, Long-Qing; Kalinin, S. V.

    2012-01-01

    Frequency dependent dynamic electromechanical response of the mixed ionic-electronic conductor film to a periodic electric bias is analyzed for different electronic and ionic boundary conditions. Dynamic effects of mobile ions concentration (stoichiometry contribution), charge state of acceptors (donors), electron concentration (electron-phonon coupling via the deformation potential), and flexoelectric effect contribution are discussed. A variety of possible nonlinear dynamic electromechanical responses of mixed electronic ionic conductors (MIEC) films including quasi-elliptic curves, asymmetric hysteresis-like loops with pronounced memory window, and butterfly-like curves are calculated. The electromechanical response of ionic semiconductor is predicted to be a powerful descriptor of local valence states, band structure and electron-phonon correlations thatcan be readily measured in the nanoscale volumes and in the presence of strong electronic conductivity.

  16. Electromechanical abdominal massage and colonic function in individuals with a spinal cord injury and chronic bowel problems.

    NARCIS (Netherlands)

    Janssen, T.W.J.; Prakken, E.S.; Hendriks, J.M.; Lourens, C; van der Vlist, J.; Smit, C.A.

    2014-01-01

    Study Design:A prospective intervention of noninvasive abdominal massage using an electromechanical apparatus on bowel function in individuals with spinal cord injury (SCI).Objectives:To evaluate the effects of noninvasive abdominal massage using an electromechanical apparatus on bowel function in

  17. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.

    1998-01-01

    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor's electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications

  18. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ekin, J.W.; Bray, S.L.

    1998-09-01

    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor`s electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications.

  19. Equivalent circuits of vibratory gyroscopes using a flexurally-vibrating resonator. Yokoshindo onhen wo mochiita shindo gyrosocpe no toka kairo

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, S.; Kondo, M.; Kudo, S. (Ishinomaki Senshu University, Miyagi (Japan))

    1991-09-20

    This paper describes an equivalent circuit condidered for analyzing the coordinate transformation between two orthogonal natural vibrating mode pairs of a flexurally-vibrating double-resonant vibrator having a square- or regular triangular cross-section. A comprehensive electromechanical equivalent circuit was presented in order to clarify the behaviour of a difference detection type resonator-vibrating gyroscope using a new drive system where the resonator is piezoelectrically driven and detected. As a result, the relation was clarified between the coordinate transformation between the orthogonal natural vibrating mode pairs of a resonator having a square cross-section and the equivalent circuit of the resonator. Further a resonator vibrating gyroscope of a square cross-section was constructed based on 'Murata system', and its comprehensive electric equivalent circuit was obtained and partially verified by experiment. Also for resonators of a regular triangular cross-section, a similar equivalent circuit in consideration with their coordinate transformation was derived and a comprehensive electromechanical equivalent circuit was presented for a piezoelectric resonator gyroscope. As a consequence, the relationship between coordinate transformation and equivalent circuit is clarified; the characteristics simulation and the design of a vibratory gyroscope was enabled by using the above comprehensive electromechanical equivalent circuit. 7 refs., 15 figs.

  20. The Possible Role of Dentin as a Piezoelectric Signal Generator by Determining the Elec-tromechanical Coupling Factor of Dentin

    Directory of Open Access Journals (Sweden)

    Atabak Shahidi

    2011-08-01

    Full Text Available Introduction: This article aimed at calculation of the electromechanical coupling factor of dentin which is an indicator of the effectiveness with which a piezoelectric material converts electrical en-ergy into mechanical energy, or vice versa. The hypothesis: The electro-mechanical coupling factor of dentin was determined in mode 11 and 33 by calculating the ratio of the produced electrical energy to the stored elastic energy in dentin under applied pressure. This study showed that the electromechanical coupling factor of dentin was affected by the direction of the applied force and the moisture content of dentin. Also dentin was a weak electromechanical energy converter which might be categorized as a piezoelectric pressure sensor.Evaluation of the hypothesis: Determination of the electrome-chanical coupling factor of dentin and its other piezoelectric constants is essential to investigate the biologic role of piezoelectricity in tooth.

  1. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxic region of interest template. Validation using magnetic resonance imaging. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Ryo; Katayama, Shigenori; Takeda, Naoya; Fujita, Katsuzo [Nishi-Kobe Medical Center (Japan); Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan); Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine

    2003-03-01

    The previously reported three-dimensional stereotaxic region of interest (ROI) template (3DSRT-t) for the analysis of anatomically standardized technetium-99m-L,L-ethyl cysteinate dimer ({sup 99m}Tc-ECD) single photon emission computed tomography (SPECT) images was modified for use in a fully automated regional cerebral blood flow (rCBF) quantification software, 3DSRT, incorporating an anatomical standardization engine transplanted from statistical parametric mapping 99 and ROIs for quantification based on 3DSRT-t. Three-dimensional T{sub 2}-weighted magnetic resonance images of 10 patients with localized infarcted areas were compared with the ROI contour of 3DSRT, and the positions of the central sulcus in the primary sensorimotor area were also estimated. All positions of the 20 lesions were in strict accordance with the ROI delineation of 3DSRT. The central sulcus was identified on at least one side of 210 paired ROIs and in the middle of 192 (91.4%) of these 210 paired ROIs among the 273 paired ROIs of the primary sensorimotor area. The central sulcus was recognized in the middle of more than 71.4% of the ROIs in which the central sulcus was identifiable in the respective 28 slices of the primary sensorimotor area. Fully automated accurate ROI delineation on anatomically standardized images is possible with 3DSRT, which enables objective quantification of rCBF and vascular reserve in only a few minutes using {sup 99m}Tc-ECD SPECT images obtained by the resting and vascular reserve (RVR) method. (author)

  2. Resting myocardial blood flow quantification using contrast-enhanced magnetic resonance imaging in the presence of stenosis: A computational fluid dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Karsten, E-mail: sommerk@uni-mainz.de, E-mail: Schreiber-L@ukw.de [Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131, Germany and Max Planck Graduate Center with the Johannes Gutenberg University Mainz, Mainz 55128 (Germany); Bernat, Dominik; Schmidt, Regine; Breit, Hanns-Christian [Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131 (Germany); Schreiber, Laura M., E-mail: sommerk@uni-mainz.de, E-mail: Schreiber-L@ukw.de [Comprehensive Heart Failure Center, Department of Cardiovascular Imaging, Würzburg University Hospital, Würzburg 97078 (Germany)

    2015-07-15

    Purpose: The extent to which atherosclerotic plaques affect contrast agent (CA) transport in the coronary arteries and, hence, quantification of myocardial blood flow (MBF) using magnetic resonance imaging (MRI) is unclear. The purpose of this work was to evaluate the influence of plaque induced stenosis both on CA transport and on the accuracy of MBF quantification. Methods: Computational fluid dynamics simulations in a high-detailed realistic vascular model were employed to investigate CA bolus transport in the coronary arteries. The impact of atherosclerosis was analyzed by inserting various medium- to high-grade stenoses in the vascular model. The influence of stenosis morphology was examined by varying the stenosis shapes but keeping the area reduction constant. Errors due to CA bolus transport were analyzed using the tracer-kinetic model MMID4. Results: Dispersion of the CA bolus was found in all models and for all outlets, but with a varying magnitude. The impact of stenosis was complex: while high-grade stenoses amplified dispersion, mild stenoses reduced the effect. Morphology was found to have a marked influence on dispersion for a small number of outlets in the post-stenotic region. Despite this marked influence on the concentration–time curves, MBF errors were less affected by stenosis. In total, MBF was underestimated by −7.9% to −44.9%. Conclusions: The presented results reveal that local hemodynamics in the coronary vasculature appears to have a direct impact on CA bolus dispersion. Inclusion of atherosclerotic plaques resulted in a complex alteration of this effect, with both degree of area reduction and stenosis morphology affecting the amount of dispersion. This strong influence of vascular transport effects impairs the accuracy of MRI-based MBF quantification techniques and, potentially, other bolus-based perfusion measurement techniques like computed tomography perfusion imaging.

  3. Left Ventricular Stroke Volume Quantification by Contrast Echocardiography – Comparison of Linear and Flow-Based Methods to Cardiac Magnetic Resonance

    Science.gov (United States)

    Dele-Michael, Abiola O.; Fujikura, Kana; Devereux, Richard B; Islam, Fahmida; Hriljac, Ingrid; Wilson, Sean R.; Lin, Fay; Weinsaft, Jonathan W.

    2014-01-01

    Background Echocardiography (echo) quantified LV stroke volume (SV) is widely used to assess systolic performance after acute myocardial infarction (AMI). This study compared two common echo approaches – predicated on flow (Doppler) and linear chamber dimensions (Teichholz) – to volumetric SV and global infarct parameters quantified by cardiac magnetic resonance (CMR). Methods Multimodality imaging was performed as part of a post-AMI registry. For echo, SV was measured by Doppler and Teichholz methods. Cine-CMR was used for volumetric SV and LVEF quantification, and delayed-enhancement CMR for infarct size. Results 142 patients underwent same-day echo and CMR. On echo, mean SV by Teichholz (78±17ml) was slightly higher than Doppler (75±16ml; Δ=3±13ml, p=0.02). Compared to SV on CMR (78±18ml), mean difference by Teichholz (Δ=−0.2±14; p=0.89) was slightly smaller than Doppler (Δ−3±14; p=0.02) but limits of agreement were similar between CMR and echo methods (Teichholz: −28, 27 ml, Doppler: −31, 24ml). For Teichholz, differences with CMR SV were greatest among patients with anteroseptal or lateral wall hypokinesis (p<0.05). For Doppler, differences were associated with aortic valve abnormalities or root dilation (p=0.01). SV by both echo methods decreased stepwise in relation to global LV injury as assessed by CMR-quantified LVEF and infarct size (p<0.01). Conclusions Teichholz and Doppler calculated SV yield similar magnitude of agreement with CMR. Teichholz differences with CMR increase with septal or lateral wall contractile dysfunction, whereas Doppler yields increased offsets in patients with aortic remodeling. PMID:23488864

  4. Attempts to Improve Absolute Quantification of Cerebral Blood Flow in Dynamic Susceptibility Contrast Magnetic Resonance Imaging: A Simplified T1-Weighted Steady-State Cerebral Blood Volume Approach

    International Nuclear Information System (INIS)

    Wirestam, R.; Knutsson, L.; Risberg, J.; Boerjesson, S.; Larsson, E.M.; Gustafson, L.; Passant, U.; Staahlberg, F.

    2007-01-01

    Background: Attempts to retrieve absolute values of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) have typically resulted in overestimations. Purpose: To improve DSC-MRI CBF estimates by calibrating the DSC-MRI-based cerebral blood volume (CBV) with a corresponding T1-weighted (T1W) steady-state (ss) CBV estimate. Material and Methods: 17 volunteers were investigated by DSC-MRI and 133Xe SPECT. Steady-state CBV calculation, assuming no water exchange, was accomplished using signal values from blood and tissue, before and after contrast agent, obtained by T1W spin-echo imaging. Using steady-state and DSC-MRI CBV estimates, a calibration factor K = CBV(ss)/CBV(DSC) was obtained for each individual. Average whole-brain CBF(DSC) was calculated, and the corrected MRI-based CBF estimate was given by CBF(ss) = KxCBF(DSC). Results: Average whole-brain SPECT CBF was 40.1±6.9 ml/min 100 g, while the corresponding uncorrected DSC-MRI-based value was 69.2±13.8 ml/mi 100 g. After correction with the calibration factor, a CBF(ss) of 42.7±14.0 ml/min 100 g was obtained. The linear fit to CBF(ss)-versus-CBF(SPECT) data was close to proportionality (R 0.52). Conclusion: Calibration by steady-state CBV reduced the population average CBF to a reasonable level, and a modest linear correlation with the reference 133Xe SPECT technique was observed. Possible explanations for the limited accuracy are, for example, large-vessel partial-volume effects, low post-contrast signal enhancement in T1W images, and water-exchange effects

  5. Surgical results in patients with unruptured asymptomatic cerebral aneurysms. Significance of evaluation of neuropsychological function, magnetic resonance images and cerebral blood flow

    International Nuclear Information System (INIS)

    Kumon, Yoshiaki; Watanabe, Hideaki; Igase, Keiji; Nagato, Shigeyuki; Fukumoto, Shinya; Iwata, Shinji; Ohue, Shiro; Ohnishi, Takanori

    2006-01-01

    We evaluated neuropsychological function, magnetic resonance (MR) images and cerebral blood flow (CBF) in patients with unruptured asymptomatic cerebral aneurysms. Among consecutive operations (n=73) on 70 patients since 2000, direct surgery was performed in 53 operations on 50 patients, and intravascular surgery was performed in 20 operations on 20 patients. Surgical results of direct surgery were studied. Direct surgery was selected mainly for patients with small and anterior circulation aneurysms. MR imaging was conducted 1 week after surgery, and Wechsler Adult Intelligence Scale-Revised (WAIS-R) examination and CBF measurement using 133 Xe-SPECT were done before and 1 month after surgery. Abnormal neurological findings were recognized postoperatively in 26% of surgeries. Among them, visual disturbance was permanent in 4% of surgeries, all of which were surgeries for paraclinoid internal carotid artery aneurysms. WAIS-R results deteriorated in 26% of surgeries at 1 month and at least in 5% of surgeries at 1 year after surgery. MR images at 1 week after surgery revealed brain damage in 30% of surgeries and subdural fluid collection in 19% of surgeries. Patients with large brain damage or thick subdural fluid collection frequently showed neurological deficits and/or WAISR deterioration. These complications were recognized frequently in patients with ACoA aneurysms. Resting CBF decreased significantly in the area supplied by the anterior cerebral artery and anterior border zone on the operated side postoperatively. The brain damage and subdural fluid collection were observed frequently and caused neurological deficits and neuropsychological dysfunction, although these were usually transient. It may be necessary to evaluate neuropsychological function, MRI and CBF in patients with unruptured asymptomatic cerebral aneurysms to improve surgical results. (author)

  6. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxic region of interest template. Validation using magnetic resonance imaging. Technical note

    International Nuclear Information System (INIS)

    Takeuchi, Ryo; Katayama, Shigenori; Takeda, Naoya; Fujita, Katsuzo; Yonekura, Yoshiharu; Konishi, Junji

    2003-01-01

    The previously reported three-dimensional stereotaxic region of interest (ROI) template (3DSRT-t) for the analysis of anatomically standardized technetium-99m-L,L-ethyl cysteinate dimer ( 99m Tc-ECD) single photon emission computed tomography (SPECT) images was modified for use in a fully automated regional cerebral blood flow (rCBF) quantification software, 3DSRT, incorporating an anatomical standardization engine transplanted from statistical parametric mapping 99 and ROIs for quantification based on 3DSRT-t. Three-dimensional T 2 -weighted magnetic resonance images of 10 patients with localized infarcted areas were compared with the ROI contour of 3DSRT, and the positions of the central sulcus in the primary sensorimotor area were also estimated. All positions of the 20 lesions were in strict accordance with the ROI delineation of 3DSRT. The central sulcus was identified on at least one side of 210 paired ROIs and in the middle of 192 (91.4%) of these 210 paired ROIs among the 273 paired ROIs of the primary sensorimotor area. The central sulcus was recognized in the middle of more than 71.4% of the ROIs in which the central sulcus was identifiable in the respective 28 slices of the primary sensorimotor area. Fully automated accurate ROI delineation on anatomically standardized images is possible with 3DSRT, which enables objective quantification of rCBF and vascular reserve in only a few minutes using 99m Tc-ECD SPECT images obtained by the resting and vascular reserve (RVR) method. (author)

  7. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi [Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China); Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich [Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse, 7/2/366-MST, A-1040 Vienna (Austria); Luo, J. K., E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk [Institute of Renewable Energy Environmental Technology, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China)

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  8. Atomic force microscope characterization of a resonating nanocantilever

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Borrise, X.

    2003-01-01

    parallel to the cantilever. In order to minimize the interaction between AFM probe and the resonating transducer cantilever, the AFM is operated in a dynamic noncontact mode, using oscillation amplitudes corresponding to a low force regime. The dependence of the static cantilever deflection on DC voltage......An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely...

  9. Corrosion Resistance of Steel 45 Subjected to Electromechanical Treatment and Surface Plastic Deformation

    Science.gov (United States)

    Dudkina, N. G.

    2018-01-01

    The corrosion properties of normalized steel 45 are studied after a combined hardening of its surface layer, which consists of electromechanical treatment and surface plastic deformation (EMT + SPD). The effect of different aggressive environments on the structure, microhardness and corrosion rate of the hardened surface layer is determined.

  10. The electromechanical substrate for response to cardiac resynchronization therapy in patients with right bundle branch block

    DEFF Research Database (Denmark)

    Atwater, Brett D; Wagner, Galen S; Kisslo, Joseph

    2017-01-01

    BACKGROUND: Some patients with RBBB may respond to cardiac resynchronization therapy (CRT). However, little is known regarding the electromechanical substrate for CRT and whether this is the optimal pacing strategy. METHODS: This was a pilot prospective double crossover randomized controlled clin...

  11. A methodology for identification and control of electro-mechanical actuators.

    Science.gov (United States)

    Tutunji, Tarek A; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.

  12. Effects on the electro-mechanical properties of aniline-doped ...

    African Journals Online (AJOL)

    The effects of Electro-mechanical properties of doped polyester fabric with aniline were investigated. The effects of various concentrations on the electrical as well as mechanical were examined and the percolation threshold was established. Chemical polymerization of aniline on Polyester in hydrochloric acid using ...

  13. Electromechanical properties of electrostrictive CeO2:Gd membranes: Effects of frequency and temperature

    Science.gov (United States)

    Ushakov, A. D.; Mishuk, E.; Makagon, E.; Alikin, D. O.; Esin, A. A.; Baturin, I. S.; Tselev, A.; Shur, V. Ya.; Lubomirsky, I.; Kholkin, A. L.

    2017-04-01

    Doped ceria is known for decades as an excellent ionic conductor used ubiquitously in fuel cells and other devices. Recent discovery of a giant electrostriction effect has brought world-wide interest to this class of materials for actuation applications in micromechanical systems. From this aspect, the electromechanical response has to be studied as a function of external parameters, such as frequency, temperature, and electrode material. In this work, we fabricated circular membranes based on Gd-doped ceria (CGO) with Ti electrodes and studied their electromechanical response using a sensitive interferometric technique. The self-supported membranes are flat at room temperature and reversibly buckle upon heating, indicating that the membranes are under in-plane tensile strain. We have found that the electromechanical response is strongly frequency dependent. Significant hysteresis is observed in the displacement-vs.-voltage curves, which is deleterious for micromechanical applications but can be eliminated by tuning the phase of the excitation voltage. The electromechanical response of the system increases with temperature. Finite Element Modeling is applied to evaluate the electrostriction coefficient of the CGO material. At low frequencies, the M12 electrostriction coefficient is about 5 × 10-18 m2/V2, which is in line with the previous reports.

  14. Modeling and Investigation of Electromechanical Valve Train Actuator at simulated Pressure conditions

    DEFF Research Database (Denmark)

    Habib, Tufail

    2012-01-01

    investigation of Electro-mechanical actuator at simulated pressure conditions for a single cylinder engine. For this purpose, a scaled down actuator with reduced armature lift and high stiffness springs are being used. Experiments are conducted to measure valve release timings, transition times and contact...... velocities. Furthermore, discussion about the spring, magnetic, exhausts gas forces and their ability to actuate the system as desired....

  15. A novel implantable electromechanical ventricular assist device - First acute animal testing

    NARCIS (Netherlands)

    Kaufmann, R; Rakhorst, G; Mihaylov, D; Elstrodt, J; Nix, C; Reul, H; Rau, G

    1997-01-01

    A novel ventricular assist device (HIA-EMLVAD-AT1, Helmholtz Institute Aachen-electromechanical Left Ventricular Assist Device-Animal Test Version 1), driven by a uniformly and unidirectionally rotating actuator and a patented hypocycloidic pusherplate displacement gear unit, was developed and

  16. Mechanical resonator

    OpenAIRE

    Padowitz, David; Matsiev, L; Kolosov, Oleg

    2004-01-01

    A sensor and methods for making and using the same in which a mechanical resonator is employed, comprising a resonator portion for resonating in a fluid without the substantial generation of acoustic waves; and an electrical connection between the resonator portion for oscillating and a source of an input signal; wherein the portion for resonating, the electrical connection or both includes a base material and a performance-tuning material that is different from the base material.

  17. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.

    Science.gov (United States)

    Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M

    2015-11-11

    We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

  18. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    International Nuclear Information System (INIS)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-01-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible

  19. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  20. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Science.gov (United States)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-03-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  1. Phase-chronometric measuring systems for the provision of technological processes and diagnostics of the production of electromechanical engineering systems

    Directory of Open Access Journals (Sweden)

    Tumakova Ekaterina

    2017-01-01

    Full Text Available In paper the main problems and objectives assessment of the current technical condition of the machine-building equipment are considered. Modern measuring systems used in engineering analysis. The paper considers a phase-chronometric information technology-metrological support for the evaluation of the technical condition of the synchronous electromechanical systems on the example of turbine CHP. Analysis of the main problems in the diagnosis of electromechanical systems is given. Phase-chronometric method as a basis for building a new system of diagnosis of electromechanical systems reviewed. The paper describes the main elements of technology, assessment of the economic effects of its introduction in the industry.

  2. A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model

    NARCIS (Netherlands)

    Schuster, Andreas; Sinclair, Matthew; Zarinabad, Niloufar; Ishida, Masaki; van den Wijngaard, Jeroen P. H. M.; Paul, Matthias; van Horssen, Pepijn; Hussain, Shazia T.; Perera, Divaka; Schaeffter, Tobias; Spaan, Jos A. E.; Siebes, Maria; Nagel, Eike; Chiribiri, Amedeo

    2015-01-01

    To assess the feasibility of high-resolution quantitative cardiovascular magnetic resonance (CMR) voxel-wise perfusion imaging using clinical 1.5 and 3 T sequences and to validate it using fluorescently labelled microspheres in combination with a state of the art imaging cryomicrotome in a novel,

  3. Development of Electromechanical Architectures for AC Voltage Metrology

    Directory of Open Access Journals (Sweden)

    Alexandre BOUNOUH

    2010-12-01

    Full Text Available This paper presents results of work undertaken for exploring MEMS capabilities to fabricate AC voltage references for electrical metrology and high precision instrumentation through the mechanical-electrical coupling in MEMS. From first MEMS test structures previously realized, a second set of devices with improved characteristics has been developed and fabricated with Silicon on Insulator (SOI Surface Micromachining process. These MEMS exhibit pull-in voltages of 5 V and 10 V to match with the best performance of the read-out electronics developed for driving the MEMS. Deep Level Transient Spectroscopy measurements carried out on the new design show resonance frequencies of about only some kHz, and the stability of the MEMS output voltage measured at 100 kHz has been found very promising for the best samples where the relative deviation from the mean value over almost 12 hours showed a standard deviation of about 6.3 ppm.

  4. Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics

    Science.gov (United States)

    Prakash, Naveen; Seidel, Gary D.

    2018-01-01

    Polymer bonded explosives can sustain microstructural damage due to accidental impact, which may reduce their operational reliability or even cause unwanted ignition leading to detonation of the explosive. Therefore a nanocomposite piezoresistivity based sensing solution is discussed here that employs a carbon nanotube based nanocomposite binder in the explosive material by which in situ real-time sensing can be obtained. A coupled electromechanical peridynamics code is used to numerically obtain the piezoresistive response of such a material under dynamic conditions, which allows one to capture damage initiation and propagation mechanisms due to stress waves. The relative change in resistance at three locations along the length of the microstructure is monitored, and found to correlate well with deformation and damage mechanisms within the material. This response can depend on many factors, such as carbon nanotube content, electrical conductivity of the grain, impact velocity and fracture properties, which are explored through numerical simulations. For example, it is found that the piezoresistive response is highly dependent on preferential pathways of electrical current , i.e. the phase through which the current flows, which is in turn affected by the conductivity of the grain and the specific pattern of damage. It is found that the results qualitatively agree with experimental data on the dynamic piezoresistive response of nanocomposites and look promising as a sensing mechanism for explosive materials.

  5. Development experience and development prospect оf electromechanical technological complexes of movement and positioning of technic shelf development equipment

    Directory of Open Access Journals (Sweden)

    А. Е. Козярук

    2016-11-01

    Full Text Available From the example of active semisubmersible drilling rigs it is shown characteristics of electromechanical complexes of drill rigs and anchor position control systems on the base of controlled electric drive with directcurrent motors. It is presented suggestions which allow increasing electric power and service reliability criteria through the use of semiconductor converters supplied from power semiconductor converter with active front end in technological drilling systems, propulsion and position control systems of electromechanical systems on the base of noncontact asynchronous motors. It is outlined information about experience of using such kind of electromechanical complexes at the objects of mining industry working in difficult operating conditions. It is presented information about developing of electromechanical complexes of displacement systems, position control systems, technological and technical shelf development equipment and their characteristics. Also it is outlined structures and examples of designing modern high efficiency systems with contactless actuating motors.

  6. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  7. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1989-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances

  8. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  9. Influence of RC Element Wiring in Electrical Circuit on Electromechanical Thermostat Contact Wear

    Directory of Open Access Journals (Sweden)

    Haas Peter

    2016-09-01

    Full Text Available Contact wear caused by electric arc during electric contact make (cut-in and break (cut-out has the direct impact on the contact lifetime. The RC element wired parallelly to the contact will eliminate or reduce the arcing and subsequently extend the lifetime. Comparative tests of the two sets of identical Danfoss 077B electromechanical thermostats have been carried out. In the first batch, standard thermostats were tested. In the second batch, the same thermostat types, but with RC elements wired parallel to thermostats main contacts were tested. Measurement has not proven any improvement of the contact wear. Temperature drift and change of the critical dimension caused by contact wear were very similar in the both cases. Thus, the application of RC element is considered not reasonable measure for reduction of contact wear of electromechanical thermostats.

  10. Damping of Electromechanical Oscillations in Multi-Machinery Power System with Various Types of Excitation Controller

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2011-01-01

    Full Text Available The paper cites investigation results of electromechanical oscillations in the power system where synchronous generators are equipped with various types of excitation controllers in the presence or absence of system stabilizers. Influence of every controller types on oscillation processes in the power system has been shown in the paper. The paper proposes an approach of optimum selection of setup excitation controller parameters while having system stabilizers. A complete scheme of the «Azerenergy» system has been taken as an example for an analysis of electromechanical oscillations and an influence of excitation controllers on them. Synchronous generators of the system are using excitation controllers of dramatic effect and СДП1- and UNITROL-types having a system stabilizer.

  11. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Electromechanical Reaction Times of Hip Flexion.

    Science.gov (United States)

    Huo, Ming; Wang, Hongzhao; Ge, Meng; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] The aim of this study was to investigate the change in electromechanical reaction times (EMG-RT) of hip flexion of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 39 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 16 subjects (7 males, 9 females), and the PNF group consisted of 23 subjects (10 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the EMG-RT, the premotor time (PMT) and the motor time (MT) during hip flexion movement before and after the intervention in both groups. [Results] There were no significant differences among the results of the PNF group. For the NJF group, there were significant differences in PMT and EMG-RT after NJF treatment. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on electromechanical reaction times of hip flexion.

  12. Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Tararam, R.; Bdikin, I. K.; Panwar, N.; Varela, J. A.; Bueno, P. R.; Kholkin, A. L.

    2011-09-01

    Piezoresponse Force Microscopy (PFM) is used to characterize the nanoscale electromechanical properties of centrosymmetric CaCu3Ti4O12 ceramics with giant dielectric constant. Clear PFM contrast both in vertical (out-of-plane) and lateral (in-plane) modes is observed on the ceramic surface with varying magnitude and polarization direction depending on the grain crystalline orientation. Lateral signal changes its sign upon 180° rotation of the sample thus ruling out spurious electrostatic contribution and confirming piezoelectric nature of the effect. Piezoresponse could be locally reversed by suitable electrical bias (local poling) and induced polarization was quite stable showing long-time relaxation (˜3 hrs). The electromechanical contrast in unpoled ceramics is attributed to the surface flexoelectric effect (strain gradient induced polarization) while piezoresponse hysteresis and ferroelectric-like behavior are discussed in terms of structural instabilities due to Ti off-center displacements and structural defects in this material.

  13. Effect of Electromechanical Properties in Mn-doped BaTiO3

    Science.gov (United States)

    Takenaka, Hiroyuki; Cohen, R. E.

    Experimental studies reported that Mn doping in BaTiO3 could improve their electromechanical properties. In addition, ageing process gives rise to a significant reversible strain effect. Performing density functional theory (DFT) calculations, we find that Mn dopant with oxygen vacancy induces local electric field of 20 MV/m in 2x2x2 (39 atom) supercell. In order to understand effects of the electromechanical properties from phenomenological point of view, we optimize electric enthalpies in Landau-Devonshire model, parametrized from DFT results, under applying electric fields. We show dielectric constant and piezoelectric coefficients from the optimized polarization paths. supported by ONR, the ERC Advanced Grant ToMCaT, and the Carnegie Institution for Science.

  14. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle.

    Science.gov (United States)

    Böl, Markus; Weikert, Roman; Weichert, Christine

    2011-10-01

    This work deals with the development and implementation of an electromechanical skeletal muscle model. To this end, a recently published hyperelastic constitutive muscle model with transversely isotropic characteristics, see Ehret et al. (2011), has been weakly coupled with Ohm's law describing the electric current. In contrast to the traditional way of active muscle modelling, this model is rooted on a non-additive decomposition of the active and passive components. The performance of the proposed modelling approach is demonstrated by the use of three-dimensional illustrative boundary-value problems that include electromechanical analysis on tissue strips. Further, simulations on the biceps brachii muscle document the applicability of the model to realistic muscle geometries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enhanced electromechanical performance of cellular polypropylene electrets charged at a high temperature

    International Nuclear Information System (INIS)

    Zhang, J-W; Lebrun, L; Guiffard, B; Belouadah, R; Guyomar, D; Garbuio, L; Cottinet, P-J; Liu, Q

    2011-01-01

    In order to enhance the electromechanical performance of polypropylene (PP) electrets, cellular PP electrets were heated during corona poling at a high temperature in order to accelerate its chemical structure change and increase the quantity of formed dipole within the electrets. We investigated the behaviour of surface potential decay after corona poling, and the results showed that corona poling at a high temperature can improve the charge retention of commercially used cellular PP. The results of thermally stimulated depolarization current indicated the different localized states of the electric charges in cellular PP electrets after corona poling. Then, enhanced electromechanical ability was measured by a deformation measurement system and large strain (about 5%) under a moderate applied electric field intensity (30 MV m -1 ) was obtained.

  16. Enhanced electromechanical performance of cellular polypropylene electrets charged at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J-W; Lebrun, L; Guiffard, B; Belouadah, R; Guyomar, D; Garbuio, L; Cottinet, P-J; Liu, Q, E-mail: jiawei.zhang@insa-lyon.fr [Laboratoire de Genie Electrique et Ferroelectricite, LGEF EA 682, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, Bat. Gustave Ferrie, F-69621, Villeurbanne (France)

    2011-10-19

    In order to enhance the electromechanical performance of polypropylene (PP) electrets, cellular PP electrets were heated during corona poling at a high temperature in order to accelerate its chemical structure change and increase the quantity of formed dipole within the electrets. We investigated the behaviour of surface potential decay after corona poling, and the results showed that corona poling at a high temperature can improve the charge retention of commercially used cellular PP. The results of thermally stimulated depolarization current indicated the different localized states of the electric charges in cellular PP electrets after corona poling. Then, enhanced electromechanical ability was measured by a deformation measurement system and large strain (about 5%) under a moderate applied electric field intensity (30 MV m{sup -1}) was obtained.

  17. Design and finite element method analysis of laterally actuated multi-value nano electromechanical switches

    KAUST Repository

    Kloub, Hussam

    2011-09-01

    We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. © 2011 The Japan Society of Applied Physics.

  18. Method of Data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment

    Science.gov (United States)

    Zhukovskiy, Y.; Koteleva, N.

    2017-10-01

    Analysis of technical and technological conditions for the emergence of emergency situations during the operation of electromechanical equipment of enterprises of the mineral and raw materials complex shows that when developing the basis for ensuring safe operation, it is necessary to take into account not only the technical condition, but also the non-stationary operation of the operating conditions of equipment, and the nonstationarity of operational operating parameters of technological processes. Violations of the operation of individual parts of the machine, not detected in time, can lead to severe accidents at work, as well as to unplanned downtime and loss of profits. That is why, the issues of obtaining and processing Big data obtained during the life cycle of electromechanical equipment, for assessing the current state of the electromechanical equipment used, timely diagnostics of emergency and pre-emergency modes of its operation, estimating the residual resource, as well as prediction the technical state on the basis of machine learning are very important. This article is dedicated to developing the special method of data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment. This method can be used in working with big data and can allow extracting the knowledge from different data types: the plants’ historical data and the factory historical data. The data of the plants contains the information about electromechanical equipment operation and the data of the factory contains the information about a production of electromechanical equipment.

  19. DETERMINATION OF TRANSMISSION GEAR RATIO IN MECHANICAL PART OF TRACTOR ELECTRO-MECHANICAL TRANSMISSION

    OpenAIRE

    Ch. I. Zhdanovich; N. V. Kalinin

    2016-01-01

    A methodology has been developed for selection of gear number and transmission gear ratios in mechanical part of a wheel-type tractor with electro-mechanical transmission containing a propulsion asynchronous electric motor with variablefrequency control. The paper proposes to determine a transmission gear ratio on the basis of the following: provision of wheel torque dependence on tractor speed which is the best one for a traction process and during transfer from one gear to the other; provis...

  20. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...... ring and shaft and the similarity of the stack actuators used. This paper investigates the electromechanical coupling of these factors into the motor current through experimental means...

  1. Power efficient control algorithm of electromechanical unbalance vibration exciter with induction motor

    Science.gov (United States)

    Topovskiy, V. V.; Simakov, G. M.

    2017-10-01

    A control algorithm of an electromechanical unbalance vibration exciter that provides a free rotational movement is offered in the paper. The unbalance vibration exciter control system realizing a free rotational movement has been synthesized. The structured modeling of the synthesized system has been carried out and its transients are presented. The advantages and disadvantages of the proposed control algorithm applied to the unbalance vibration exciter are shown.

  2. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    QUINN H. LELAND JOHN F. HOYING, Chief Program Manager Mechanical and Thermal Systems Branch Mechanical and Thermal Systems Branch...Fuchs, John Murphy and Street Barnett. I would like to thank my interns, Paul Fuchs and Zach Adamson who were instrumental with construction and...Electromechanical Actuator on The F- 18 Systems Research Aircraft," NASA Dryden Flight Research Center, Edwards, CA, 1998. [6] I. Moir and A. Seabridge, Aicraft

  3. In silico investigation of the short QT syndrome, using human ventricle models incorporating electromechanical coupling

    Directory of Open Access Journals (Sweden)

    Ismail eAdeniran

    2013-07-01

    Full Text Available Introduction Genetic forms of the Short QT Syndrome (SQTS arise due to cardiac ion channel mutations leading to accelerated ventricular repolarisation, arrhythmias and sudden cardiac death. Results from experimental and simulation studies suggest that changes to refractoriness and tissue vulnerability produce a substrate favourable to re-entry. Potential electromechanical consequences of the SQTS are less well understood. The aim of this study was to utilize electromechanically coupled human ventricle models to explore electromechanical consequences of the SQTS. Methods and results: The Rice et al. mechanical model was coupled to the ten Tusscher et al. ventricular cell model. Previously validated K+ channel formulations for SQT variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on transients, sarcomere length shortening and contractile force at the single cell level were evaluated with and without the consideration of stretch activated channel current (Isac. Without Isac, the SQTS mutations produced dramatic reductions in the amplitude of transients, sarcomere length shortening and contractile force. When Isac was incorporated, there was a considerable attenuation of the effects of SQTS-associated action potential shortening on Ca2+ transients, sarcomere shortening and contractile force. Single cell models were then incorporated into 3D human ventricular tissue models. The timing of maximum deformation was delayed in the SQTS setting compared to control. Conclusion: The incorporation of Isac appears to be an important consideration in modelling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for dissociation between ventricular repolarization and the end of mechanical systole.

  4. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  5. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    Science.gov (United States)

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, prefrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.

  6. Phase-contrast cerebrospinal fluid flow magnetic resonance imaging in qualitative evaluation of patency of CSF flow pathways prior to infusion of chemotherapeutic and other agents into the fourth ventricle.

    Science.gov (United States)

    Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I

    2018-03-01

    Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.

  7. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  8. Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator.

    Science.gov (United States)

    Ali, Mohammad; Ueki, Takamitsu; Tsurumi, Daijiro; Hirai, Toshihiro

    2011-06-21

    The actuation performance of plasticized poly(vinyl chloride) (PVC) gel actuators in an electric field depends on their chemical composition and electrical and mechanical properties. The influence of plasticizer (dibutyl adipate) content on electromechanical behavior of PVC gels was investigated by impedance spectroscopy and space charge measurement. By plasticizing the PVC, the dielectric constant and space charge density of PVC gel were drastically increased at 1:2 w/w ratio of PVC to plasticizer. To apply the results obtained from the impedance spectroscopy and space charge measurement, electrostatic adhesive forces generated between the PVC gel and the anode were measured. The electrostatic adhesive force at the anode was also dramatically increased at the same plasticizer content. All of the results indicated a transition of electromechanical behavior of PVC gel in the electric field, which was considered to originate from the orientation of polarized plasticizer molecules and dipole rotation of PVC chains. By using the electrostatic adhesive force of PVC gel derived from the electromechanical transition, a new electroactive actuator can be developed for novel applications. © 2011 American Chemical Society

  9. Atrial electromechanical cycle length mapping in paced canine hearts in vivo.

    Science.gov (United States)

    Costet, Alexandre; Bunting, Ethan; Grondin, Julien; Gambhir, Alok; Konofagou, Elisa E

    2015-07-01

    Atrial arrhythmias affect millions of people worldwide. Characterization and study of arrhythmias in the atria in the clinic is currently performed point by point using mapping catheters capable of generating maps of the electrical activation rate or cycle length. In this paper, we describe a new ultrasound-based mapping technique called electromechanical cycle length mapping (ECLM) capable of estimating the electromechanical activation rate, or cycle length, i.e., the rate of the mechanical activation of the myocardium which follows the electrical activation. ECLM relies on frequency analysis of the incremental strain within the atria and can be performed in a single acquisition. ECLM was validated in a canine model paced from the left atrial appendage, against pacing rates within the reported range of cycle lengths previously measured during atrial arrhythmias such as atrial fibrillation. Correlation between the global estimated electromechanical cycle lengths and pacing rates was shown to be excellent (slope = 0.983, intercept = 3.91, r(2) = 0.9999). The effect of the number of cardiac cycles on the performance of ECLM was also investigated and the reproducibility of ECLM was demonstrated (error between consecutive acquisitions for all pacing rates: 6.3 ± 4.3%). These findings indicate the potential of ECLM for noninvasively characterizing atrial arrhythmias and provide feedback on the treatment planning of catheter ablation procedures in the clinic.

  10. Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy

    Directory of Open Access Journals (Sweden)

    Bianco Fabrizio Del

    2017-12-01

    Full Text Available The aim of this work is to study the effects of eccentric hypertrophy on the electromechanics of a single myocardial ventricular fiber by means of a one-dimensional finite-element strongly-coupled model. The electrical current ow model is written in the reference configuration and it is characterized by two geometric feedbacks, i.e. the conduction and convection ones, and by the mechanoelectric feedback due to stretchactivated channels. First, the influence of such feedbacks is investigated for both a healthy and a hypertrophic fiber in case of isometric simulations. No relevant discrepancies are found when disregarding one or more feedbacks for both fibers. Then, all feedbacks are taken into account while studying the electromechanical responses of fibers. The results from isometric tests do not point out any notable difference between the healthy and hypertrophic fibers as regards the action potential duration and conduction velocity. The length-tension relationships show increased stretches and reduced peak values for tension instead. The tension-velocity relationships derived from afterloaded isotonic and quick- release tests depict higher values of contraction velocity at smaller afterloads. Moreover, higher maximum shortenings are achieved during the isotonic contraction. In conclusion, our simulation results are innovative in predicting the electromechanical behavior of eccentric hypertrophic fibers.

  11. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    2015-01-01

    Full Text Available Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM. In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue’s corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart.

  12. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-06-01

    Full Text Available When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS. We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  13. Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Kok B.C.

    2016-01-01

    Full Text Available Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d and Piezoelectric Voltage Constant (g values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.12 mW and 13 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.

  14. Size-dependent electromechanical properties in piezoelectric superlattices due to flexoelectric effect

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-03-01

    Full Text Available Piezoelectric superlattice is a potential component for nanoelectromechanical systems. Due to the strong nonlocal effect such as flexoelectric effect at interfaces, classical piezoelectric theory is unable to accurately describe the electromechanical response of piezoelectric superlattice at nanoscale scale. Based on the previous nonlocal thermodynamics theory with flexoelectric effect Liu et al. (2016, the size-dependent electromechanical properties of piezoelectric superlattices made of BaTiO3 (BTO and PbTiO3 (PTO layers are investigated systematically in the present work. Giant strain gradient is found near the interface between BTO and PTO layers, which leads to the significant enhancement of polarization in the superlattice due to the flexoelectric effect. For the piezoelectric BTO–PTO superlattices with different unit-cell sizes, the thickness of interface with nontrivial strain gradient is almost constant. The influence of strain gradient at the interface becomes significant when the size of superlattice decreases. As a result, a strong size dependence of electromechanical properties is predicted for the piezoelectric BTO–PTO superlattices. In particular, for the superlattices with a specific thickness ratio of BTO and PTO layers, the piezoelectric response can be several times larger than that of bulk structure. The present work demonstrates a practical way to design the piezoelectric superlattices with high piezoelectric coefficient by using the nonlocal effect at nanoscale.

  15. Multiscale simulations of defect dipole-enhanced electromechanical coupling at dilute defect concentrations

    Science.gov (United States)

    Liu, Shi; Cohen, R. E.

    2017-08-01

    The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.

  16. Electromechanical coupling vibration characteristics of an AC servomotor-driven translational flexible manipulator

    Directory of Open Access Journals (Sweden)

    Jin-yong Ju

    2016-11-01

    Full Text Available The nonstationary transition status of the motor start-up phase creates great threat against the stable operation of the flexible manipulator system. This article investigates the electromechanical coupling dynamics and vibration response characteristics for a flexible manipulator of an alternating current servomotor-driven linear positioning platform with considering the start-up dynamic characteristics of the motor. Based on the constructed global electromechanical coupling effect and the Lagrange–Maxwell equations, the dynamic model of the whole system is established. The electromechanical coupling vibration mechanism of the flexible manipulator is obtained by analyzing the multiphysical process and multiparameter coupling phenomenon of the whole system. The result demonstrates that the nonstationary transition status of the motor initialization phase is mainly manifested during the disturbance of the three-phase stator current. As the speed of the linear positioning platform increases, the current disturbance, arousing the change of the servo driving force of the linear positioning platform, has dominant frequency shift and frequency amplitude decrease. Then, the vibration response of the flexible manipulator is markedly affected and the variation of the high-order modes vibration response is more obvious. The analysis result is significant for improving the dynamic performance of the motor-driven flexible robot manipulator system.

  17. Dynamic Electromechanical Response of a Viscoelastic Dielectric Elastomer under Cycle Electric Loads

    Directory of Open Access Journals (Sweden)

    Junjie Sheng

    2018-01-01

    Full Text Available Dielectric elastomer (DE is able to produce large electromechanical deformation which is time-dependent due to the viscoelasticity. In the current study, a thermodynamic model is set up to characterize the influence of viscoelasticity on the electromechanical and dynamic response of a viscoelastic DE. The time-dependent dynamic deformation, the hysteresis, and the dynamic stability undergoing viscoelastic dissipative processes are investigated. The results show that the electromechanical stability has strong frequency dependence; the viscoelastic DE can attain a larger stretch in the dynamic response than the quasistatic actuation. Furthermore, with the decreasing frequency of the applied electric load, the viscoelastic DE system will present dynamic stability evolution from an aperiodic motion to the quasiperiodic motion. The DE system may also experience a stability evolution from a single cycle motion to multicycle motion with the increasing relaxation times. The value and variation trend of the amplitude of the stretch are highly dependent on the excitation frequency and the relaxation time.

  18. 849 RESONANCE | September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    849. RESONANCE | September 2013. Page 2. 850. RESONANCE | September 2013. Page 3. 851. RESONANCE | September 2013. Page 4. 852. RESONANCE | September 2013. Page 5. 853. RESONANCE | September 2013. Page 6. 854. RESONANCE | September 2013. Page 7. 855. RESONANCE | September 2013.

  19. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    Science.gov (United States)

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  20. INFLUENCE OF ARMATURE PARAMETERS OF A LINEAR PULSE ELECTROMECHANICAL CONVERTER ON ITS EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. F. Bolyukh

    2017-12-01

    Full Text Available Purpose. The evaluation of the effect of armature parameters on the efficiency of a linear pulsed electromechanical converter, taking into account the power, speed, constructive and environmental parameters. Methodology. First, the height of the electrically conductive, coil and ferromagnetic armature of a linear pulse electromechanical converter is determined, at which the highest velocity develops. An integral efficiency index is introduced, which takes into account, in a relative way, the power, speed, energy, electrical and field characteristics of the converter. Variants of the efficiency evaluation strategy are used that take into account the priority of each indicator of a linear pulse electromechanical converter using the appropriate weighting factor in the integral efficiency index. Results. A mathematical model of a linear pulsed electromechanical converter is developed. It is established that as the height of the electroconductive, coil and ferromagnetic armature increases, the force pulse increases. The greatest speed develops with the use of a coil armature, and the smallest with an electroconductive armature. In the converter with coil and ferromagnetic armature, practically the same values of the electrodynamic and electromagnetic force pulse are realized, while in the converter the electrodynamic force is 1.52 times smaller in the converter by the electrically conductive armature. It is established that with all efficiency evaluation strategies, the converter with a coil armature is the most effective, even in spite of its constructive complexity, and the converter with a ferromagnetic armature is the least effective, although it is constructively the simplest. Originality. For the first time, using the integral efficiency index, which takes into account the power, speed, energy, electrical and field indices in a relative way, it is established that with all efficiency evaluation strategies, the converter with a coil armature is

  1. Influence of pre-infarction angina, collateral flow, and pre-procedural TIMI flow on myocardial salvage index by cardiac magnetic resonance in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Lønborg, Jacob Thomsen; Kelbæk, Henning Skov; Vejlstrup, Niels Grove

    2012-01-01

    BACKGROUND: In patients with ST-segment elevation myocardial infarction (STEMI) pre-infarction angina, pre-procedural TIMI flow and collateral flow to the myocardium supplied by the infarct related artery are suggested to be cardioprotective. We evaluated the effect of these factors on myocardial...

  2. Electromagnetic wave energy flow control with a tunable and reconfigurable coupled plasma split-ring resonator metamaterial: A study of basic conditions and configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712-1221 (United States)

    2016-05-28

    We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of the plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.

  3. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    International Nuclear Information System (INIS)

    Stock, Andreas

    2013-01-01

    Within this thesis a parallelized, transient, three-dimensional, high-order discontinuous Galerkin Particle-in-Cell solver is developed and used to simulate the resonant cavity of a gyrotron. The high-order discontinuous Galerkin approach - a Finite-Element type method - provides a fast and efficient algorithm to numerically solve Maxwell's equations used within this thesis. Besides its outstanding dissipation and dispersion properties, the discontinuous Galerkin approach easily allows for using unstructured grids, as required to simulate complex-shaped engineering devices. The discontinuous Galerkin approach approximates a wavelength with significantly less degrees of freedom compared to other methods, e.g. Finite Difference methods. Furthermore, the parallelization capabilities of the discontinuous Galerkin framework are excellent due to the very local dependencies between the elements. These properties are essential for the efficient numerical treatment of the Vlasov-Maxwell system with the Particle-in-Cell method. This system describes the self-consistent interaction of charged particles and the electromagnetic field. As central application within this thesis gyrotron resonators are simulated with the discontinuous Galerkin Particle-in-Cell method on high-performance-computers. The gyrotron is a high-power millimeter wave source, used for the electron cyclotron resonance heating of magnetically confined fusion plasma, e.g. in the Wendelstein 7-X experimental fusion-reactor. Compared to state-of-the-art simulation tools used for the design of gyrotron resonators the Particle-in-Cell method does not use any significant physically simplifications w.r.t. the modelling of the particle-field-interaction, the geometry and the wave-spectrum. Hence, it is the method of choice for validation of current simulation tools being restricted by these simplifications. So far, the Particle-in-Cell method was restricted to be used for demonstration calculations only, because

  4. Nonenhanced magnetic resonance angiography (MRA) of the calf arteries at 3 Tesla: intraindividual comparison of 3D flow-dependent subtractive MRA and 2D flow-independent non-subtractive MRA.

    Science.gov (United States)

    Knobloch, Gesine; Lauff, Marie-Teres; Hirsch, Sebastian; Schwenke, Carsten; Hamm, Bernd; Wagner, Moritz

    2016-12-01

    To prospectively compare 3D flow-dependent subtractive MRA vs. 2D flow-independent non-subtractive MRA for assessment of the calf arteries at 3 Tesla. Forty-two patients with peripheral arterial occlusive disease underwent nonenhanced MRA of calf arteries at 3 Tesla with 3D flow-dependent subtractive MRA (fast spin echo sequence; 3D-FSE-MRA) and 2D flow-independent non-subtractive MRA (balanced steady-state-free-precession sequence; 2D-bSSFP-MRA). Moreover, all patients underwent contrast-enhanced MRA (CE-MRA) as standard-of-reference. Two readers performed a per-segment evaluation for image quality (4 = excellent to 0 = non-diagnostic) and severity of stenosis. Image quality scores of 2D-bSSFP-MRA were significantly higher compared to 3D-FSE-MRA (medians across readers: 4 vs. 3; p Tesla with significantly higher image quality and diagnostic accuracy compared to 3D flow-dependent subtractive MRA (3D-FSE-MRA). • 2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust NE-MRA technique at 3T • 2D-bSSFP-MRA outperforms 3D flow-dependent subtractive MRA (3D-FSE-MRA) as NE-MRA of calf arteries • 2D-bSSFP-MRA is a promising alternative to CE-MRA for calf PAOD evaluation.

  5. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  6. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  7. Vortex flow during early and late left ventricular filling in normal subjects : Quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis

    NARCIS (Netherlands)

    Elbaz, M.S.M.; Calkoen, E.E.; Westenberg, J.J.M.; Lelieveldt, B.P.F.; Roest, A.A.W.; Van der Geest, R.J.

    2014-01-01

    Background LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for

  8. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tiffany J. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Keck School of Medicine of the University of Southern California, Los Angeles, CA (United States); Girard, Erin [Siemens Corporation, Corporate Technology, Princeton, NJ (United States); Shellikeri, Sphoorti; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Setser, Randolph [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States)

    2016-03-15

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. (orig.)

  9. Photothermal resonance

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates...

  10. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  11. Optical Mass Displacement Tracking: A simplified field calibration method for the electro-mechanical seismometer.

    Science.gov (United States)

    Burk, D. R.; Mackey, K. G.; Hartse, H. E.

    2016-12-01

    We have developed a simplified field calibration method for use in seismic networks that still employ the classical electro-mechanical seismometer. Smaller networks may not always have the financial capability to purchase and operate modern, state of the art equipment. Therefore these networks generally operate a modern, low-cost digitizer that is paired to an existing electro-mechanical seismometer. These systems are typically poorly calibrated. Calibration of the station is difficult to estimate because coil loading, digitizer input impedance, and amplifier gain differences vary by station and digitizer model. Therefore, it is necessary to calibrate the station channel as a complete system to take into account all components from instrument, to amplifier, to even the digitizer. Routine calibrations at the smaller networks are not always consistent, because existing calibration techniques require either specialized equipment or significant technical expertise. To improve station data quality at the small network, we developed a calibration method that utilizes open source software and a commonly available laser position sensor. Using a signal generator and a small excitation coil, we force the mass of the instrument to oscillate at various frequencies across its operating range. We then compare the channel voltage output to the laser-measured mass displacement to determine the instrument voltage sensitivity at each frequency point. Using the standard equations of forced motion, a representation of the calibration curve as a function of voltage per unit of ground velocity is calculated. A computer algorithm optimizes the curve and then translates the instrument response into a Seismic Analysis Code (SAC) poles & zeros format. Results have been demonstrated to fall within a few percent of a standard laboratory calibration. This method is an effective and affordable option for networks that employ electro-mechanical seismometers, and it is currently being deployed in

  12. Multi-material micro-electromechanical fibers with bendable functional domains

    Science.gov (United States)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  13. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis.

    Science.gov (United States)

    Pandya, Hardik J; Park, Kihan; Desai, Jaydev P

    2015-06-23

    The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO 2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens.

  14. Elastic Wave Control Beyond Band-Gaps: Shaping the Flow of Waves in Plates and Half-Spaces with Subwavelength Resonant Rods

    Directory of Open Access Journals (Sweden)

    Andrea Colombi

    2017-08-01

    Full Text Available In metamaterial science, local resonance and hybridization are key phenomena strongly influencing the dispersion properties; the metasurface discussed in this article created by a cluster of resonators, subwavelength rods, atop an elastic surface being an exemplar with these features. On this metasurface, band-gaps, slow or fast waves, negative refraction, and dynamic anisotropy can all be observed by exploring frequencies and wavenumbers from the Floquet–Bloch problem and by using the Brillouin zone. These extreme characteristics, when appropriately engineered, can be used to design and control the propagation of elastic waves along the metasurface. For the exemplar we consider, two parameters are easily tuned: rod height and cluster periodicity. The height is directly related to the band-gap frequency and, hence, to the slow and fast waves, while the periodicity is related to the appearance of dynamic anisotropy. Playing with these two parameters generates a gallery of metasurface designs to control the propagation of both flexural waves in plates and surface Rayleigh waves for half-spaces. Scalability with respect to the frequency and wavelength of the governing physical laws allows the application of these concepts in very different fields and over a wide range of lengthscales.

  15. A Method for Evaluating the Electro-Mechanical Characteristics of Piezoelectric Actuators during Motion

    Directory of Open Access Journals (Sweden)

    Hongzhi Jia

    2012-08-01

    Full Text Available The electro-mechanical characteristics of piezoelectric actuators which have being driven are evaluated in this paper. The force generated by actuators is measured as an inertial force of a corner cub prism which is attached to the actuators. The Doppler frequency shift of a laser beam, due to the motion of actuator, is accurately measured by a heterodyne interferometer. Subsequently, the mechanical quantities, such as velocity, acceleration, force, power and displacement, are calculated from the Doppler frequency shift. With the measurement results of current and voltage of the actuator, the relationships between electrical and mechanical characteristics are evaluated.

  16. Electromechanical artificial heart with a new gear type and angled pump chambers.

    Science.gov (United States)

    Kaufmann, R; Reul, H; Rau, G

    1992-08-01

    The intrathoracic anatomical situation after explantation of the natural heart defines the maximum available space for the design of the housing as well as of the inlet- and outlet connectors of a fully implantable electromechanical artificial heart. Based on computer-assisted anatomical studies, a total artificial heart housing is designed which facilitates an oblique orientation of the pumping chambers for a better fluidmechanical and anatomical arrangement of the in- and outlet connectors. The pumping chamber geometry is based on modifications of an existing cardiac assist-system. Subsequently a mechanical gear which conforms to this anatomically adapted housing is developed.

  17. An Electromechanical Model for a Dielectric ElectroActive Polymer Generator

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    Smart electroactive materials have attracted much of the scientific interest over the past few years, as they reflect a quite promising alternative to conservative approaches used nowadays in various transducer applications. Especially Dielectric ElectroActive Polymers (DEAPs), which are constantly...... gaining momentum due to their superior low-speed performance, light-weighted nature and higher energy density when compared with competing technologies. In this paper an electromechanical model for a DEAP generator is presented, accounting for both the visco-hyperelastic characteristics of the polymer...

  18. Analytic approximations to nonlinear boundary value problems modeling beam-type nano-electromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics

    2017-06-01

    Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

  19. A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design

    Science.gov (United States)

    Schorderet, Alain; Prenleloup, Alain; Colla, Enrico

    2011-05-01

    Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic

  20. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  1. Opto-Electromechanical Devices for Low-Noise Detection of Radio Waves

    DEFF Research Database (Denmark)

    Bagci, Tolga

    of our device for optical detection of radio waves. We demonstrate an actual Johnson noise-limited voltage sensitivity of ≈ 800 pV/√Hz and beyond that, we infer a sensitivity of 60 pV/√Hz both for the thermal noise of the membrane and shot noise (quantum) of the optical readout, at the optimal...... electromechanical cooperativity Cem=150 . Our findings are supplemented by additional Y-factor noise temperature measurements. This performance competes with the current state of the art operational amplifiers at room temperature and our device's performance can be improved with further advances. For a specific set...

  2. Estimation of Eastern Denmark’s Electromechanical Modes from Ambient Phasor Measurement Data

    DEFF Research Database (Denmark)

    Vanfretti, Luigi; Garcia-Valle, Rodrigo; Uhlen, Kjetil

    2010-01-01

    In this paper we report on the preliminary results of a collaborative investigation effort between researchers in North America and Europe aiming to baseline the electromechanical modes and mode shapes of the Nordic system from synchronized phasor measurement data. We provide an overview on the D...... at the Radsted and Hovegård substations in Eastern Denmark. The estimated modes are in agreement with those shown in eigenanalysis studies, and other measurement-based investigations. More importantly, the emergence of a new 0.8 Hz mode in Sjælland is reported....

  3. Measuring Electromechanical Coupling in Patients with Coronary Artery Disease and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Lizhen Ji

    2016-04-01

    Full Text Available Coronary artery disease (CAD is the most common cause of death globally. To detect CAD noninvasively at an early stage before clinical symptoms occur is still nowadays challenging. Analysis of the variation of heartbeat interval (RRI opens a new avenue for evaluating the functional change of cardiovascular system which is accepted to occur at the subclinical stage of CAD. In addition, systolic time interval (STI and diastolic time interval (DTI also show potential. There may be coupling in these electromechanical time series due to their physiological connection. However, to the best of our knowledge no publication has systematically investigated how can the coupling be measured and how it changes in CAD patients. In this study, we enrolled 39 CAD patients and 36 healthy subjects and for each subject the electrocardiogram (ECG and photoplethysmography (PPG signals were recorded simultaneously for 5 min. The RRI series, STI series, and DTI series were constructed, respectively. We used linear cross correlation (CC, coherence function (CF, as well as nonlinear mutual information (MI, cross conditional entropy (XCE, cross sample entropy (XSampEn, and cross fuzzy entropy (XFuzzyEn to analyse the bivariate RRI-DTI coupling, RRI-STI coupling, and STI-DTI coupling, respectively. Our results suggest that the linear CC and CF generally have no significant difference between the two groups for all three types of bivariate coupling. The MI only shows weak change in RRI-DTI coupling. By comparison, the three entropy-based coupling measurements show significantly decreased coupling in CAD patients except XSampEn for RRI-DTI coupling (less significant and XCE for STI-DTI and RRI-STI coupling (not significant. Additionally, the XFuzzyEn performs best as it was still significant if we further applied the Bonferroni correction in our statistical analysis. Our study indicates that the intrinsic electromechanical coupling is most probably nonlinear and can better

  4. Resonant mode controllers for launch vehicle applications

    Science.gov (United States)

    Schreiner, Ken E.; Roth, Mary Ellen

    1992-01-01

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  5. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  6. Nondestructive Wireless Monitoring of Early-Age Concrete Strength Gain Using an Innovative Electromechanical Impedance Sensing System

    Directory of Open Access Journals (Sweden)

    C. P. Providakis

    2013-01-01

    Full Text Available Monitoring the concrete early-age strength gain at any arbitrary time from a few minutes to a few hours after mixing is crucial for operations such as removal of frameworks, prestress, or cracking control. This paper presents the development and evaluation of a potential active wireless USB sensing tool that consists of a miniaturized electromechanical impedance measuring chip and a reusable piezoelectric transducer appropriately installed in a Teflon-based enclosure to monitor the concrete strength development at early ages and initial hydration states. In this study, the changes of the measured electromechanical impedance signatures as obtained by using the proposed sensing system during the whole early-age concrete hydration process are experimentally investigated. It is found that the proposed electromechanical impedance (EMI sensing system associated with a properly defined statistical index which evaluates the rate of concrete strength development is very sensitive to the strength gain of concrete structures from their earliest stages.

  7. Nonenhanced magnetic resonance angiography (MRA) of the calf arteries at 3 Tesla: intraindividual comparison of 3D flow-dependent subtractive MRA and 2D flow-independent non-subtractive MRA

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, Gesine; Lauff, Marie-Teres; Hirsch, Sebastian; Hamm, Bernd; Wagner, Moritz [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Schwenke, Carsten [SCO:SSiS Statistical Consulting, Berlin (Germany)

    2016-12-15

    To prospectively compare 3D flow-dependent subtractive MRA vs. 2D flow-independent non-subtractive MRA for assessment of the calf arteries at 3 Tesla. Forty-two patients with peripheral arterial occlusive disease underwent nonenhanced MRA of calf arteries at 3 Tesla with 3D flow-dependent subtractive MRA (fast spin echo sequence; 3D-FSE-MRA) and 2D flow-independent non-subtractive MRA (balanced steady-state-free-precession sequence; 2D-bSSFP-MRA). Moreover, all patients underwent contrast-enhanced MRA (CE-MRA) as standard-of-reference. Two readers performed a per-segment evaluation for image quality (4 = excellent to 0 = non-diagnostic) and severity of stenosis. Image quality scores of 2D-bSSFP-MRA were significantly higher compared to 3D-FSE-MRA (medians across readers: 4 vs. 3; p < 0.0001) with lower rates of non-diagnostic vessel segments on 2D-bSSFP-MRA (reader 1: <1 % vs. 15 %; reader 2: 1 % vs. 29 %; p < 0.05). Diagnostic performance of 2D-bSSFP-MRA and 3D-FSE-MRA across readers showed sensitivities of 89 % (214/240) vs. 70 % (168/240), p = 0.0153; specificities: 91 % (840/926) vs. 63 % (585/926), p < 0.0001; and diagnostic accuracies of 90 % (1054/1166) vs. 65 % (753/1166), p < 0.0001. 2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust nonenhanced MRA technique for assessment of the calf arteries at 3 Tesla with significantly higher image quality and diagnostic accuracy compared to 3D flow-dependent subtractive MRA (3D-FSE-MRA). (orig.)

  8. PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    T.B. Nikitina

    2017-04-01

    Full Text Available Purpose. Developed the method for solving the problem of multiobjective synthesis of robust control by multimass electromechanical systems based on the construction of the Pareto optimal solutions using multiswarm stochastic multi-agent optimization of particles swarm, which reduces the time of determining the parameters of robust controls multimass electromechanical systems and satisfy a variety of requirements that apply to the work of such systems in different modes. Methodology. Multiobjective synthesis of robust control of multimass electromechanical systems is reduced to the solution of solving the problem of multiobjective optimization. To correct the above problem solving multiobjective optimization in addition to the vector optimization criteria and constraints must also be aware of the binary preference relations of local solutions against each other. The basis for such a formal approach is to build areas of Pareto-optimal solutions. This approach can significantly narrow down the range of possible solutions of the problem of optimal initial multiobjective optimization and, consequently, reduce the complexity of the person making the decision on the selection of a single version of the optimal solution. Results. The results of the synthesis of multi-criteria electromechanical servo system and a comparison of dynamic characteristics, and it is shown that the use of synthesized robust controllers reduced the error guidance working mechanism and reduced the system sensitivity to changes in the control parameters of the object compared to the existing system with standard controls. Originality. For the first time, based on the construction of the Pareto optimal solutions using a multiswarm stochastic multi-agent optimization particle algorithms improved method for solving formulated multiobjective multiextremal nonlinear programming problem with constraints, to which the problem of multiobjective synthesis of robust controls by multimass

  9. Numerical and Experimental Investigation of the Electromechanical Behavior of REBCO Tapes

    Science.gov (United States)

    Allen, N. C.; Chiesa, L.; Takayasu, M.

    2015-12-01

    To fully characterize the electromechanical behavior of a Twisted Stacked-Tape Cable (TSTC) it is important to understand the performance of the individual REBCO tapes under various loading conditions. Numerical modeling and experimentation have been used to investigate the electromechanical characteristics of two commercially available REBCO tapes (SuperPower and SuNAM). Tension and combined tension-torsion experiments on single tapes have been continued, from prior preliminary studies, to characterize their critical current behavior and mechanical strength. Additionally, structural finite element analysis was performed on single tapes under tension and combined tension-torsion to investigate the strain dependence of the critical current. The numerical results were compared to the experimental findings for validation. The SuNAM experimental data matched the numerical model very well while the SuperPower tape experienced degradation at lower stress and strain than predicted in the model. The Superpower tape also displayed greater variability in critical current between different samples as compared with the SuNAM tape.

  10. Operation of a high quality-factor gyroscope in electromechanical nonlinearities regime

    Science.gov (United States)

    Taheri-Tehrani, P.; Defoort, M.; Horsley, D. A.

    2017-07-01

    This paper describes the operation of a high quality factor gyroscope in various regimes where electromechanical nonlinearities introduce different forms of amplitude-frequency (A-f) dependence. Experiments are conducted using an epitaxially-encapsulated 2  ×  2 mm2 quad-mass gyroscope (QMG) with a quality factor of 85 000. The device exhibits third-order Duffing nonlinearity at low bias voltages (15 V) due to the mechanical nonlinearity in the flexures and at high bias voltages (35 V) due to third-order electrostatic nonlinearity. At intermediate voltages (~26 V), these third-order nonlinearities cancel and the amplitude-frequency dependence is greatly reduced. A model is developed to demonstrate the connection between the electromechanical nonlinearities and the amplitude-frequency dependence, also known as the backbone curve. Gyroscope operation is demonstrated in each nonlinear operating regime and the key performance measures of the gyroscope’s performance, angle random walk (ARW) and bias instability, are measured as a function of drive-mode vibration amplitude. We find that low ARW can be achieved even though the gyroscope’s drive mode exhibits large amplitude-frequency dependence, and that bias instability is largely independent of the operating regime.

  11. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    Directory of Open Access Journals (Sweden)

    John J. MOMOH

    2010-12-01

    Full Text Available Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will provide an economical means of performing standard creep experiments. The experimental result is a more comprehensive understanding of the laboratory experience, as the technology behind the creep testing machine, the test methodology and the response of materials loaded during experiment are explored. The machine provides a low cost solution for Mechanics of Materials laboratories interested in creep testing experiment and demonstration but not capable of funding the acquisition of commercially available creep testing machines. Creep curves of strain versus time on a thermoplastic material were plotted at a stress level of 1.95MPa, 3.25MPa and 4.55MPa and temperature of 20oC, 40oC and 60oC respectively. The machine is satisfactory since it is always ready for operation at any given time.

  12. A distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory

    Science.gov (United States)

    Chen, Chung-De

    2018-04-01

    In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.

  13. Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester

    Directory of Open Access Journals (Sweden)

    X.Z. Jiang

    2014-07-01

    Full Text Available Over the past few decades, wireless sensor networks have been widely used in the field of structure health monitoring of civil, mechanical, and aerospace systems. Currently, most wireless sensor networks are battery-powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements. As an attempt to address such issue, this article theoretically and experimentally studies a compression-based piezoelectric energy harvester using a multilayer stack configuration, which is suitable for civil infrastructure system applications where large compressive loads occur, such as heavily vehicular loading acting on pavements. In this article, we firstly present analytical and numerical modeling of the piezoelectric multilayer stack under axial compressive loading, which is based on the linear theory of piezoelectricity. A two-degree-of-freedom electromechanical model, considering both the mechanical and electrical aspects of the proposed harvester, was developed to characterize the harvested electrical power under the external electrical load. Exact closed-form expressions of the electromechanical models have been derived to analyze the mechanical and electrical properties of the proposed harvester. The theoretical analyses are validated through several experiments for a test prototype under harmonic excitations. The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels.

  14. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Science.gov (United States)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  15. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Directory of Open Access Journals (Sweden)

    Jian-Bo Cao

    2017-11-01

    Full Text Available In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG, on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  16. Electromechanical effects on tether formation from lipid membranes: A theoretical analysis

    Science.gov (United States)

    Glassinger, E.; Lee, A. C.; Raphael, R. M.

    2005-10-01

    The material properties of biomembranes can be measured by forming a tether, a thin bilayer tube that extends from the membrane surface. Recent experiments have demonstrated that the force required to maintain a tether is sensitive to the transmembrane potential. As a first approach towards understanding this phenomenon, a thermodynamic analysis of the influence of electrical fields on tether formation from an aspirated lipid vesicle is developed. The analysis considers contributions from Maxwell stresses as well as two forms of electromechanical coupling: coupling between the electric field and curvature strain (flexoelectric coupling) and between the electric field and areal strain (piezoelectric coupling). Predictions of equilibrium tether conformations are obtained numerically. For expected values of the dimensionless coupling parameters, flexoelectric coupling alters the force required to form a tether of a given length, while piezoelectric coupling and Maxwell forces do not greatly change the force versus tether length behavior. The results of this analysis indicate that tether experiments have the potential to characterize electromechanical coupling in both synthetic and cellular membranes.

  17. FEM Analysis of a New Electromechanical Converter with Rolling Rotor and Axial Air-Gap

    Directory of Open Access Journals (Sweden)

    UNGUREANU, C.

    2015-11-01

    Full Text Available The paper presents the modeling of a new type of electromechanical converter with rolling rotor (ECRR in order to obtain an optimisation at functional level. The ECRR prototype comprises a stator composed of twelve magnetic poles and a disk-shaped rolling rotor made of ferromagnetic material, without windings. Each magnetic pole is made of an E-shaped magnetic system and a winding placed on its central column. The electromechanical converter with rolling rotor is analyzed through a magnetic field study with Flux2D software in magnetostatic application. The field study examines the influence of the rotor thickness, axial air-gap size and current density on the magnetic attraction force that changes the position of the disk-shaped rolling rotor. Also, it is analyzed the variation of the magnetic attraction force for different inclination angles of the rolling rotor. The main advantage of the ECRR is represented by a low rotational speed without using mechanical gearboxes. The ECRR prototype can be used in photovoltaic panels tracking systems.

  18. Ferroelectric KNNT Fibers by Thermoplastic Extrusion Process: Microstructure and Electromechanical Characterization

    Directory of Open Access Journals (Sweden)

    Tony Lusiola

    2015-05-01

    Full Text Available B-site substitution in KNN with tantalum results in a higher d33 and dielectric constant. This higher value makes KNNT interesting for lead-free actuator applications. KNNT fibers with diameters of 300 and 500 μm have been extruded and sintered at 1200 °C in a KNNT-enriched atmosphere. Subsequently, the influence of fiber diameter on the microstructure (porosity and grain size was investigated. The measurements revealed that with decreasing fiber diameter, the porosity increases, whereas the grain size decreases. The influence of these microstructural differences on the piezoelectric properties was evaluated using a novel characterization procedure for single fibers. The larger diameter fibers show an increase in the electromechanical properties measured, i.e., d33, tanδ, Pr, Ec and the free longitudinal fiber displacement, when compared to smaller diameter fibers. The lower alkali losses result in a larger grain size, a higher density during sintering and lead to higher electromechanical properties.

  19. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  20. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Spithoven, E.M.; Meijer, E.; Boertien, W.E.; Gaillard, C.A.J.M.; Jong, P.E. de; Gansevoort, R.T. [University of Groningen, Department of Nephrology, Community and Occupational Medicine, University Medical Center Groningen, PO Box 30.001, RB Groningen (Netherlands); Borns, C.; Kappert, P.; Greuter, M.J.W.; Jagt, E. van der [University of Groningen, Department of Radiology, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands); Vart, P. [University of Groningen, Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands)

    2016-03-15

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBF{sub MRI}) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBF{sub MRI} measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBF{sub MRI}. After validation, we measured RBF{sub MRI} in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBF{sub MRI} and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBF{sub MRI} measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBF{sub MRI} compared to RBF{sub Hip,} whereas in subjects with lower eGFRs, this was significantly less for RBF{sub MRI}. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  1. Restoration of myocardial blood flow following percutaneous coronary balloon dilatation and stent implantation: Assessment with qualitative and quantitative contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sensky, P.R.; Samani, N.J.; Horsfield, M.A.; Cherryman, G.R.

    2002-01-01

    AIM: To examine the serial use of magnetic resonance imaging (MRI) to evaluate regional myocardial perfusion changes following percutaneous coronary angioplasty and stent implantation (PTCA). MATERIALS AND METHODS: Six patients with single vessel coronary artery disease (CAD) underwent contrast-enhanced first pass MRI immediately prior to (visit A) and within 7 days after (visit B) PTCA. Three sequential short axis slices were obtained after gadodiamide (Gd) bolus (0.025 mmol/kg -1 ) at rest and during adenosine. Each short axis was divided radially into eight regions of interest (ROIs). ROIs were anatomically assigned to a coronary artery territory (CAT). Stress and rest qualitative and quantitative (unidirectional extraction fraction constant (K i ); index of myocardial perfusion reserve (MPRI) = stressK i / restK i ) perfusion parameters were determined for ROI supplied by remote and stenosed/stented vessels for each visit. RESULTS: In stented ROIs the number of ROIs demonstrating normal perfusion, as opposed to reversible perfusion deficits, increased. Qualitative perfusion assessment in remote CATs was unchanged. MPRI in stenotic CATs was lower than in remote CATs at visit A (P < 0.001). Following PTCA, MPRI increased in stented CATs (P < 0.001) but was unchanged in remote CATs. CONCLUSION: Restoration of myocardial perfusion following PTCA can be delineated with qualitative and quantitative perfusion MRI. Although at present the investigation is technically complex and not perfectly sensitive or specific, MRI has the potential to be a valuable tool for patient follow-up and evaluation of revascularization strategy efficacy. Sensky, P.R. et al. (2002)

  2. Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule

    Czech Academy of Sciences Publication Activity Database

    Havelka, Daniel; Cifra, Michal; Kučera, Ondřej

    2014-01-01

    Roč. 104, č. 24 (2014), s. 243702 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:67985882 Keywords : Biophysical mechanism * Collective vibration mode * Electro-mechanical Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.302, year: 2014

  3. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    International Nuclear Information System (INIS)

    Akhilesan, S; Lakshmana Rao, C; Varughese, S

    2014-01-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior. (papers)

  4. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

    Science.gov (United States)

    Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong

    2017-12-01

    Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

  5. Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride composites

    Directory of Open Access Journals (Sweden)

    G. P. Zheng

    2016-09-01

    Full Text Available Three-dimensional nanoporous graphene monoliths are utilized to prepare graphene-poly(vinylidene fluoride nanocomposites with enhanced mechanical and electro-mechanical properties. Pre-treatment of the polymer (poly(vinylidene fluoride, PVDF with graphene oxides (GOs facilitates the formation of uniform and thin PVDF films with a typical thickness below 100 nm well coated at the graphene nano-sheets. Besides their excellent compressibility, ductility and mechanical strength, the nanoporous graphene-PVDF nanocomposites are found to possess high sensitivity in strain-dependent electrical conductivity. The improved mechanical and electro-mechanical properties are ascribed to the enhanced crystalline β phase in PVDF which possesses piezoelectricity. The mechanical relaxation analyses on the interfaces between graphene and PVDF reveal that the improved mechanical and electro-mechanical properties could result from the interaction between the –C=O groups in the nanoporous graphene and the –CF2 groups in PVDF, which also explains the important role of GOs in the preparation of the graphene-polymer nanocomposites with superior combined mechanical and electro-mechanical properties.

  6. Electromechanical properties of multi-walled carbon nano-tubes; Proprietes electromecaniques des nanotubes de carbone multiparois

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, R.

    2005-12-15

    In this PhD thesis, we tackled theoretically and experimentally the problem of designing nano-electromechanical systems (NEMS) based on multi-walled carbon nano-tubes (MWCNTs). Furthermore, we applied our know-how to perform components like switches. We developed a theoretical model to describe the deflection of a suspended MWCNT stressed by an attractive electrostatic force. Our model highlights a scaling law linking up the electrostatic deflection, geometrical, electrical and physical parameters of MWCNTs based NEMS. This result constitutes a practical designing tool because it predicts their electromechanical behaviour on a 'large' range of operational parameters. At the same time, we developed several processes to fabricate nano-structures incorporating a suspended MWCNT electrostatically actuated. Among these different structures, the simplest was used to develop a method for probing electromechanical properties of MWCNTs. Our method is based on atomic force microscopy measurements on a doubly clamped suspended MWCNT electrostatically deflected by a drive voltage. These measurements show clearly for different MWCNTs (different diameter and length) the existence of such scaling law in agreement with the continuum model prediction. From these results, we extracted the Young's modulus of MWCNTs. For diameters smaller than 30 nm it is constant and its average value equals 400 GPa. Above, we observed a strong decrease that could be explained by the entry in a non-linear regime of deformation. Finally, we show the realization of an electromechanical switch based on a suspended MWCNT which presents good switching behaviour. (author)

  7. Revision of Electro-Mechanical Drafting Program to Include CAD/D (Computer-Aided Drafting/Design). Final Report.

    Science.gov (United States)

    Snyder, Nancy V.

    North Seattle Community College decided to integrate computer-aided design/drafting (CAD/D) into its Electro-Mechanical Drafting Program. This choice necessitated a redefinition of the program through new curriculum and course development. To initiate the project, a new industrial advisory council was formed. Major electronic and recruiting firms…

  8. THE CONTROLLED CHOKE TRANSFORMER IN THE STRUCTURE OF THE ELECTROMECHANICAL SYSTEM FOR GENERATING ALTERNATING CURRENT OF FIXED FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. V. Mishin

    2015-01-01

    Full Text Available This article briefly describes the design of controlled choke transformer regulator. The electrical circuit and the results of laboratory tests in the form of characteristics of idling, short circuit and performance are presented. The expediency of application of such devices in the electromechanical system of generating alternating current of constant frequency is grounded.

  9. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  10. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  11. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    tailored channeling of sensory stimulus aligned as ‘art-making’ and ‘game playing’ core experiences. Thus, affecting brain plasticity and human motoric-performance via the adaptability (plasticity) of digital medias result in closure of the human afferent-efferent neural feedback loop closure through...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  12. Convergence, error estimation and adaptivity in non-elliptic coupled electro-mechanical problems

    Science.gov (United States)

    Zboiński, Grzegorz

    2018-01-01

    This paper presents the influence of the lack of ellipticity property on the solution convergence of the coupled electro-mechanical problems. This influence consists in the non-monotonic convergence which can hardly be described analytically. We recall our previous unpublished research where we demonstrate that the non-monotonicity depends very much on the energy level of the two component parts of the energy related to the coupled fields of mechanical and electric character. We further investigate the influence of this non-monotonic character of the convergence on the error estimation via equilibrated residual method. We also assess the influence of such convergence on the three-step error-controlled adaptive algorithms. We indicate the methods of practical overcoming the mentioned problems related to the lack of ellipticity.

  13. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Mark [Department of Engineering, CERN, 1211 Geneva (Switzerland); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, Benevento (Italy); Giustiniani, Alessandro; Masi, Alessandro [Department of Engineering, CERN, 1211 Geneva (Switzerland)

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  14. The Application of Euler-Lagrange Method of Optimization for Electromechanical Motion Control

    Directory of Open Access Journals (Sweden)

    Cristian VASILACHE

    2000-12-01

    Full Text Available Industrial and non-industrial processes such as production plans, robots, pumps, compressors, home applications, transportation of people and goods etc., require some kinds of motion control. The main functions of electromechanical drives are to adjust these processes by controlling the torque, speed or position. The objective of this paper is to perform the control of motion while minimizing power losses, that is ∫Ri2dt, in process conversion of electrical energy to mechanical energy. The optimal control laws for our problem is find using the Euler - Lagrange principle. We consider three types of controlled drives: torque, speed and position. Each of them has different control laws. By implementation of these controls with Borland C++ and Matlab environment, substantial energy savings are obtained.

  15. The electromechanical converter in the systems of desulfurisation of crude oil

    Directory of Open Access Journals (Sweden)

    Kuimov Denis

    2017-01-01

    Full Text Available In article authors have investigated a question of a possibility of application of hydrodynamic cavitation processing of crude oil for the purpose of decrease in content of sulphurous compounds. The electromechanical converter with a secondary discrete part, the being device exciting in the processed material the cavitation and shock field by means of heavy traffic of big set of ferromagnetic elements under the influence of external magnetic field is presented. Features of initiation of hydrodynamic cavitation on the example of the movement of a single ferromagnetic element are considered. Results of the mathematical description of process of desulphurization of crude oil are presented. On the basis of economic efficiency of the presented technological process, authors have offered options of introduction of technology on production objects.

  16. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    Science.gov (United States)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  17. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  18. Thermo-electrical equivalents for simulating the electro-mechanical behavior of biological tissue.

    Science.gov (United States)

    Cinelli, I; Duffy, M; McHugh, P E

    2015-01-01

    Equivalence is one of most popular techniques to simulate the behavior of systems governed by the same type of differential equation. In this case, a thermo-electrical equivalence is considered as a method for modelling the inter-dependence of electrical and mechanical phenomena in biological tissue. We seek to assess this approach for multi-scale models (from micro-structure to tissue scale) of biological media, such as nerve cells and cardiac tissue, in which the electrical charge distribution is modelled as a heat distribution in an equivalent thermal system. This procedure allows for the reduction in problem complexity and it facilitates the coupling of electrical and mechanical phenomena in an efficient and practical way. Although the findings of this analysis are mainly addressed towards the electro-mechanics of tissue within the biomedical domain, the same approach could be used in other studies in which a coupled finite element analysis is required.

  19. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures

    Directory of Open Access Journals (Sweden)

    Wongi S. Na

    2018-04-01

    Full Text Available The birth of smart materials such as piezoelectric (PZT transducers has aided in revolutionizing the field of structural health monitoring (SHM based on non-destructive testing (NDT methods. While a relatively new NDT method known as the electromechanical (EMI technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works.

  20. submitter An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    CERN Document Server

    Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro

    2016-01-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  1. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  2. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  3. Electromechanical memory effect in a ferroelectric nanoparticle-suspended liquid crystal

    Science.gov (United States)

    Basu, Rajratan

    2014-03-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNP) was doped in a liquid crystal (LC), and the LC +FNP hybrid was found to exhibit an electromechanical memory effect in the isotropic phase. The permanent dipole moment of the FNPs causes the LC molecule to form short-range order surrounding the FNPs. This FNP-induced short-range order becomes more prominent in the isotropic phase when the global nematic order is absent. These short-range domains, being anisotropic in nature, interact with the external electric field. When the field goes off, these domains stay oriented due to the absence of the long range order in the isotropic phase, showing a hysteresis effect. The area under the hysteresis graph shows a significant pretransitional behavior on approaching the nematic phase from the isotropic phase.

  4. Design and fabrication of a unique electromechanical machine for long-term fatigue testing

    International Nuclear Information System (INIS)

    Boling, K.W.

    1984-12-01

    An electromechanical machine has been designed and fabricated for performing long-term fatigue tests under conditions that simulate those in modern plants. The machine is now commercially available. Its advantages over current electrohydraulic machines are lower initial cost, minimum maintenance requirements, and greater reliability especially when performing long tests. The machine operates in closed-loop fashion by utilizing continuous feedback signals from the specimen extensometer or load cell, it is programmable for testing in strain or load control. The maximum ram rate is 0.056 mm/s (0.134 in./min), maximum ram travel is 102 mm (4 in.) and load capacity is +-44 (+-10 kips). Induction heating controls speciment temperatures to 1000 0 C

  5. Observation and Interpretation of Motional Sideband Asymmetry in a Quantum Electromechanical Device

    Directory of Open Access Journals (Sweden)

    A. J. Weinstein

    2014-10-01

    Full Text Available Quantum electromechanical systems offer a unique opportunity to probe quantum noise properties in macroscopic devices, properties that ultimately stem from Heisenberg’s uncertainty relations. A simple example of this behavior is expected to occur in a microwave parametric transducer, where mechanical motion generates motional sidebands corresponding to the up-and-down frequency conversion of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We measure this fundamental imbalance in a microwave transducer coupled to a radio-frequency mechanical mode, cooled near the ground state of motion. We also discuss the subtle origin of this imbalance: depending on the measurement scheme, the imbalance is most naturally attributed to the quantum fluctuations of either the mechanical mode or of the electromagnetic field.

  6. Comparison of electromechanical properties and lattice distortions of different cuprate high temperature superconductors

    CERN Document Server

    Scheuerlein, C.; Grether, A; Rikel, M O; Hudspeth, J; Sugano, M; Ballarino, A; Bottura, L

    2016-01-01

    The electromechanical properties of different cuprate high-temperature superconductors, notably two ReBCO tapes, a reinforced and a nonreinforced Bi-2223 tape, and a Bi-2212 wire, have been studied. The axial tensile stress and strain, as well as the transverse compressive stress limits at which an irreversible critical current degradation occurs, are compared. The experimental setup has been integrated in a high-energy synchrotron beamline, and the self-field critical current and lattice parameter changes as a function of tensile stress and strain of a reinforced Bi-2223 tape have been measured simultaneously. Initially, the Bi-2223 filaments exhibit nearly linear elastic behavior up to the strain at which an irreversible degradation is observed. At 77 K, an axial Bi-2223 filament precompression of 0.09% in the composite tape and a Bi-2223 Poisson ratio ν = 0.21 have been determined.

  7. Fast Simulating High Order Models Application to Micro Electro-Mechanical Systems (MEMS)

    International Nuclear Information System (INIS)

    Yacine, Z.; Benfdila, A.; Djennoune, S.

    2009-01-01

    The approximation of high order systems by low order models is one of the important problems in system theory. The use of a reduced order model makes it easier to implement analysis, simulations and control system designs. Numerous methods are available in the literature for order reduction of linear continuous systems in time domain as well as in frequency domain. But, this is not the case for non linear systems. The well known Trajectory Piece-Wise Linear approach (TPWL) elaborated to nonlinear model order reduction guarantees a simplification and an accurate representation of the behaviour of strongly non linear systems handling local and global approximation. The present attempt is towards evolving an improvement for the TPWL order reduction technique, which ensures a good quality of approximation combining the advantages of the Krylov subspaces method and the local linearization. We illustrate the technique on a MEMS circuit (Micro Electro-Mechanical System).

  8. Multi-Level Models For Diagnosis Of Complex Electro-Mechanical Systems

    Science.gov (United States)

    Smith, John A.; Biswas, Gautam

    1989-03-01

    This paper discusses a knowledge-based system for diagnostic problem solving based on a multi-level representational structure and associated reasoning methods. The motivation behind this approach is to combine shallow evidential models for fault diagnosis with deep qualitative models that derive behavior from structural descriptions. In addition, the reasoning scheme utilizes historical data based on past experience for diagnosis. Using this integrated framework, we concentrate on the following issues: (i) Multi-level knowledge based system design, and (ii) Reasoning systems that exploit the multi-level representational structure for diagnostic problem solving. This system is applied to the diagnosis of a complex electro-mechanical system, specifically, the upper cargo door of the DC-10 aircraft in use at Federal Express Corporation.

  9. Chattering-Free Sliding-Mode Control for Electromechanical Actuator with Backlash Nonlinearity

    Directory of Open Access Journals (Sweden)

    Dongqi Ma

    2017-01-01

    Full Text Available Considering the backlash nonlinearity and parameter time-varying characteristics in electromechanical actuators, a chattering-free sliding-mode control strategy is proposed in this paper to regulate the rudder angle and suppress unknown external disturbances. Different from most existing backlash compensation methods, a special continuous function is addressed to approximate the backlash nonlinear dead-zone model. Regarding the approximation error, unmodeled dynamics, and unknown external disturbances as a disturbance-like term, a strict feedback nonlinear model is established. Based on this nonlinear model, a chattering-free nonsingular terminal sliding-mode controller is proposed to achieve the rudder angle tracking with a chattering elimination and tracking dynamic performance improvement. A Lyapunov-based proof ensures the asymptotic stability and finite-time convergence of the closed-loop system. Experimental results have verified the effectiveness of the proposed method.

  10. Department of Defense need for a micro-electromechanical systems (MEMS) reliability assessment program

    Science.gov (United States)

    Zunino, James L., III; Skelton, Donald

    2005-01-01

    As the United States (U.S.) Army transforms into a lighter, more lethal, and more agile force, the technologies that support both legacy and emerging weapon systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army as well as entire DOD will heavily rely on in achieving these objectives. Current and future military applications of MEMS devices include safety and arming devices, guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless radio frequency identification (RFID), etc. Even though the reliance on MEMS devices has been increasing, there have been no studies performed to determine their reliability and failure mechanisms. Furthermore, no standardized test protocols exist for assessing reliability. Accordingly, the U.S. Army Corrosion Office at Picatinny, NJ has initiated the MEMS Reliability Assessment Program to address this issue.

  11. Experimental bifurcations and chaos in a modified self-sustained macro electromechanical system

    Science.gov (United States)

    Kitio Kwuimy, C. A.; Nana, B.; Woafo, P.

    2010-07-01

    A class of self-sustained Macro ElectroMechanical (MaEMS) Systems is made up of a Rayleigh-Duffing oscillator actuating a mechanical arm through a magnetic coupling. In this paper, to avoid experimental constraints, an audio amplifier is added to the device. Quenching phenomenon, bifurcation and chaos are predicted and shown to occur in a device of this class of MaEMS. Especially by using linear stability analysis, the condition for the quenching phenomenon is derived. Chaos and bifurcation are predicted using Lyapunov exponent and bifurcation diagram. A prototype of device is designed and fabricated. Experimental results for this device that are consistent with results from theoretical investigations are presented and convincingly show quenching phenomenon, bifurcation and chaos.

  12. Proposal of a new electromechanical total artificial heart: the TAH Serpentina.

    Science.gov (United States)

    Sauer, I M; Frank, J; Bücherl, E S

    1999-03-01

    A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.

  13. Macroporous conductive polymer films fabricated by electrospun nanofiber templates and their electromechanical properties

    International Nuclear Information System (INIS)

    Zhou Jian; Gao Qiang; Fukawa, Tadashi; Shirai, Hirofusa; Kimura, Mutsumi

    2011-01-01

    We demonstrate a facile method to fabricate macroporous poly (3,4-ethylenedioxythiophene)/poly (4-styrene sulfonate) (PEDOT/PSS) films with empty channels by using electrospun nanofiber as a sacrificial template. The channels within the PEDOT/PSS films were prepared by depositing PEDOT/PSS aqueous dispersion onto poly (vinyl pyrrolidone)/poly(methyl methacrylate) (PVP/PMMA) nanofiber template, and then the nanofibers were removed by solvent extraction. The average diameter of the channels is 313 ± 45 nm, which is almost the same as the parent PVP/PMMA nanofibers. The macroporous PEDOT/PSS film with the empty channels showed an enhancement of electromechanical properties compared to the nonporous PEDOT/PSS film.

  14. Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers

    Science.gov (United States)

    Safaei, Mohsen; Meneghini, R. Michael; Anton, Steven R.

    2017-09-01

    Total knee arthroplasty is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.

  15. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model

    International Nuclear Information System (INIS)

    Xia Ling; Huo Meimei; Wei Qing; Liu Feng; Crozier, Stuart

    2005-01-01

    This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy of ECG simulation when it is used in heart-torso model-based body surface potential simulation studies

  16. Modeling and control simulation of an electromechanical mm-wave launching system for thermonuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, Christos, E-mail: ctsiron@mail.ntua.gr [School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens (Greece); Department of Physics, Aristotle University of Thessaloniki, 54 136 Thessaloniki (Greece); Giannopoulos, Iordanis K.; Vasileiadou, Soultana; Kakogiannos, Ioannis D.; Kalligeropoulos, Dimitrios [Department of Automation, Technological Education Institute of Piraeus, 122 44 Piraeus (Greece)

    2016-11-15

    Highlights: • Open-loop modeling and control simulation of an electromechanical mm-wave launcher. • Simulations of the experiment without employing the real (hardware) system. • Launcher mirror dynamics correspond to a second-order weakly-nonlinear system. • Closed-loop control design in terms of cascade PIDs achieves required performance. - Abstract: Controlled thermonuclear fusion via magnetic confinement, still in experimental stage, has the potential to become a viable and environment-friendly solution to the energy problem, especially for the high-power needs of modern industry. In order to optimize the operation of devices based on the tokamak principle, automatic control systems are envisaged to fulfill the requirements for the magnetic equilibrium and plasma stability, with copper coils, neutral gas injectors and microwave sources used as actuators. In present-day experiments, the implemented control loops are simple and practical, however in future devices like ITER (presently under construction) more sophisticated control design will be required, based on realistic closed-loop simulations with efficient computational tools and real-time diagnosing. For magnetohydrodynamic instability control, the system should include physics/engineering models for the plasma dynamics, the wave actuation and the diagnostic sensors, as well as controllers based on classical or modern principles. In this work, we present a model for a specific design of a controlled electromechanical millimeter-wave launcher, which executes the major part of the wave actuation, and perform numerical simulations of its open-loop dynamics and closed-loop control for scenarios relevant to tearing mode stabilization in medium-sized tokamaks.

  17. Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers.

    Science.gov (United States)

    Safaei, Mohsen; Meneghini, R Michael; Anton, Steven R

    2017-09-01

    Total knee arthroplasty (TKA) is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.

  18. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  19. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  20. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.