WorldWideScience

Sample records for flown on-board sts-115

  1. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    Science.gov (United States)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; Schurr, J. R.; Pierson, D. L.; Stodieck, L.; Hing, S.; Hammond, T.; Allen, P.; Baker, C.; Parra, M.; Dumars, P.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson, using ground-based analog systems demonstrate important changes in the genotypic, phenotypic, and virulence characteristics of this pathogen resulting from exposure to a flight-like environment (i.e. modeled microgravity).

  2. Dominant lethal mutations in Drosophila melanogaster natural populations flown on board ISS.

    Science.gov (United States)

    Larina, Olga; Bekker, Anna

    The resistance to mutagenic impacts represents an important issue of manned space missions. However the reasons of its individual variability as well as the factors which could induce mutations in space flight are not fully understood. Drosophila studies accomplished by several research teams at real space flights, revealed pronounced increase of mutations in somatic and reproductive cells, nonetheless, quite an opposite spaceflight effects also occurred, i.e., mei-41 laboratory strain showed postflight mutation rates lower than that in ground control. In order to monitor the influence of space flight on the mutational process, 4 series of space experiment with D. melanogaster wild type populations were performed at International Space Station (ISS). The appliance “Drosophila-2” used for breeding of drosophila in spaceflight conditions, enabled to conduct synchronous studies with two samples of fly populations. First instar drosophila larvae were placed into the experimental appliance 12 hours before the start of transport spacecraft. The duration of experiments was 7.9 through 19.7 days. In 19.7-day experiment, two generations of the flies were raised during the space flight, and then delivered to the earth. The frequency of dominant lethal mutations (DLM) was evaluated as the percentage of embryonic death in the progeny of experimental drosophila samples. DLM tests in VV-09 and Chas-09 natural populations, performed after the exposure to 10.9-day flight, showed the increase of DLM rate in Chas-09 (0.077 in flight series vs. 0.43 in earth-based control) while post-flight DLM value in VV-09 did not diverge from on-earth sample (0.025 and 0.027 correspondingly). The same results for VV-09 were obtained after the 14.7-day and 7.9-day flights with the only exception: 7.9-day flight experiment employed DLM measurements in two VV-09 spaceflight samples, differing by the age of the flies, and the above DLM rates were detected in “younger” VV-09 sample only. DLM in the “elder” sample which returned to the earth at the late pupae stage (0.049) was 2 times higher than in both “young” flight and ground control series. To elucidate the factors underlying these discrepancies, DLM evaluation after the subsequent, 19.6-day flight experiment, was performed in three fractions of second in-flight VV-09 generation, each of them comprised imagoes with definite hatching date (postflight days 2, 3, and 5). The results revealed a gradual decrease of the proportion of embryonic death in the progeny of the second in-flight generation from 0.113 to 0.032 (which is close to baseline values). The ionizing radiation at low Earth orbits alone could not produce considerable impact on mutational frequency. By the return to the earth the flies of the first fractions had attained the pre-imaginal ontogenetic stages which display decreased tolerance to unfavourable environmental conditions, which could probably affect the mutation rate. The results obtained show that native D. melanogaster populations display different susceptibility to mutagenic impacts of space flight. Mutation rate depends on the stage of ontogenetic development and thus could present the source of discrepancies in the results of space experiments.

  3. Employee on Boarding Process Automation

    Directory of Open Access Journals (Sweden)

    Khushboo Nalband

    2017-03-01

    Full Text Available On boarding, also known as organizational socialization, plays a vital role in building the initial relationship between an organization and an employee. It also contributes to an employees’ satisfaction, better performance and greater organizational commitment thus increasing an employees’ effectiveness and productivity in his/her role. Therefore, it is essential that on boarding process of an organization is efficient and effective to improve new employees’ retention. Generally this on boarding process is done manually which is time consuming and monotonous. To enhance this process, the proposed solution automates the on boarding or joining process. It will enable HR, ADMINISTRATOR and IT to complete this process by robot which will automatically perform the actions taken to complete the on boarding process. To complete this process direct access is given to applications, where as in automation, robot will perform all the actions taken to complete the process, which is a secured way to access applications. This will thus improve the timeframe and efficiency to complete the on boarding or joining process.

  4. New On-board Microprocessors

    Science.gov (United States)

    Weigand, R.

    Two new processor devices have been developed for the use on board of spacecrafts. An 8-bit 8032-microcontroller targets typical controlling applications in instruments and sub-systems, or could be used as a main processor on small satellites, whereas the LEON 32-bit SPARC processor can be used for high performance controlling and data processing tasks. The ADV80S32 is fully compliant to the Intel 80x1 architecture and instruction set, extended by additional peripherals, 512 bytes on-chip RAM and a bootstrap PROM, which allows downloading the application software using the CCSDS PacketWire pro- tocol. The memory controller provides a de-multiplexed address/data bus, and allows to access up to 16 MB data and 8 MB program RAM. The peripherals have been de- signed for the specific needs of a spacecraft, such as serial interfaces compatible to RS232, PacketWire and TTC-B-01, counters/timers for extended duration and a CRC calculation unit accelerating the CCSDS TM/TC protocol. The 0.5 um Atmel manu- facturing technology (MG2RT) provides latch-up and total dose immunity; SEU fault immunity is implemented by using SEU hardened Flip-Flops and EDAC protection of internal and external memories. The maximum clock frequency of 20 MHz allows a processing power of 3 MIPS. Engineering samples are available. For SW develop- ment, various SW packages for the 8051 architecture are on the market. The LEON processor implements a 32-bit SPARC V8 architecture, including all the multiply and divide instructions, complemented by a floating-point unit (FPU). It includes several standard peripherals, such as timers/watchdog, interrupt controller, UARTs, parallel I/Os and a memory controller, allowing to use 8, 16 and 32 bit PROM, SRAM or memory mapped I/O. With on-chip separate instruction and data caches, almost one instruction per clock cycle can be reached in some applications. A 33-MHz 32-bit PCI master/target interface and a PCI arbiter allow operating the device in a plug-in card

  5. On-board Data Mining

    Science.gov (United States)

    Tanner, Steve; Stein, Cara; Graves, Sara J.

    Networks of remote sensors are becoming more common as technology improves and costs decline. In the past, a remote sensor was usually a device that collected data to be retrieved at a later time by some other mechanism. This collected data were usually processed well after the fact at a computer greatly removed from the in situ sensing location. This has begun to change as sensor technology, on-board processing, and network communication capabilities have increased and their prices have dropped. There has been an explosion in the number of sensors and sensing devices, not just around the world, but literally throughout the solar system. These sensors are not only becoming vastly more sophisticated, accurate, and detailed in the data they gather but they are also becoming cheaper, lighter, and smaller. At the same time, engineers have developed improved methods to embed computing systems, memory, storage, and communication capabilities into the platforms that host these sensors. Now, it is not unusual to see large networks of sensors working in cooperation with one another. Nor does it seem strange to see the autonomous operation of sensorbased systems, from space-based satellites to smart vacuum cleaners that keep our homes clean and robotic toys that help to entertain and educate our children. But access to sensor data and computing power is only part of the story. For all the power of these systems, there are still substantial limits to what they can accomplish. These include the well-known limits to current Artificial Intelligence capabilities and our limited ability to program the abstract concepts, goals, and improvisation needed for fully autonomous systems. But it also includes much more basic engineering problems such as lack of adequate power, communications bandwidth, and memory, as well as problems with the geolocation and real-time georeferencing required to integrate data from multiple sensors to be used together.

  6. General Aviation: Hours Flown and Avionics Purchase Decisions.

    Science.gov (United States)

    1978-05-01

    cost and income on hours flown for the various hours flown categories will be considered in Section 2-4 of this chapter. 19 For the benefit of the...omitted because of irrelevance. 59 - 7it Results for the age related factors are as expected-- cider aircraft fly fewer and more recent vintage aircraft...based on the incremental benefits acquired by the "add-one," or simply a function of a larger number of owners having only one or the other type of

  7. Gender Quotas on Board of Directors

    DEFF Research Database (Denmark)

    Smith, Nina

    2013-01-01

    on the grounds of economic efficiency. Furthermore, in most countries a limited number of women are qualified to join boards of directors, and it is not clear from the evidence to date on the operation of quotas whether they will lead to a better pool of female candidates in the medium and long term.......Beside arguments of fairness and equal opportunities, it is often argued that gender diversity on boards of directors may improve firm performance, but the empirical results are mixed and often negative. Based on the available research, gender quotas on boards of directors cannot be justified...

  8. 47 CFR 80.1179 - On-board repeater limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board repeater limitations. 80.1179 Section... On-board repeater limitations. When an on-board repeater is used, the following limitations must be met: (a) The on-board repeater antenna must be located no higher than 3 meters (10 feet) above...

  9. SAS wave experiment on board Magion 4

    Directory of Open Access Journals (Sweden)

    J. Błęcki

    Full Text Available A short description of the SAS (subsatellite analyser of spectra wave experiment on board the Magion-4 subsatellite is given. We present first measurements of the magnetic-field fluctuations in the frequency range 32–2000 Hz obtained in the magnetotail during the disturbed period at the magnetopause and in the polar cusp.

  10. Faculty Members on Boards of Trustees

    Science.gov (United States)

    Ehrenberg, Ronald G.; Patterson, Richard W.; Key, Andrew V.

    2013-01-01

    During the 2011-12 academic year, a group of faculty and student researchers at the Cornell Higher Education Research Institute (CHERI) gathered information on which public and private institutions had faculty members on boards of trustees and obtained the names of the faculty members serving in these roles. In April and May 2012, the authors…

  11. Women on boards and firm performance

    NARCIS (Netherlands)

    Lückerath – Rovers, M.

    2013-01-01

    This study investigates the financial performance of Dutch companies both with and without women on their boards. The analysis extends earlier methods used in research by Catalyst (The bottom line: corporate performance and women’s representation on boards, 2007) and McKinsey (Women matter. Gender d

  12. Women on boards and firm performance

    NARCIS (Netherlands)

    M. Lückerath-Rovers (Mijntje)

    2013-01-01

    textabstractThis study investigates the financial performance of Dutch companies both with and without women on their boards. The analysis extends earlier methods used in research by Catalyst (The bottom line: corporate performance and women's representation on boards, 2007) and McKinsey (Women matt

  13. MODIS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Chen, N.; Wu, A.; Wenny, B.; Dodd, J.

    2008-01-01

    Currently, there are two MODIS instruments operated on-orbit: one on-board the Terra spacecraft launched in December 1999 and the other on-board the Aqua spacecraft launched in May 2002. MODIS is a scanning radiometer that has 16 thermal emissive bands (TEBs) in the MWIR and LWIR regions. The remaining spectral bands are in the VISINIR and SWIR regions. The TEBs have a total of 160 detectors (10 detectors per band), which are calibrated on-orbit using an on-board blackbody (BB). MODIS TEB calibration is performed via a quadratic algorithm with its linear calibration coefficients updated on a scan-by-scan basis using each detector's response to the BB. The offset and nonlinear terms of the quadratic calibration equation are stored in a look-up table (LUT). The LUT parameters are derived from pre-launch calibration and updated on-orbit from BB observations, as needed. Typically, the BB is set at a fixed temperature. Periodically, a warm-up and cool-down activity is performed, which enables the BB temperature to be varied from instrument ambient up to 315K. The temperature of the BB is measured each scan using 12 thermistors, which were fully characterized pre-launch with reference to the NIST temperature scale. This paper describes MODIS on-board BB operational activities and performance. The TEB detector response (short-term stability and long-term changes) and noise characterization results derived from BB observations and their impact on the TEB calibration uncertainty are also presented.

  14. A Feminist Framework for Nurses on Boards.

    Science.gov (United States)

    Sundean, Lisa J; Polifroni, E Carol

    Nurses' knowledge, skills, and expertise uniquely situate them to contribute to health care transformation as equal partners in organizational board governance. The Institute of Medicine, the 10,000 Nurses on Boards Coalition, and a growing number of nurse and health care scholars advocate nurse board leadership; however, nurses are rarely appointed as voting board members. When no room is made for nurses to take a seat at the table, the opportunity is lost to harness the power of nursing knowledge for health care transformation and social justice. No philosophical framework underpins the emerging focus on nurse board leadership. The purpose of this article is to add to the extant nursing literature by suggesting feminism as a philosophical framework for nurses on boards. Feminism contributes to the knowledge base of nursing as it relates to the expanding roles of nurses in health care transformation, policy, and social justice. Furthermore, a feminist philosophical framework for nurses on boards sets the foundation for new theory development and validates ongoing advancement of the nursing profession.

  15. Energy storage on board of railway vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.; Scholten, J. [Bombardier Transportation, Mannheim (Germany)

    2004-07-01

    The proposed energy storage on board of a Railway vehicle leads to a big step in the reduction of consumed energy. Up to 30% energy saving are expected in a light rail vehicle, at the same time reducing the peak power demand drastically. In addition, with the energy storage an operation without catenary could become reality, which was successfully demonstrated with the prototype light rail vehicle driving with switched off pantograph. This prototype vehicle is in passenger operation since September 2003, the implemented software is optimised on energy savings and first experience is very promising. (authors)

  16. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station.

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  17. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  18. Gender balance on boards: Stakeholders identification

    Directory of Open Access Journals (Sweden)

    Pilar de Luis Carnicer

    2011-12-01

    Full Text Available Recent Spanish law and regulations have turned gender balance on Boards of Directors into a necessary element to manage in companies. The aim of this paper is to identify the stakeholders demanding such gender balance to companies, according to the Methodology of Mitchell et al. (1997 and Agle et al. (1999. The results sugest the shareholders are the most important group, so it seems that the financial goals continue being a priority. But we also observe that the Government is perceived as a very important stakeholder. Despite managers acknowledge the Government has a lot of power, its importance is explained by urgency and legitimacy attributes. This fact makes us doubting about the effectiveness of any development of a compulsory law, beyond the current one.

  19. Physical, chemical and biological characteristics of space flown tomato (Lycopersicum esculentum) seeds

    Science.gov (United States)

    Esyanti, Rizkita R.; Dwivany, Fenny M.; Almeida, Maria; Swandjaja, Leonita

    2016-11-01

    Several research showed that space flown treated seeds had a different characteristic with that of ground treated seed, which eventually produced a different characteristic of growth and productivity. Research was conducted to study the physical, chemical and biological properties, such as the rate of germination and the growth of tomato (Lycopersicum esculentum) space flown seeds compared with that of control one. Observations of physical properties using a SEM showed that there were pores on the surface of some tomato space flown seeds. Observations using a stereo and inverted microscope showed that the coat layer of space flown seeds was thinner than control seeds. The total mineral content in the control seeds (22.88%) was averagely higher than space flown seeds (18.66%), but the average carbohydrate content in control seed was lower (15.2 ± 2.79%) than the space flown seeds (9.02 ± 1.87%). The level of auxin (IAA) of control seeds (142 ± 6.88 ppm) was averagely lower than the space flown seeds (414 ± 78.84 ppm), whereas the level of cytokinins (zeatin) for the control seeds (381 ± 68.86 ppm) was higher than the space flown seeds (68 ± 9.53 ppm), and the level of gibberellin (GA3) for the control seeds (335 ± 10.7 ppm) was higher than the space flown seeds (184 ± 7.4 ppm). The results of this study showed that the physical and chemical properties of tomato space flown seeds were generally different compare with that to control seeds, so that it might also be resulted in different germination and growth characteristic. The germination test showed that space flown seeds had lower germination rate compare to control. The growth pattern indicated that planted space flown seeds generally grew better than control. However, those data were more homogenous in control seeds compare to that in space flown tomato seeds.

  20. US experiment flown on the Soviet biosatellite Cosmos 1667

    Science.gov (United States)

    Hines, John W. (Editor); Skidmore, Michael G. (Editor)

    1994-01-01

    Two male young-adult rhesus monkeys were flown on the Soviet Biosatellite Cosmos 1667 for seven days from July 10-17, 1985. Both animals were instrumented to record neurophysiological parameters. One animal, Gordyy, was additionally instrumented to record cardiovascular changes. Space capsule and environmental parameters were very similar to those of previous missions. On Cosmos 1514, which flew for five days in 1983, one animal was fitted with a left carotid artery cuff to measure blood pressure and flow velocity. An additional feature of Cosmos 1667 was a postflight control study using the flight animal. Intermittent postural tilt tests were also conducted before and after spaceflight and synchronous control studies, to simulate the fluid shifts associated with spaceflight. The experiment results support the conclusion derived from Cosmos 1514 that significant cardiovascular changes occur with spaceflight. The changes most clearly seen were rapid initial decreases in heart rate and further decreases with continued exposure to microgravity. The triggering mechanism appeared to be a headward shift in blood and tissue fluid volume which, in turn, triggered adaptive cardiovascular changes. Adaptive changes took place rapidly and began to stabilize after the first two days of flight. However, these changes did not plateau in the animal by the last day of the mission.

  1. On-board measurements of exhaust (OBM); On-Board Messungen von Abgas (OBM)

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, H.E.

    1997-06-18

    The European Union intends to introduce on-board diagnosis of car exhaust emissions (OBD) from 2000, i.e. emission control by monitoring the various exhaust-relevant components of a motor car by an on-board computer. OBD is already in use in the USA (OBD I) and will be replaced by OBD step by step from 1995. In the present project, two systems by Messrs. WWU GmbH, Hamburg, will be investigated for the components CO and HC. For this purpose, comparative measurements with a FTIR spectrometer (SESAM = System for Emission Sampling and Measurement) are made using an exhaust dynamometer. (orig.) [Deutsch] Zur weiteren Verminderung der Emissionen schaedlicher Abgase aus Kraftfahrzeugen ist es in der Europaeischen Union vorgesehen, ab dem Jahre 2000 die On-Board Diagnose (OBD) einzufuehren. Darunter versteht man ein System zur Emissionskontrolle durch die Ueberwachung der Funktionsfaehigkeit der einzelnen abgasrelevanten Bauteile eines Kraftfahrzeugs durch den Fahrzeugcomputer. In den USA gibt es schon laenger eine erste Form der OBD fuer Pkw (OBD I), die ab dem Modelljahr 1995 schrittweise durch die weitergehende OBD II abgeloest wird. In diesem Vorhaben sollen zwei NDIR-Geraete der Firma WWU GmbH, Hamburg, auf ihre Eignung fuer den OBM-Einsatz ueberprueft werden, zunaechst nur fuer die Komponenten CO und HC. Dazu werden Vergleichsmessungen mit einem FTIR-Spektrometer (SESAM=System for Emission Sampling and Measurement) an einem Pkw auf dem Abgasrollenpruefstand durchgefuehrt. (orig.)

  2. Detection of DNA damage by space radiation in human fibroblast cells flown on the International Space Station

    Science.gov (United States)

    Wu, Honglu; Feiveson, Alan; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao; Wong, Michael

    2016-07-01

    Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional γg-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.

  3. Detecting negative ions on board small satellites

    Science.gov (United States)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  4. 40 CFR 86.005-17 - On-board diagnostics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board diagnostics. 86.005-17... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.005-17 On-board diagnostics. (a) General... “Road Vehicles-Diagnostics on Controller Area Network (CAN)—Part 4: Requirements for...

  5. 47 CFR 90.423 - Operation on board aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile, air-to-base...

  6. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    of the mission is to study transient luminous events (TLE) above severe thunderstorms: the sprites, jets and elves. Other atmospheric phenomena are also studied including aurora, gravity waves and meteors. As part of the ASIM Phase B study, on-board processing of data from the cameras is being developed...... and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...... and compress the data. Algorithms for on-board processing of the image data are presented as well as evaluation of the performance. The main processing steps are event detection, image cropping and image compression. The on-board processing requirements are also evaluated....

  7. Outgassing of Flown and Unflown MIR Solar Cells

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.; Wilson, Linda A.

    2000-01-01

    A solar panel array with more than ten years space exposure was removed from the Mir core module in November 1997, and an eight panel section was returned to Earth in January 1998. Several solar cells were removed from panel eight of the returned array and placed in a high vacuum system with a residual gas analyzer (200 amu mass spectrometer) and a cold finger. Similar unflown solar cells of the same vintage were later obtained from Energia. Several of the unflown cells were also placed in the vacuum system and outgassed residues were collected on the LN2 cold finger. Almost 3 mg of outgassed residue was collected -from a string of three unflown solar cells over a period of 94 hours under vacuum. The collected residue was weighed with a microbalance, and then the residue was analyzed by FTIR spectroscopy, and by gas chromatograph-mass spectroscopy. About 25 outgassed constituents were separated by the gas chromatograph, and a high-resolution mass spectrum was obtained of each constituent. Molecular identifications have been made for the constituents. The constituents are primarily cyclic siloxanes, and several of the constituents are isomers of the same molecule. Most of the outgassed constituents have a molecular mass of about 500 amu. Almost one mg of residue was extracted from one sq cm of coverglass/adhesive from a flown solar cell by soaking in isopropyl alcohol for 30 minutes. The gas chromatograph separated about 20 constituents. The constituents are mostly cyclic siloxanes with linear branches, hydrocarbons, and phthalates. The typical molecular mass is about 600 amu. These identifications of specific outgassing molecules have resulted in a more complete understanding of the SiO(x) contamination on the Mir solar cell coverglasses, and on the MEEP experiment trays and optical specimens during the Shuttle-Mir Phase One flight experiment program. Adjusted outgassing rates based on the data reported here, and/or measured outgassing rates and specific molecular

  8. Outgassing of Flown and Unflown MIR Solar Cells

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.; Wilson, Linda A.

    2000-01-01

    A solar panel array with more than ten years space exposure was removed from the Mir core module in November 1997, and an eight panel section was returned to Earth in January 1998. Several solar cells were removed from panel eight of the returned array and placed in a high vacuum system with a residual gas analyzer (200 amu mass spectrometer) and a cold finger. Similar unflown solar cells of the same vintage were later obtained from Energia. Several of the unflown cells were also placed in the vacuum system and outgassed residues were collected on the LN2 cold finger. Almost 3 mg of outgassed residue was collected -from a string of three unflown solar cells over a period of 94 hours under vacuum. The collected residue was weighed with a microbalance, and then the residue was analyzed by FTIR spectroscopy, and by gas chromatograph-mass spectroscopy. About 25 outgassed constituents were separated by the gas chromatograph, and a high-resolution mass spectrum was obtained of each constituent. Molecular identifications have been made for the constituents. The constituents are primarily cyclic siloxanes, and several of the constituents are isomers of the same molecule. Most of the outgassed constituents have a molecular mass of about 500 amu. Almost one mg of residue was extracted from one sq cm of coverglass/adhesive from a flown solar cell by soaking in isopropyl alcohol for 30 minutes. The gas chromatograph separated about 20 constituents. The constituents are mostly cyclic siloxanes with linear branches, hydrocarbons, and phthalates. The typical molecular mass is about 600 amu. These identifications of specific outgassing molecules have resulted in a more complete understanding of the SiO(x) contamination on the Mir solar cell coverglasses, and on the MEEP experiment trays and optical specimens during the Shuttle-Mir Phase One flight experiment program. Adjusted outgassing rates based on the data reported here, and/or measured outgassing rates and specific molecular

  9. XMM instrument on-board software maintenance concept

    Science.gov (United States)

    Peccia, N.; Giannini, F.

    1994-01-01

    While the pre-launch responsibility for the production, validation and maintenance of instrument on-board software traditionally lies with the experimenter, the post-launch maintenance has been the subject of ad hoc arrangements with the responsibility shared to different extent between the experimenter, ESTEC and ESOC. This paper summarizes the overall design and development of the instruments on-board software for the XMM satellite, and describes the concept adopted for the maintenance of such software post-launch. The paper will also outline the on-board software maintenance and validation facilities and the expected advantages to be gained by the proposed strategy. Conclusions with respect to adequacy of this approach will be presented as well as recommendations for future instrument on-board software developments.

  10. Advanced On Board Inert Gas Generation System (OBBIGS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  11. 40 CFR 86.1806-04 - On-board diagnostics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false On-board diagnostics. 86.1806-04..., and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1806-04 On-board diagnostics. This § 86.1806-04... alternative to SAE J1850. (iii) ISO 15765-4.3:2001 “Road Vehicles-Diagnostics on Controller Area Network...

  12. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  13. An Innovative On-Board Computer for Space Robot

    Institute of Scientific and Technical Information of China (English)

    WEI Ran; JIN Ming-he; XIA Jin-jun; LIU Hong

    2007-01-01

    In this paper an on-board computer system for the first Chinese Intelligent Space Robotic System was presented. A fault tolerance design on on-board computer (OBC) was proposed that allows commercial-off-theshelf (COTS) devices to be incorporated into dual processing modules of on-board computer. The processing module is composed of 32-bit ARM RISC processor and other COTS devices. This innovative approach deeply relies on light weight/low cost equipment development using commercial miniaturized parts and non-space qualified technologies. As well as, a set of fault handling mechanisms was implemented in the computer system. The on-board software was organized around a set of processes that communicate between each other through a routing process.The qualification experiment shows that the fault tolerant on-board computer has excellent data processing capability and is enough to meet the demanding of the extremely tight constraints on mass, volume, power consumption and space environmental conditions.

  14. Position and orientation inference via on-board triangulation.

    Science.gov (United States)

    Advani, Madhu; Weile, Daniel S

    2017-01-01

    This work proposes a new approach to determine the spatial location and orientation of an object using measurements performed on the object itself. The on-board triangulation algorithm we outline could be implemented in lieu of, or in addition to, well-known alternatives such as Global Positioning System (GPS) or standard triangulation, since both of these correspond to significantly different geometric pictures and necessitate different hardware and algorithms. We motivate the theory by describing situations in which on-board triangulation would be useful and even preferable to standard methods. The on-board triangulation algorithm we outline involves utilizing dumb beacons which broadcast omnidirectional single frequency radio waves, and smart antenna arrays on the object itself to infer the direction of the beacon signals, which may be used for onboard calculation of the position and orientation of the object. Numerical examples demonstrate the utility of the method and its noise tolerance.

  15. Spaceflight Effects on Hemopoiesis of Lower Vertebrates Flown on Foton-M2

    Science.gov (United States)

    Domaratskaya, E. I.; Payushina, O. V.; Butorina, M. N.; Nikonova, T. M.; Grigorian, E. N.; Mitashov, V. I.; Tairbekov, M. G.; Almeida, E.; Khrushchov, N. G.

    2006-01-01

    Intact and operated newts Pleumdeles waltl flown on Foton-M2 for 16 days were used to study the effects of spaceflight as well as tail amputation and lensectomy on their hemopoiesis. The flight did not produce noticeable changes in the peripheral blood of nonoperated newts. However, in operated animals, the number of lymphocytes increased whereas that of neutrophils decreased. There were no morphological differences in hemopoietic organs (liver and spleen) between flown non-operated and operated animals or their controls. However, in both non-operated and operated newts the liver weight and the number of hemopoietic cells in it increased. In contrast to nonoperated newts, space-flown mammals typically showed significant changes in blood cell counts. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood and spleen. This observation gives evidence that the BrdU label can be used to study proliferation of hemopoietic cells.

  16. Spaceflight Effects on Hemopoiesis of Lower Vertebrates Flown on Foton-M2

    Science.gov (United States)

    Domaratskaya, E. I.; Payushina, O. V.; Butorina, M. N.; Nikonova, T. M.; Grigorian, E. N.; Mitashov, V. I.; Tairbekov, M. G.; Almeida, E.; Khrushchov, N. G.

    2006-01-01

    Intact and operated newts Pleumdeles waltl flown on Foton-M2 for 16 days were used to study the effects of spaceflight as well as tail amputation and lensectomy on their hemopoiesis. The flight did not produce noticeable changes in the peripheral blood of nonoperated newts. However, in operated animals, the number of lymphocytes increased whereas that of neutrophils decreased. There were no morphological differences in hemopoietic organs (liver and spleen) between flown non-operated and operated animals or their controls. However, in both non-operated and operated newts the liver weight and the number of hemopoietic cells in it increased. In contrast to nonoperated newts, space-flown mammals typically showed significant changes in blood cell counts. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood and spleen. This observation gives evidence that the BrdU label can be used to study proliferation of hemopoietic cells.

  17. Bijlagen visie on-board-monitoring in de binnenvaart

    NARCIS (Netherlands)

    Verbeek, R.P.; Harmsen, J.; Mensch, P. van

    2015-01-01

    In deze memo zijn de resultaten gepresenteerd van een analyse naar de impact van verschillende opties voor het vergroenen van de binnenvaart. In deze analyse zijn de volgende maatregelen opgenomen:  Vervroegd vervangen van de motor om in 2025 te voldoen aan CCRII;  Installeren van een On Board Mon

  18. Real-time Java for on-board systems

    Science.gov (United States)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  19. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    Science.gov (United States)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  20. On board aircrew dosimetry with a semiconductor spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F.; Daschev, T

    2002-07-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise the on board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level even, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (author00.

  1. Harmonic distortions measured on board of a maritime vessel

    Science.gov (United States)

    Zburlea, Elena; Dordea, Stefan

    2016-12-01

    Measurements where performed on four channels by means of an autonomous equipment (galvanic separated and not supplied from the ship's mains) performed on board of some maritime transport vessels, inside the Port of Constanţa aquatorium. Distorted voltages where state in the distribution panels. The sources of those distortions are the switching power supplies of the electric drives. The novelty of our work states in performing those measurements during the inside port maneuvers, when the operating time of each electric equipment is non definable. Harmonic distortions caused by the switching power converters lower the Power Factor. There is no better manner to find out the main distortions sources on board of a maritime transport vessel than to perform the measurements directly, on each location.

  2. ON BOARD OF SHIPS THERMAL ENERGY RECOVERY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Beazit ALI

    2016-12-01

    Full Text Available In the paper are presented at first the energy recovery conditions used at the moment on board of ships and the restrictions which do not allow the achievement of higher recovery ratios. The authors suggest a new type of recovery plant by vaporization of water by means of expansion and they show its advantages in the considerably increase of energy recovery ratio from burnt gases from the cooling water of marine engine

  3. Virtualizing Super-Computation On-Board Uas

    Science.gov (United States)

    Salami, E.; Soler, J. A.; Cuadrado, R.; Barrado, C.; Pastor, E.

    2015-04-01

    Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

  4. Who nominates the board? - Implications on board diversity and turnover

    OpenAIRE

    Viskari, Milla

    2014-01-01

    This thesis assesses whether the type of nomination poses implications on board diversity in terms of age, gender, nationality and education, as well as turnover on a Finnish and Swedish data. The existing research on director selection and especially nomination committees is rather limited, and thus the research aims at contributing to the topic. The reviewed time period concerns 2008 to 2012, and altogether 55 Finnish and 55 Swedish public companies are included in the study, thus resul...

  5. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  6. 40 CFR 85.2207 - On-board diagnostics test standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board diagnostics test standards... Warranty Short Tests § 85.2207 On-board diagnostics test standards. (a) (b) A vehicle shall fail the on-board diagnostics test if it is a 1996 or newer vehicle and the vehicle connector is missing, has...

  7. 49 CFR 395.15 - Automatic on-board recording devices.

    Science.gov (United States)

    2010-10-01

    ... certifying that the design of the automatic on-board recorder has been sufficiently tested to meet the... 49 Transportation 5 2010-10-01 2010-10-01 false Automatic on-board recording devices. 395.15... OF SERVICE OF DRIVERS § 395.15 Automatic on-board recording devices. (a) Applicability and...

  8. Calibration strategies for the LAD instrument on-board LOFT

    CERN Document Server

    Pacciani, Luigi; Argan, Andrea; Barret, Didier; Bozzo, Enrico; Feroci, Marco; Fraser, George W; Herder, Jan-Willem den; Pohl, Martin; Schmid, Christian; Tenzer, Chris; Vacchi, Andrea; Walton, Dave; Zampa, Gianluigi; Zane, Silvia

    2012-01-01

    The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the Strong Gravity, require accurate energy, time and flux calibration for the 500k channels of the SDD detectors, as well as the knowledge of the detector dead-time and of the detector response with respect to the incident angle of the photons. We report here the evaluations made to asses the calibration issues for the LAD instrument. The strategies for both ground and on-board calibrations, including astrophysical observations, show that the goals are achievable within the current technologies.

  9. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  10. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  11. Hard X-ray Detector (HXD) on Board Suzaku

    CERN Document Server

    Takahashi, T; Endo, M; Endo, Y; Ezoe, Y; Fukazawa, Y; Hamaya, M; Hirakuri, S; Hong, S; Horii, M; Inoue, H; Isobe, N; Itoh, T; Iyomoto, N; Kamae, T; Kasama, D; Kataoka, J; Kato, H; Kawaharada, M; Kawano, N; Kawashima, K; Kawasoe, S; Kishishita, T; Kitaguchi, T; Kobayashi, Y; Kokubun, M; Kotoku, J; Kouda, M; Kubota, A; Kuroda, Y; Madejski, G; Makishima, K; Masukawa, K; Matsumoto, Y; Mitani, T; Miyawaki, R; Mizuno, T; Mori, K; Mori, M; Murashima, M; Murakami, T; Nakazawa, K; Niko, H; Nomachi, M; Okada, Y; Ohno, M; Oonuki, K; Ota, N; Ozawa, H; Sato, G; Shinoda, S; Sugiho, M; Suzuki, M; Taguchi, K; Takahashi, H; Takahashi, I; Takeda, S; Tamura, K; Tamura, T; Tanaka, T; Tanihata, C; Tashiro, M; Terada, Y; Tominaga, S; Uchiyama, Y; Watanabe, S; Yamaoka, K; Yanagida, T; Yonetoku, D

    2006-01-01

    The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit back ground based on a combination of new techniques, including the concept of well-type active shield counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV, the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large effective area for sub-MeV to MeV gamma-rays. They work as an excellent gamma-ray burst monitor with limited angular resolution (~5 degree). The on-board signal-processing system and th...

  12. Digital signal processing techniques for on-board processing satellites

    Science.gov (United States)

    Kwan, Ching Chung

    1990-08-01

    In on-board processing satellite systems in which frequency division multiple access (FDMA)/signal channel per carrier (SCPC) access schemes are employed, transmultiplexers are required for the frequency demultiplexing of the SCPC signals. Digital techniques for the implementation of the transmultiplexer for such application were examined. The signal processing in the transmultiplexer operations involved many parameters which could be optimized in order to reduce the hardware complexity while satisfying the level of performance required of the system. An approach for the assessment of the relationship between the various parameters and the system performance was devised, which allowed hardware requirement of practical system specifications to be estimated. For systems involving signals of different bandwidths, a more flexible implementation of the transmultiplexer is required and two computationally efficient methods, the DFT convolution and analysis/synthesis filter bank, were investigated. These methods gave greater flexibility to the input frequency plan of the transmultiplexer, at the expense of increased computational requirements. Filters were then designed to exploit specific properties of the flexible transmultiplexer methods, resulting in considerable improvement in their efficiencies. Hardware implementation of the flexible transmultiplexer was considered and an efficient multiprocesser architecture in combination with parallel processing software algorithms for the signal processing operations were designed. Finally, an experimental model of the payload for a land-mobile satellite system proposal, T-SAT, was constructed using general-purpose digital signal processors and the merits of the on-board processing architecture were demonstrated.

  13. On-Orbit Performance of MODIS On-Board Calibrators

    Science.gov (United States)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  14. The SXI telescope on board EXIST: scientific performances

    CERN Document Server

    Natalucci, L; Campana, S; Caraveo, P; Della Ceca, R; Grindlay, J E; Panessa, F; Pareschi, G; Ramsey, B; Tagliaferri, G; Ubertini, P; Villa, G

    2009-01-01

    The SXI telescope is one of the three instruments on board EXIST, a multiwavelength observatory in charge of performing a global survey of the sky in hard X-rays searching for Supermassive Black Holes. One of the primary objectives of EXIST is also to study with unprecedented sensitivity the most unknown high energy sources in the Universe, like high redshift GRBs, which will be pointed promptly by the Spacecraft by autonomous trigger based on hard X-ray localization on board. The recent addition of a soft X-ray telescope to the EXIST payload complement, with an effective area of ~950 cm2 in the energy band 0.2-3 keV and extended response up to 10 keV will allow to make broadband studies from 0.1 to 600 keV. In particular, investigations of the spectra components and states of AGNs and monitoring of variability of sources, study of the prompt and afterglow emission of GRBs since the early phases, which will help to constrain the emission models and finally, help the identification of sources in the EXIST hard...

  15. The Soft X-ray Imager on board EXIST

    CERN Document Server

    Natalucci, L; Panessa, F; Ubertini, P; Tagliaferri, G; Della Ceca, R; Ghisellini, G; Pareschi, G; Villa, G; Caraveo, P; Fiorini, M; Uslenghi, M; Grindlay, J E; Ramsey, B

    2010-01-01

    The Soft X-ray Imager (SXI) is one of the three instruments on board EXIST, a multi-wavelength observatory in charge of performing a global survey of the sky in hard X-rays searching for Super-massive Black Holes (Grindlay & Natalucci, these Proceedings). One of the primary objectives of EXIST is also to study with unprecedented sensitivity the most unknown high energy sources in the Universe, like high redshift GRBs, which will be pointed promptly by the Spacecraft by autonomous trigger based on hard X-ray localization on board. The presence of a soft X-ray telescope with an effective area of about 950cm2 in the energy band 0.2-3 keV and extended response up to 10 keV will allow to make broadband studies from 0.1 to 600 keV. In particular, investigations of the spectra components and states of AGNs and monitoring of variability of sources, study of the prompt and afterglow emission of GRBs since the early phases, which will help to constrain the emission models and finally, help the identification of sou...

  16. Modeling and Simulation Reliable Spacecraft On-Board Computing

    Science.gov (United States)

    Park, Nohpill

    1999-01-01

    The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.

  17. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    Science.gov (United States)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  18. Status of UHECR detector KLYPVE on-board the ISS

    Science.gov (United States)

    Klimov, Pavel; Garipov, Gali; Khrenov, Boris; Yashin, Ivan; Panasyuk, Mikhail; Tkachev, Leonid; Sharakin, Sergey; Zotov, Mikhail; Churilo, Igor; Markov, Alexander

    A preliminary project of the KLYPVE detector of ultra high energy cosmic rays (UHECR) on board the International Space Station (ISS) was developed in Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics in cooperation with RSC “Energia”. The main scientific aims of the mission are measurements of the primary particles energy spectrum, their arrival directions and a search for large and small scale anisotropy (including point sources) in the energy region above the Greisen-Zatsepin-Kuzmin cut-off. Various types of optical systems, photo detectors, mechanical structures and multiple issues related to transportation and accommodation on the Russian Segment of the ISS were considered. Recent development of KLYPVE is made in close cooperation with the JEM-EUSO collaboration in order to improve the detector parameters such as field of view, angular and energy resolution, energy threshold. Current status of the project is presented in the report.

  19. TSP-Based Generic Payload On-Board Software

    Science.gov (United States)

    Arberet, P.; Metge, J.-J.; Gras, O.; Crespo, A.

    2009-05-01

    The paper address the contect and rationale for deciding to develop a TSP-based solution for payload on-board software, highly generic and reusable, project named LVCUGEN. Then it describes the key design issues and the associated architectual achievements obtained at the end of development phase of LVCUGEN. It provides some inputs on the way to instantiate the developed framework in the scope of deployment of the solution on a target-project. Last, the paper presents the status of the project and the forthcoming activities, also open issues, still to be performed. Some perspectives are provided in particular the selection of the first space program targeted for deployment of the solution.

  20. Novel satellite transport protocol with on-board spoofing proxy

    Institute of Scientific and Technical Information of China (English)

    Liu Jiong; Cao Zhigang; Wang Jinglin

    2006-01-01

    As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, due to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.

  1. DAMPE silicon tracker on-board data compression algorithm

    CERN Document Server

    Dong, Yifan; Qiao, Rui; Peng, Wenxi; Fan, Ruirui; Gong, Ke; Wu, Di; Wang, Huanyu

    2015-01-01

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic rays detection. The silicon tracker (STK) is a sub detector of the DAMPE payload with an excellent position resolution (readout pitch of 242um), which measures the incident direction of particles, as well as charge. The STK consists 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5m$^2$. The total readout channels of the STK are 73728, which leads to a huge amount of raw data to be dealt. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, which was initially verified by cosmic-ray measurements.

  2. Why so few Women on Boards of Directors?

    DEFF Research Database (Denmark)

    Smith, Nina; Parrotta, Pierpaolo

    2015-01-01

    hypotheses on female board representation that we denote the female-led hypothesis, the tokenism hypothesis, and the pipeline hypothesis, respectively. We find evidence rejecting the female-led hypothesis. Firms with a female chairperson on the board of directors tend to have significantly fewer other...... nonemployee-elected female board members. We also find clear evidence of a tokenism behavior in Danish companies. The likelihood of enlarging the share of non-employee-elected female board members is significantly smaller if one, two, or more women have sat on the board of directors. Finally, the pipeline......This paper analyzes the determinants of women’s representation on boards of directors based on a panel of all privately owned or listed Danish firms with at least 50 employees observed during the period 1998–2010. We focus on the directors who are not elected by the employees and test three...

  3. Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    CERN Document Server

    Pinilla, S; Núñez, L A

    2015-01-01

    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\\'a-Buenos Aires trip by point-to-point numerical integration.

  4. Neutral atmosphere composition from SOIR measurements on board Venus Express

    Science.gov (United States)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high

  5. Advanced on-board electric vehicle charger. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-31

    The design and development of an on-board charger power module for use in electric vehicles is described. The module operates at 20KHz in a series resonant, half bridge configuration. Circuit design trade-offs, module performance, and solutions to the problems of acoustic noise, maintaining high power factor, circuit protection and operating reliability are discussed. The power module operates from a single phase, 240 V, 50/60 Hz utility line. Average power factor is 0.90; efficiency at maximum power output is 86%. The module is rated to charge a bank consisting of 20 Exide EV-106 batteries (60 cells) to an end voltage of 2.42 V/cell. Physically, the module weighs less than 17 Kg. Projected manufacturing cost at the thousand unit level is $394.00 (1978 dollars).

  6. Challenge of lightning detection with LAC on board Akatsuki spacecraft

    Science.gov (United States)

    Takahashi, Yukihiro; Sato, Mitsutero; Imai, Masataka; Yair, Yoav; Fischer, Georg; Aplin, Karen

    2016-04-01

    Even after extensive investigations with spacecraft and ground-based observations, there is still no consensus on the existence of lightning in Venus. It has been reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be lightning discharge occurring well below the spacecraft. On the other hand, with an infrared sensor, VIRTIS of Venus Express, does not show the positive indication of lightning flashes. In order to identify the optical flashes caused by electrical discharge in the atmosphere of Venus, at least, with an optical intensity of 1/10 of the average lightning in the Earth, we built a high-speed optical detector, LAC (Lightning and Airglow Camera), on board Akatsuki spacecraft. The unique performance of the LAC compared to other instruments is the high-speed sampling rate at 32 us interval for all 32 pixels, enabling us to distinguish the optical lightning flash from other pulsing noises. Though, unfortunately, the first attempt of the insertion of Akatsuki into the orbit around Venus failed in December 2010, the second one carried out in December 7 in 2015 was quite successful. We checked out the condition of the LAC on January 5, 2016, and it is healthy as in 2010. Due to some elongated orbit than that planned originally, we have umbra for ~30 min to observe the lightning flash in the night side of Venus every ~10 days, starting on April 2016. Here we would report the instrumental status of LAC and the preliminary results of the first attempt to observe optical lightning emissions.

  7. MicroCameras and Photometers (MCP) on board TARANIS satellite

    Science.gov (United States)

    Farges, Thomas; Blanc, Elisabeth; Hébert, Philippe; Le Mer-Dachard, Fanny; Ravel, Karen; Gaillac, Stéphanie

    2017-04-01

    TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched from end-2018 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose of this poster is to present the MicroCameras and Photometers (MCP) scientific objectives and the sensor design, to show the performances of this instrument using the recent characterization, and at last to promote its products. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. The Photometers are now in the calibration and test phase. They will be delivered for integration in mid-2017.

  8. Corporate sponsored education initiatives on board the ISS

    Science.gov (United States)

    Durham, Ian T.; Durham, Alyson S.; Pawelczyk, James A.; Brod, Lawrence B.; Durham, Thomas F.

    1999-01-01

    This paper proposes the creation of a corporate sponsored ``Lecture from Space'' program on board the International Space Station (ISS) with funding coming from a host of new technology and marketing spin-offs. This program would meld existing education initiatives in NASA with new corporate marketing techniques. Astronauts in residence on board the ISS would conduct short ten to fifteen minute live presentations and/or conduct interactive discussions carried out by a teacher in the classroom. This concept is similar to a program already carried out during the Neurolab mission on Shuttle flight STS-90. Building on that concept, the interactive simulcasts would be broadcast over the Internet and linked directly to computers and televisions in classrooms worldwide. In addition to the live broadcasts, educational programs and demonstrations can be recorded in space, and marketed and sold for inclusion in television programs, computer software, and other forms of media. Programs can be distributed directly into classrooms as an additional presentation supplement, as well as over the Internet or through cable and broadcast television, similar to the Canadian Discovery Channel's broadcasts of the Neurolab mission. Successful marketing and advertisement can eventually lead to the creation of an entirely new, privately run cottage industry involving the distribution and sale of educationally related material associated with the ISS that would have the potential to become truly global in scope. By targeting areas of expertise and research interest in microgravity, a large curriculum could be developed using space exploration as a unifying theme. Expansion of this concept could enhance objectives already initiated through the International Space University to include elementary and secondary school students. The ultimate goal would be to stimulate interest in space and space related sciences in today's youth through creative educational marketing initiatives while at the

  9. On-Board Visual Tracking with Unmanned Aircraft System (UAS)

    CERN Document Server

    Qadir, Ashraf; Semke, William

    2012-01-01

    This paper presents the development of a real time tracking algorithm that runs on a 1.2 GHz PC/104 computer on-board a small UAV. The algorithm uses zero mean normalized cross correlation to detect and locate an object in the image. A kalman filter is used to make the tracking algorithm computationally efficient. Object position in an image frame is predicted using the motion model and a search window, centered at the predicted position is generated. Object position is updated with the measurement from object detection. The detected position is sent to the motion controller to move the gimbal so that the object stays at the center of the image frame. Detection and tracking is autonomously carried out on the payload computer and the system is able to work in two different methods. The first method starts detecting and tracking using a stored image patch. The second method allows the operator on the ground to select the interest object for the UAV to track. The system is capable of re-detecting an object, in t...

  10. Women on boards of directors and corporate philanthropic disaster response

    Institute of Scientific and Technical Information of China (English)

    Ming Jia; Zhe Zhang

    2012-01-01

    In this study we conduct firm-level analysis of the impact of women in the boardroom on corporate philanthropic disaster response(CPDR).We propose that CPDR contains agency costs and that female directors are more likely to restrain the associated agency costs of CPDR.We predict a negative relationship between the ratio of women on boards of directors(WoBs) and philanthropic contribution,which is weaker in firms with political connections and stronger in firms with better-developed institutional environments.Data was collected from the philanthropic responses to the Wenchuan earthquake on May 12,2008 of privately-owned listed Chinese firms.The results support the hypothesized negative relationship,which is found to be weaker in firms with political connections.However,marketization-related factors do not significantly moderate this relationship.These results indicate that CPDR contains agency costs and that female directors do not facilitate the corporate donation process,but rather evaluate the benefits and restrain the associated agency costs.

  11. Medical emergencies on board commercial airlines: is documentation as expected?

    Science.gov (United States)

    Sand, Michael; Morrosch, Stephan; Sand, Daniel; Altmeyer, Peter; Bechara, Falk G

    2012-12-12

    The purpose of this study was to perform a descriptive, content-based analysis on the different forms of documentation for in-flight medical emergencies that are currently provided in the emergency medical kits on board commercial airlines. Passenger airlines in the World Airline Directory were contacted between March and May 2011. For each participating airline, sample in-flight medical emergency documentation forms were obtained. All items in the sample documentation forms were subjected to a descriptive analysis and compared to a sample "medical incident report" form published by the International Air Transport Association (IATA). A total of 1,318 airlines were contacted. Ten airlines agreed to participate in the study and provided a copy of their documentation forms. A descriptive analysis revealed a total of 199 different items, which were summarized into five sub-categories: non-medical data (63), signs and symptoms (68), diagnosis (26), treatment (22) and outcome (20). The data in this study illustrate a large variation in the documentation of in-flight medical emergencies by different airlines. A higher degree of standardization is preferable to increase the data quality in epidemiologic aeromedical research in the future.

  12. On-board neural processor design for intelligent multisensor microspacecraft

    Science.gov (United States)

    Fang, Wai-Chi; Sheu, Bing J.; Wall, James

    1996-03-01

    A compact VLSI neural processor based on the Optimization Cellular Neural Network (OCNN) has been under development to provide a wide range of support for an intelligent remote sensing microspacecraft which requires both high bandwidth communication and high- performance computing for on-board data analysis, thematic data reduction, synergy of multiple types of sensors, and other advanced smart-sensor functions. The OCNN is developed with emphasis on its capability to find global optimal solutions by using a hardware annealing method. The hardware annealing function is embedded in the network. It is a parallel version of fast mean-field annealing in analog networks, and is highly efficient in finding globally optimal solutions for cellular neural networks. The OCNN is designed to perform programmable functions for fine-grained processing with annealing control to enhance the output quality. The OCNN architecture is a programmable multi-dimensional array of neurons which are locally connected with their local neurons. Major design features of the OCNN neural processor includes massively parallel neural processing, hardware annealing capability, winner-take-all mechanism, digitally programmable synaptic weights, and multisensor parallel interface. A compact current-mode VLSI design feasibility of the OCNN neural processor is demonstrated by a prototype 5 X 5-neuroprocessor array chip in a 2-micrometers CMOS technology. The OCNN operation theory, architecture, design and implementation, prototype chip, and system applications have been investigated in detail and presented in this paper.

  13. The ALTCRISS project on board the International Space Station

    CERN Document Server

    Casolino, M; Minori, M; Picozza, P; Fuglesang, C; Galper, A; Popov, A; Benghin, V; Petrov, V M; Nagamatsu, A; Berger, T; Reitz, G; Durante, M; Pugliese, M; Roca, V; Cucinotta, L Sihver F; Semones, E; Shavers, M; Guarnieri, V; Lobascio, C; Castagnolo, D; Fortezza, R

    2007-01-01

    The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every six months: up to now three lau...

  14. Differences in glycogen, lipids, and enzymes in livers from rats flown on COSMOS 2044.

    Science.gov (United States)

    Merrill, A H; Wang, E; LaRocque, R; Mullins, R E; Morgan, E T; Hargrove, J L; Bonkovsky, H L; Popova, I A

    1992-08-01

    Livers from rats flown aboard COSMOS 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis, delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from COSMOS 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for COSMOS 2044.

  15. Changes in pituitary growth hormone cells prepared from rats flown on Spacelab 3

    Science.gov (United States)

    Grindeland, R.; Hymer, W. C.; Farrington, M.; Fast, T.; Hayes, C.; Motter, K.; Patil, L.; Vasques, M.

    1987-01-01

    The effect of exposure to microgravity on pituitary gland was investigated by examining cells isolated from anterior pituitaries of rats flown on the 7-day Spacelab 3 mission and, subsequently, cultured for 6 days. Compared with ground controls, flight cells contained more intracellular growth hormone (GH); however, the flight cells released less GH over the 6-day culture period and after implantation into hypophysectomized rats than did the control cells. Compared with control rats, glands from large rats (400 g) contained more somatotrophs (44 percent compared with 37 percent in control rats); small rats (200 g) showed no difference. No major differences were found in the somatotroph ultrastructure (by TEM) or in the pattern of the immunoactive GH variants. However, high-performance liquid chromatography fractionation of culture media indicated that flight cells released much less of a biologically active high-molecular weight GH variant, suggesting that space flight may lead to secretory dysfunction.

  16. NRL-ATM extreme ultraviolet solar image TV monitor flown on Skylab

    Science.gov (United States)

    Crockett, W. R.; Purcell, J. D.; Schumacher, R. J.; Tousey, R.; Patterson, N. P.

    1977-01-01

    An instrument for recording extreme ultraviolet television images of the sun was flown in the Apollo Telescope Mount on Skylab. Solar radiation in the 171-630 A wavelength range, defined by the transmission band of three thin-film aluminum filters, was focused onto a p-quaterphenyl photon conversion layer by a platinum-coated mirror at normal incidence. The conversion layer was attached to the faceplate of a low light level SEC vidicon. An onboard video monitor enabled the Skylab crews to observe the images in real-time and to identify and follow the development of solar features. Images were also transmitted to the mission control center, where they were used in planning the ATM observing schedule.

  17. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    Science.gov (United States)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  18. Autonomous Defensive Space Control via On-Board Artificial Neural Networks

    Science.gov (United States)

    2007-04-01

    AUTONOMOUS DEFENSIVE SPACE CONTROL VIA ON-BOARD ARTIFICIAL NEURAL NETWORKS Michael T. Manor, Major, USAF April 2007...TITLE AND SUBTITLE Sutonomous Defensive Space Control via On-Board Artificial Neural Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...11 HOW ARTIFICIAL NEURAL NETWORKS WORK

  19. Reliability analysis and design of on-board computer system for small stereo mapping satellite

    Institute of Scientific and Technical Information of China (English)

    马秀娟; 曹喜滨; 马兴瑞

    2002-01-01

    The on-board computer system for a small satellite is required to be high in reliability, light in weight, small in volume and low in power consumption. This paper describes the on-board computer system with the advantages of both centralized and distributed systems, analyzes its reliability, and briefs the key techniques used to improve its reliability.

  20. Results of the ISEDE Experiment Encompassing Disaggregated Electronics on an all Inflatable Satellite on Board the BEXUS 16 Balloon

    Science.gov (United States)

    Sinn, T.; de Franca Queiroz, T.; Brownlie, F.; Allan, A.; Leite, L.; Rowan, A.; Gillespie, J.; Vasile, M.

    2015-09-01

    Traditional satellites have a rigid structure defining the basic configuration of the satellite and holding in place all subsystems. A variation of the shape or configuration of the satellite is normally achieved through the use of deployable structures or appendices (antennas, solar anays, booms, etc.). Although modern structural solutions are modular and multifunctional, the structure of a satellite still represents a significant portion of its mass and a limitation on the achievable configuration, extension of deployable components and packing efficiency during launch. The goal of this project is to design and build an initial prototype of an all-inflatable satellite with disaggregated electronics for deployment on-board a BEXUS balloon as proof of concept. The idea is to use inflatable cell structures as support for all the subsystems composing a typical nano-satellite. Each subsystem and component is mounted on a different cell. Cells are both individually inflated and individually controlled. The aim is to design and build an inflatable satellite, demonstrating the deployment, communication among components and local control enabling structure shape adaption via soft robotic actuators and micro pumps. The experiment will deploy two inflatable structures made of 5x2 cells which are packed in a lOxlOxlOcm3 cubesat reaching a size of 70x18x14cm3 once deployed. Flexible circuitry was used to mount all the electronic subsystems on the surface of the folded inflatable. The experiment was flown onboard the BEXUS16 stratospheric balloon to an altitude of 27,3km for 2 hours and 45mm from the Swedish space port ESRANGE on the 8th of October 2013 proving the functionality of the disaggregated electronics.

  1. Legionella on board trains: effectiveness of environmental surveillance and decontamination

    Directory of Open Access Journals (Sweden)

    Quaranta Gianluigi

    2012-08-01

    Full Text Available Abstract Background Legionella pneumophila is increasingly recognised as a significant cause of sporadic and epidemic community-acquired and nosocomial pneumonia. Many studies describe the frequency and severity of Legionella spp. contamination in spa pools, natural pools, hotels and ships, but there is no study analysing the environmental monitoring of Legionella on board trains. The aims of the present study were to conduct periodic and precise environmental surveillance of Legionella spp. in water systems and water tanks that supply the toilet systems on trains, to assess the degree of contamination of such structures and to determine the effectiveness of decontamination. Methods A comparative pre-post ecological study was conducted from September 2006 to January 2011. A total of 1,245 water samples were collected from plumbing and toilet water tanks on passenger trains. The prevalence proportion of all positive samples was calculated. The unpaired t-test was performed to evaluate statistically significant differences between the mean load values before and after the decontamination procedures; statistical significance was set at p ≤ 0.05. Results In the pre-decontamination period, 58% of the water samples were positive for Legionella. Only Legionella pneumophila was identified: 55.84% were serogroup 1, 19.03% were serogroups 2–14 and 25.13% contained both serogroups. The mean bacterial load value was 2.14 × 103 CFU/L. During the post-decontamination period, 42.75% of water samples were positive for Legionella spp.; 98.76% were positive for Legionella pneumophila: 74.06% contained serogroup 1, 16.32% contained serogroups 2–14 and 9.62% contained both. The mean bacterial load in the post-decontamination period was 1.72 × 103 CFU/L. According to the t-test, there was a statistically significant decrease in total bacterial load until approximately one and a half year after beginning the decontamination programme (p

  2. Pituitary oxytocin and vasopressin content of rats flown on COSMOS 2044.

    Science.gov (United States)

    Keil, L; Evans, J; Grindeland, R; Krasnov, I

    1992-08-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, we obtained pituitary tissue from rats flown for 14 days on COSMOS 2044. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to stimulate microgravity. Flight rats showed an average reduction of 27% (P less than 0.05) in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (micrograms hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33% (P less than 0.05) compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the COSMOS 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  3. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    Science.gov (United States)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  4. Pituitary oxytocin and vasopressin content of rats flown on Cosmos 2044

    Science.gov (United States)

    Keil, L.; Evans, J.; Grindeland, R.; Krasnov, I.

    1992-01-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, pituitary tissue from rats flown for 14 days on Cosmos 2044 is obtained. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to simulate microgravity. Flight rats showed an average reduction of 27 in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (microg hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33 percent compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the Cosmos 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  5. HTML 5 Displays for On-Board Flight Systems

    Science.gov (United States)

    Silva, Chandika

    2016-01-01

    During my Internship at NASA in the summer of 2016, I was assigned to a project which dealt with developing a web-server that would display telemetry and other system data using HTML 5, JavaScript, and CSS. By doing this, it would be possible to view the data across a variety of screen sizes, and establish a standard that could be used to simplify communication and software development between NASA and other countries. Utilizing a web- approach allowed us to add in more functionality, as well as make the displays more aesthetically pleasing for the users. When I was assigned to this project my main task was to first establish communication with the current display server. This display server would output data from the on-board systems in XML format. Once communication was established I was then asked to create a dynamic telemetry table web page that would update its header and change as new information came in. After this was completed, certain minor functionalities were added to the table such as a hide column and filter by system option. This was more for the purpose of making the table more useful for the users, as they can now filter and view relevant data. Finally my last task was to create a graphical system display for all the systems on the space craft. This was by far the most challenging part of my internship as finding a JavaScript library that was both free and contained useful functions to assist me in my task was difficult. In the end I was able to use the JointJs library and accomplish the task. With the help of my mentor and the HIVE lab team, we were able to establish stable communication with the display server. We also succeeded in creating a fully dynamic telemetry table and in developing a graphical system display for the advanced modular power system. Working in JSC for this internship has taught me a lot about coding in JavaScript and HTML 5. I was also introduced to the concept of developing software as a team, and exposed to the different

  6. Biological and metabolic response in STS-135 space-flown mouse skin.

    Science.gov (United States)

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p 1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  7. Atomic Oxygen and Space Environment Effects on Aerospace Materials Flown with EOIM-3 Experiment

    Science.gov (United States)

    Scialdone, John J.; Clatterbuck, Carroll H.; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1996-01-01

    Polymer materials samples mounted on a passive carrier tray were flown aboard the STS-46 Atlantis shuttle as complement to the EOIM-3 (Evaluation of Oxygen Interaction with Materials) experiment to evaluate the effects of atomic oxygen on the materials and to measure the gaseous shuttle bay environment. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07 x 10(exp 20) atoms/cm(exp 2) are being reported. The changes have been verified using Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurement, microscopic observations and thermo-optical measurements. The samples, including Kapton, Delrin, epoxies, Beta Cloth, Chemglaze Z306, silver Teflon, silicone coatings, 3M tape and Uralane and Ultem, PEEK, Victrex (PES), Polyethersulfone and Polymethylpentene thermoplastic, have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the oxygen fluence. Those efficiencies have been compared to results from other experiments, when available. The efficiencies of the samples are all in the range of E-24 g/atom. The results indicate that the reaction efficiencies of the reported materials can be grouped in about three ranges of values. The least affected materials which have efficiencies varying from 1 to 10(exp 25) g/atom, include silicones, epoxies, Uralane and Teflon. A second group with efficiency from 10 to 45(exp 25) g/atom includes additional silicone coatings, the Chemglaze Z306 paint and Kapton. The third range from 50 to 75(exp 25) includes organic compound such as Pentene, Peek, Ultem, Sulfone and a 3M tape. A Delrin sample had the highest reaction efficiency of 179(exp 25) g/atom. Two samples, the aluminum Beta cloth X389-7 and the epoxy fiberglass G-11 nonflame retardant, showed a slight mass increase.

  8. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Science.gov (United States)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  9. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  10. Advanced Hybrid On-Board Data Processor - SpaceCube 2.0 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop advanced on-board processing to meet the requirements of the Decadal Survey missions: advanced instruments (hyper-spectral, SAR, etc) require advanced...

  11. Noise and sleep on board vessels in the Royal Norwegian Navy

    OpenAIRE

    Erlend Sunde; Magne Bratveit; Stale Pallesen; Bente Elisabeth Moen

    2016-01-01

    Previous research indicates that exposure to noise during sleep can cause sleep disturbance. Seamen on board vessels are frequently exposed to noise also during sleep periods, and studies have reported sleep disturbance in this occupational group. However, studies of noise and sleep in maritime settings are few. This study's aim was to examine the associations between noise exposure during sleep, and sleep variables derived from actigraphy among seamen on board vessels in the Royal Norwegian ...

  12. The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update

    Science.gov (United States)

    Flatley, T.

    2012-12-01

    SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;

  13. S E- GEOD-50881 Study Samples --- Candida albicans response to spaceflight (NASA STS-115) API

    Data.gov (United States)

    National Aeronautics and Space Administration — A fully queryable REST API with JSON, XML, and CSV output as well as inline, runable examples using data from the transcriptional profiling and phenotypic...

  14. A E- GEOD-50881 Gene Chip Assay --- Candida albicans response to spaceflight (NASA STS-115) API

    Data.gov (United States)

    National Aeronautics and Space Administration — A fully queryable REST API with JSON, XML, and CSV output as well as inline, runable examples using data from the transcriptional profiling and phenotypic...

  15. Candida albicans response to spaceflight (NASA STS-115) --- GSM1231690_Slide_43 API

    Data.gov (United States)

    National Aeronautics and Space Administration — A fully queryable REST API with JSON, XML, and CSV output as well as inline, runable examples using data from the transcriptional profiling and phenotypic...

  16. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  17. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...... solutions. The ORC favorably compares to the steam Rankine cycle because of its simple layout and high efficiency, achievable by selecting a working fluid with desirable properties. This paper aims at assessing the fuel savings attainable by implementing ORC units on board vessels powered by liquefied...

  18. Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice

    Science.gov (United States)

    Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki

    2012-09-01

    Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.

  19. New technologies for fire suppression on board naval craft, FiST

    NARCIS (Netherlands)

    Rahm, M.; Hiltz, J.; Wal, R. van der; Hertzberg, T.; Lindström, J.

    2014-01-01

    For three years Canada, Sweden and the Netherlands have been investigating new technologies for fire suppression on board naval crafts within the FiST project. The project has focused on a number of technologies. These included the evaluation of water based fire suppression systems and in particular

  20. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  1. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Heinzelmann, G.; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  2. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa;

    2015-01-01

    that the next generation MetOp satellites must include some kind of RFI detection and mitigation system at Ku band. This paper describes a breadboard processor that detects and mitigates RFI on-board the satellite. Thus cleaned data can be generated in real time, and following suitable integration, downloaded...

  3. The Application of a Mixed General/Special Purpose Hardware in On-Board SATSAT Processing

    NARCIS (Netherlands)

    Bierens, L.H.J.

    1998-01-01

    In SATSAR huge amounts of data are involved corresponding to data rates of 100 to 1000 Mbits/s. The communication system and the intermediate storage on-board the satellite must handle this increasing amount of data as well. Furthermore, ground stations must process, broadcast and archive the SAR da

  4. Survivability of chilled water networks on board ships when using dincs

    NARCIS (Netherlands)

    Smit, C.S.

    2012-01-01

    Fast reaction is required when a chilled water distribution network on board a naval ship is damaged. Without immediate isolation of the leakage area, all water supply is lost soon, with immense consequences for the ship’s operational state. The only solution for that is using an automated recovery

  5. On-Board File Management and Its Application in Flight Operations

    Science.gov (United States)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  6. 75 FR 739 - Use of Additional Portable Oxygen Concentrator Devices on Board Aircraft

    Science.gov (United States)

    2010-01-06

    ... manner to add two more POC devices, Delphi Medical Systems' RS-00400 and Invacare Corporation's XPO2, to... documentation of the devices to the Department of Transportation's Docket Management System. That documentation... Aviation Regulation 106--Rules for Use of Portable Oxygen Concentrator Systems on Board...

  7. Forbush decrease effects on radiation dose received on-board aeroplanes.

    Science.gov (United States)

    Lantos, P

    2005-01-01

    Doses received on-board aeroplanes during deep Forbush decreases (FDs) have been recently measured and published. Using an operational model of dose calculation, the effects on aviation dose of the FDs observed from 1981 to 2003 using neutron monitors are studied and a simplified method to estimate dose variations from galactic cosmic ray variations during FDs is derived.

  8. THE DEVELOPMENT OF METHOD AND ON-BOARD DEVICES FOR COLLISION AVOIDANCE WHEN OVERTAKING

    Directory of Open Access Journals (Sweden)

    Podryhalo, M.

    2013-06-01

    Full Text Available A method for improving the safety of overtaking maneuver by using the on-board collision avoidance system, which has an increased assessment reliability of safety of vehicles overtaking that move in the same direction is offered. The proposed system takes into account the main factors that affect the overtaking maneuver.

  9. Evaluation of the on-board module building cotton harvest systems

    Science.gov (United States)

    The "on-board" module building systems from Case IH (Module Express 625 [ME 625]) and a system under final testing by John Deere (7760) represent the most radical change in the seed cotton handling and harvest system since the module builder was introduced over 30 years ago. The Module Express 625 c...

  10. Incorporate design of on-board network and inter-satellite network

    Science.gov (United States)

    Li, Bin; You, Zheng; Zhang, Chenguang

    2005-11-01

    In satellite, Data transferring is very important and must be reliable. This paper first introduced an on-board network based on Control Area Network (CAN). As a kind of field bus, CAN is simple and reliable, and has been tested by previous flights. In this paper, the CAN frame is redefined, including the identifier and message data, the addresses for source and destination as well as the frame types. On-board network provides datagram transmission and buffer transmission. Data gram transmission is used to carry out TTC functions, and buffer transmission is used to transfer mass data such as images. Inter-satellite network for satellite formation flying is not designed individually. It takes the advantage of TCP/IP model and inherits and extends on-board network protocols. The inter-satellite network includes a linkage layer, a network layer and a transport layer. There are 8 virtual channels for various space missions or requirements and 4 kinds of services to be selected. The network layer is designed to manage the whole net, calculate and select the route table and gather the network information, while the transport layer mainly routes data, which correspondingly makes it possible for communication between each two nodes. Structures of the linkage frame and transport layer data segment are similar, thus there is no complex packing and unpacking. At last, this paper gives the methods for data conversion between the on-board network and the inter-satellite network.

  11. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    Science.gov (United States)

    Lesur, V.; Gebler, A.; Schachtschneider, R.

    2012-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.

  12. MICROBIOLOGICAL EFFECTS OF ON-BOARD FISHING VESSEL HANDLING IN MERLUCCIUS MERLUCCIUS

    Directory of Open Access Journals (Sweden)

    P. Serratore

    2011-01-01

    Full Text Available The purpose of the present study was to determine the impact of different manipulation techniques applied on board fishing vessel, on the microbiological quality of the flesh of European hake (Merluccius merluccius during storage at +3°C ± 1°C for a time (T of 10 days after landing (T1-T10. Samples of fish were taken from a fishing vessel of the Adriatic Sea and from one of the Tyrrhenian Sea, treated on-board under different icing conditions: 1 a low ice/product weight ratio and 2 an optimal ice/product weight ratio, up to 1:3 (3. Spoilage bacteria as Total Bacterial Count (TBC and specific spoilage bacteria as Sulphide Producing Bacteria (SPB were enumerated in fish flesh as Colony Forming Units (CFU/g on Plate Count Agar and Lyngby Agar at 20°C for 3-5 days. TBC of the Adriatic fishes (gutted on-board resulted 103 UFC/g at T1-T6, and 104-105 at T10, whereas TBC of the Tyrrhenian fishes (not gutted on-board resulted 10-102 UFC/g at T2- T3, 103 at T6, and 104-105 at T10. SPB resulted 10- 102 UFC/g at T1-T6, and 103- 104 at T10, with absolute values higher in the Adriatic fishes, in respect with the Tyrrhenian fishes, and in the low icing conditions in respect with the optimal icing condition. At the experimented condition, the lowering of the microbiological quality of fish flesh during storage, seems to be more dependent on the gutting versus not gutting on-board practice rather than on the low versus optimal icing treatment.

  13. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  14. USING THE INFORMATION OF ON-BOARD DIAGNOSTIC SYSTEMS IN DETERMINING THE TECHNICAL STATE OF THE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2008-12-01

    Full Text Available The issues of increase of efficiency of information processing by оn-board systems of diagnostics of locomotives are considered. The examples of information processing by the on-board system of diagnostics of electric locomotives DE1 are presented. The suggestions on improvement of systematization and processing of information by on-board systems of diagnostics are given.

  15. Surveillance study of vector species on board passenger ships, Risk factors related to infestations

    Directory of Open Access Journals (Sweden)

    Hatzoglou Chrissi

    2008-03-01

    Full Text Available Abstract Background Passenger ships provide conditions suitable for the survival and growth of pest populations. Arthropods and rodents can gain access directly from the ships' open spaces, can be carried in shiploads, or can be found on humans or animals as ectoparasites. Vectors on board ships may contaminate stored foods, transmit illness on board, or, introduce diseases in new areas. Pest species, ship areas facilitating infestations, and different risk factors related to infestations were identified in 21 ferries. Methods 486 traps for insects and rodents were placed in 21 ferries. Archives of Public Health Authorities were reviewed to identify complaints regarding the presence of pest species on board ferries from 1994 to 2004. A detail questionnaire was used to collect data on ship characteristics and pest control practices. Results Eighteen ferries were infested with flies (85.7%, 11 with cockroaches (52.3%, three with bedbugs, and one with fleas. Other species had been found on board were ants, spiders, butterflies, beetles, and a lizard. A total of 431 Blattella germanica species were captured in 28 (9.96% traps, and 84.2% of them were nymphs. One ship was highly infested. Cockroach infestation was negatively associated with ferries in which Hazard Analysis Critical Control Point system was applied to ensure food safety on board (Relative Risk, RR = 0.23, p = 0.03, and positively associated with ferries in which cockroaches were observed by crew (RR = 4.09, p = 0.007, no cockroach monitoring log was kept (RR = 5.00, p = 0.02, and pesticide sprays for domestic use were applied by crew (RR = 4.00, p = 0.05. Cockroach infested ships had higher age (p = 0.03. Neither rats nor mice were found on any ship, but three ferries had been infested with a rodent in the past. Conclusion Integrated pest control programs should include continuing monitoring for a variety of pest species in different ship locations; pest control measures should be more

  16. Scientific goals achievable with radiation monitor measurements on board gravitational wave interferometers in space

    Science.gov (United States)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Lobo, A.; Mateos, I.

    2012-06-01

    Cosmic rays and energetic solar particles constitute one of the most important sources of noise for future gravitational wave detectors in space. Radiation monitors were designed for the LISA Pathfinder (LISA-PF) mission. Similar devices were proposed to be placed on board LISA and ASTROD. These detectors are needed to monitor the flux of energetic particles penetrating mission spacecraft and inertial sensors. However, in addition to this primary use, radiation monitors on board space interferometers will carry out the first multipoint observation of solar energetic particles (SEPs) at small and large heliolongitude intervals and at very different distances from Earth with minor normalization errors. We illustrate the scientific goals that can be achieved in solar physics and space weather studies with these detectors. A comparison with present and future missions devoted to solar physics is presented.

  17. Testing of the on-board attitude determination and control algorithms for SAMPEX

    Science.gov (United States)

    McCullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-02-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  18. On-board fuel conversion: Dimethyl ether from methanol for compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Stucki, S.

    2002-03-01

    One example of an on-board fuel conversion system is the fumigation of dimethyl ether. In this concept, a fraction of the methanol used as fuel is catalytically converted on-board to DME and water. The rate-determining step of the catalytic reaction with {gamma}-Al{sub 2}O{sub 3} as a catalyst is found to be the reaction of adsorbed intermediates; mass transfer is limited by Knudsen diffusivity. Providing DME for fumigation in a 180 kW engine will require approx. 0,7 kg of catalyst. The transient behavior of a pilot fixed-bed reactor has been estimated using simplified models, which show that the cold start should be manageable in less than one minute. This is an acceptable time for cold-starting an engine in heavy-duty vehicles. (author)

  19. Sensor network architecture for intelligent high-speed train on-board monitoring

    Institute of Scientific and Technical Information of China (English)

    Xiao-fan WU; Chun CHEN; Jia-jun BU; Gang CHEN

    2011-01-01

    The China's high-speed railway is experiencing a rapid growth.Its operating mileage and the number of operating trains will exceed 45000 km and 1500 trains by 2015,respectively.During the long range and constant high-speed operation,the high-speed trains have extremely complex and varied work conditions.Such a situation creates a huge demand for high-speed train on-board monitoring.In this paper,architecture for high-speed train on-board monitoring sensor network is proposed.This architecture is designed to achieve the goals of reliable sensing,scalable data transporting,and easy management.The three design goals are realized separately.The reliable sensing is achieved by deploying redundant sensor nodes in the same components.Then a hierarchal transporting scheme is involved to meet the second goal.Finally,an electronic-tag based addressing method is introduced to solve the management problem.

  20. Integrated extension board for on-board computer (OBDH) of SSETI ESEO satellite

    Science.gov (United States)

    Cichocki, Andrzej; Graczyk, Rafal

    2008-01-01

    This paper holds an information about an extension module for Single Board Computer (MIP405), which is the heart of On-board Data Handling Module (OBDH) of student Earth's microsatellite - SSETI ESEO. OBDH is a PC104 stack of four boards electrically connected and mechanically fixed. On-Board Computer is a key subsystem to the mission success - it is responsible for distribution of control signals to each module of the spacecraft. It is also expected to gather critical data for an appropriate mission progress, implementation of a part of algorithms used for satellite stabilization and orbit control and, at last, processing telecommands. Since whole system should meet spaceborne application requirements, it must be exceptionally reliable.

  1. An on-board near-optimal climb-dash energy management

    Science.gov (United States)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.

  2. On-board near-optimal climb-dash energy management

    Science.gov (United States)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1983-01-01

    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state.

  3. Improved spacecraft radio science using an on-board atomic clock: application to gravitational wave searches

    CERN Document Server

    Tinto, Massimo; Prestage, John D; Armstrong, J W

    2008-01-01

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently-leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multi-link CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would ...

  4. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  5. Energy management systems on board of electric vehicles, based on power electronics

    OpenAIRE

    Guidi, Giuseppe

    2009-01-01

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion.The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently ...

  6. Increasing the object recognition distance of compact open air on board vision system

    Science.gov (United States)

    Kirillov, Sergey; Kostkin, Ivan; Strotov, Valery; Dmitriev, Vladimir; Berdnikov, Vadim; Akopov, Eduard; Elyutin, Aleksey

    2016-10-01

    The aim of this work was developing an algorithm eliminating the atmospheric distortion and improves image quality. The proposed algorithm is entirely software without using additional hardware photographic equipment. . This algorithm does not required preliminary calibration. It can work equally effectively with the images obtained at a distances from 1 to 500 meters. An algorithm for the open air images improve designed for Raspberry Pi model B on-board vision systems is proposed. The results of experimental examination are given.

  7. University of the seas, 15 years of oceanographic schools on board of the Marion Dufresne

    Science.gov (United States)

    Malaize, Bruno; Deverchere, Jacques; Leau, Hélène; Graindorge, David

    2015-04-01

    Since the first University at Sea, proposed by two French Universities (Brest and Bordeaux) in 1999, the R/V Marion Dufresne, in collaboration with the French Polar institute (IPEV), has welcome 12 oceanographic schools. The main objective of this educational and scientific program is to stimulate the potential interest of highly graduated students in scientific fields dealing with oceanography, and to broaden exchanges with foreign universities, strengthening a pool of excellence at a high international scientific level. It is a unique opportunity for the students to discover and to be involved in the work in progress of collecting scientific data on board of a ship, and to attend international research courses given by scientists involved in the cruise program. They also experience the final task of the scientific work by presenting their own training results, making posters on board, and writing a cruise report. For some University at Sea, students had also updated a daily journal, available on internet, hosted by the main institutions involved (as IPEV or EPOC, Bordeaux University). All this work is done in English, a common language to all the participants. An overview of these 15 years background experience will be presented, underlying the financial supports used, the logistic on board, as well as all the benefits acquiered by all former students, now in permanent positions in different international institutions.

  8. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    Science.gov (United States)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  9. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Science.gov (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  10. Stationary and on-board storage systems to enhance energy and cost efficiency of tramways

    Science.gov (United States)

    Ceraolo, M.; Lutzemberger, G.

    2014-10-01

    Nowadays road transportation contributes in a large amount to the urban pollution and greenhouse gas emissions. One solution in urban environment, also in order to mitigate the effects of traffic jams, is the use of tramways. The most important bonus comes from the inherent reversibility of electric drives: energy can be sent back to the electricity source, while braking the vehicle. This can be done installing some storage device on-board trains, or in one or more points of the supply network. This paper analyses and compares the following variants: Stationary high-power lithium batteries. Stationary supercapacitors. High-power lithium batteries on-board trains. Supercapacitors on-board trains. When the storage system is constituted by a supercapacitor stack, it is mandatory to interpose between it and the line a DC/DC converter. On the contrary, the presence of the converter can be avoided, in case of lithium battery pack. This paper will make an evaluation of all these configurations, in a realistic case study, together with a cost/benefit analysis.

  11. Role of on-board discharge in shock wave drag reduction and plasma cloaking

    Institute of Scientific and Technical Information of China (English)

    Qiu Xiao-Ming; Tang De-Li; Sun Ai-Ping; Liu Wan-Dong; Zeng Xue-Jun

    2007-01-01

    In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength,successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition,the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.

  12. JURISDICTION OVER CRIMES COMMITTED ON BOARD AIRCRAFT IN FLIGHT UNDER THE TOKYO CONVENTION 1963

    Directory of Open Access Journals (Sweden)

    Iryna Sopilko

    2016-12-01

    Full Text Available Purpose: the main aim of this paper is to clarify several issues of conflicting jurisdiction over crimes committed on board aircraft in flight. The study will examine the way in which the Tokyo Convention attempts to provide justice in the event of aviation security violations, and discuss its effectiveness in preventing such offences in the future. Methods: formal legal and case-study methods together with inductive reasoning, and comparison were used to analyse the legislation in the area of jurisdiction over crimes and other offences committed on board aircraft in flight. Results: it follows from the study that although the Tokyo Convention has contributed considerably to the establishing of clearer rules of jurisdiction over offences committed on board aircraft, considerable deficiencies of this treaty remain. The results have important implications for international policy-making. Discussion: the results of the study reveal several weaknesses of the Tokyo Convention. Firstly, it does not provide any definition or list of offences to which it applies, instead it relies on national penal laws to do so. In addition, the ‘freedom fighter exception’ and the lack of a strong enforcement mechanism may prove to impede the effective attainment of the Tokyo Convention’s main objectives – that is, to provide justice in the event of aviation security violations, and prevent such offences in the future. Therefore, further improvement in aviation security legislation is necessary to ensure that it is effective and adequate in the challenges faced today.

  13. Is there still a benefit to operate appendiceal abscess on board French nuclear submarines?

    Science.gov (United States)

    Hornez, Emmanuel; Gellie, Gabriel; Entine, Fabrice; Ottomani, Sébastien; Monchal, Tristan; Meusnier, François; Platel, Jean Philippe; de Carbonnieres, Hubert; Thouard, Hervé

    2009-08-01

    Appendicular abscess occurred in 14.2% of patients presenting acute appendicitis. Management of these patients remains controversial, ranging from an emergency appendectomy to a nonoperative treatment. On board French nuclear submarines, the usual treatment for all cases of appendiceal masses, including both appendicitis and appendiceal abscess, is an appendectomy. In the past 5 years, the introduction of ultrasonography (US) on board has enabled the diagnosis of appendiceal abscess with a high rate of accuracy, and the latest studies show that nonoperative treatment is an alternative approach. This nonsurgical treatment, based on intravenous administration of antibiotics, is successful in about 93% of the patients. Failure of nonsurgical treatment is a reliable indication of percutaneous drainage. The proportion of adult patients who need percutaneous drainage of abscesses is about 27%. A successful primary nonoperative treatment may or may not be followed by interval appendectomy at the conclusion of the patrol. Nonsurgical treatment is associated with a significantly lower morbidity than surgery. Considering that the on-board surgical facility is limited, nonsurgical treatment appears to be the best approach for treating a sailor with an appendiceal abscess during a submarine patrol mission.

  14. On-board removal of CO and other impurities in hydrogen for PEM fuel cell applications

    Science.gov (United States)

    Huang, Cunping; Jiang, Ruichun; Elbaccouch, Mohamed; Muradov, Nazim; Fenton, James M.

    Carbon monoxide (CO) in the hydrogen (H 2) stream can cause severe performance degradation for an H 2 polymer electrolyte membrane (PEM) fuel cell. The on-board removal of CO from an H 2 stream requires a process temperature less than 80 °C, and a fast reaction rate in order to minimize the reactor volume. At the present time, few technologies have been developed that meet these two requirements. This paper describes a concept of electrochemical water gas shift (EWGS) process to remove low concentration CO under ambient conditions for on-board applications. No on-board oxygen or air supply is needed for CO oxidation. Experimental work has been carried out to prove the concept of EWGS and the results indicate that the process can completely remove low level CO and improve the performance of a PEM fuel cell to the level of a pure H 2 stream. Because the EWGS electrolyzer can be modified from a humidifier for a PEM fuel cell system, no additional device is needed for the CO removal. More experimental data are needed to determine the rate of CO electrochemical removal and to explore the mechanism of the proposed process.

  15. Design and analysis of the reliability of on-board computer system based on Markov-model

    Institute of Scientific and Technical Information of China (English)

    MA Xiu-juan; CAO Xi-bin; ZHAO Guo-liang

    2005-01-01

    An on-board computer system should have such advantages as light weight, small volume and low power to meet the demand of micro-satellites. This paper, based on specific characteristics of Stereo Mapping Micro-Satellite ( SMMS), describes the on-board computer system with its advantage of having centralized and distributed control in the same system and analyzes its reliability based on a Markov model in order to provide a theoretical foundation for a reliable design. The on-board computer system has been put into use in principle prototype model of Stereo Mapping Micro-Satellite and has already been debugged. All indexes meet the requirements of the design.

  16. A real-time fault-tolerant scheduling algorithm with low dependability cost in on-board computer system

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-dong; WEI Zhen-hua

    2008-01-01

    To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.

  17. Small, Light-Weight Pump Technology for On-Board Pressurization of Propellants in a Mars Ascent Vehicle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To-date, the realization of high-performance liquid bipropellant rocket engines in the micro-scale has largely been hindered by the inability to obtain "on-board"...

  18. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  19. 12 years of Phobos observations by Omega and Spicam on board MEX

    Science.gov (United States)

    Gondet, Brigitte; Bertaux, Jean-Loup; Omega team, Spicam team

    2016-10-01

    Mars Express made several encounters with Phobos and a few with Deimos since 2004. Observations with SPICAM and OMEGA imaging spectrometers on board Mars Express covers the range from UV (110-312 nm) to visible and mid IR up to 5 µm. In the following we consider the ultraviolet (UV) channel of SPICAM and only the visible channel of OMEGA and its small UV extension down to 390 nm, in order to compare with SPICAM. Preliminary results were presented already in the past [1]. Since then, a more detailed analysis was carried out, subtracting some internally scattered light affecting the SPICAM UV retrieved reflectance.The combined spectrum of Radiance Factor from SPICAM and OMEGA suggests the presence of a deep absorption feature. Both instruments, taken separately, support also this absorption feature.In the visible part of CRISM [2] on board MRO and recently confirmed by Omega, one feature is centered at 0.65 µm, with an absorption depth varying from 0 to 4%, an other one is centered at 2.8µm. These two Visible IR features were interpreted [2] either to highly desiccated Fe-phyllosilicate minerals indigenous to the bodies, or to a surface process involving Rayleigh scattering and absorption of small iron particles formed by exogenic space weathering processing.In this rather uncertain situation, the UV band detected by SPICAM and OMEGA on board Mars Express is of great importance to attempt discriminating between the two scenarios proposed above to explain the Visible-IR reflectance spectra of Phobos.[1] Bertaux J.L. et al. (2011) EPSC/DPS conference abstract, Nantes, November 2011. [[2] Freaman A.A. et al. (2014) Icarus, 229 , 196–205.

  20. On-board multicarrier demodulator for mobile applications using DSP implementation

    Science.gov (United States)

    Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.

    1990-11-01

    This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.

  1. Cultural differences in emotional intelligence among top officers on board merchant ships.

    Science.gov (United States)

    Johnsen, Bjørn Helge; Meeùs, Philippine; Meling, Jon; Rogde, Torbjørn; Eid, Jarle; Esepevik, Roar; Olsen, Olav Kjellevold; Sommerfelt-Pettersen, Jan

    2012-01-01

    The current research investigated cultural differences in emotional intelligence among top officers on board vessels of multicultural maritime companies. We found that Southeast Asian officers scored higher than European officers on the total Emotional Intelligence scale. When separating the EQ scale in its facets, higher scores for Asian officers were found on "Utilization of emotions", "Handling relationships", and on "Self-control". Another finding was that Chief officers/Second engineers scored higher than Masters/Chief Officers on "Self-control". Finally, we found a negative correlation between age and scores on the facet of "Self-control". These crosscultural differences may have implications for interpersonal relations and ship management.

  2. Adsorption Characteristics of Macroporous Resin for Oil Removal from Desulphurization Wastewater on Board

    Science.gov (United States)

    Li, Tie; Chen, Chen; Jin, Qi; Zhao, Jiao; Tang, Xiaojia; Zhu, Yimin

    2017-01-01

    According to our previous results on the magnesium-based exhaust gas cleaning system (Mg-EGCS), PAHs and total oil content were the main factors affecting the COD in the wastewater. In this work, three kinds of adsorption materials were investigated and macroporous resin was selected for oil removal. The effects of the dosage of macroporous resin, adsorption time and the flow rate were studied, and thermodynamics equation was used to characterize the adsorption process. The results showed that macroporous resin is a good candidate for oil removal from desulphurization wastewater on board, and the COD after treatment can meet the discharge criteria set by the International Maritime Organization (IMO).

  3. The Sileye--Alteino experiment on board the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M. E-mail: casolino@roma2.infn.it; Bidoli, V.; Furano, G.; Minori, M.; Morselli, A.; Narici, L.; Picozza, P.; Reali, E.; Sparvoli, R.; Fuglesang, C.; Sannita, W.G.; Carlson, P.; Castellini, G.; Tesi, M.; Galper, A.; Korotkov, M.; Popov, A.; Vavilov, N.; Avdeev, S.; Benghin, V.; Salnitskii, V.P.; Shevchenko, O.I.; Petrov, V.P.; Trukhanov, K.A.; Boezio, M.; Bonvicini, W.; Vacchi, A.; Zampa, G.; Zampa, N.; Mazzenga, G.; Ricci, M.; Spillantini, P

    2002-12-01

    The experiment Sileye-3/Alteino was placed on board the International Space Station on 27 April 2002. The instrument is constituted by a cosmic ray silicon detector and an electroencephalograph. The main scientific aims include the investigation of the Light Flash phenomenon, the study of astronaut brain activity in space when subject to cosmic rays, the measurement of the radiation environment and the nuclear abundances inside the ISS. The instrument cosmic ray detector was active for 130 hours. In addition 6 astronaut Light Flash observation sessions were held, resulting in the observation of this phenomenon on the ISS.

  4. Portable Simulator for On-Board International Space Station Emergency Training

    Science.gov (United States)

    Bolt, Kathy; Root, Michael

    2014-01-01

    The crew on-board the International Space Station (ISS) have to be prepared for any possible emergency. The emergencies of most concern are a fire, depressurization or a toxic atmosphere. The crew members train on the ground before launch but also need to practice their emergency response skills while they are on orbit for 6 months. On-Board Training (OBT) events for emergency response proficiency used to require the crew and ground teams to use paper "scripts" that showed the path through the emergency procedures. This was not very realistic since the participants could read ahead and never deviate from this scripted path. The new OBT emergency simulator allows the crew to view dynamic information on an iPad only when it would become available during an event. The simulator interface allows the crew member to indicate hatch closures, don and doff masks, read pressures, and sample smoke or atmosphere levels. As the crew executes their actions using the on-board simulator, the ground teams are able to monitor those actions via ground display data flowing through the ISS Ku Band communication system which syncs the on-board simulator software with a ground simulator which is accessible in all the control centers. The OBT Working Group (OBT WG), led by the Chief Training Office (CTO) at Johnson Space center is a Multilateral working group with partners in Russia, Japan, Germany and U.S.A. The OBTWG worked together to create a simulator based on these principles: (a) Create a dynamic simulation that gives real-time data feedback; (b) Maintain real-time interface between Mission Control Centers and crew during OBTs; (c) Provide flexibility for decision making during drill execution; (d) Materially reduce Instructor and Flight Control Team man-hour costs involved with developing, updating, and maintaining emergency OBT cases/scenarios; and (e) Introduce an element of surprise to emergency scenarios so the team can't tell the outcome of the case by reading ahead in a

  5. Washing and Laundering on Board I.N. Ships with Sea Water

    Directory of Open Access Journals (Sweden)

    Sreenivas Rao

    1956-01-01

    Full Text Available This paper deals with the use of synthetic detergents for washing and laundering on board I.N. Ships using sea water. Soiled clothed were subjected to washing trials using various concentrations of detergents viz., Teepol and Lissapol N with sodium meta-silicate as builder. A sea water washing formula using Teepol as detergent and sodium meta-silicate as builder in equal proportions has been evolved by which fresh water can be economized to the extent of 66% when compared to ordinary soaps and fresh water.

  6. New sonic shockwave multi-element sensors mounted on a small airfoil flown on F-15B testbed aircraft

    Science.gov (United States)

    1996-01-01

    An experimental device to pinpoint the location of a shockwave that develops in an aircraft flying at transonic and supersonic speeds was recently flight-tested at NASA's Dryden Flight Research Center, Edwards, California. The shock location sensor, developed by TAO Systems, Hampton, Va., utilizes a multi-element hot-film sensor array along with a constant-voltage anemometer and special diagnostic software to pinpoint the exact location of the shockwave and its characteristics as it develops on an aircraft surface. For this experiment, the 45-element sensor was mounted on the small Dryden-designed airfoil shown in this illustration. The airfoil was attached to the Flight Test Fixture mounted underneath the fuselage of Dryden's F-15B testbed aircraft. Tests were flown at transonic speeds of Mach 0.7 to 0.9, and the device isolated the location of the shock wave to within a half-inch. Application of this technology could assist designers of future supersonic aircraft in improving the efficiency of engine air inlets by controlling the shockwave, with a related improvement in aircraft performance and fuel economy.

  7. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    Science.gov (United States)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  8. [Histomorphometric analysis of the bones of rats on board the Kosmos 1667 biosatellite].

    Science.gov (United States)

    Kaplanskiĭ, A S; Durnova, G N; Sakharova, Z F; Il'ina-Kakueva, E I

    1987-01-01

    Bones of the rats flown on Cosmos-1667 were examined histologically and histomorphometrically. It was found that 7-day exposure to weightlessness led to osteoporosis in the spongy matter of proximal metaphyses of tibia and, although to a lesser extent, in the spongiosa of lumbar vertebrae whereas no signs of osteoporosis were seen in the spongy matter of iliac bones. Osteoporosis in the spongy matter of the above bones developed largely due to the inhibition of bone neoformation, which was indicated by a decrease in the number and activity of osteoblasts. Increased bone resorption (as shown by a greater number and activity of osteoclasts) was observed only in the spongy matter of tibial metaphyses. It is emphasized that a reduction of the number of highly active osteoblasts in spongy bones is one of the early signs of inhibition of bone neoformation and development of osteoporosis.

  9. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    Science.gov (United States)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  10. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  11. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    Science.gov (United States)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  12. Estimation of residual microaccelerations on board an artificial earth satellite in the monoaxial solar orientation mode

    Science.gov (United States)

    Ignatov, A. I.; Sazonov, V. V.

    2013-09-01

    The mode of monoaxial solar orientation of a designed artificial Earth satellite (AES), intended for microgravitational investigations, is studied. In this mode the normal line to the plane of satellite’s solar batteries is permanently directed at the Sun, the absolute angular velocity of a satellite is virtually equal to zero. The mode is implemented by means of an electromechanical system of powered flywheels or gyrodynes. The calculation of the level of microaccelerations arising on board in such a mode, was carried out by mathematical modeling of satellite motion with respect to the center of masses under an effect of gravitational and restoring aerodynamic moments, as well as of the moment produced by the gyrosystem. Two versions of a law for controlling the characteristic angular momentum of a gyrosystem are considered. The first version provides only attenuation of satellite’s perturbed motion in the vicinity of the position of rest with the required velocity. The second version restricts, in addition, the increase in the accumulated angular momentum of a gyrosystem by controlling the angle of rotation of the satellite around the normal to the light-sensitive side of the solar batteries. Both control law versions are shown to maintain the monoaxial orientation mode to a required accuracy and provide a very low level of quasistatic microaccelerations on board the satellite.

  13. Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.

    2010-01-01

    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.

  14. Data Processing and Compression of Cosmic Microwave Background Anisotropies on Board the PLANCK Satellite

    CERN Document Server

    Gaztañaga, E; Barriga, J; Elizalde, E

    2001-01-01

    We present a simple way of coding and compressing the data on board the Planck instruments (HFI and LFI) to address the problem of the on board data reduction. This is a critical issue in the Planck mission. The total information that can be downloaded to Earth is severely limited by the telemetry allocation. This limitation could reduce the amount of diagnostics sent on the stability of the radiometers and, as a consequence, curb the final sensitivity of the CMB anisotropy maps. Our proposal to address this problem consists in taking differences of consecutive circles at a given sky pointing. To a good approximation, these differences are independent of the external signal, and are dominated by thermal (white) instrumental noise. Using simulations and analytical predictions we show that high compression rates, $c_r \\simeq 10$, can be obtained with minor or zero loss of CMB sensitivity. Possible effects of digital distortion are also analized. The proposed scheme allows for flexibility to optimize the relatio...

  15. The on-board data handling concept for the LOFT Large Area Detector

    CERN Document Server

    Suchy, S; Tenzer, C; Santangelo, A; Argan, A; Feroci, M; Kennedy, T E; Smith, P J; Walton, D; Zane, S; Portell, J; García-Berro, E

    2012-01-01

    The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in the time-frame of 2022. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. The LOFT scientific payload consists of a Large Area Detector and a Wide Field Monitor. The LAD is a 10 m^2-class pointed instrument with high spectral (200 eV @ 6 keV) and timing (< 10 {\\mu}s) resolution over the 2-80 keV range. It is designed to observe persistent and transient X-ray sources with a very large dynamic range from a few mCrab up to an intensity of 15 Crab. An unprecedented large throughput (~280.000 cts/s from the Crab) is achieved with a segmented detector, making pile-up and dead-time, often worrying or limiting focused experiments, secondary issues. We present the on-board data handling concept that follows the highly segmented and hierarchical structure of the instrument from the front-end electronics to the on-board softwa...

  16. ON-BOARD MONITORING OF TECHNICAL STATE FOR POWER UNITS OF WHEELED AND TRACKED VEHICLES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2016-01-01

    Full Text Available The paper considers new methodologies pertaining to on-board diagnosis of wear-out rate for friction linings of a clutch driven disk and friction discs of a hydraulic press clutch of transmission gear boxes which are based on physical process that uses friction work as an integrated indicator. A new methodology in determination of life-span rate for engine oil has been developed in the paper. The paper presents block schematic diagrams for on-board monitoring of technical state for power units of wheeled and tracked vehicles. Usage of friction work as an integrated indicator for determination of wear-out rate for friction linings of clutch driven disk and friction discs of a haydraulic press clutch makes it possible timely at any operational period of wheeled and tracked vehicles to determine their residual operation life and forecast their replacement.While taking volume of the used fuel for determination of engine oil life-span rate it permits quickly and effectively at any operational period of wheeled and tracked vehicles to determine residual useful life of the engine oil and also forecast its replacement.

  17. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  18. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  19. Laser tracker orientation in confined space using on-board targets

    Science.gov (United States)

    Gao, Yang; Kyle, Stephen; Lin, Jiarui; Yang, Linghui; Ren, Yu; Zhu, Jigui

    2016-08-01

    This paper presents a novel orientation method for two laser trackers using on-board targets attached to the tracker head and rotating with it. The technique extends an existing method developed for theodolite intersection systems which are now rarely used. This method requires only a very narrow space along the baseline between the instrument heads, in order to establish the orientation relationship. This has potential application in environments where space is restricted. The orientation parameters can be calculated by means of two-face reciprocal measurements to the on-board targets, and measurements to a common point close to the baseline. An accurate model is then applied which can be solved through nonlinear optimization. Experimental comparison has been made with the conventional orientation method, which is based on measurements to common intersection points located off the baseline. This requires more space and the comparison has demonstrated the feasibility of the more compact technique presented here. Physical setup and testing suggest that the method is practical. Uncertainties estimated by simulation indicate good performance in terms of measurement quality.

  20. Russian system of countermeasures on board of the International Space Station (ISS): the first results

    Science.gov (United States)

    Kozlovskaya, Inessa B.; Grigoriev, Anatoly I.

    2004-08-01

    The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in-and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.

  1. STAND-ALONE COLLISION WARNING SYSTEMS BASED ON INFORMATION FROM ON-BOARD SENSORS

    Directory of Open Access Journals (Sweden)

    Yusuke TAKATORI

    2006-01-01

    Full Text Available This paper looks at stand-alone collision warning systems that are based on information from on-board sensors and evaluates their safety performance relative to system penetration rate. The authors developed an autonomous microscopic traffic simulator for collision warning systems, including both forward vehicle collision warning systems and side collision warning systems, then evaluated such systems through simulation. Safety performance from the perspective of drivers was evaluated using the average distance driven without an accident for both system-equipped and unequipped vehicles. Safety performance from the perspective of road administrators was evaluated using the average interval between accidents. The average distance driven without an accident for system-equipped vehicles, compared to that for a system in which no system-equipped vehicles exist, increases greatly beginning from a low rate of penetration, suggesting that increased rates of penetration are attended by even greater effectiveness. With regard to the average distance driven without an accident for unequipped vehicles, too, increased rates of penetration are attended by increased safety performance due to the collision avoidance effect of warnings produced by system-equipped vehicles. In terms of safety performance from the perspective of road administrators, that is, the average interval between accidents, evaluations indicated that safety performance increases dramatically when the penetration rate exceeds 60%. The above findings illustrate the effect of system penetration rate on the safety performance of stand-alone collision warning systems that are based on information from on-board sensors.

  2. The end-to-end testbed of the Optical Metrology System on-board LISA Pathfinder

    CERN Document Server

    Steier, Frank; Marín, Antonio F García; Gerardi, Domenico; Heinzel, Gerhard; Danzmann, Karsten; 10.1088/0264-9381/26/9/094010

    2012-01-01

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This measurement is performed interferometrically by the Optical Metrology System (OMS) on-board LISA Pathfinder. In this paper we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer back-end which is a phasemeter and the processing of the phasemeter output data. Furthermore, 3-axes piezo actuated mirrors are used instead of the free-falling test masses for the characterisation of the dynamic behaviour of the system and some parts of the Drag-free and Attitude Control System (DFACS) which controls the test masses and the satellite. The end-to-end testbe...

  3. Acute gastrointestinal haemorrhage on board a cruise ship in the Antarctic Peninsula.

    Science.gov (United States)

    Carron, Mathieu; Globokar, Peter; Sicard, Bruno A

    2016-01-01

    Antarctic tourism on board cruise ships has expanded since the 1990s, essentially in the Antarctic Peninsula. Due to remoteness, medical cases may evolve into life threatening conditions as emergency medical evacuations are challenging. We discuss the case of a young crew member who suddenly fainted with an epigastric pain and abundant rectal bleeding while on board a cruise ship heading to the Deception Island (62°57.6 South, 60°29.5 West), 44 h away from Ushuaia by sea. A medical evacuation was necessary to save the patient whose haemoglobin level rapidly decreased from 11 g/dL to 8.7 g/dL over an 8 h period due to uncontrolled gastrointestinal bleeding. Following discussions between the French, Chilean and Argentinean Medical Top Side Support and Maritime Rescue Authorities and despite poor weather conditions, an emergency medical evacuation by air to Chile was made possible. The evacuation, which was 2 days shorter compared to an evacuation by sea, allowed the patient to reach a hospital facility in time to save his life whereas he decompensated in haemorrhagic shock. As passengers on cruise ships are typically elderly and often following anticoagulant therapies, the risk of bleeding is most important. Facing a gastric haemorrhage, a transfusion is often required. In remote areas, transfusion of fresh whole blood to stabilize a critical patient until he reaches a hospital must be considered.

  4. On-board Payload Data Processing from Earth to Space Segment

    Science.gov (United States)

    Tragni, M.; Abbattista, C.; Amoruso, L.; Cinquepalmi, L.; Bgongiari, F.; Errico, W.

    2013-09-01

    Matching the users application requirements with the more and more huge data streaming of the satellite missions is becoming very complex. But we need both of them. To face both the data management (memory availability) and their transmission (band availability) many recent R&D activities are studying the right way to move the data processing from the ground segment to the space segment by the development of the so-called On-board Payload Data Processing (OPDP). The space designer are trying to find new strategies to increase the on board computation capacity and its viability to overcome such limitations, memory and band, focusing the transmission of remote sensing information (not only data) towards their final use. Some typical applications which can benefit of the on board payload data processing include the automatic control of a satellites constellation which can modify its scheduled acquisitions directly on-board and according to the information extracted from the just acquired data, increasing, for example, the capability of monitoring a specific objective (such as oil spills, illegal traffic) with a greater versatility than a traditional ground segment workflow. The authors and their companies can count on a sound experience in design and development of open, modular and compact on-board processing systems. Actually they are involved in a program, the Space Payload Data Processing (SpacePDP) whose main objective is to develop an hardware and a software framework able to perform both the space mission standard tasks (sensors control, mass storage devices management, uplink and downlink) and the specific tasks required by each mission. SpacePDP is an Open and modular Payload Data Processing system, composed of Hardware and Software modules included a SDK. The whole system is characterised by flexible and customizable building blocks that form the system architectures and by a very easy way to be integrated in the missions by the SDK (a development

  5. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite].

    Science.gov (United States)

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H

    1983-01-01

    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  6. On-board conversion of alcohols to ethers for fumigation in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Stucki, S. [Paul Scherrer Institute, Villigen (Switzerland). Laboratorium of Energy and Material Cycles; Olsson, E.; Gjirja, S. [Chalmers University, Goteborg (Sweden). Combustion Engine Research Centre

    2003-07-01

    Fumigation of dimethyl ether (DME) is an interesting option for using methanol as a fuel in compression ignition engines. In this concept, a fraction of the methanol used as a fuel is catalytically converted on-board to DME and water, and the products of the conversion are introduced into the engine via the combustion air. With an optimized engine the performance as well as emissions are comparable with those obtained when running the engine on alcohol with polyethylene glycol as ignition improver. The methanol conversion has been tested with different catalysts under various conditions. Because of its superior thermal stability and the low costs, {gamma}-Al{sub 2}O{sub 3} has been selected as the most promising catalyst for converting methanol to DME in sufficient rates for an on-board application. The chemical kinetics and the mass transfer limitations of the {gamma}-Al{sub 2}O{sub 3} catalyst used for the methanol dehydration were evaluated. The rate-determining step of the catalytic reaction is found to be the reaction of adsorbed intermediates (the Langmuir-Hinshelwood mechanism); mass transfer is limited by Knudsen diffusivity. The kinetic data were used to design a catalytic converter for fuel processing on-board. Providing DME for fumigation in a 180 kW engine will require approximately 0.7 kg of catalyst. The compact catalyst is necessary for an efficient and fast start-up of the process. The transient behaviour (cold/warm start-up; load changes) of a fixed-bed reactor with {gamma}-Al{sub 2}O{sub 3} has been estimated using simplified models, which show that the cold start problem should be manageable in less than 1 min. With the hot gas of a methanol burner in front of the fixed bed or a bifunctional catalyst, the catalyst bed can be heated to 250{sup o}C and the reaction of methanol to DME started within 25 s. This is an acceptable time for cold-starting an engine in heavy-duty vehicles. (author)

  7. Development and Validation of the On-Board Control Procedures Subsystem for the Herschel and Planck Satellites

    Science.gov (United States)

    Ferraguto, M.; Wittrock, T.; Barrenscheen, M.; Paakko, M.; Sipinen, V.; Pelttari, L.

    2009-05-01

    The On-Board Control Procedures (OBCP) subsystem of Herschel and Planck Satellites' Central Data Management Unit (CDMU) Application SW (ASW) provides means to control the spacecraft through small script-like programs written in a specific language called On-board Command Language (OCL). The implementation for Herschel and Planck satellites is an adaptation from previous experiences on instruments like Rosetta/OSIRIS, Venus Express/VMC and Dawn/FC, but it had also been adapted successfully for the GOCE satellite already. A thorough validation campaign has been conducted to qualify the H&P SW implementation for flight. The purpose of having on-board control procedures is to allow the ground operators to be able to prepare and up-link complex operations sequences (more complex than simple sequences of mission time-line telecommands) to be executed on-board during the mission operational phase. This is possible because the OBCPs run in a quite separate subsystem, so the creation of a new procedure does not require modification, uplink and re-validation of the whole on-board software. The OBCP subsystem allows these control procedures to be developed, tested on ground, and executed on the spacecraft.

  8. Optimization of an on-board imaging system for extremely rapid radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Maxim, Peter G.; Loo, Billy W. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors are proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration

  9. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  10. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  11. Registration of the Atmospheric Gamma Radiation on Board the Russian Segment of the International Space Station

    Science.gov (United States)

    Andreevsky, S. E.; Kuznetsov, V. D.; Sinelnikov, V. M.

    2017-03-01

    The paper describes the complex of scientific instruments and the algorithm of the "Molniya-Gamma" experiment on measuring gamma-ray fluxes in the energy range of 32-750 keV carried out in 2011 on board the Russian Segment (RS) of the International Space Station (ISS). About 500 thousand energy spectra with a time resolution of 1 min were obtained in 512 energy channels during 232 days. One-second variations in the number of gamma quanta in four energy channels and the triggered fluxes of gamma quanta lasting less than 100 ms were recorded simultaneously. The data obtained allow us to study temporal and spatial variation of gamma-ray radiation to detect terrestrial gamma flashes (TGFs). Data on very large number of gamma-ray spikes were acquired through a trigger data mode with a low threshold.

  12. Slow-scan Observations with the Infrared Camera (IRC) on-board AKARI

    CERN Document Server

    Takita, Satoshi; Kitamura, Yoshimi; Ishihara, Daisuke; Kataza, Hirokazu; Kawamura, Akiko; Oyabu, Shinki; Ueno, Munetaka; Yamamura, Issei

    2012-01-01

    We present the characterization and calibration of the slow-scan observation mode of the Infrared Camera (IRC) on-board AKARI. The IRC slow-scan observations were operated at the S9W (9 $\\mu$m) and L18W (18 $\\mu$m) bands. We have developed a toolkit for data reduction of the IRC slow-scan observations. We introduced a "self-pointing reconstruction" method to improve the positional accuracy to as good as 1". The sizes of the point spread functions were derived to be $\\sim6"$ at the S9W band and $\\sim7"$ at the L18W bands in full width at half maximum. The flux calibrations were achieved with the observations of 3 and 4 infrared standard stars at the S9W and L18W bands, respectively. The flux uncertainties are estimated to be better than 20% from comparisons with the AKARI IRC PSC and the WISE preliminary catalog.

  13. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  14. Pairwise-Svm for On-Board Urban Road LIDAR Classification

    Science.gov (United States)

    Shu, Zhen; Sun, Kai; Qiu, Kaijin; Ding, Kou

    2016-06-01

    The common method of LiDAR classifications is Markov random fields (MRF). Based on construction of MRF energy function, spectral and directional features are extracted for on-board urban point clouds. The MRF energy function is consisted of unary and pairwise potentials. The unary terms are computed by SVM classifictaion. The initial labeling is mainly processed through geometrical shapes. The pairwise potential is estimated by Naïve Bayes. From training data, the probability of adjacent objects is computed by prior knowledge. The final labeling method is reweighted message-passing to minimization the energy function. The MRF model is difficult to process the large-scale misclassification. We propose a super-voxel clustering method for over-segment and grouping segment for large objects. Trees, poles ground, and building are classified in this paper. The experimental results show that this method improves the accuracy of classification and speed of computation.

  15. 11 years observing with OMC, the Optical Monitoring Camera on board the INTEGRAL satellite

    Science.gov (United States)

    Alfonso-Garzón, J.; Domingo, A.; Mas-Hesse, J. M.

    2015-05-01

    The Optical Monitoring Camera (OMC) on board the INTEGRAL observatory provides photometry in the Johnson V band, complementing the high-energy instruments which take images and spectra in hard X-rays and soft gamma--rays. After 11 years of mission operations, it has been possible to compile optical photometric light curves for a very large number of objects, with observational time spans of more than a decade and with a stable and consistent photometric calibration. In this contribution, we present a summary of some of the most interesting scientific results reached with INTEGRAL/OMC data, including the compilation of a catalogue of optically variable sources, some results on the analysis of temporal correlations between different energy ranges and the OMC monitoring of the supernova SN 2014J.

  16. Event-Driven On-Board Software Using Priority-Based Communications Protocols

    Science.gov (United States)

    Fowell, S.; Ward, R.; Plummer, C.

    This paper describes current projects being performed by SciSys in the area of the use of software agents, built using CORBA middleware and SOIF communications protocols, to improve operations within autonomous satellite/ground systems. These concepts have been developed and demonstrated in a series of experiments variously funded by ESA's Technology Flight Opportunity Initiative (TFO) and Leading Edge Technology for SMEs (LET-SME), and the British National Space Centre's (BNSC) National Technology Programme. In [1] it is proposed that on-board software should evolve to one that uses an architecture of loosely -coupled software agents, integrated using minimum Real- Time CORBA ORBs such as the SciSys microORB. Building on that, this paper considers the requirements such an architecture and implementation place on the underlying communication protocols (software and hardware) and how these may be met by the emerging CCSDS SOIF recommendations. 2. TRENDS AND ISSUES 2.

  17. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2

    Science.gov (United States)

    Benmoussa, A.; Dammasch, I. E.; Hochedez, J.-F.; Schühle, U.; Koller, S.; Stockman, Y.; Scholze, F.; Richter, M.; Kroth, U.; Laubis, C.; Dominique, M.; Kretzschmar, M.; Mekaoui, S.; Gissot, S.; Theissen, A.; Giordanengo, B.; Bolsee, D.; Hermans, C.; Gillotay, D.; Defise, J.-M.; Schmutz, W.

    2009-12-01

    Aims. LYRA, the Large Yield Radiometer, is a vacuum ultraviolet (VUV) solar radiometer, planned to be launched in November 2009 on the European Space Agency PROBA2, the Project for On-Board Autonomy spacecraft. Methods: The instrument was radiometrically calibrated in the radiometry laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the Berlin Electron Storage ring for SYnchroton radiation (BESSY II). The calibration was done using monochromatized synchrotron radiation at PTB's VUV and soft X-ray radiometry beamlines using reference detectors calibrated with the help of an electrical substitution radiometer as the primary detector standard. Results: A total relative uncertainty of the radiometric calibration of the LYRA instrument between 1% and 11% was achieved. LYRA will provide irradiance data of the Sun in four UV passbands and with high temporal resolution down to 10 ms. The present state of the LYRA pre-flight calibration is presented as well as the expected instrument performance.

  18. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    Science.gov (United States)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  19. A computer-controlled, on-board data acquisition system for wind-tunnel testing

    Science.gov (United States)

    Finger, H. J.; Cambra, J. M.

    1974-01-01

    A computer-controlled data acquisition system has been developed for the 40x80-foot wind tunnel at Ames Research Center. The system, consisting of several small onboard units installed in the model and a data-managing, data-displaying ground station, is capable of sampling up to 256 channels of raw data at a total sample rate of 128,000 samples/sec. Complete signal conditioning is contained within the on-board units. The sampling sequence and channel gain selection is completely random and under total control of the ground station. Outputs include a bar-graph display, digital-to-analog converters, and digital interface to the tunnel's central computer, an SEL 840MP. The system can be run stand-alone or under the control of the SEL 840MP.

  20. Radiation effects on the proportional counter X-ray detectors on board the NEAR spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, S.R. [NASA' s Goddard Space Flight Center, Laboratory for Extraterrestrial Physics, Greenbelt, MD 20771 (United States); Trombka, J.I. [NASA' s Goddard Space Flight Center, Laboratory for Extraterrestrial Physics, Greenbelt, MD 20771 (United States); Leidecker, H.W. [NASA' s Goddard Space Flight Center, Laboratory for Extraterrestrial Physics, Greenbelt, MD 20771 (United States); Clark, P.E. [The Catholic University of America, Washington, DC 20064 (United States); Starr, R. [The Catholic University of America, Washington, DC 20064 (United States); Goldsten, J.O. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Roth, D.R. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    1999-02-11

    The X-ray proportional counters on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft have exhibited a resolution degradation and recovery phenomenon several times during the long cruise phase of the mission. The resolution is checked periodically by commanding an {sup 55}Fe source into the window area. The degradation is seen as a low energy tailing of the 5.9 keV photopeak. Two events have occurred which provided good spectral data for better understanding the degradation phenomenon. In November 1997 a large solar particle event occurred that degraded the resolution and excited copper in the collimator. Eventually the detectors returned to normal. In January 1998 the spacecraft performed an Earth swingby gravity assist maneuver. The near Earth environment excited the magnesium and aluminum in the filter elements. The copper line was also produced. The NEAR spacecraft was launched in February 1996 and will rendezvous and orbit the asteroid 433 Eros in early 1999.

  1. Response of TL dosemeters to cosmic radiation on board passenger aircraft

    CERN Document Server

    Bilski, P; Marczewska, B; Olko, P

    2002-01-01

    Measurements were performed with various LiF based TLDs on board seven Polish aircraft, flying long-distance or middle-distance routes. All of the /sup 7/LiF detectors used (various types of /sup 7 /LiF:Mg, Ti and /sup 7/LiF:Mg, Cu, P detectors), which measure the non-neutron component of the radiation field, produced consistent results. It was found that the characteristics of the TLD response (ratio of different detector responses, glow curve shapes) after doses of radiation at flying altitudes differ from those obtained after exposure at the CERN facility (CERF), suggesting a lower contribution of densely ionising radiation. The neutron induced TL signal was also more affected by the thickness of the holder, suggesting the presence of a softer neutron energy spectrum at flight altitudes. Further in-flight and CERF exposures of detectors are planned to resolve these issues. (5 refs).

  2. Method of Enhancing On-Board State Estimation Using Communication Signals

    Science.gov (United States)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  3. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  4. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  5. Modeling Payload Stowage Impacts on Fire Risks On-Board the International Space Station

    Science.gov (United States)

    Anton, Kellie e.; Brown, Patrick F.

    2010-01-01

    The purpose of this presentation is to determine the risks of fire on-board the ISS due to non-standard stowage. ISS stowage is constantly being reexamined for optimality. Non-standard stowage involves stowing items outside of rack drawers, and fire risk is a key concern and is heavily mitigated. A Methodology is needed to account for fire risk due to non-standard stowage to capture the risk. The contents include: 1) Fire Risk Background; 2) General Assumptions; 3) Modeling Techniques; 4) Event Sequence Diagram (ESD); 5) Qualitative Fire Analysis; 6) Sample Qualitative Results for Fire Risk; 7) Qualitative Stowage Analysis; 8) Sample Qualitative Results for Non-Standard Stowage; and 9) Quantitative Analysis Basic Event Data.

  6. E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta.

    Science.gov (United States)

    Keller, H U; Barbieri, C; Koschny, D; Lamy, P; Rickman, H; Rodrigo, R; Sierks, H; A'Hearn, M F; Angrilli, F; Barucci, M A; Bertaux, J-L; Cremonese, G; Da Deppo, V; Davidsson, B; De Cecco, M; Debei, S; Fornasier, S; Fulle, M; Groussin, O; Gutierrez, P J; Hviid, S F; Ip, W-H; Jorda, L; Knollenberg, J; Kramm, J R; Kührt, E; Küppers, M; Lara, L-M; Lazzarin, M; Lopez Moreno, J; Marzari, F; Michalik, H; Naletto, G; Sabau, L; Thomas, N; Wenzel, K-P; Bertini, I; Besse, S; Ferri, F; Kaasalainen, M; Lowry, S; Marchi, S; Mottola, S; Sabolo, W; Schröder, S E; Spjuth, S; Vernazza, P

    2010-01-08

    The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote( )imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.

  7. On-board Unit and its Possibilities of Communications on Safety and Security Principles

    Directory of Open Access Journals (Sweden)

    Martin Vestenicky

    2008-01-01

    Full Text Available The technical solution of on-board unit (OBU for vehicles used for dangerous good transport and design of vehicle sensor network (based on CAN bus for dangerous good monitoring will be discussed. In presentation the conception of GSM/GPRS networking subsystem for real time data transmission into monitoring centre will be described. Next themes of discussion will be focused on the possibilities of solution of safety-related communication channel for safety sensor network in accordance with standard for functional safety of Electrical / Electronic / Programmable Electronic (E/E/PE systems IEC 61508, recommended methods of risk analysis and possibilities of their modelling and proposal of secure communication channel over GSM/GPRS for secure data transmission into control centre on the base of IPsec protocol.

  8. On the role of radiation monitors on board LISA Pathfinder and future space interferometers

    Science.gov (United States)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Laurenza, M.; Lobo, A.; Mateos, I.; Storini, M.

    2012-05-01

    LISA (Laser Interferometer Space Antenna) and its precursor mission LISA Pathfinder (LISA-PF) will carry particle monitors for noise diagnostics. It was proposed to build and place radiation detectors on board the ASTROD missions as well. We present here a study of the solar energetic particle (SEP) events that the LISA-PF radiation monitors are able to detect above the galactic cosmic-ray (GCR) background predicted at the time of the mission data taking in 2015. In order to optimize the correlation between radiation monitor measurements and gravitational sensor test-mass charging, the energy threshold for particles traversing both detectors should be approximately the same. In LISA-PF, the radiation monitor particle energy cut-off was conservatively set at 75 MeV per nucleon (MeV/n) for protons and ion normal incidence, while the minimum energy of the same particles reaching the test masses is 100 MeV/n. We find that SEP events detectable on LISA-PF are characterized by peak fluxes and fluences at energies >75 MeV/n larger than about 45%, on average, with respect to those at energies >100 MeV/n. We conclude that for an accurate correlation between radiation monitor count rates and test-mass charging, it is mandatory to benefit from absolute flux measurements of both galactic and high-energy solar particles provided by experiments carrying magnetic spectrometers in space at the time of LISA-PF (PAMELA, AMS). On the other hand, the role of the radiation detectors on board LISA-PF is crucial allowing for SEP event onset and dynamics monitoring.

  9. On-board gaseous emissions of LPG taxis and estimation of taxi fleet emissions.

    Science.gov (United States)

    Lau, Jason; Hung, W T; Cheung, C S

    2011-11-15

    Instantaneous CO, NO, and HC emissions and exhaust flow rates from four LPG taxis, which adhered to Euro 2-4 emission standards, were measured using a sophisticated portable emission measurement system (PEMS). Instantaneous air/fuel ratios, emission rates, and emission factors at different operating modes were derived to explore the emission characteristics of these four taxis. Results show that gaseous emissions from these four taxis exceed emission standards, due to extended vehicle use and poor maintenance. NO emissions from newer taxis are lower whilst CO and HC emissions of the Euro 4 taxi are similar to those of Euro 2 taxis during idling and low speed travel. The taxis emit lower amounts of gaseous pollutants whilst idling and emit the highest amounts of CO and NO whilst accelerating. Large fluctuations in air/fuel ratios can be observed from the Euro 4 taxi during idling, indicating a malfunction of fuel supply control to the engine. Such fluctuations are not observed from the other taxis. This shows that a Euro 4 taxi is not necessarily cleaner than a Euro 3 taxi. Emission factors derived from on-board measurements are applied to estimate gaseous emissions from the taxi fleet; these results show that emissions are higher during peak hour traffic conditions. An estimate of the taxi fleet's emissions whilst the older taxis are replaced is also calculated. It can be seen that faster replacement of older taxis can lead to reductions in gaseous emissions from the taxi fleet. This study shows that the PEMS is an adequate tool for measuring emissions from LPG vehicles and that there is an urgent need to enforce emission standards on taxis. This study also shows that on-board measurements should be incorporated in the estimation of emissions from other vehicle types. This would result in better emission estimations under local traffic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  11. New technologies for supporting real-time on-board software development

    Science.gov (United States)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  12. Dorsal raphe nucleus of brain in the rats flown in space inflight and postflight alteration of structure

    Science.gov (United States)

    Krasnov, I.

    The structure of brain dorsal raphe nucleus (DRN) was studied in the rats flown in space aboard Space Shuttle "Columbia" (STS-58, SLS-2 program) and dissected on day 13 of the mission ("inflight" rats) and in 5-6 hours after finishing 14-day flight ("postflight" rats). The brain of "inflight" rats were excised after decapitation, sectioned sagitally halves of brain were fixed by immersion in 2,5 % glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 at 4°C and kept in the flight at 4°C. After landing the brain frontal 0.5 mm sections from DRN area were osmificated and embedded in araldite at NASA ARC. The brains of "postflight": and control rats were underwent to the same procedure. Electronmicroscopical analysis, computer morphometry and glial cell count were performed at Moscow. In DRN neuropil of "inflight" rats the most part of axo-dendritic synapses were surrounded by glia cell processes and had decreased electron density of pre- and postsynaptic membrane and pronounced diminution of synaptic vesicle amount while dendrites were characterized by decrease in matrix electron density and microtubule quantity that in total indicates the decline of afferent flow reaching DRN neurons in microgravity. In DRN neurons of "inflight" rats all mitochondria were characterized by evenly increased dimensions, decreased matrix electron density, small amount of short and far- between located cristae and enlarged intermembrane and intercristae spaces, that in total points out low level of coupling of oxidation to phosphorilation, decrease in energy supply of neuron. Amount of ribosome in cytoplasm was significantly decreased indicating lower lever of biosynthetic processes. The last is supported by diminished dimensions of neuronal body, nucleus and nucleolus (place of r RNA synthesis), cross section area of that were reduced in DRN neurons of "inflight" rats by 18.8 % (p < 0.01), 11.1 % and 26.6 % (p <0,005) correspondingly. Ultrastructure and dimensions of intracellular

  13. Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing

    2014-04-01

    Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target

  14. Experiment K-6-13. Morphological and biochemical examination of heart tissue. Part 1: Effects of microgravity on the myocardial fine structure of rats flown on Cosmos 1887. Ultrastructure studies. Part 2: Cellular distribution of cyclic ampdependent protein kinase regulatory subunits in heart muscle of rats flown on Cosmos 1887

    Science.gov (United States)

    Philpott, D. E.; Kato, K.; Stevenson, J.; Miquel, Jaime; Mednieks, M. I.; Sapp, W.; Popova, I. A.; Serova, L. V.

    1990-01-01

    The left ventricle of hearts from rats flown on the Cosmos 1887 biosatellite for 12.5 days was compared to the same tissue of synchronous and vivarium control animals maintained in a ground based laboratory. The volume density of the mitochondria in the myocardium of the space-flown animals was statistically less (p equal less than 0.01) than that of the synchronous or vivarium control rats. Exposure to microgravity resulted in a certain degree of myocardial degeneration manifested in mitochondrial changes and accumulation of myeloid bodies. Generalized myofibrillar edema was also observed.

  15. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  16. Implementation of the program of quality control of the system on-board imager of varian: initial assessment; Puesta en marcha del programa de control de calidad del sistema on-board imager de varian: evaluacion inicial

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Martin, I.; Ruiz Morales, C.; Lopez Sanchez, F.; Tobarra Gonzalez, B. M.

    2013-07-01

    This work aims to present evidence that are part of our quality control system on-board Imager of Varian, elaborated from recommendations and national and international protocols, as well as a first assessment of the results obtained to date. (Author)

  17. All-digital multicarrier demodulators for on-board processing satellites in mobile communication systems

    Science.gov (United States)

    Yim, Wan Hung

    Economical operation of future satellite systems for mobile communications can only be fulfilled by using dedicated on-board processing satellites, which would allow both cheap earth terminals and lower space segment costs. With on-board modems and codecs, the up-link and down-link can be optimized separately. An attractive scheme is to use frequency-division multiple access/single chanel per carrier (FDMA/SCPC) on the up-link and time division multiplexing (TDM) on the down-link. This scheme allows mobile terminals to transmit a narrow band, low power signal, resulting in smaller dishes and high power amplifiers (HPA's) with lower output power. On the up-link, there are hundreds to thousands of FDM channels to be demodulated on-board. The most promising approach is the use of all-digital multicarrier demodulators (MCD's), where analog and digital hardware are efficiently shared among channels, and digital signal processing (DSP) is used at an early stage to take advantage of very large scale integration (VLSI) implementation. A MCD consists of a channellizer for separation of frequency division multiplexing (FDM) channels, followed by individual modulators for each channel. Major research areas in MCD's are in multirate DSP, and the optimal estimation for synchronization, which form the basis of the thesis. Complex signal theories are central to the development of structured approaches for the sampling and processing of bandpass signals, which are the foundations in both channellizer and demodulator design. In multirate DSP, polyphase theories replace many ad-hoc, tedious and error-prone design procedures. For example, a polyphase-matrix deep space network frequency and timing system (DFT) channellizer includes all efficient filter bank techniques as special cases. Also, a polyphase-lattice filter is derived, not only for sampling rate conversion, but also capable of sampling phase variation, which is required for symbol timing adjustment in all

  18. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.;

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  19. FPGA-based data processing module design of on-board radiometric calibration in visible/near infrared bands

    Science.gov (United States)

    Zhou, Guoqing; Li, Chenyang; Yue, Tao; Liu, Na; Jiang, Linjun; Sun, Yue; Li, Mingyan

    2015-12-01

    FPGA technology has long been applied to on-board radiometric calibration data processing however the integration of FPGA program is not good enough. For example, some sensors compressed remote sensing images and transferred to ground station to calculate the calibration coefficients. It will affect the timeliness of on-board radiometric calibration. This paper designs an integrated flow chart of on-board radiometric calibration. Building FPGA-based radiometric calibration data processing modules uses system generator. Thesis focuses on analyzing the calculation accuracy of FPGA-based two-point method and verifies the feasibility of this method. Calibration data was acquired by hardware platform which was built using integrating sphere, CMOS camera (canon 60d), ASD spectrometers and light filter (center wavelength: 690nm, bandwidth: 45nm). The platform can simulate single-band on-board radiometric calibration data acquisition in visible/near infrared band. Making an experiment of calibration coefficients calculation uses obtained data and FPGA modules. Experimental results show that: the camera linearity is above 99% meeting the experimental requirement. Compares with MATLAB the calculation accuracy of two-point method by FPGA are as follows: the error of gain value is 0.0053%; the error of offset value is 0.00038719%. Those results meet experimental accuracy requirement.

  20. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: analysis of the years 2003 and 2004

    NARCIS (Netherlands)

    Frankenberg, C.; Meirink, J.F.|info:eu-repo/dai/nl/181777592; Bergamaschi, P.; Goede, A.P.H.; Heimann, M.; Körner, S.; Platt, U.; van Weele, M.; Wagner, T.

    2006-01-01

    The UV/Vis/near infrared spectrometer SCIAMACHY on board the European ENVISAT satellite enables total column retrieval of atmospheric methane with high sensitivity to the lower troposphere. The vertical column density of methane is converted to column averaged mixing ratio by using carbon dioxide

  1. New methods of seafarer's training: an internet "refresher course on first-aid and medical care on board".

    Science.gov (United States)

    Canals, M L

    1999-01-01

    Our objective is to facilitate seamen's health education, according to the recommendations of international organisations like IMO (STCW 1995) and EC (Directive 92/29): They recommend a refresher course on first-aid at least every 5 years for persons in charge of medical care on board. In Spain the transposition of this Directive was published (RD 258/99). So, we thought that in order to help seafarers and officers in their training in prevention and in solving health problems derived from their occupational risks on board, continuing education could be implemented using an innovative and adaptable tool. No first-aid course can be useful without practical exercises. The term "refresher" (in this paper) is a way of reminding what people have learnt and practised in a previous practical course. In 1998, the Spanish Society of Maritime Medicine promoted a pilot internet refresher course for seafarers in its web, URL: "http://www.semm.org/curso/pauxm.html++ +". There are 10 didactic units (resources for medical assistance on board, radio-medical advice, environmental problems, travel medicine, cardio-respiratory resuscitation, prevention of problems in diving, death on board, occupational risk prevention ... etc.). Hypertext linked keywords help the student to revise the subject, a teacher can counsel him by e-mail and a multiple choice test, and clinical cases are included to check the comprehension of the didactic units. A CD and an English version of the course is being prepared.

  2. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  3. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review.

    Science.gov (United States)

    Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos

    2016-10-12

    In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.

  4. Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot

    Directory of Open Access Journals (Sweden)

    Erik Vanhoutte

    2017-03-01

    Full Text Available For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M 2 APix analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6 × 10 − 7 to 1 . 6 × 10 − 2 W·cm − 2 (i.e., from 0.2 to 12,000 lux for human vision. Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M 2 APix sensor. While both algorithms adequately measured optical flow between 25 ∘ /s and 1000 ∘ /s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively but required substantially more computational resources.

  5. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  6. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  7. Performance Assessment in the PILOT Experiment On Board Space Stations Mir and ISS.

    Science.gov (United States)

    Johannes, Bernd; Salnitski, Vyacheslav; Dudukin, Alexander; Shevchenko, Lev; Bronnikov, Sergey

    2016-06-01

    The aim of this investigation into the performance and reliability of Russian cosmonauts in hand-controlled docking of a spacecraft on a space station (experiment PILOT) was to enhance overall mission safety and crew training efficiency. The preliminary findings on the Mir space station suggested that a break in docking training of about 90 d significantly degraded performance. Intensified experiment schedules on the International Space Station (ISS) have allowed for a monthly experiment using an on-board simulator. Therefore, instead of just three training tasks as on Mir, five training flights per session have been implemented on the ISS. This experiment was run in parallel but independently of the operational docking training the cosmonauts receive. First, performance was compared between the experiments on the two space stations by nonparametric testing. Performance differed significantly between space stations preflight, in flight, and postflight. Second, performance was analyzed by modeling the linear mixed effects of all variances (LME). The fixed factors space station, mission phases, training task numbers, and their interaction were analyzed. Cosmonauts were designated as a random factor. All fixed factors were found to be significant and the interaction between stations and mission phase was also significant. In summary, performance on the ISS was shown to be significantly improved, thus enhancing mission safety. Additional approaches to docking performance assessment and prognosis are presented and discussed.

  8. Energetic particle radiations measured by particle detector on board CBERS-1 satellite

    Institute of Scientific and Technical Information of China (English)

    HAO YongQiang; XIAO Zuo; ZOU Hong; ZHANG DongHe

    2007-01-01

    Using the data measured by energetic particle detector on board CBERS-01 and -02 for the past five years, statistics was made to show the general features of MeV electrons and protons along a solar synchronous orbit at an altitude of 780 km. This height is in the bottom region of the Earth's radiation belts. Detectors are inside the satellite cabinet and such continuous monitoring of particle radiation environment inside a satellite has seldom conducted so far. After a proper and careful treatment, it is indicated that the data inside satellite are well correlated with the radiation environment outside. Besides the agreement of the general distribution characteristics of energetic electrons and protons with similar observations from other satellites, attention is particularly paid to the disturbed conditions. Variations of particle fluxes are closely related with solar proton events, in general, electron fluxes of outer belt are well correlated with Dst index after three days' delay while the electron injection occurred almost at the same day during great magnetic storms. It is confirmed that both energetic electrons and protons appear in the Polar Cap region only after the solar proton events.

  9. Survey and future directions of fault-tolerant distributed computing on board spacecraft

    Science.gov (United States)

    Fayyaz, Muhammad; Vladimirova, Tanya

    2016-12-01

    Current and future space missions demand highly reliable on-board computing systems, which are capable of carrying out high-performance data processing. At present, no single computing scheme satisfies both, the highly reliable operation requirement and the high-performance computing requirement. The aim of this paper is to review existing systems and offer a new approach to addressing the problem. In the first part of the paper, a detailed survey of fault-tolerant distributed computing systems for space applications is presented. Fault types and assessment criteria for fault-tolerant systems are introduced. Redundancy schemes for distributed systems are analyzed. A review of the state-of-the-art on fault-tolerant distributed systems is presented and limitations of current approaches are discussed. In the second part of the paper, a new fault-tolerant distributed computing platform with wireless links among the computing nodes is proposed. Novel algorithms, enabling important aspects of the architecture, such as time slot priority adaptive fault-tolerant channel access and fault-tolerant distributed computing using task migration are introduced.

  10. The ECLAIRs GRB-trigger telescope on-board the future mission SVOM

    CERN Document Server

    Schanne, Stéphane; Atteia, Jean-Luc; Godet, Olivier; Lachaud, Cyril; Mercier, Karine

    2015-01-01

    The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is an approved satellite mission for Gamma-Ray Burst (GRB) studies, developed in cooperation between the Chinese National Space Agency (CNSA), the Chinese Academy of Sciences (CAS), the French Space Agency (CNES) and French laboratories. SVOM entered Phase B in 2014 and is scheduled for launch in 2021. SVOM will provide fast and accurate GRB localizations, and determine the temporal and spectral properties of the GRB emission, thanks to a set of 4 on-board instruments. The trigger system of the coded-mask telescope ECLAIRs images the sky in the 4-120 keV energy range, in order to detect and localize GRBs in its 2 sr-wide field of view. The low-energy threshold of ECLAIRs is well suited for the detection of highly redshifted GRB. The high-energy coverage is extended up to 5 MeV thanks to the non-imaging gamma-ray spectrometer GRM. GRB alerts are sent in real-time to the ground observers community, and a spacecraft slew is performed in orde...

  11. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Herman, Andrew [CTS Corporation; Bromberg, L. [Massachusetts Institute of Technology (MIT); Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL; Storey, John Morse [ORNL

    2017-01-01

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.

  12. The Italian Radio Occultation experiment on-board the Indian OCEANSAT-2 satellite

    Science.gov (United States)

    Perona, G.; Rosa Team

    During the June 2007 the Indian satellite OCEANSAT-2 will be launched The Italian Space Agency ASI signed a Memorandum of Understandings with the Indian Space Research Organization ISRO in which it is agreed to put on-board the OCEANSAT-2 satellite the Italian GNSS receiver devoted to Radio Occultation ROSA - Radio Occultation Sounder of the Atmosphere In the framework of this mission this instrument can only be able to observe rising occultations the Radio Occultation antenna will be mounted on the aft-velocity direction collecting data both in Open-Loop and in Close-Loop modes These data will be downloaded to the Indian and the Italian receiving stations where they will be processed by the ROSA ground segment completely developed by Italian universities and research centres In particular this ground segment will be implemented at a first level in an integrated computing infrastructure installed in Matera and mirrored at Hyderbad in India and at a second level on a distributed software and hardware infrastructure This second infrastructure will perform the rapid and precise Orbit Determination and Prediction the bending and impact parameters profiles extraction the ionospheric correction and the stratospheric initialization the refractivity pressure temperature and humidity profile retrieval the value added services for meteorology climate and space weather applications by computing units of each research centre or university connected through a Web-based GRID computing infrastructure After a description of these two

  13. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon

    Science.gov (United States)

    Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro

    2015-09-01

    This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.

  14. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    Science.gov (United States)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  15. Second year technical report on-board processing for future satellite communications systems

    Science.gov (United States)

    Brandon, W. T.; Green, W. K.; Hoffman, M.; Jean, P. N.; Neal, W. R.; White, B. E.

    1980-10-01

    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively.

  16. Practical on-board weigh-in-motion system for commercial vehicles

    Science.gov (United States)

    Kenyon, Chase H.

    1997-01-01

    Many commercial carriers are currently operating vehicles which are overweight, creating an unsafe and illegal situation. However, the cost to law enforcement agencies to stop vehicles for roadside weight checks is prohibitive, while the cost to the nation in lost travel time adds shipping costs which are reflected in the price of every product transported by truck. Overweight trucks also become a threat to public safety when, on public highways, solid cargo breaks loose or liquid cargo leaks. The solution is an on-board monitoring system. With such a system, trucks under their legal weight limit would be allowed to travel past state borders and checkpoints without being stopped. THis would save money both in law enforcement and shipping costs to the nation as a whole. A properly designed system would also have the capability to warn both the driver and local safety and enforcement personnel when the truck is loaded beyond capacity or any other unsafe condition. This paper will detail a system that would even in early limited production be cost effective for both the law enforcement agencies and the operators of trucking fleets. In full production the systems would be cost effective even for smaller or owner/operator trucks. This is a safety system that could become standard equipment similar to seat belts, ABS, and airbags. The initial testing of sub-assemblies and sub-systems which could be deployed now for beta test has been completed.

  17. Electromagnetic Field Interference on Transmission Lines due to On-Board Antenna

    Directory of Open Access Journals (Sweden)

    Heekwon Lee

    2015-01-01

    Full Text Available As the available space in the board of a mobile device becomes smaller and more compact, circuit elements and transmission lines are arranged in very close proximity, especially from the antennas which are usually installed on the same board. Due to the various on-board antennas which are designed in small space, the transmission lines on the board are electromagnetically interfered, resulting in the performance degradation of the circuit. So the engineers and circuit designers should find the least interfered place for the transmission lines and components to minimize the electromagnetic interferences. This paper discusses and presents a methodology to find the least sensitive position in the induced current distribution as well as in the noise power delivered from the antenna. For this purpose some vertical, horizontal, and bent transmission lines with antenna on the same board are designed and fabricated with and without common ground, and the transferred powers to the transmission lines were measured and were also simulated using a full-wave simulator. The results predicted by the EM simulation model were successfully confirmed through the measurement of S-parameters in the experimental setup, which shows the validness of the suggested analysis method.

  18. Status of calibration and data evaluation of AMSR on board ADEOS-II

    Science.gov (United States)

    Imaoka, Keiji; Fujimoto, Yasuhiro; Kachi, Misako; Takeshima, Toshiaki; Igarashi, Tamotsu; Kawanishi, Toneo; Shibata, Akira

    2004-02-01

    The Advanced Microwave Scanning Radiometer (AMSR) is the multi-frequency, passive microwave radiometer on board the Advanced Earth Observing Satellite-II (ADEOS-II), currently called Midori-II. The instrument has eight-frequency channels with dual polarization (except 50-GHz band) covering frequencies between 6.925 and 89.0 GHz. Measurement of 50-GHz channels is the first attempt by this kind of conically scanning microwave radiometers. Basic concept of the instrument including hardware configuration and calibration method is almost the same as that of ASMR for EOS (AMSR-E), the modified version of AMSR. Its swath width of 1,600 km is wider than that of AMSR-E. In parallel with the calibration and data evaluation of AMSR-E instrument, almost identical calibration activities have been made for AMSR instrument. After finished the initial checkout phase, the instrument has been continuously obtaining the data in global basis. Time series of radiometer sensitivities and automatic gain control telemetry indicate the stable instrument performance. For the radiometric calibration, we are now trying to apply the same procedure that is being used for AMSR-E. This paper provides an overview of the instrument characteristics, instrument status, and preliminary results of calibration and data evaluation activities.

  19. Generation and analysis of correlated pairs of photons on board a nanosatellite

    Science.gov (United States)

    Chandrasekara, R.; Tang, Z.; Tan, Y. C.; Cheng, C.; Sha, L.; Hiang, G. C.; Oi, D.; Ling, A.

    2016-10-01

    Progress in quantum computers and their threat to conventional public key infrastructure is driving new forms of encryption. Quantum Key Distribution (QKD) using entangled photons is a promising approach. A global QKD network can be achieved using satellites equipped with optical links. Despite numerous proposals, actual experimental work demonstrating relevant entanglement technology in space is limited due to the prohibitive cost of traditional satellite development. To make progress, we have designed a photon pair source that can operate on modular spacecraft called CubeSats. We report the in-orbit operation of the photon pair source on board an orbiting CubeSat and demonstrate pair generation and polarisation correlation under space conditions. The in-orbit polarisation correlations are compatible with ground-based tests, validating our design. This successful demonstration is a major experimental milestone towards a space-based quantum network. Our approach provides a cost-effective method for proving the space-worthiness of critical components used in entangled photon technology. We expect that it will also accelerate efforts to probe the overlap between quantum and relativistic models of physics.

  20. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  1. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height _ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 _ 2.1 km usually lying within _ latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  2. Data compression on board the PLANCK Satellite Low Frequency Instrument optimal compression rate

    CERN Document Server

    Gaztañaga, E; Romeo, A; Fosalba, P; Elizalde, E

    1998-01-01

    Data on board the future PLANCK Low Frequency Instrument (LFI), to measure the Cosmic Microwave Background (CMB) anisotropies, consist of $N$ differential temperature measurements, expanding a range of values we shall call $R$. Preliminary studies and telemetry allocation indicate the need of compressing these data by a ratio of $c_r \\simgt 10$. Here we present a study of entropy for (correlated multi-Gaussian discrete) noise, showing how the optimal compression $c_{r,opt}$, for a linearly discretized data set with $N_{bits}=\\log_2{N_{max}}$ bits is given by: $c_r \\simeq {N_{bits}/\\log_2(\\sqrt{2\\pi e} ~\\sigma_e/\\Delta)}$, where $\\sigma_e\\equiv (det C)^{1/2N}$ is some effective noise rms given by the covariance matrix $C$ and to be as small as the instrumental white noise RMS: $\\Delta \\simeq \\sigma_T averaging). Within the currently proposed $N_{bits}=16$ representation, a linear analogue to digital converter (ADC) will allow the digital storage of a large dynamic range of differential temperature $R= N_{max} ...

  3. In-Orbit Performance of the Hard X-ray Detector on board Suzaku

    CERN Document Server

    Kokubun, M; Takahashi, T; Murakami, T; Tashiro, M; Fukazawa, Y; Kamae, T; Madejski, G M; Nakazawa, K; Yamaoka, K; Terada, Y; Yonetoku, D; Watanabe, S; Tamagawa, T; Mizuno, T; Kubota, A; Isobe, N; Takahashi, I; Sato, G; Takahashi, H; Hong, S; Kawaharada, M; Kawano, N; Mitani, T; Murashima, M; Suzuki, M; Abe, K; Miyawaki, R; Ohno, M; Tanaka, T; Yanagida, T; Itoh, T; Ohnuki, K; Tamura, K; Endo, Y; Hirakuri, S; Hiruta, T; Kitaguchi, T; Kishishita, T; Sugita, S; Takeda, S; Enoto, T; Hirasawa, A; Katsuta, J; Matsumura, S; Onda, K; Sato, M; Ushio, M; Ishikawa, S; Murase, K; Odaka, H; Yaji, Y; Yamada, S; Yamasaki, T; Yuasa, T

    2006-01-01

    The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of ~4 keV (FWHM) at 40 keV and ~11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.

  4. Double Ionization Gauge for Atmosphere Density/Pressure Measurements On Board the Rocket

    Science.gov (United States)

    Yushkov, V.; Shturkov, O.; Balugin, N.; Zhurin, S.; Kusov, A.

    2015-09-01

    A description of the ionization gauge for atmospheric density/pressure measurements on board a Russian meteorological rocket is presented. Its operation is based on the principle employed in an ionization gauge. The measuring density/pressure range is 1 06 102 kg/m3 / 10 ~ - 10 mm Hg. There are two output channels for ion and electron current measurements, respectively. The calibration curves are in a fairly good agreement with the classical electron impact ionization theory. The calibration error is less than 7%, that has been definitely confirmed through laboratory bench calibration. This rocket-borne device does not require pre-flight sealing. It greatly simplifies the design of the flight device. The ionization source is an electron flux emitted from the surface of a semi-impermeable metal plate under the influence of vacuum ultraviolet (VUV) radiation. The vUv radiation source is a portable glow-discharge krypton lamp. The flight instrument has been tested for shock loads up to 200 g for rocket measurement applications.

  5. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander

    Science.gov (United States)

    Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.

    2017-07-01

    The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), ;Schiaparelli;. DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.

  6. An efficient on-board metal-free nanocatalyst for controlled room temperature hydrogen production.

    Science.gov (United States)

    Santra, Saswati; Das, Debanjan; Das, Nirmalya Sankar; Nanda, Karuna Kar

    2017-04-01

    Positively charged functionalized carbon nanodots (CNDs) with a variety of different effective surface areas (ESAs) are synthesized via a cheap and time effective microwave method and applied for the generation of hydrogen via hydrolysis of sodium borohydride. To the best of our knowledge, this is the first report of metal-free controlled hydrogen generation. Our observation is that a positively charged functional group is essential for the hydrolysis for hydrogen production, but the overall activity is found to be enhanced with the ESA. A maximum value of 1066 ml g(-1) min(-1) as the turnover frequency is obtained which is moderate in comparison to other catalysts. However, the optimum activation energy is found to be 22.01 kJ mol(-1) which is comparable to well-known high cost materials like Pt and Ru. All of the samples showed good reusability and 100% conversion even after the 10th cycle. The effect of H(+) and OH(-) is also studied to control the on-board and on-demand hydrogen production ("on-off switching"). It is observed that H2 production decreases inversely with NaOH concentration and ceases completely when 10(-1) M NaOH is added. With the addition of HCl, H2 production can be initiated again, which confirms the on/off control over production.

  7. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  8. On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission

    Science.gov (United States)

    Bonoli, Carlotta; Balestra, Andrea; Bortoletto, Favio; D'Alessandro, Maurizio; Farinelli, Ruben; Medinaceli, Eduardo; Stephen, John; Borsato, Enrico; Dusini, Stefano; Laudisio, Fulvio; Sirignano, Chiara; Ventura, Sandro; Auricchio, Natalia; Corcione, Leonardo; Franceschi, Enrico; Ligori, Sebastiano; Morgante, Gianluca; Patrizii, Laura; Sirri, Gabriele; Trifoglio, Massimo; Valenziano, Luca

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.

  9. A line-source method for aligning on-board and other pinhole SPECT systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  10. On-board diagnostics of fully variable valve actuator systems in spark-ignited combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Ipek

    2010-07-01

    Variable valve actuation (VVA) is being employed in contemporary engines to improve fuel consumption, torque characteristics and emissions of combustion engines by enabling the realization of different combustion strategies. Fully variable valve actuation (FVVA) makes it possible to apply a wider range of strategies (e.g., homogenous charge compression ignition (HCCI), dethrottling, internal residual gas mechanism, 2/4 Stroke Switching). With FVVA, the gas exchange valves can be actuated at arbitrary points in time, with separate variable lifting for the intake and exhaust valves of each cylinder. Making FVVA systems ready for the market requires to provide the system with appropriate fault-diagnostic functionality. Additional degrees of freedom of FVVA systems introduce different fault cases which have to be considered in terms of their emission relevance within the scope of diagnostics standards such as On-Board Diagnosis II (OBD II). The faults and their effects on emissions have not been analyzed by any other study, yet. To fill this gab, here the possible faults are generated using a four-cylinder gasoline camless test bench engine. Measurements are carried out using different strategies at low loads, namely dethrottling with early intake valve closing and combining high internal residual gas with dethrottling. Each fault case is thoroughly analyzed, and the emission-relevant faults are pointed out for initial consideration. A trivial approach to diagnose fully variable valve actuators is to introduce position sensors for each actuator to track the valve lift curve. However, this approach increases the cost of the system undesirably. Thus, here alternative methods are explored such as indirect use of common powertrain sensors. Considering that active diagnosis may lead to suboptimal engine control schemes, the possibilities of fault detection and isolation are investigated without relying on active diagnosis. Air path sensors are affected foremost by any

  11. Energy management systems on board of electric vehicles, based on power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guidi, Giuseppe

    2009-03-15

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion. The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently the most suitable device for electrical energy storage, have serious limitations in terms of energy and/or power density, cost and safety. All those characteristics reflect in pure electric vehicles being outperformed by standard internal combustion engine (ICE) based vehicles in terms of driving range, time needed to refuel and purchase cost. Electric vehicles do have their distinctive advantages, being intrinsically much more efficient, operating at zero emissions at the pipe, and offering a higher degree of controllability that can potentially enhance driving safety. No wonder then, that electric energy storage technology has attracted considerable R&D investments, resulting in new traction battery packs that are getting closer and closer to the industrial targets. In this scenario of EV technology gaining momentum, power electronics engineers have to come up with newer solutions allowing for more efficient and more reliable utilization of the precious on-board energy that comes in a form that cannot be directly utilized by the motor. At present, most of the research in the area of power electronics for automotive is focused in volume and cost reduction techniques. The increase in power density is pursued by developing components that can be operated at higher temperature, thus relieving the requirements on cooling. In this thesis, the focus is on the development of alternative topologies for the power electronics converters that make use of some peculiarities of the energy

  12. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.

    Science.gov (United States)

    Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10(3)-10(4) e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  13. DEVELOPING SPEED DEPENDENT EMISSION FACTORS USING ON-BOARD EMISSION MEASURING EQUIPMENT IN INDIA

    Directory of Open Access Journals (Sweden)

    Sushant Sharma

    2016-09-01

    Full Text Available Vehicular emission models are important tools in several environmental impact studies. Although several studies have been conducted for emission control purposes, few attempts have been made on the planning side. For instance, long-term transportation network capacity improvement models do not explicitly consider emission in the objective function. Incorporating vehicular emission into the objective function is effective only if speed dependent emission factor is used in the estimation of emission. Although this issue is well addressed in the developed countries, owing to the heterogeneity of vehicles and absence of speed dependent emission factors the benefit from network investment is often underestimated in developing countries like India. Therefore, an attempt is made to explore the possibility of developing speed dependent emission factor for Indian conditions and vehicles. For accurate measurement an onboard test is conducted on typical vehicles; namely, a passenger car, a sports utility vehicle, and a truck. On board test equipment collected the data while the vehicle traversed with different speed ranges. The data obtained is processed and used for developing emission factor in the form of second degree polynomial with speed as the dependent variable. The emission factors for the three types of vehicles and for CO, CO2, NOX, and HC are developed. The results have been compared with Indian driving cycle based emission factors as well as UK based speed dependent emission factors for car in particular. The study gave a preliminary insight into the behaviors of pollutants with respect to speed. However, there is a need to develop such factor using large spectrum of vehicles and diverse driving conditions.

  14. The Mass Spectrum Analyzer (MSA) on board the BepiColombo MMO

    Science.gov (United States)

    Delcourt, D.; Saito, Y.; Leblanc, F.; Verdeil, C.; Yokota, S.; Fraenz, M.; Fischer, H.; Fiethe, B.; Katra, B.; Fontaine, D.; Illiano, J.-M.; Berthelier, J.-J.; Krupp, N.; Buhrke, U.; Bubenhagen, F.; Michalik, H.

    2016-07-01

    Observations from the MESSENGER spacecraft have considerably enhanced our understanding of the plasma environment at Mercury. In particular, measurements from the Fast Imaging Plasma Spectrometer provide evidences of a variety of ion species of planetary origin (He+, O+, and Na+) in the northern dayside cusp and in the nightside plasma sheet. A more comprehensive view of Mercury's plasma environment will be provided by the BepiColombo mission that will be launched in 2018. On board the BepiColombo MMO spacecraft, the Mercury Plasma/Particle Experiment consortium gathers different sensors dedicated to particle measurements. Among these sensors, the Mass Spectrum Analyzer (MSA) is the instrument dedicated to plasma composition analysis. It consists of a top hat for energy analysis followed by a time-of-flight (TOF) chamber to derive the ion mass. Taking advantage of the spacecraft rotation, MSA will measure three-dimensional distribution functions in one spin (4 s), from energies characteristic of exospheric populations (in the eV range) up to plasma sheet energies (up to ~38 keV/q). A notable feature of the MSA instrument is that the TOF chamber is polarized with a linear electric field that leads to isochronous TOFs and enhanced mass resolution (typically, m/∆m ≈ 40 for ions with energies up to 13 keV/q). At Mercury, this capability is of paramount importance to thoroughly characterize the wide variety of ion species originating from the planet surface. It is thus anticipated that MSA will provide unprecedented information on ion populations in the Hermean environment and hence improve our understanding of the coupling processes at work.

  15. On-board hydrogen generation for transport applications: the HotSpot™ methanol processor

    Science.gov (United States)

    Edwards, Neil; Ellis, Suzanne R.; Frost, Jonathan C.; Golunski, Stanislaw E.; van Keulen, Arjan N. J.; Lindewald, Nicklas G.; Reinkingh, Jessica G.

    In the absence of a hydrogen infrastructure, development of effective on-board fuel processors is likely to be critical to the commercialisation of fuel-cell cars. The HotSpot™ reactor converts methanol, water and air in a single compact catalyst bed into a reformate containing mainly CO2 and hydrogen (and unreacted nitrogen). The process occurs by a combination of exothermic partial oxidation and endothermic steam reforming of methanol, to produce 750 l of hydrogen per hour from a 245-cm3 reactor. The relative contribution of each reaction can be tuned to match the system requirements at a given time. Scale-up is achieved by the parallel combination of the required number of individual HotSpot reactors, which are fed from a central manifold. Using this modular design, the start-up and transient characteristics of a large fuel-processor are identical to that of a single reactor. When vaporised liquid feed and air are introduced into cold reactors, 100% output is achieved in 50 s; subsequent changes in throughput result in instantaneous changes in output. Surplus energy within the fuel-cell powertrain can be directed to the manifold, where it can be used to vaporise the liquid feeds and so promote steam reforming, resulting in high system efficiency. The small amount of CO that is produced by the HotSpot reactions is attenuated to <10 ppm by a catalytic clean-up unit. The HotSpot concept and CO clean-up strategy are not limited to the processing of methanol, but are being applied to other organic fuels.

  16. The estimation of the pollutant emissions on-board vessels by means of numerical methods

    Science.gov (United States)

    Jenaru, A.; Arsenie, P.; Hanzu-Pazara, R.

    2016-08-01

    Protection of the environment, especially within the most recent years, has become a constant problem considered by the states and the governments of the world, which are more and more concerned about the serious problems caused by the continuous deterioration of the environment. The long term effects of pollution on the environment generated by the lack of penalty regulations, have directed the attention of statesmen upon the necessity of the elaboration of normative acts meant to be effective in the continuous fight with it. Maritime transportation generates approximately 4% of the total of the CO2 emissions produced by human activities. This paper is intended to present two methods of estimation of the gases emissions on-board a vessel, methods that are very useful for the crews which are exploiting them. For the determination and the validation of these methods we are going to use the determinations from the tank ship. This ship has as a main propulsion engine Wärtsilä DU Sulzer RT Flex 50 - 6 cylinders that develops a maximal power of 9720 kW and has a permanent monitoring system of the pollutant emissions. The methods we develop here are using the values of the polluting elements from the exhaust gases that are determined at the exit of the vessel from the ship yard, in the framework of the acceptance tests. These values have been introduced within the framework of a matrix in the MATHCAD program. This matrix represents the starting point of the two mentioned methods: the analytical method and the graphical method. During the study we are going to evaluate the development and validation of an analytical tool to be used to determine the standard of emissions aimed at thermal machines on ships. One of the main objectives of this article represents an objective assessment of the expediency of using non-fuels for internal combustion engines in vessels.

  17. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

    Science.gov (United States)

    Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  18. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    Science.gov (United States)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  19. Tomographic reconstruction of storm time RC ion distribution from ENA images on board multiple spacecraft

    Science.gov (United States)

    Ma, Shu-Ying; Yan, Wei-Nan; Xu, Liang

    2015-11-01

    A quantitative retrieval of 3-D distribution of energetic ions as energetic neutral atoms (ENA) sources is a challenging task. In this paper the voxel computerized tomography (CT) method is initially applied to reconstruct the 3-D distribution of energetic ions in the magnetospheric ring current (RC) region from ENA emission images on board multiple spacecraft. To weaken the influence of low-altitude emission (LAE) on the reconstruction, the LAE-associated ENA intensities are corrected by invoking the thick-target approximation. To overcome the divergence in iteration due to discordant instrument biases, a differential ENA voxel CT method is developed. The method is proved reliable and advantageous by numerical simulation for the case of constant bias independent of viewing angle. Then this method is implemented with ENA data measured by the Two Wide-angle Imaging Neutral-atom Spectrometers mission which performs stereoscopic ENA imaging. The 3-D spatial distributions and energy spectra of RC ion flux intensity are reconstructed for energies of 4-50 keV during the main phase of a major magnetic storm. The retrieved ion flux distributions seem to correspond to an asymmetric partial RC, located mainly around midnight favoring the postmidnight with L = 3.5-7.0 in the equatorial plane. The RC ion distributions with magnetic local time depend on energy, with major equatorial flux peak for lower energy located east of that for higher energy. In comparison with the ion energy spectra measured by Time History of Events and Macroscale Interactions during Substorms-D satellite flying in the RC region, the retrieved spectrum from remotely sensed ENA images are well matched with the in situ measurements.

  20. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  1. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    Science.gov (United States)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  2. Poster — Thur Eve — 08: Rotational errors with on-board cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ali, E. S. M. [The Ottawa Hospital Cancer Centre, Ottawa (Canada); Webb, R. [Elekta, Ottawa (Canada); Nyiri, B. [The Ottawa Hospital Cancer Centre, Ottawa (Canada); University of Ottawa, Ottawa (Canada)

    2014-08-15

    The focus of this study is on the Elekta XVI on-board cone beam computed tomography (CBCT) system. A rotational mismatch as large as 0.5° is observed between clockwise (CW) and counter-clockwise (CCW) CBCT scans. The error could affect non-isocentric treatments (e.g., lung SBRT and acoustic neuroma), as well as off-axis organs-at-risk. The error is caused by mislabeling of the projections with a lagging gantry angle, which is caused by the finite image acquisition time and delays in the imaging system. A 30 cm diameter cylindrical phantom with 5 mm diameter holes is used for the scanning. CW and CCW scans are acquired for five gantry speeds (360 to 120 deg./min.) on six linacs from three generations (MLCi, MLCi2, and Agility). Additional scans are acquired with different x-ray pulse widths for the same mAs. In the automated CBCT analysis (using ImageJ), the CW/CCW mismatch in a series of line profiles is identified and used to calculate the rotational error. Results are consistent among all linacs and indicate that the error varies linearly with gantry speed. The finite width of the x-ray pulses is a major but predictable contributor to the delay causing the error. For 40 ms pulses, the delay is 34 ± 1 ms. A simple solution applied in our clinic is adjusting the gantry angle offset to make the CCW one-minute scans correct. A more involved approach we are currently investigating includes adjustments of pulse width and mA, resulting in focal spot changes, with potential impact on image quality.

  3. 40 CFR 86.1806-05 - On-board diagnostics for vehicles less than or equal to 14,000 pounds GVWR.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false On-board diagnostics for vehicles less... § 86.1806-05 On-board diagnostics for vehicles less than or equal to 14,000 pounds GVWR. Link to an... system also incorporates appropriate transmission diagnostics as may be required under this section,...

  4. 32 CFR 705.5 - Taking of photos on board naval ships, aircraft and installations by members of the general public.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Taking of photos on board naval ships, aircraft... Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.5 Taking of photos on board naval ships, aircraft and installations by...

  5. Testing the associations between different aspects of seafarers' employment contract and on-board internet access and their job and life satisfaction and health.

    Science.gov (United States)

    Slišković, Ana; Penezić, Zvjezdan

    2016-12-01

    The aim of this study was to test for associations between different aspects of contract and on-board internet access and seafarers' satisfaction and health. Altogether 298 Croatian seafarers, all officers, employed on cargo ships, with a minimum work experience of two years with their current shipping company, participated in an online survey. The questionnaire included sociodemographic items, questions relating to their employment contract and internet access, and measures of job satisfaction, life satisfaction, mental health, and gastrointestinal and cardiovascular symptoms. Their job- and lifesatisfaction levels were higher for shorter duration on board, favourable ratio of work to non-work days, and compliance with the employment contract regarding the changes to work and non-work days. Mental health differed likewise but only in relation to two aspects of the contract: on-board duration and compliance with the contract. The level of gastrointestinal symptoms was lower in cases of shorter on-board duration and compliance with the contract, and in seafarers who have free, unlimited internet access on board. Lower level of cardiovascular symptoms was found in seafarers with free, unlimited internet access on board. Our findings suggest that in promoting satisfaction and health in seafaring, attention should be given to reducing on-board duration, compliance with the contract, and internet accessibility on board.

  6. Index Grids, Index grid fot the dataset entitled "AZ 1-meter Digital Orthophotos" flown between June 2005 and March 2006. Originally created by the USGS., Published in 2007, Arizona State Land Department.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Index Grids dataset as of 2007. It is described as 'Index grid fot the dataset entitled "AZ 1-meter Digital Orthophotos" flown between June 2005 and March 2006....

  7. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    Science.gov (United States)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  8. An Interference-Aware Transmission Power Control Scheme for Vehicular On-board Monitoring Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jiajun Bu

    2012-09-01

    Full Text Available Wireless sensor network (WSN has been used widely in vehicular on-board monitoring area. In the scenario of vehicular monitoring, the wireless sensor nodes share similar electromagnet environment. This phenomenon can be used by the sending node to infer the receiver’s noise level. Moreover, the sender can decide the transmitting power accordingly. In this paper, we proposed a interference-aware approaching to control the transmission power of nodes in a vehicular on-board monitoring WSN. By making use of the relationship of noise level on the sender side and the receiver side, the sender node can decide the necessary transmitting power to send a packet successfully. Because the packets are sent at high enough transmission power, the Packet Reception Rate (PRR is improved. At the same time, the network latency caused by communication failure is reduced.

  9. System Research Of Multi-Barrel Machine Guns Installed On Board Of The Helicopter Of Mi-17 Type

    Directory of Open Access Journals (Sweden)

    Bęczkowski Grzegorz

    2015-08-01

    Full Text Available This article presents tests of a multi-barreled machine gun system built on board of a helicopter. The described weapon system consists of three 7.62 mm M-134G multi-barreled machine guns built on the designed frames of shooting positions located in the escape hatch window, the side doors and the rear doors of the transport cabin of the Mi-17-1V helicopter.

  10. ECInvestigation of NO2 Pollutions on Board of Research Aircraft (Some Results of QUANTIFY and POLARCAT Field Campaigns)

    OpenAIRE

    Sitnikov, N.; Sitnikova, V.; Ulanovskiy, A.; Lukyanov, A.; H. Schlager; Roiger, A.; Scheiber, M.; M. Lichtenstern; Stock, P.; F. Ravegnani

    2010-01-01

    The results of investigation of NO2 pollutions on board of research aircraft Falcon (DLR, Germany) are presented. The measurements have been carried out by chemiluminescent nitrogen dioxide analyzer developed in Central Aerological Observatory (Russia). The data of NO2 distribution have been obtained during QUANTIFY (West Europe, July 2007) and POLARCAT (Greenland, July 2008) field campaigns. NO2 measurements over Greenland during POLARCAT field campaign have been carried out using ACCENT sup...

  11. Global mesospheric tidal winds observed by the high resolution Doppler imager on board the upper atmosphere research satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Y.T.; Lieberman, R.S.; Hays, P.B.; Ortland, D.A.; Marshall, A.R.; Wu, D.; Skinner, W.R.; Burrage, M.D.; Gell, D.A.; Yee, J.H.

    1993-06-18

    This paper presents results of mesospheric and lower thermospheric wind tides. The observations come from the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite. From these observations, the authors report the observation of tidal effects on top of the meridonal winds observed in this region. Previous measurements have been mainly limited to radar measurements from fixed ground stations, which do not give consistent results, and do not provide a global picture of the wave structure.

  12. Working conditions in the engine department - A qualitative study among engine room personnel on board Swedish merchant ships.

    Science.gov (United States)

    Lundh, Monica; Lützhöft, Margareta; Rydstedt, Leif; Dahlman, Joakim

    2011-01-01

    The specific problems associated with the work on board within the merchant fleet are well known and have over the years been a topic of discussion. The work conditions in the engine room (ER) are demanding due to, e.g. the thermal climate, noise and awkward working postures. The work in the engine control room (ECR) has over recent years undergone major changes, mainly due to the introduction of computers on board. In order to capture the impact these changes had implied, and also to investigate how the work situation has developed, a total of 20 engine officers and engine ratings were interviewed. The interviews were semi-structured and Grounded Theory was used for the data analysis. The aim of the present study was to describe how the engine crew perceive their work situation and working environment on board. Further, the aim was to identify areas for improvements which the engine crew consider especially important for a safe and effective work environment. The result of the study shows that the design of the ECR and ER is crucial for how different tasks are performed. Design which does not support operational procedures and how tasks are performed risk inducing inappropriate behaviour as the crew members' are compelled to find alternative ways to perform their tasks in order to get the job done. These types of behaviour can induce an increased risk of exposure to hazardous substances and the engine crew members becoming injured.

  13. Application of On-Board Evolutionary Algorithms to Underwater Robots to Optimally Replan Missions with Energy Constraints

    Directory of Open Access Journals (Sweden)

    M. L. Seto

    2012-01-01

    Full Text Available The objective is to show that on-board mission replanning for an AUV sensor coverage mission, based on available energy, enhances mission success. Autonomous underwater vehicles (AUVs are tasked to increasingly long deployments, consequently energy management issues are timely and relevant. Energy shortages can occur if the AUV unexpectedly travels against stronger currents, is not trimmed for the local water salinity has to get back on course, and so forth. An on-board knowledge-based agent, based on a genetic algorithm, was designed and validated to replan a near-optimal AUV survey mission. It considers the measured AUV energy consumption, attitudes, speed over ground, and known response to proposed missions through on-line dynamics and control predictions. For the case studied, the replanned mission improves the survey area coverage by a factor of 2 for an energy budget, that is, a factor of 2 less than planned. The contribution is a novel on-board cognitive capability in the form of an agent that monitors the energy and intelligently replans missions based on energy considerations with evolutionary methods.

  14. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    Science.gov (United States)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10

  15. Controlling Small Fixed Wing UAVs to Optimize Image Quality from On-Board Cameras

    Science.gov (United States)

    Jackson, Stephen Phillip

    Small UAVs have shown great promise as tools for collecting aerial imagery both quickly and cheaply. Furthermore, using a team of small UAVs, as opposed to one large UAV, has shown promise as being a cheaper, faster and more robust method for collecting image data over a large area. Unfortunately, the autonomy of small UAVs has not yet reached the point where they can be relied upon to collect good aerial imagery without human intervention, or supervision. The work presented here intends to increase the level of autonomy of small UAVs so that they can independently, and reliably collect quality aerial imagery. The main contribution of this paper is a novel approach to controlling small fixed wing UAVs that optimizes the quality of the images captured by cameras on board the aircraft. This main contribution is built on three minor contributions: a kinodynamic motion model for small fixed wing UAVs, an iterative Gaussian sampling strategy for rapidly exploring random trees, and a receding horizon, nonlinear model predictive controller for controlling a UAV's sensor footprint. The kinodynamic motion model is built on the traditional unicycle model of an aircraft. In order to create dynamically feasible paths, the kinodynamic motion model augments the kinetic unicycle model by adding a first order estimate of the aircraft's roll dynamics. Experimental data is presented that not only validates this novel kinodynamic motion model, but also shows a 25% improvement over the traditional unicycle model. A novel Gaussian biased sampling strategy is presented for building a rapidly exploring random tree that quickly iterates to a near optimal path. This novel sampling strategy does not require a method for calculating the nearest node to a point, which means that it runs much faster than the traditional RRT algorithm, but it still results in a Gaussian distribution of nodes. Furthermore, because it uses the kinodynamic motion model, the near optimal path it generates is, by

  16. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    Science.gov (United States)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have

  17. Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    Science.gov (United States)

    Garvani, Sara; Carmisciano, Cosmo; Locritani, Marina; Grossi, Luigi; Mori, Anna; Stroobant, Mascha; Schierano, Erika; De Strobel, Federico; Manzella, Giuseppe; Muzi, Enrico; Leccese, Dario; Sinapi, Luigi; Morellato, Claudio; La Tassa, Hebert; Talamoni, Roberta; Coelho, Emanuel; Nacini, Francesca

    2017-04-01

    culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past. References M. Locritani, I. Batzu, C. Carmisciano, F. Muccini, R. Talamoni, H.L. Tassa, M. Stroobant, G. Guccinelli, L. Benvenuti, M. Abbate, S. Furia, A. Benedetti, M.I. Bernardini, R. Centi, L. Casale, C. Vannucci, F. Giacomazzi, C. Marini, D. Tosi, S. Merlino, E. Mioni, F. Nacini, Feeling the pulse of public perception of science: Does research make our hearts beat faster?, in: MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World, 2015. National Science Foundation, 50 Years of Ocean Discovery: National Science Foundation 1950-2000. Ocean Studies Board, National Research Council ISBN: 0-309-51744-3, 276 pages, 8.5 x 11, 2000. E.L. Mills, The Historian of Science and Oceanography After Twenty Years, Earth Sciences History. 12 (1993) 5-18. J.A. Bennett, History of Technology - McConnell Anita

  18. COVE, MARINA, and the Future of On-Board Processing (OBP) Platforms for CubeSat Science Missions

    Science.gov (United States)

    Pingree, P.; Bekker, D. L.; Bryk, M.; DeLucca, J.; Franklin, B.; Hancock, B.; Klesh, A. T.; Meehan, C.; Meshkaty, N.; Nichols, J.; Peay, C.; Rider, D. M.; Werne, T.; Wu, Y.

    2012-12-01

    The CubeSat On-board processing Validation Experiment (COVE), JPL's first CubeSat payload launched on October 28, 2011, features the Xilinx Virtex-5QV Single event Immune Reconfigurable FPGA (SIRF). The technology demonstration mission was to validate the SIRF device running an on-board processing (OBP) algorithm developed to reduce the data set by 2-orders of magnitude for the Multi-angle SpectroPolarimetric Imager (MSPI), an instrument under development at JPL (PI: D. Diner). COVE has a single data interface to the CubeSat flight computer that is used to transfer a static image taken from the CubeSat camera and store it to local memory where the FPGA then reads it to run the algorithm on it. In the next generation COVE design, called MARINA, developed for the GRIFEX CubeSat project, the OBP board is extended, using rigid-flex PCB technology, to provide an interface to a JPL-developed Read-Out Integrated Circuit (ROIC) hybridized to a detector developed by Raytheon. In this configuration the focal plane array (FPA) data can be streamed directly to the FPGA for data processing or for storage to local memory. The MARINA rigid-flex PCB design is integrated with a commercial camera lens to create a 1U instrument payload for integration with a CubeSat under development by the University of Michigan and planned for launch in 2014. In the GRIFEX technology demonstration, the limited on-board storage capacity is filled by high-rate FPA data in less than a second. The system is also limited by the CubeSat downlink data rate and several ground station passes are required to transmit this limited amount of data. While this system is sufficient to validate the ROIC technology on-orbit, the system cannot be operated in a way to perform continuous science observations due to the on-board storage and data downlink constraints. In order to advance the current platform to support sustained science observations, more on-board storage is needed. Radiation tolerant memory

  19. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  20. Investigations of the effects of cosmic rays on Artemia cysts and tobacco seeds: results of Exobloc II experiment, flown aboard Biocosmos 1887

    Energy Technology Data Exchange (ETDEWEB)

    Gaubin, Y.; Pianezzi, B.; Gasset, G.; Planel, H. (Laboratoire de Biologie Medicale, Faculte de Medecine, Toulouse (France)); Delpoux, M. (Laboratoire de Biogeographie, Faculte des Sciences, Toulouse (France)); Heilmann, C. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires)

    1990-01-01

    Artemia (Brine shrimp) cysts and tobacco seeds, dormant biological material devoid of metabolic activity, were flown aboard the Soviet Biocosmos 1887 in order to investigate the effects of cosmic rays. Artemia cysts and tobacco seeds were used in bulk or in monolayers sandwiched with track detectors. Biological and physical units were located outside and inside the spacecraft. Stacks included lead shielding in order to expose the objects to different doses of radiation. Total dosimetry was performed using thermoluminescent detectors. In spite of low levels of doses, the space flight resulted in a decrease in developmental capacity of Artemia cysts, and in a higher mutation rate in tobacco seeds. The more obvious responses occurred, in both cases, in biological objects exposed to the highest doses. These results are compared to those of previous space experiments. (author).

  1. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    Science.gov (United States)

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  2. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results

    Directory of Open Access Journals (Sweden)

    H. Rème

    2005-11-01

    Full Text Available On 29 December 2003, the Chinese spacecraft Tan Ce 1 (TC-1, the first component of the Double Star mission, was successfully launched within a low-latitude eccentric orbit. In the framework of the scientific cooperation between the Academy of Sciences of China and ESA, several European instruments, identical to those developed for the Cluster spacecraft, were installed on board this spacecraft.

    The HIA (Hot Ion Analyzer instrument on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been specially adapted for TC-1. It measures the 3-D distribution functions of the ions between 5 eV/q and 32 keV/q without mass discrimination.

    TC-1 is like a fifth Cluster spacecraft to study the interaction of the solar wind with the magnetosphere and to study geomagnetic storms and magnetospheric substorms in the near equatorial plane.

    HIA was commissioned in February 2004. Due to the 2 RE higher apogee than expected, some in-flight improvements were needed in order to use HIA in the solar wind in the initial phase of the mission. Since this period HIA has obtained very good measurements in the solar wind, the magnetosheath, the dayside and nightside plasma sheet, the ring current and the radiation belts. We present here the first results in the different regions of the magnetosphere and in the solar wind. Some of them are very new and include, for example, ion dispersion structures in the bow shock and ion beams close to the magnetopause. The huge interest in the orbit of TC-1 is strongly demonstrated.

  3. A comparison of co-temporal magnetograms obtained with the Huairou magnetograph and the Spectro-Polarimeter on board Hinode

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We have compared a set of co-temporal magnetograms obtained with the Solar Magnetic Field Tele-scope (SMFT) of the Huairou Solar Observing Station (HSOS) and with the Spectro-Polarimeter of the Solar Optical Telescope (SP/SOT) on board Hinode to check the linear calibrations of SMFT vector magnetograms. The comparison shows that the currently used calibration coefficients of the SMFT have under-estimated the flux density and that a center-to-limb variation of the calibration coefficients was not taken into account by previous calibrations.

  4. On-Board and Ground-Based Complexes for Operating the Science Payload of the CORONAS-F Space Mission

    Science.gov (United States)

    Stepanov, A. I.; Lisin, D. V.; Kuznetsov, V. D.; Afanas'ev, A. N.; Osin, A. I.; Schwarz, J.

    To ensure reliable operation of the science payload of the CORONAS-F satellite and to exercise its flexible control in the course of realization of the research program, an on-board and a specialized ground-based control complexes (GCCs) were designed and manufactured at the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN). A demand for such systems arose because the service facilities of the satellite basic platform were unable to satisfy the requirements of the unique scientific experiments, i.e., an efficient on-line control of the variety of scientific instruments, managing large amounts of scientific information, etc.

  5. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite].

    Science.gov (United States)

    Belichenko, P V; Leontovich, T A

    1989-05-01

    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals.

  6. 40 CFR 86.007-17 - On-board Diagnostics for engines used in applications less than or equal to 14,000 pounds GVWR.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board Diagnostics for engines used in applications less than or equal to 14,000 pounds GVWR. 86.007-17 Section 86.007-17 Protection of... Heavy-Duty Vehicles § 86.007-17 On-board Diagnostics for engines used in applications less than or...

  7. SHARAD, the SHAllow RADar on board the MRO mission: a new insight into Mars

    Science.gov (United States)

    Seu, Roberto

    SHARAD is a subsurface sounding radar, ASI (Italian Space Agency) facility instrument on board the NASA Mars Reconnaissance Orbiter (MRO) mission. It has been designed, devel-oped and it is now operated by a joint Sapienza University of Rome and Thales Alenia Space Italy team under different Italian Space Agency (ASI) contracts. The primary objective of the SHARAD experiment is to map, in selected locales, dielectric interfaces in the martian sub-surface and to interpret these results in terms of the occurrence and distribution of expected materials, including competent rock, regolith, water and ice. To meet this objective SHARAD transmits a linear frequency modulated waveform of 10 MHz bandwidth, which allows 15 m of range resolution in free space, on a carrier frequency of 20 MHz, which in practice does allow a penetration depth of up to a kilometer or more, depending on the nature of the subsurface material. The ground resolution is on the order of 300 m along-track, achieved by means of an advanced synthetic aperture processing, and about 3 km across-track. With these char-acteristics and performance SHARAD has provided the science team with a large number of radargrams with high SNR as it observes selected science targets. The scientific results achieved analyzing the data collected by SHARAD are described in several papers published in different international journals. A few science highlights are summarized in the following. Martian sur-face features identified as lobate debris aprons (LDAs) are thick (100s of m) masses of material that extend up to several 10s of km from high relief slopes and terminate in lobate fronts. Their geomorphic expression and restricted occurrence in latitude has led numerous workers to conclude that LDAs contain water ice, but the suggested amount of ice involved in their forma-tion and evolution has ranged from minor interstitial ice in rocky talus to predominantly ice in debris-covered glaciers. SHARAD data have provided

  8. On-board capacity estimation of lithium iron phosphate batteries by means of half-cell curves

    Science.gov (United States)

    Marongiu, Andrea; Nlandi, Nsombo; Rong, Yao; Sauer, Dirk Uwe

    2016-08-01

    This paper presents a novel methodology for the on-board estimation of the actual battery capacity of lithium iron phosphate batteries. The approach is based on the detection of the actual degradation mechanisms by collecting plateau information. The tracked degradation modes are employed to change the characteristics of the fresh electrode voltage curves (mutual position and dimension), to reconstruct the full voltage curve and therefore to obtain the total capacity. The work presents a model which describes the relation between the single degradation modes and the electrode voltage curves characteristics. The model is then implemented in a novel battery management system structure for aging tracking and on-board capacity estimation. The working principle of the new algorithm is validated with data obtained from lithium iron phosphate cells aged in different operating conditions. The results show that both during charge and discharge the algorithm is able to correctly track the actual battery capacity with an error of approx. 1%. The use of the obtained results for the recalibration of a hysteresis model present in the battery management system is eventually presented, demonstrating the benefit of the tracked aging information for additional scopes.

  9. Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey

    Science.gov (United States)

    Hulskotte, J. H. J.; Denier van der Gon, H. A. C.

    2010-03-01

    A methodology is presented to estimate the emissions of ships at berth based on their actual fuel consumption and the fuel quality. Accurate estimates of emissions from ships at berth demand reliable knowledge of the fuel consumption while at berth and associated fuel characteristics. However, assured information about energy use and fuel consumption of seagoing ships at berth is scarce. Proper estimation of ship emissions at berth is crucial for understanding the impact of shipping emissions on air quality and health in harbour cities as well as for a proper evaluation of the impact of abatement measures such as shore-side electricity and/or restrictions of sulphur content for shipping fuels to be used in ports. Therefore, a survey of energy consumption and fuel use on board of 89 seagoing ships was made in close cooperation with the Port of Rotterdam. Rotterdam is the major port of Europe ensuring that the results will have relevance for the larger European domain. On board of the ships at berth, a questionnaire was filled in by the chief engineer of that particular ship, assisted by two former mechanical shipping engineers employed at our organization. Survey results as well as the emission estimations are compared to the (scarce) information that is available and expert judgements in recent studies. The compiled survey data underlie the current Dutch emission estimation methodology for emissions of ships at berth.

  10. On-Board Computing for Structural Health Monitoring with Smart Wireless Sensors by Modal Identification Using Hilbert-Huang Transform

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2013-01-01

    Full Text Available Smart wireless sensors have been recognized as a promising technology to overcome many inherent difficulties and limitations associated with traditional wired structural health monitoring (SHM systems. Despite the advances in smart sensor technologies, on-board computing capability of smart sensors has been considered as one of the most difficult challenges in the application of the smart sensors in SHM. Taking the advantage of recent developments in microprocessor which provides powerful on-board computing functionality for smart sensors, this paper presents a new decentralized data processing approach for modal identification using the Hilbert-Huang transform (HHT algorithm, which is based on signal decomposition technique. It is shown that this method is suitable for implementation in the intrinsically distributed computing environment found in wireless smart sensor networks (WSSNs. The HHT-based decentralized data processing is, then, programmed and implemented on the Crossbow IRIS mote sensor platform. The effectiveness of the proposed techniques is demonstrated through a set of numerical studies and experimental validations on an in-house cable-stayed bridge model in terms of the accuracy of identified dynamic properties.

  11. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  12. Education Officers on board the JOIDES Resolution: A Three-Year Review and Assessment of a Unique Professional Development Opportunity

    Science.gov (United States)

    Cooper, S. K.; Peart, L.

    2012-12-01

    Deep Earth Academy - as the education department of the Integrated Ocean Drilling Program - has pioneered a unique approach to the role of educators on board ocean-going research expeditions. As Education Officers, the educator on board the JOIDES Resolution (JR) has the role of prime translator of the exciting geological, geochemical, microbiological and paleo-oceanographic science being done, with sole responsibility for coordinating the story of each expedition that is sent out to the broader world. For two months, the Education Officer coordinates - with participation from the science party and technical staff - blogs, social media postings, web site updates and live ship-to-shore events for a variety of shore-based audiences, including classrooms, museums, professional development workshops and media outlets. This presentation will include results of a three-year review of the experiences of the JR's Education Officers, including their perspectives on their role, the impacts on their lives, careers and students, and their recommendations for the program going forward. Data from surveys of the science parties and technical staff with whom they worked, live event feedback and focus groups will be shared. The presentation will also include video examples of the education officers at work. Opportunities to become involved in this professional development opportunity - either from the ship or shore - will be shared.

  13. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  14. Exploiting Artificial Intelligence for Analysis and Data Selection on-board the Puerto Rico CubeSat

    Science.gov (United States)

    Bergman, J. E. S.; Bruhn, F.; Funk, P.; Isham, B.; Rincón-Charris, A. A.; Capo-Lugo, P.; Åhlén, L.

    2015-10-01

    CubeSat missions are constrained by the limited resources provided by the platform. Many payload providers have learned to cope with the low mass and power but the poor telemetry allocation remains a bottleneck. In the end, it is the data delivered to ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on the data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection one could optimize the usage of the telemetry link and so increase the value of the mission. In a pilot project, we attempt to do this on the Puerto Rico CubeSat, where science objectives include the acquisition of space weather data to aid better understanding of the Sun to Earth connection.

  15. Thermal mathematical model correlation through genetic algorithms of an experiment conducted on board the International Space Station

    Science.gov (United States)

    Garmendia, Iñaki; Anglada, Eva

    2016-05-01

    Genetic algorithms have been used for matching temperature values generated using thermal mathematical models against actual temperatures measured in thermal testing of spacecrafts and space instruments. Up to now, results for small models have been very encouraging. This work will examine the correlation of a small-medium size model, whose thermal test results were available, by means of genetic algorithms. The thermal mathematical model reviewed herein corresponds to Tribolab, a materials experiment deployed on board the International Space Station and subjected to preflight thermal testing. This paper will also discuss in great detail the influence of both the number of reference temperatures available and the number of thermal parameters included in the correlation, taking into account the presence of heat sources and the maximum range of temperature mismatch. Conclusions and recommendations for the thermal test design will be provided, as well as some indications for future improvements.

  16. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  17. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  18. On-board Data Processing to Lower Bandwidth Requirements on an Infrared Astronomy Satellite: Case of Herschel-PACS Camera

    Directory of Open Access Journals (Sweden)

    Christian Reimers

    2005-09-01

    Full Text Available This paper presents a new data compression concept, “on-board processing,” for infrared astronomy, where space observatories have limited processing resources. The proposed approach has been developed and tested for the PACS camera from the European Space Agency (ESA mission, Herschel. Using lossy and lossless compression, the presented method offers high compression ratio with a minimal loss of potentially useful scientific data. It also provides higher signal-to-noise ratio than that for standard compression techniques. Furthermore, the proposed approach presents low algorithmic complexity such that it is implementable on the resource-limited hardware. The various modules of the data compression concept are discussed in detail.

  19. Mapping the Space Radiation Environment in LEO Orbit by the SATRAM Timepix Payload On Board the Proba-V Satellite

    Science.gov (United States)

    Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim

    2016-08-01

    The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.

  20. Molecular chirality in meteorites and interstellar ices, and the chirality experiment on board the ESA cometary Rosetta mission.

    Science.gov (United States)

    Myrgorodska, Iuliia; Meinert, Cornelia; Martins, Zita; Le Sergeant d'Hendecourt, Louis; Meierhenrich, Uwe J

    2015-01-26

    Life, as it is known to us, uses exclusively L-amino acid and D-sugar enantiomers for the molecular architecture of proteins and nucleic acids. This Minireview explores current models of the original symmetry-breaking influence that led to the exogenic delivery to Earth of prebiotic molecules with a slight enantiomeric excess. We provide a short overview of enantiomeric enhancements detected in bodies of extraterrestrial origin, such as meteorites, and interstellar ices simulated in the laboratory. Data are interpreted from different points of view, namely, photochirogenesis, parity violation in the weak nuclear interaction, and enantioenrichment through phase transitions. Photochemically induced enantiomeric imbalances are discussed more specifically in the topical context of the "chirality module" on board the cometary Rosetta spacecraft of the ESA. This device will perform the first enantioselective in situ analyses of samples taken from a cometary nucleus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DSPACE hardware architecture for on-board real-time image/video processing in European space missions

    Science.gov (United States)

    Saponara, Sergio; Donati, Massimiliano; Fanucci, Luca; Odendahl, Maximilian; Leupers, Reiner; Errico, Walter

    2013-02-01

    The on-board data processing is a vital task for any satellite and spacecraft due to the importance of elaborate the sensing data before sending them to the Earth, in order to exploit effectively the bandwidth to the ground station. In the last years the amount of sensing data collected by scientific and commercial space missions has increased significantly, while the available downlink bandwidth is comparatively stable. The increasing demand of on-board real-time processing capabilities represents one of the critical issues in forthcoming European missions. Faster and faster signal and image processing algorithms are required to accomplish planetary observation, surveillance, Synthetic Aperture Radar imaging and telecommunications. The only available space-qualified Digital Signal Processor (DSP) free of International Traffic in Arms Regulations (ITAR) restrictions faces inadequate performance, thus the development of a next generation European DSP is well known to the space community. The DSPACE space-qualified DSP architecture fills the gap between the computational requirements and the available devices. It leverages a pipelined and massively parallel core based on the Very Long Instruction Word (VLIW) paradigm, with 64 registers and 8 operational units, along with cache memories, memory controllers and SpaceWire interfaces. Both the synthesizable VHDL and the software development tools are generated from the LISA high-level model. A Xilinx-XC7K325T FPGA is chosen to realize a compact PCI demonstrator board. Finally first synthesis results on CMOS standard cell technology (ASIC 180 nm) show an area of around 380 kgates and a peak performance of 1000 MIPS and 750 MFLOPS at 125MHz.

  2. MicroCameras and Photometers (MCP) instrument on board TARANIS satellite: scientific objectives, design, characterization results and products

    Science.gov (United States)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Cansot, E.; Offroy, M.; Ravel, K.; Gaillac, S.; Sato, M.; Blanc, E.

    2015-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched from late 2017 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose of this poster is to present the MicroCameras and Photometers (MCP) scientific objectives and the sensor design, to show the performances of this instrument using the recent characterization, and at last to promote its products. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. The calibration results will be detailed. Simulation results of the differentiation method will be shown. Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. It is a key instrument because of its on-board detection of the TLEs which can trigger the whole payload. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The calibration results will also be detailed. The on-board TLE detection algorithm remote-controlled parameters will be tuned before launch using the electronic board and simulated or real events waveforms. Automatic classification tools are now tested to produce for the Scientific Mission Center some lists of elves, sprites or lightning without TLE following the recent work of Offroy et al. [2015] using ISUAL spectrophotometer data.

  3. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  4. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  5. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board

  6. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    Science.gov (United States)

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach

  7. The “PHOENIX” Space Experiment: Study of Space Radiation Impact on Cells Genetic Apparatus on Board the International Space Station

    Science.gov (United States)

    Karganov, M. Yu; Alchinova, I. B.; Yakovenko, E. N.; Kushin, V. V.; Inozemtsev, K. O.; Strádi, A.; Szabó, J.; Shurshakov, V. A.; Tolochek, R. V.

    2017-01-01

    The preliminary results of the 1st session of Russian “PHOENIX” long-term space experiment are presented. The survival of dried human lymphocytes and mouse bone marrow cells in 199 days space flight is studied. The degree of DNA fragmentation is analysed for samples flown in different ISS compartments. It is shown that biological data correlates with the results of space radiation dose measurements.

  8. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  9. The E-NIS instrument on-board the ESA Euclid Dark Energy Mission: a general view after positive conclusion of the assesment phase

    NARCIS (Netherlands)

    Valenziano, L.; Zerbi, F.M.; Cimatti, A.; Bianco, A.; Bonoli, C.; Bortoletto, F.; Bulgarelli, A.; Butler, R.C.; Content, R.; Corcione, L.; Rosa, A.de; Franzetti, P.; Garilli, B.; Gianotti, F.; Giro, E.; Grange, R.; Leutenegger, P.; Ligori, S.; Martin, L.; Mandolesi, N.; Morgante, G.; Nicastro, L.; Riva, M.; Robberto, M.; Sharples, R.; Spanó, P.; Talbot, G.; Trifoglio, M.; Wink, R.; Zamkotsian, F.

    2010-01-01

    The Euclid Near-Infrared Spectrometer (E-NIS) Instrument was conceived as the spectroscopic probe on-board the ESA Dark Energy Mission Euclid. Together with the Euclid Imaging Channel (EIC) in its Visible (VIS) and Near Infrared (NIP) declinations, NIS formed part of the Euclid Mission Concept

  10. The E-NIS instrument on-board the ESA Euclid Dark Energy Mission: a general view after positive conclusion of the assesment phase

    NARCIS (Netherlands)

    Valenziano, L.; Zerbi, F.M.; Cimatti, A.; Bianco, A.; Bonoli, C.; Bortoletto, F.; Bulgarelli, A.; Butler, R.C.; Content, R.; Corcione, L.; Rosa, A.de; Franzetti, P.; Garilli, B.; Gianotti, F.; Giro, E.; Grange, R.; Leutenegger, P.; Ligori, S.; Martin, L.; Mandolesi, N.; Morgante, G.; Nicastro, L.; Riva, M.; Robberto, M.; Sharples, R.; Spanó, P.; Talbot, G.; Trifoglio, M.; Wink, R.; Zamkotsian, F.

    2010-01-01

    The Euclid Near-Infrared Spectrometer (E-NIS) Instrument was conceived as the spectroscopic probe on-board the ESA Dark Energy Mission Euclid. Together with the Euclid Imaging Channel (EIC) in its Visible (VIS) and Near Infrared (NIP) declinations, NIS formed part of the Euclid Mission Concept deriv

  11. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Pawlowski

    2015-10-01

    Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  12. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    Science.gov (United States)

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.

  13. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    Science.gov (United States)

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  14. CLOUD AND HAZE IN THE WINTER POLAR REGION OF TITAN OBSERVED WITH VISUAL AND INFRARED MAPPING SPECTROMETER ON BOARD CASSINI

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, P. [GSMA, UMR CNRS 7331, Universite de Reims Champagne-Ardenne (France); Le Mouelic, S. [LPGN, UMR CNRS 6112, Universite de Nantes (France); Sotin, C. [JPL, California Institute of Technology, PA (United States); Brown, R. H., E-mail: pascal.rannou@univ-reims.fr [LPL, University of Arizona, Tucson, AZ (United States)

    2012-03-20

    A large cloud in the north polar region of Titan was first observed by the Visual and Infrared Mapping Spectrometer (VIMS) in 2005 and then in 2006. This cloud, confined beyond the latitude 62 Degree-Sign N, is surrounded by a mixture of aerosol and mist probably lying in the low stratosphere and troposphere. Subsequent images of this region of Titan show a gradual vanishing of this cloud which was reported previously. In this paper, we characterize the physical properties of this cloud, haze, and mist as well as their time evolutions. We note several details on the images such as a secondary cloud above the main cloud and latitudes beyond 70 Degree-Sign N. We also show that the cloud disappearance leaves the polar region poorly loaded in aerosols, yielding an annular zone of aerosols between 50 Degree-Sign N and 65 Degree-Sign N. Our analysis suggests that this structure observed by VIMS in the near-IR is an annular structure observed by ISS on board Voyager one Titan year ago in 1980.

  15. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  16. Silicon in the dust formation zone of IRC +10216 as observed with PACS and SPIRE on board Herschel

    CERN Document Server

    Decin, L; Barlow, M J; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; De Beck, E; Agúndez, M; Blommaert, J A D L; Cohen, M; Daniel, F; De Meester, W; Exter, K; Feuchtgruber, H; Fonfria, J P; Gear, W K; Goicoechea, J R; Gomez, H L; Groenewegen, M A T; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Tercero, B; Waelkens, C; Witherick, D K; Yates, J A

    2010-01-01

    The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {\\mu}m) and SPIRE (194-672 {\\mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggest...

  17. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    Directory of Open Access Journals (Sweden)

    Christian Mazars

    Full Text Available The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS. For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  18. Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station

    Science.gov (United States)

    Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The “GENARA A” experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected. PMID:24618597

  19. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  20. Automatic Detection of Omega Signals Captured by the Poynting Flux Analyzer (PFX) on Board the Akebono Satellite

    CERN Document Server

    Suarjaya, I Made Agus Dwi; Goto, Yoshitaka

    2016-01-01

    The Akebono satellite was launched in 1989 to observe the Earth's magnetosphere and plasmasphere. Omega was a navigation system with 8 ground stations transmitter and had transmission pattern that repeats every 10 s. From 1989 to 1997, the PFX on board the Akebono satellite received signals at 10.2 kHz from these stations. Huge amounts of PFX data became valuable for studying the propagation characteristics of VLF waves in the ionosphere and plasmasphere. In this study, we introduce a method for automatic detection of Omega signals from the PFX data in a systematic way, it involves identifying a transmission station, calculating the delay time, and estimating the signal intensity. We show the reliability of the automatic detection system where we able to detect the omega signal and confirmed its propagation to the opposite hemisphere along the Earth's magnetic field lines. For more than three years (39 months), we detected 43,734 and 111,049 signals in the magnetic and electric field, respectively, and demons...

  1. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  2. DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION

    Energy Technology Data Exchange (ETDEWEB)

    De Sanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Capaccioni, F.; Capria, M. T.; Tosi, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G. [Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome (Italy); Combe, J.-Ph.; McCord, T. B. [Bear Fight Institute, Winthrop, WA (United States); Marchi, S. [NASA Lunar Science Institute, Boulder, CO (United States); Mittlefehldt, D. W. [NASA Johnson Space Center, Houston, TX (United States); Pieters, C. M. [Department of Geological Sciences, Brown University, Providence, RI (United States); Sunshine, J. [Department of Astronomy, University of Maryland, Maryland (United States); Raymond, C. A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Russell, C. T., E-mail: mariacristina.desanctis@iaps.inaf.it [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA (United States); and others

    2012-10-20

    Water plays a key role in the evolution of terrestrial planets, and notably in the occurrence of Earth's oceans. However, the mechanism by which water has been incorporated into these bodies-including Earth-is still extensively debated. Here we report the detection of widespread 2.8 {mu}m OH absorption bands on the surface of the asteroid Vesta by the VIR imaging spectrometer on board Dawn. These observations are surprising as Vesta is fully differentiated with a basaltic surface. The 2.8 {mu}m OH absorption is distributed across Vesta's surface and shows areas enriched and depleted in hydrated materials. The uneven distribution of hydrated mineral phases is unexpected and indicates ancient processes that differ from those believed to be responsible for OH on other airless bodies, like the Moon. The origin of Vestan OH provides new insight into the delivery of hydrous materials in the main belt and may offer new scenarios on the delivery of hydrous minerals in the inner solar system, suggesting processes that may have played a role in the formation of terrestrial planets.

  3. Automatic Detection of Omega Signals Captured by the Poynting Flux Analyzer (PFX on Board the Akebono Satellite

    Directory of Open Access Journals (Sweden)

    Made Agus Dwi Suarjaya

    2016-10-01

    Full Text Available The Akebono satellite was launched in 1989 to observe the Earth’s magnetosphere and plasmasphere. Omega was a navigation system with 8 ground stations transmitter and had transmission pattern that repeats every 10 s. From 1989 to 1997, the PFX on board the Akebono satellite received signals at 10.2 kHz from these stations. Huge amounts of PFX data became valuable for studying the propagation characteristics of VLF waves in the ionosphere and plasmasphere. In this study, we introduce a method for automatic detection of Omega signals from the PFX data in a systematic way, it involves identifying a transmission station, calculating the delay time, and estimating the signal intensity. We show the reliability of the automatic detection system where we able to detect the omega signal and confirmed its propagation to the opposite hemisphere along the Earth’s magnetic field lines. For more than three years (39 months, we detected 43,734 and 111,049 signals in the magnetic and electric field, respectively, and demonstrated that the proposed method is powerful enough for the statistical analyses.

  4. A LOW BUDGET MOBILE LASER SCANNING SOLUTION USING ON BOARD SENSORS AND FIELD BUS SYSTEMS OF TODAY'S CONSUMER AUTOMOBILES

    Directory of Open Access Journals (Sweden)

    D. M. M. Vock

    2012-09-01

    Full Text Available Mobile laser scanning systems (MLS offer a great potential for acquiring detailed point cloud data of urban and suburban surroundings with minimum effort. In this paper a new solution for MLSs is presented, requiring solely a combination of a profile laser scanning device and systems that are included in today's serialized end consumer vehicles. While today's mobile laser scan systems require different and expensive additional hardware that needs to be mounted onto the vehicle, the devices included within vehicle electronics offer good alternatives without additional costs.The actual scan consists of a continuous profile scan together with information gathered from on-board sensor modules. In a post- processing step, the sensor data is used to reconstruct the car's trajectory for the period of the scan and, based on this information, the track of the scan device for every measured laser pixel. Synchronization of pixel data and vehicle movement is realized via a timestamp signal which is transmitted to the car's field bus system and the scan device. To generate the final point cloud scenario, the trajectory is interpolated for every single scan point and used to convert its local position within the profile into the global coordinate system (Fig.1, Left.

  5. Measurement of eye lens dose for Varian On-Board Imaging with different cone-beam computed tomography acquisition techniques.

    Science.gov (United States)

    Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M S; Sharma, S D; Kannan, V

    2016-01-01

    The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8-3.2 mGy and 4.5-9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3-0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol.

  6. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    CERN Document Server

    Virani, S N; De Pasquale, J M; Plucinsky, P P; Virani, Shanil N.; Ford, Peter G.; Pasquale, Joseph M. De; Plucinsky, Paul P.

    2002-01-01

    The Chandra X-ray Observatory (CXO), NASA's latest ``Great Observatory'', was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) to use during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of ...

  7. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    Science.gov (United States)

    Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.

  8. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm(2)).

  9. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    Science.gov (United States)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  10. Damage localization using a power-efficient distributed on-board signal processing algorithm in a wireless sensor network

    Science.gov (United States)

    Liu, Lei; Liu, Shuntao; Yuan, Fuh-Gwo

    2012-02-01

    A distributed on-board algorithm that is embedded and executed within a group of wireless sensors to locate structural damages in isotropic plates is presented. The algorithm is based on an energy-decay model of Lamb waves and singular value decomposition (SVD) to determine damage locations. A sensor group consists of a small number of sensors, each of which independently collects wave signals and evaluates wave energy upon an external triggering signal sent from a base station. The energy values, usually a few bytes in length, are then sent to the base station to determine the presence and location of damages. In comparison with traditional centralized approaches in which whole datasets are required to be transmitted, the proposed algorithm yields much less wireless communication traffic, yet with a modest amount of computation required within sensors. Experiments have shown that the algorithm is robust to locate damage for isotropic plate structures and is very power efficient, with more than an order-of-magnitude power saving.

  11. Precise orbit determination for Jason-1 satellite using on-board GPS data with cm-level accuracy

    Institute of Scientific and Technical Information of China (English)

    PENG DongJu; WU Bin

    2009-01-01

    The joint US/French Jason-1 satellite altimeter mission, launched from the Vandenberg Air Force Base on December 7, 2001, continues the time series of centimeter-level ocean topography observations as the follow-on to the highly successful T/P radar altimeter satellite. Orbit error especially the radial orbit error is a major component in the overall budget of all altimeter satellite missions, in order to continue the T/P standard of observations. Jason-1 has a radial orbit error budget requirement of 2.5 cm. in this work, two cycles (December 19, 2002 to January 7, 2003) of the Jason-1 on-board GPS data were processed using the zero-difference (ZD) dynamic precise orbit determination (POD) technique. The resulting Jason-1 orbit accuracy was assessed by comparison with the precise orbit ephemeris (POE)produced by JPL, orbit overlaps and SLR residuals. These evaluations indicate that the RMS radial accuracy is in the range of 1-2 cm.

  12. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  13. Investigation of tropospheric-space weather coupling using Schumann resonance measurements on board the C/NOFS satellite

    Science.gov (United States)

    Simoes, F.; Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Rowland, D. E.

    2012-12-01

    Detection of Schumann Resonance spectral features of the earth-ionosphere cavity from outside the cavity offers new remote sensing capabilities to assess tropospheric-space weather connections, namely periodic patterns observed in tropospheric, ionospheric, and magnetospheric data. Semiannual oscillations have been identified in a variety of hydrodynamic and electrodynamic processes, but the mechanism (or mechanisms) responsible for such effect remains elusive. Analysis of AC electric field measurements made by the Vector Electric Field Instrument (VEFI) on board the Communications/Navigation Outage Forecasting System (C/NOFS) satellite also shows a semiannual pattern in Schumann resonance data recorded during nighttime in the equatorial ionosphere. In this work we present C/NOFS data and outline future developments involving low frequency electric and magnetic field measurements. We discuss how patterns observed in the Schumann resonance amplitude are expected to contribute to validate - or at least constrain - mechanisms previously proposed to explain the semiannual oscillation, as well as their implications for investigating coupling between layers of the Earth gaseous envelope.

  14. Changes in Plastid and Mitochondria Protein Expression in Arabidopsis Thaliana Callus on Board Chinese Spacecraft SZ-8

    Science.gov (United States)

    Zhang, Yue; Zheng, Hui Qiong

    2015-11-01

    Microgravity represents an adverse abiotic environment, which causes rearrangements in cellular organelles and changes in the energy metabolism of cells. Plastids and mitochondria are two subcellular energy organelles that are responsible for major metabolic processes, including photosynthesis, oxidative phosphorylation, ß-oxidation, and the tricarboxylic acid cycle. In our previous study performed on board the Chinese spacecraft SZ-8, we evaluated the global changes exerted by microgravity on the proteome of Arabidopsis thaliana cell cultures by comparing the microgravity-exposed samples with the controls either under 1 g centrifugation in space or 1 g ground conditions. Here, we report additional data from this space experiment that highlights the plastid and mitochondria proteins that responded to space flight conditions. We observed that 43 plastidial proteins and 50 mitochondrial proteins changed their abundances under microgravity in space. The major changes in both plastids and mitochondria involved proteins that functions in a suite of redox antioxidant and metabolic pathways. These results suggested that these antioxidant and metabolic changes in plastids and mitochondria could be important components of the adaptive strategy in plants subjected to microgravity in space.

  15. CONTROL ENGINEERING ON BOARD

    Directory of Open Access Journals (Sweden)

    Serghei RADU

    2012-11-01

    Full Text Available Control engineering embraces instrumentation, alarm systems, control of machinery and plant previously known under the misnomer of automation. Control engineering can be applied not only to propelling and auxiliary machinery but also to electrical installations, refrigeration, cargo handling (especially in tankers and deck machinery, e.g. Windlass control. Opinion still vary on such matters as the relative merits of pneumatic versus electronic system and whether the control center should be in the engine room or adjacent to the navigating bridge. Arguments against the exclusion of the engineer officer from close contact with the machinery are countered by the fact that electronic systems are based on changes other than those of human response. Automated ships (UMS operate closer to prescribed standards and therefore operate with greater efficiency. The closer control of machinery operating conditions, e.g. cooling water temperatures and pressures, permits machinery to be run at its optimum design conditions, making for fuel economy and reduced maintenance. Automation can carry out some tasks far more effectively than men. In other areas it is less effective. For example, the monitoring of machinery operating conditions such as the temperatures and pressures can be carried out by a solid state alarm scanning system at the rate of 400 channels/sec., giving a degree of surveillance which would be impossible by human observation. Conversely, the detection of noisy bearing, a leaky gland or cracked pipe is scarcely possible by automatic means. The balance between the possible and the necessary would be achieved in this case by combining automatic monitoring of all the likely fault conditions, with routine machinery space inspection say twice a day.

  16. "Welcome on board"

    NARCIS (Netherlands)

    Holthuysen, Nancy T.E.; Vrijhof, Milou N.; Wijk, de René A.; Kremer, Stefanie

    2017-01-01

    The main objective of this study was to evaluate the effect of contexts on overall liking and just-about-right (JAR) ratings of airplane meals. A rice dish (meal type A) and a pasta dish (meal type B) were assessed. Per meal type, two variants were produced (variant 1 and 2). Two hundred

  17. Safety on board.

    Science.gov (United States)

    Duffin, Christian

    NHS staff have completed a three-year project to improve the rescue and care of competitors injured at sea in next summer's Olympic Games and Paralympics. The team, which included critical care nurses, tested rescue equipment for use in water, and drew up good practice guidelines for the safe handling of casualties with spinal injuries.

  18. Measurement of eye lens dose for Varian On-Board Imaging with different cone-beam computed tomography acquisition techniques

    Directory of Open Access Journals (Sweden)

    Sudesh Deshpande

    2016-01-01

    Full Text Available The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT acquisition protocols of Varian′s On-Board Imaging (OBI system using optically stimulated luminescence dosimeter (OSLD and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH] of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8-3.2 mGy and 4.5-9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3-0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol.

  19. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    Science.gov (United States)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  20. The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station

    Directory of Open Access Journals (Sweden)

    Berrilli Francesco

    2014-05-01

    Full Text Available High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles.

  1. The impact of the board's strategy-setting role on board-management relations and hospital performance.

    Science.gov (United States)

    Büchner, Vera Antonia; Schreyögg, Jonas; Schultz, Carsten

    2014-01-01

    The appropriate governance of hospitals largely depends on effective cooperation between governing boards and hospital management. Governing boards play an important role in strategy-setting as part of their support for hospital management. However, in certain situations, this active strategic role may also generate discord within this relationship. The objective of this study is to investigate the impact of the roles, attributes, and processes of governing boards on hospital performance. We examine the impact of the governing board's strategy-setting role on board-management collaboration quality and on financial performance while also analyzing the interaction effects of board diversity and board activity level. The data are derived from a survey that was sent simultaneously to German hospitals and their associated governing board, combined with objective performance information from annual financial statements and quality reports. We use a structural equation modeling approach to test the model. The results indicate that different board characteristics have a significant impact on hospital performance (R = .37). The strategy-setting role and board-management collaboration quality have a positive effect on hospital performance, whereas the impact of strategy-setting on collaboration quality is negative. We find that the positive effect of strategy-setting on performance increases with decreasing board diversity. When board members have more homogeneous backgrounds and exhibit higher board activity levels, the negative effect of the strategy-setting on collaboration quality also increases. Active strategy-setting by a governing board may generally improve hospital performance. Diverse members of governing boards should be involved in strategy-setting for hospitals. However, high board-management collaboration quality may be compromised if managerial autonomy is too highly restricted. Consequently, hospitals should support board-management collaboration about

  2. Applying Rules of the Code of Conduct to the First Crews on Board the International Space Station

    Science.gov (United States)

    Catalano, Sgrosso G.

    2002-01-01

    Three years after the launch of the first Russian module Zarya, the Space Station is now operational, being made up of a central block, to which the various pressurised modules where the astronauts live and work during their stay on board are connected, of a first linking and docking node, "Unity", of the first of the four research labs, the American module"Destiny", and of the Russian module "Zvezda" with control and living functions. During these first years of the Station, the astronauts live in the service module Zvezda. The fourth crew has been positioned in the Station, carrying out maintenance and control operations of the Station itself, scientific experiments and space walks. The paper intends to analyse the rules of the code of conduct, agreed upon by all Partners, in accordance with art. 11 of the IGA. Together with the standards of conduct, applicable to all crew members, the paper will focus on the exercise of the Commander's authority, the chain of command on orbit and the relationship with the Flight Director on ground. In order to transport goods and experiments, some Multi-Purpose Logistic Modules have already been used (Leonardo, Donatello, Raffaello), transported to the Space Shuttle Station at times together with the new Station crew. Attention will be placed on the flight rules which should be issued, in such cases, in order to regulate the relationship between the ISS Commander, the ETOV (Earth to Orbit Vehicle) Commander and the Rescue Vehicle Commander. Jurisdiction over the astronauts, during the time spent in activities outside the vehicle - which are becoming more and more frequent in order to control the functionality and docking of the modules - is a new question to be solved. Finally, the paper will cover the questions concerning jurisdiction, responsibility and relationship with the crew in view of the transportation and subsequent presence in the Station of "space tourists".

  3. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2014-11-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH4. Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH4. The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm2) when driven by the catalytic hydrolysis of chemical hydride (NaBH4 and the prototype system shows run time more than 15 hours.

  4. Development status of the mechanical cryocoolers for the Soft X-ray Spectrometer on board Astro-H

    Science.gov (United States)

    Sato, Yoichi; Sawada, Kenichiro; Shinozaki, Keisuke; Sugita, Hiroyuki; Nishibori, Toshiyuki; Sato, Ryota; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Takei, Yoh; Goto, Ken; Nakagawa, Takao; Fujimoto, Ryuichi; Kikuchi, Kenichi; Murakami, Masahide; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Narasaki, Katsuhiro

    2014-11-01

    Astro-H is the Japanese X-ray astronomy satellite to be launched in 2015. The Soft X-ray Spectrometer (SXS) on board Astro-H is a high energy resolution spectrometer utilizing an X-ray micro-calorimeter array, which is operated at 50 mK by the ADR with the 30 liter superfluid liquid helium. The mechanical cryocoolers, 4 K-class Joule Thomson (JT) cooler and 20 K-class double-staged Stirling (2ST) cooler, are key components of the SXS cooling system to extend the lifetime of LHe cryogen beyond 3 years as required. Higher reliability was therefore investigated with higher cooling capability based on the heritage of existing cryocoolers. As the task of assessing further reliability dealt with the pipe-choking phenomena by contaminant solidification of the on-orbit SMILES JT cryocooler, outgassing from materials and component parts used in the cryocoolers was measured quantitatively to verify the suppression of carbon dioxide gas by their storage process and predict the total accumulated carbon dioxide for long-term operation. A continuous running test to verify lifetime using the engineering model (EM) of the 4 K-JT cooler is underway, having operated for a total of 720 days as of June 2013 and showing no remarkable change in cooling performance. During the current development phase, prototype models (PM) of the cryocoolers were installed to the test SXS dewar (EM) to verify the overall cooling performance from room temperature to 50 mK. During the EM dewar test, the requirement to reduce the transmitted vibration from the 2ST cooler compressor was recognized as mitigating the thermal instability of the SXS microcalorimeter at 50 mK.

  5. 星上自适应交换收发系统设计%The Design of Adaptive Satellite On-Board Switching Transceiver System

    Institute of Scientific and Technical Information of China (English)

    袁同力; 刘振华; 吴兵

    2016-01-01

    Effective regenerative transponder is the development trend of communication satellites. On-board switch is one of the keys to the next communication satellites.On-board switch transceiver system processes wide-band signal with amplifier,transducer and filter on millimeter-band.To guarantee the quality of communication,it’s importent to reduce non-linear distortion brought by the transponder.At the same time,considering the service invironment of the on-board switch,it’s necessary to reduce the volume,weight and the power consume when designing.To solve above problem,this paper demonstrates the key technology in the system design and introduces the design and execution plans of on-board switch transceiver system.%研制高性能卫星信号再生转发器是通信卫星的发展趋势,星上自适应交换技术是使新一代通信卫星具备宽带信号再生转发能力的关键技术之一。星上交换收发系统需要在毫米波段实现对宽带信号的放大、变频和滤波,为了保证通信质量,要尽量降低处理过程中带来的非线性失真。同时考虑到星上的使用环境,设计时要降低系统的体积、重量和功耗。本文介绍了星上自适应交换收发系统的关键技术,阐述该收发系统的设计方案和实现方法。

  6. The Sileye-3/Alteino experiment for the study of Light Flashes, radiation environment and astronaut brain activity on board the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Bidoli, V.; Casolino, M.; Pascale, M.P. de [Rome Univ. (Italy)] [and others

    2002-12-01

    In this work we describe the instrument Sileye-3/Alteino, placed on board the International Space Station in April 2002. The instrument is constituted by an Electroencephalograph and a cosmic ray silicon detector. The scientific aims include the investigation of the Light Flash phenomenon, the measurement of the radiation environment and the nuclear abundance insider the International Space Station (ISS) and the study of astronaut brain activity in space when subject to cosmic rays. (author)

  7. A follow-up of in-orbit observations of radiation-induced effects in commercial of the shelf memories on-board Alsat-1

    Science.gov (United States)

    Bentoutou, Y.

    2011-09-01

    This paper presents a follow-up of the results of an 8-year study on radiation effects in commercial off the shelf (COTS) memory devices operating within the on-board data handling system of the Algerian micro-satellite Alsat-1 in a Low-Earth Orbit (LEO). A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories on-board the Alsat-1 primary On-Board Computer (OBC-386) is given. The OBC-386 is an Intel 80C386EX based system that plays a dual role for Alsat-1, acting as the key component of the payload computer as well as the command and control computer for the micro-satellite. The in-orbit observations show that the typical SEU rate at Alsat-1's orbit is 4.04 × 10 -7 SEU/bit/day, where 98.6% of these SEUs cause single-bit errors, 1.22% cause double-byte errors, and the remaining SEUs result in multiple-bit and severe errors.

  8. Can space ties on board GNSS satellites replace terrestrial ties in the implementation of Terrestrial Reference Frames?

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Altamimi, Zuheir; Rebischung, Paul; Errico, Maddalena; Santi, Efisio

    2016-04-01

    The realization of Terrestrial Reference Frames (TRFs) must be periodically updated in order to account for newly acquired observations and for upgrades in data analysis procedures and/or combination techniques. Any innovative computation strategy should ameliorate the definition of the frame physical parameters, upon which a number of scientific applications critically rely. On the basis of the requirements of scientific cutting edge studies, the geodetic community has estimated that the present day challenge in the determination of TRFs is to provide a frame that is accurate and long-term stable at the level of 1 mm and 0.1 mm/y respectively. This work aims at characterizing the frame realized by a combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite Systems (GNSS) observations via their co-location on board GNSS spacecrafts. In particular, it is established how such a frame compares to the traditional ITRF computation and what is the impact on the realization of the frame origin and scale. Four years of data from a global network encompassing about one hundred GNSS stations and all SLR sites have been analyzed. In order to ensure the highest possible consistency, the raw data of both techniques are treated with the same analysis Software (Bernese GNSS Software 5.2) following IERS2010 Conventions. Both weekly and long term solutions are carried out exploiting either the Bernese or the Combination and Analysis of Terrestrial Reference Frames (CATREF) Software packages. We present the results of a combination study involving GNSS data and SLR observations to the two LAGEOS and to the GNSS satellites equipped with retroreflector arrays. The latter type of measurements is currently not included in the computation of the official ITRF solutions. The assessment of the benefit that they could provide to the definition of the origin and scale of the ITRF is however worth investigating, as such data provide the potential for linking the GNSS and

  9. Colors of comet 67P/Churyumov-Gerasimenko's active pits and their surroundings as seen by OSIRIS on board Rosetta

    Science.gov (United States)

    Oklay, Nilda; Vincent, Jean-Baptiste; Besse, Sebastien; Fornasier, Sonia; Barucci, Maria Antonietta; Lara, Luisa; Scholten, Frank; Preusker, Frank; La Forgia, Fiorangela; Lazzarin, Monica; Sierks, Holger; Hall, Ian

    2015-04-01

    The OSIRIS scientific imager (Optical, Spectroscopic, and Infrared Remote Imaging System, Keller et al. 2007) on board ESA's spacecraft Rosetta is an instrument designed to observe the comet nucleus with high spatial resolution, down to a few centimeters per pixel, to provide color information of the surface using its narrow angle camera (NAC) thanks to set of dedicated filters. OSIRIS is successfully observing comet 67P in the spectral range of about 250-1000 nm since Rosetta's arrival to the comet in the summer 2014. The illuminated northern hemisphere of the comet nucleus was mapped with various spatial resolutions (down to 15 cm/px in some regions). Besides the determination of the surface morphology in great details, such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2014). This work focuses on color variations inside and in the vicinity of these active pits. Using filter ratios to limit the effect of topography and illumination conditions, we found that the floor and walls of the pits exhibit the same less red slope of the active Hapi region. We measured a ratio of reflectance (IR)/reflectance (Blue) = 1.8 in the active area and pits while it is 2.1 elsewhere on the nucleus. A full understanding of the compositional implications will require a dedicated investigation, but our preliminary results indicate already that this spectral variation is characteristic of currently active regions on 67P. Indeed, on a large scale, comet 67P's global spectrum shows a red slope also known from the ground based observations, slightly less red in the most active area (Hapi region) when compared to the average comet surface. Variegation is also found in other places showing activity such as the active pits mentioned above. The analysis is now extended to the photometrically corrected data set in order to be able to compare observations taken under different illumination

  10. A statistical retrieval of cloud parameters for the millimeter wave Ice Cloud Imager on board MetOp-SG

    Science.gov (United States)

    Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos

    2017-04-01

    The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for

  11. SU-C-304-04: A Compact Modular Computational Platform for Automated On-Board Imager Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, S [Washington University School of Medicine, Saint Louis, MO (United States); University of Missouri, Columbia, MO (United States); Cai, B; Chen, H; Anastasio, M; Sun, B; Yaddanapudi, S; Noel, C; Goddu, S; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Tan, J [UTSouthwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Traditionally, the assessment of X-ray tube output and detector positioning accuracy of on-board imagers (OBI) has been performed manually and subjectively with rulers and dosimeters, and typically takes hours to complete. In this study, we have designed a compact modular computational platform to automatically analyze OBI images acquired with in-house designed phantoms as an efficient and robust surrogate. Methods: The platform was developed as an integrated and automated image analysis-based platform using MATLAB for easy modification and maintenance. Given a set of images acquired with the in-house designed phantoms, the X-ray output accuracy was examined via cross-validation of the uniqueness and integration minimization of important image quality assessment metrics, while machine geometric and positioning accuracy were validated by utilizing pattern-recognition based image analysis techniques. Results: The platform input was a set of images of an in-house designed phantom. The total processing time is about 1–2 minutes. Based on the data acquired from three Varian Truebeam machines over the course of 3 months, the designed test validation strategy achieved higher accuracy than traditional methods. The kVp output accuracy can be verified within +/−2 kVp, the exposure accuracy within 2%, and exposure linearity with a coefficient of variation (CV) of 0.1. Sub-millimeter position accuracy was achieved for the lateral and longitudinal positioning tests, while vertical positioning accuracy within +/−2 mm was achieved. Conclusion: This new platform delivers to the radiotherapy field an automated, efficient, and stable image analysis-based procedure, for the first time, acting as a surrogate for traditional tests for LINAC OBI systems. It has great potential to facilitate OBI quality assurance (QA) with the assistance of advanced image processing techniques. In addition, it provides flexible integration of additional tests for expediting other OBI

  12. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  13. Solar disc radius determined from observations made during eclipses with bolometric and photometric instruments on board the PICARD satellite

    Science.gov (United States)

    Thuillier, G.; Zhu, P.; Shapiro, A. I.; Sofia, S.; Tagirov, R.; van Ruymbeke, M.; Perrin, J.-M.; Sukhodolov, T.; Schmutz, W.

    2017-07-01

    Context. Despite the importance of having an accurate measurement of the solar disc radius, there are large uncertainties of its value due to the use of different measurement techniques and instrument calibration. An item of particular importance is to establish whether the value of the solar disc radius correlates with the solar activity level. Aims: The main goal of this work is to measure the solar disc radius in the near-UV, visible, and near-IR regions of the solar spectrum. Methods: Three instruments on board the PICARD spacecraft, namely the Bolometric Oscillations Sensor (BOS), the PREcision MOnitoring Sensor (PREMOS), and a solar sensor (SES), are used to derive the solar disc radius using the light curves produced when the Sun is occulted by the Moon. Nine eclipses, from 2010 to 2013, resulted in 17 occultations as viewed from the moving satellite. The calculation of the solar disc radius uses a simulation of the light curve taking into account the center-to-limb variation provided by the Non-local thermodynamic Equilibrium Spectral SYnthesis (NESSY) code. Results: We derive individual values for the solar disc radius for each viewed eclipse. Tests for a systematic variation of the radius with the progression of the solar cycle yield no significant results during the three years of measurements within the uncertainty of our measurements. Therefore, we derive a more precise radius value by averaging these values. At one astronomical unit, we obtain 959.79 arcseconds (arcsec) from the bolometric experiment; from PREMOS measurements, we obtain 959.78 arcsec at 782 nm and 959.76 arcsec at 535 nm. We found 960.07 arcsec at 210 nm, which is a higher value than the other determinations given the photons at this wavelength originate from the upper photosphere and lower chromosphere. We also give a detailed comparison of our results with those previously published using measurements from space-based and ground-based instruments using the Moon angular radius

  14. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    Science.gov (United States)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project

  15. Detector Data Simulation and Filtering Strategy for the European Laser Timing (ELT) Experiment On-board ACES

    Science.gov (United States)

    Bamann, Christoph; Schlicht, Anja; Hugentobler, Urs; Pühl, Magdalena

    2015-04-01

    Due to the rapid progress of frequency standards in the optical domain and increasingly demanding applications in metrology and fundamental physics studies, accuracy requirements on frequency and time transfer are continuously increasing. Most present satellite based clock comparison systems work in the microwave domain and are based on GPS and TWSTFT (Two-Way Satellite Time and Frequency Transfer). Recently, systems such as LASSO (LAser Synchronization from a Stationary Orbit) and T2L2 (Time Transfer by Laser Link) promised even better performance in the optical domain. In 2016 the ESA mission ACES (Atomic Clock Ensemble in Space) will bring a new generation of atomic clocks into the microgravity environment of the ISS, which will distribute a stable and accurate time base. In the frame of this mission an optical link called ELT (European Laser Timing) is presently under study, which is subject of our work. The on-board hardware of ELT consists of a corner cube retro-reflector (CCR), a single-photon avalanche diode (SPAD), and an event timer connected to the ACES time scale. The SPAD detects laser pulses fired towards the payload and the CCR reflects these pulses back to the ground station. The detection dates are recorded in the ACES time scale, while the two-way time of flight can be used for precise ranging. Consequently, time transfer and clock analysis can be performed based on data triplets comprising the time of transmission of a laser pulse, its time of reception at the ELT-detector and its time of reception back at the station-detector. We present simulations of these triplets based on simple ISS orbits including preset attitude and accurate Earth orientation data. In addition, we consider experimentally derived detector, reflector, and background noise characteristics as well as simulations of the ACES clocks. The ELT data center, which will be hosted by our institution, will have to extract the data triplets from the large amount of noisy detector dates

  16. Effects of a Dedicated Regional Psychiatric Emergency Service on Boarding of Psychiatric Patients in Area Emergency Departments

    Directory of Open Access Journals (Sweden)

    Scott Zeller

    2014-02-01

    Full Text Available Introduction: Mental health patients boarding for long hours, even days, in United States emergency departments (EDs awaiting transfer for psychiatric services has become a considerable and widespread problem. Past studies have shown average boarding times ranging from 6.8 hours to 34 hours. Most proposed solutions to this issue have focused solely on increasing available inpatient psychiatric hospital beds, rather than considering alternative emergency care designs that could provide prompt access to treatment and might reduce the need for many hospitalizations. One suggested option has been the “regional dedicated emergency psychiatric facility,” which serves to evaluate and treat all mental health patients for a given area, and can accept direct transfers from other EDs. This study sought to assess the effects of a regional dedicated emergency psychiatric facility design known at the “Alameda Model” on boarding times and hospitalization rates for psychiatric patients in area EDs. Methods: Over a 30-day period beginning in January 2013, 5 community hospitals in Alameda County, California, tracked all ED patients on involuntary mental health holds to determine boarding time, defined as the difference between when they were deemed stable for psychiatric disposition and the time they were discharged from the ED for transfer to the regional psychiatric emergency service. Patients were also followed to determine the percentage admitted to inpatient psychiatric units after evaluation and treatment in the psychiatric emergency service.Results: In a total sample of 144 patients, the average boarding time was approximately 1 hour and 48 minutes. Only 24.8% were admitted for inpatient psychiatric hospitalization from the psychiatric emergency service. Conclusion: The results of this study indicate that the Alameda Model of transferring patients from general hospital EDs to a regional psychiatric emergency service reduced the length of boarding

  17. Aerial Photography and Imagery, Ortho-Corrected, We have new imagery from Pictometry's AccuPlus flown in March 2010 and to be delivered in October 2010., Published in 2010, 1:600 (1in=50ft) scale, Augusta-Richmond County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2010. We have new imagery from Pictometry's AccuPlus flown in March 2010 and to be delivered in...

  18. Hydrography, Polk County was flown in May 1996. Ayres Associates, Madison, digitized all hydrography features and provided this data as a two-dimensional AutoCAD drawing file. In 2006 Polk County converted the AutoCAD hydrography file into and shapefile creating the h, Published in 1996, 1:24000 (1in=2000ft) scale, Polk County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Hydrography dataset current as of 1996. Polk County was flown in May 1996. Ayres Associates, Madison, digitized all hydrography features and provided this data as a...

  19. Studies on hemopoietic tissue of ribbed newt, Pleurodeles waltl after the flight on board Russian satellite "Foton- M2" in 2005

    Science.gov (United States)

    Domaratskaya, E.; Payushina, O.; Butorina, N.; Nikonova, T.; Grigoryan, E.; Mitashov, V.; Almeida, E.; Tairbekov, M.; Khrushchov, N.

    The effect of 16-day spaceflight aboard the Foton-M2 satellite on the hematopoietic tissue of P waltl newts was studied in flown intact animals F-int and in animals used in experiments on tail and lens regeneration under spaceflight conditions F-reg In addition to the flown animals studies were performed on synchronous and aquarial controls in the case of non-operated animals and on synchronous and basal controls in the case of operated newts The main hematopoietic organs of urodelian species are the liver spleen and peripheral blood Therefore we determined differential blood counts estimated the weight of the liver and the content of its hematopoietic cells and histologically assessed spleen and liver in the above experimental groups and the corresponding control groups of animals No significant differences between these groups were revealed with respect to the structure of hematopoietic zones of the liver the content of hematopoietic cells in the liver and spleen morphology However liver weight in newts of the F-reg group was significantly greater than in the F-int group In the peripheral blood neutrophils eosinophils basophils lymphocytes and monocytes were found Lymphocytes L and neutrophils N prevailed accounting for about 50 and 38 of white blood cells respectively Among neutrophils cells differing in the degree of maturity were distinguished myelocytes M metamyelocytes Mm band B and segmented forms S For each group of animals we determined the ratio of maturing M Mm B to mature S

  20. PICASSO-SLP: a Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; Anciaux, Michel; Cardoen, Pepijn; Gamby, Emmanuel; Bonnewijn, Sabrina; De Keyser, Johan; Echim, Marius; Pieroux, Didier

    2016-04-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator, is a triple unit CubeSat of dimensions 340.5x100x100 mm. The sweeping Langmuir probe (SLP) instrument, which includes four thin cylindrical probes whose electrical potential is swept, is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e8/m³ at high latitude and high altitude up to several times 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1.000 K and 10.000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m for the electron density and temperature, and up to a few meters for electron density only. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, 5) for the density, the multi-scale behaviour, spectral properties and turbulence of processes typical for the auroral regions, and 6) ionospheric dynamics via coordinated observations with EISCAT's heating radar. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive modelling and simulations of the sheath effects on the

  1. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    Science.gov (United States)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.

  2. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada)

    2014-06-15

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.

  3. Crystal growth of Cd1-xZnxTe by the traveling heater method in microgravity on board of Foton-M4 spacecraft

    Science.gov (United States)

    Borisenko, E. B.; Kolesnikov, N. N.; Senchenkov, A. S.; Fiederle, M.

    2017-01-01

    Cadmium zinc telluride crystals were grown using the traveling heater method (THM) under microgravity conditions on board of Foton-M4 spacecraft, and a reference crystal was grown on Earth under gravity conditions. Structure, chemical and phase compositions of these crystals, their optical characteristics and microhardness were compared. It can be concluded that the THM growth in microgravity has a positive effect on CZT crystals, since they have more homogeneous composition and their structural perfection is improved as compared with the crystals grown under terrestrial conditions, which results in improvement of electric and optical characteristics.

  4. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    Science.gov (United States)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  5. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    Science.gov (United States)

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.

  6. Findings from the PP-SESAME experiment on board the Philae/ROSETTA lander on the surface of comet 67P

    Science.gov (United States)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Fischer, H.; Seidensticker, K.

    2015-10-01

    The Permittivity Probe (PP-SESAME [1]) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 meters of the nucleus of comet 67P/Churyumov- Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide unique insight into the composition (and activity if data could have been acquired longer) of the comet. In this paper, we present the analysis of the PP-SESAME measurements acquired during the first science sequence, on November 13, 2014, on the surface of the comet.

  7. [Tissue-specific reaction of the mucous coat of herbals' small gut under the influence of spaceflight factors on board biosat "Foton M3"].

    Science.gov (United States)

    Atiakshin, D A; Bykov, E G; Il'in, E A; Pashkov, A N

    2011-01-01

    Methods of light-optical microscopy, morpho- and cytometry and histochemisty were used to study the epithelial lining of herbal's small gut after 12-day flight in biosat "Foton M3". Changes in mucous coat histoarchitectonics included branching of villi and cystic lumps lined with prismatic epithelium. Shortening of the mucous membrane villi was accompanied by reduction of prismatic epithelium height, increase in the number of goblet cells and change of their dislocation, stimulation of excretion of biosynthesis products on the brush border surface pointing to impairment of the interstitial barrier function. Nothing evidenced change in mitotic index of the crypts epithelium in animals of the vivarium control, in the Kontur facility simulating the flight condition, and in the space flown herbals. There was a minor individual variability of changes in the epithelium mucous membrane due to the simulated flight factors.

  8. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Sauer, Dirk Uwe

    2016-10-01

    This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.

  9. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander

    Science.gov (United States)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.

    2015-10-01

    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  10. PRINCIPLES OF INDICATION FOR EN-ROUTE FLIGHT PATHS OF THE AIRCRAFT ON THE SCREEN OF ON-BOARD DISPLAY DEVICES

    Directory of Open Access Journals (Sweden)

    V. V. Markelov

    2016-01-01

    Full Text Available Subject of Research.We consider the principles and algorithms for construction of en-route flight paths of an aircraft (airplane in a horizontal plane for their subsequent display on the navigation situation indicators in the cockpit. Navigation situation indicatorsaredisplay devices designed on the basis of flat liquid crystal panel. Methods. Flight trajectory display by on-board multifunction indicators is performed by successive drawing of graphic primitives available in the library and defined in accordance with an array of data to display the route. An array of data is generated by on-board software complex based on the information provided in the flight task and the corresponding «Jeppesen» database or analogous one. Formation of the array is carried out by bringing the set of trajectory paths to the format of three typical trajectories described. In addition, each of the types of trajectories has a standard description of the algorithm for calculating the parameters that make up an array of data to display.Main Results.The algorithms of forming and calculating the amounts of data of routing paths required for their construction and display on the multifunction indicators applied in avionics.Practical Relevance.These novel routing algorithms for constructing trajectory paths unify algorithms of generating information for display on the navigation situation indicators and optimize a set of calculated data for flight control at the trajectory in the horizontal plane.

  11. A new technique for measuring the leakage current in Silicon Drift Detector based X-ray spectrometer—implications for on-board calibration

    Science.gov (United States)

    Shanmugam, M.; Acharya, Y. B.; Vadawale, S. V.; Mazumdar, H. S.

    2015-02-01

    In this work, we report a new technique of measuring the leakage current in Silicon Drift Detectors (SDD) and propose to use this technique as a tool for on-board estimation of the radiation damage to the SDD employed in space-borne X-ray spectrometers. The leakage current of a silicon based detector varies with the detector operating temperature and increases with the radiation dose encountered by the detector in the space environment. The proposed technique to measure detector leakage current involves measurement of the reset frequency of the reset type charge sensitive pre-amplifier when the feedback capacitor is charged only due to the detector leakage current. Using this technique, the leakage current is measured for large samples of SDDs having two different active areas of 40 mm2 and 109 mm2 with 450 micron thick silicon. These measurements are carried out in the temperature range of -50°C to 20°C. At each step energy resolution is measured for all SDDs using Fe-55 X-ray source and shown that the energy resolution varies systematically with the leakage current irrespective of the difference among the detectors of the same as well as different sizes. Thus by measuring the leakage current on-board, it would be possible to estimate the time dependent performance degradation of the SDD based X-ray spectrometer. This can be particularly useful in case where large numbers of SDD are used.

  12. Enhanced light extraction efficiency of chip-on board light-emitting diodes through micro-lens array fabricated by ion wind

    Science.gov (United States)

    Chu, Jingcao; Lei, Xiang; Wu, Jiading; Peng, Yang; Liu, Sheng; Yang, Qian; Zheng, Huai

    2017-03-01

    Low light extraction efficiency (LEE) is a key challenge of chip-on board (COB) packaging light-emitting diodes (LEDs). In this paper, a facile preparation of micro-lens array was proposed based on the ion wind patterning. The geometries and sizes of the micro-lens arrays were controlled through adjusting the voltage parameter of the ion wind generation. Consequently, the micro-lens array with the diameter of 180 μm and the gap distance of 15 μm has been fabricated. Benefitting from this micro-lens array, the LEE of COB packaging LEDs was enhanced by 9%. This facile fabrication of micro-lens array would be a promising method to improve the LEE of COB packaging LEDs.

  13. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Masrur, Abul; Daniszewski, David

    A wavelet-transform-based strategy is proposed for the power management of hybrid electric vehicles (HEV) with multiple on-board energy sources and energy storage systems including a battery, a fuel cell, and an ultra-capacitor. The proposed wavelet-transform algorithm is capable of identifying the high-frequency transient and real time power demand of the HEV, and allocating power components with different frequency contents to corresponding sources to achieve an optimal power management control algorithm. By using the wavelet decomposition algorithm, a proper combination can be achieved with a properly sized ultra-capacitor dealing with the chaotic high-frequency components of the total power demand, while the fuel cell and battery deal with the low and medium frequency power demand. Thus the system efficiency and life expectancy can be greatly extended. Simulation and experimental results validated the effectiveness of wavelet-transform-based power management algorithm.

  14. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  15. Real-time measurement of low-energy-range neutron spectra on board the space shuttle STS-89 (S/MM-8).

    Science.gov (United States)

    Matsumoto, H; Goka, T; Koga, K; Iwai, S; Uehara, T; Sato, O; Takagi, S

    2001-06-01

    We have developed a real-time, Bonner Ball-type (neutron energy range is from thermal to 15 MeV) neutron spectral measurement system (Bonner Ball Neutron Detector (BBND)) for use on board the International Space Station (ISS). From measurements taken inside STS-89 (S/MM-8), we successfully distinguished neutrons from protons and other particles in a mixed radiation field; a task hitherto considered difficult. Although the experimental period was short, only 3.5 days (January 24-27, 1998), we were able to obtain energy spectral data and the Earth's neutron dose-equivalent map for the ISS orbital conditions (altitude 400 km, orbit inclination angle 51.6 degrees). A method for calculating the neutron energy spectrum and compensating for the particle interaction with the sensors is also described in detail.

  16. SOME RESULTS OF UPPER ATMOSPHERIC COMPOSITION MEASUREMENTS BY A MASS-SPECTROMETER ON BOARD "SZ-2":CHANGE OF COMPOSITIONS DURING SOLAR AND GEOMAGNETIC DISTURBANCES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Upper atmosphere composition data were obtained for the last half year with a quadruple mass spectrometer on board spacecraft "SZ-2" launched on 10 Jan uary 2001. Based on the analysis of these data, the variations of atmospheric compositions in solar and geomagnetic quiet conditions are reported first, then a detailed discussion on the atmospheric composition variations under the so lar and geomagnetic disturbed conditions is given. The results show that near the altitude of 400 km the variations of main atmospheric compositions corre sponding to solar disturbances are more remarkable in the sunlit area than in the shade area. On the contrary, in geomagnetic disturbance events the corre sponding variations are more obvious in the shade area, an evident increase of N2 density at relatively higher latitudes was observed.

  17. Healthy F-16 pilots show no evidence of exposure to tri-ortho-cresyl phosphate through the on-board oxygen generating system.

    Science.gov (United States)

    Tacal, Ozden; Schopfer, Lawrence M

    2014-05-25

    About 18% of fighter pilots complain of ill symptoms that begin during flight and persist for days. A possible source of toxicity is the air supplied through the on board oxygen generating system. The air passes through the jet engine before it is enriched for oxygen and breathed through an oxygen mask. While in the jet engine, the air can become contaminated with jet engine lubricating oil. A potentially toxic component in jet engine oil is tri-ortho-cresyl phosphate (TOCP), which is metabolically activated to the highly reactive cresyl saligenin phosphate. The cresyl saligenin phosphate reacts with butyrylcholinesterase (BChE) to make a covalent adduct on serine 198. The purpose of this work was to determine whether the blood of healthy, active-duty F-16 pilots has measurable levels of the cresyl phosphate adduct. BChE was immunopurified from 0.5ml plasma by binding to immobilized monoclonal mAb2. BChE protein was released with acetic acid, digested with pepsin and analyzed by LC-MS/MS on the 5600 Triple TOF mass spectrometer. Positive controls for quantifying the limit of detection were plasma samples containing known amounts of cresyl saligenin phosphate treated plasma. The cresyl phosphate adduct eluted at 31.3min with an observed parent ion mass of 966.4m/z and characteristic daughter ions 778.3, 673.3, and 602.3m/z. Control experiments demonstrated that as little as 0.1% of the 1-2μg BChE recovered from 0.5ml plasma could be detected as the cresyl phosphate adduct on peptide FGES198AGAAS. Mass spectrometry analysis of plasma from fifteen healthy F-16 pilots showed that none had evidence of exposure to TOCP. It was concluded that the on-board oxygen generating system, when operating properly, did not deliver tri-ortho-cresyl phosphate in the oxygen supply.

  18. EVALUATING THE SENSITIVITY OF RADIONUCLIDE DETECTORS FOR CONDUCTING A MARITIME ON-BOARD SEARCH USING MONTE CARLO SIMULATION IMPLEMENTED IN AVERT

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S; Dave Dunn, D

    2009-03-01

    The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT{reg_sign}. AVERT{reg_sign}, short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiation Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source.

  19. Seven Years of Permanent Running of MELFI-1 on Board the ISS and Utilisation of the Three MELFI Units Refrigeration Pool

    Science.gov (United States)

    Chegancas, Jean; Stephan, Hubertus; Jimenez, Jesus; Campana, Sharon; Hutchison, Susan

    2013-01-01

    The pool of three Minus Eighty Laboratory freezer for ISS (MELFI) units continues providing the scientific community with robust and permanent freezer and refrigeration capabilities for life science experiments on the International Space Station (ISS). Launched in 2006, the first unit will complete, by summer 2013, seven years of continuous operations without intervention on the internal Nitrogen gas cycle, while all necessary hardware and operations were initially planned for preventive maintenance every two years. This unit has demonstrated outstanding performance on orbit and proved the technical decisions made during the development program. Current utilization of MELFI units in the ISS is taking full benefit of the initial specifications, which allows for wide adaptations to cope with the mission scenario imposed by the life extension in orbit. The two other MELFI units, launched respectively in 2008 and 2009, are supporting the first unit providing additional conditioned volume necessary for the science on board, and also for preparing thermal mass used to protect the samples on their way down to earth. The MELFI pool is outfitted with all supporting hardware to allow for extended operation on orbit including preventive and corrective maintenance. The internal components were designed to allow for easy on board maintenance. Spare equipment was installed in the MELFI rack on ISS and specific maintenance means were developed which required crew training before the cold gas cycle could be accessed. The paper will present first how the design choices made for the initial missions are identifying features necessary for extended duration missions, and will then give highlights on the utilization of the MELFI refrigeration pool during the recent years in ISS.

  20. A systems analysis of the impact of navigation instrumentation on-board a Mars rover, based on a covariance analysis of navigation performance. M.S. Thesis, Massachusetts Inst. of Technology

    Science.gov (United States)

    Leber, Douglas Eric

    1992-01-01

    As part of the Space Exploration Initiative, the exploration of Mars will undoubtedly require the use of rovers, both manned and unmanned. Many mission scenarios have been developed, incorporating rovers which range in size from a few centimeters to ones large enough to carry a manned crew. Whatever the mission, accurate navigation of the rover on the Martian surface will be necessary. This thesis considers the initial rover missions, where minimal in-situ navigation aids will be available on Mars. A covariance analysis of the rover's navigation performance is conducted, assuming minimal on-board instrumentation (gyro compass and speedometer), a single orbiting satellite, and a surface beacon at the landing site. Models of the on-board instruments are varied to correspond to the accuracy of various levels of these instruments currently available. A comparison is made with performance of an on-board IMU. Landing location and satellite orbits are also varied.

  1. X-33 Simulation Flown by Steve Ishmael

    Science.gov (United States)

    1997-01-01

    Steve Ishmael flies a simulation of the X-33 Advanced Technology Demonstrator at NASA's Dryden Flight Research Center, Edwards, California. This simulation was used to provide flight trajectory data while flight control laws were being designed and developed, as well as to provide aerodynamic design information to X-33 developer Lockheed Martin. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to have demonstrated in flight the new technologies needed for the proposed Lockheed Martin full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.

  2. Radioactive 7Be materials flown on LDEF

    Science.gov (United States)

    Gregory, John C.

    1992-01-01

    Following the discovery of the atmospheric cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), we began a search for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enable its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  3. Rice mutation after flown in space

    Institute of Scientific and Technical Information of China (English)

    孙野青; 魏力军; 李小乐; 赵海成; 辛平; 关双红

    2002-01-01

    In order to understand the biological effect of space environment on growth and development of rice, four pure strains of rice seeds were placed aboard a recoverable satellite system for 15 days, and 12 new lines were selected out after recovery. And their selected progenies were examined for mutations at morphological, physiological and molecular levels, and radiation doses were measured as well. It was found that the seeds received an average dose rate of 0.177 mGy/d and an integral dose of 2.656 mGy/15 days; there were 1.5±0.5 heavy nuclear particles /cm2 of Z/Β≥50(Z≥20) and the numbers of Z≥3 heavy nuclear particles reached 29.7±0.5 particles/cm2 in the satellite cabin; in sum weight of one thousand seeds, 5 lines increased, while 7 lines decreased; in germination power, 7 lines increased, while 5 lines decreased; in germination capacity, 3 lines increased, while 9 lines decreased; in respiration rate of seedling, 6 lines increased, while 5 lines decreased, and one line remained unchanged; in content of chlorophyll, only 1 line increased while 10 lines decreased, and one line remained unchanged. In order to understand better mutagenesis of 971-5 at molecular level, RAPD analysis was conducted with 60 random primers, of which 11.6% were able to generate polymorphic bands between mutated and control plants. It is therefore concluded from the present data that potential uses of crop improvement of rice can be highly mutagenic and can effectively induce some mutations.

  4. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    Science.gov (United States)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  5. Digital Surface and Terrain Models (DSM,DTM), 1.7 meter DSM in Urban Areas, 5 Meter DSM in National Forest, flown as part of the LAR-IAC project, Published in 2006, 1:600 (1in=50ft) scale, Los Angeles County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Digital Surface and Terrain Models (DSM,DTM) dataset current as of 2006. 1.7 meter DSM in Urban Areas, 5 Meter DSM in National Forest, flown as part of the LAR-IAC...

  6. TU-AB-303-10: KVCBCT, MVCBCT and MVCT On-Board Imaging Suitability for An Urgent Radiotherapy Treatment Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2015-06-15

    Purpose: A comparison of image quality and dose calculation accuracy to study the suitability of available on-board imaging systems for a new treatment workflow in emergency radiotherapy situations. Methods: Water and anthropomorphic phantom images were acquired on four different Linac on-board imaging systems, including kVCBCT (Varian TrueBeam and Elekta VersaHD), MVCBCT (Siemens Artiste) and MVCT (Accuray Tomotherapy). Simple treatments of single or opposed beams were planned on the respective kVCT images and copied to all CT images. Image suitability for dose planning was based on the overall mean dose differences and 3D gamma index with 3%/3mm criteria for a prescription of 100 monitor units (MU) and differences in calculated MUs per plan for dose prescriptions to mid-plane. Results: TrueBeam kVCBCT and Tomotherapy MVCT images produced most accurate dose calculation for all tested cases (γ-index >95%). MVCBCT and VersaHD kVCBCT images resulted in minimum γ-passing rates of 94% and 87%, respectively. MUs calculated from treatment plans prescribed to mid-plane were within differences of 5% relative to kVCT-based plans in all cases. However, VersaHD images showed considerable local image artifacts in the pelvis water and anthropomorphic neck phantom that complicated accurate Hounsfield unit (HU) to electron density conversion, thus causing local dose differences of more than 10% relative to kVCT-based dose distributions. Conclusion: TrueBeam kVCBCT, MVCBCT and MVCT systems provide image quality that allows for accurate simple treatment plan calculation. Prescription points should be placed away from areas found to cause local dose discrepancies, such as air cavities. Improved image filter settings and HU-to-electron density calibration adjustments may be required for the VersaHD system to obtain an overall accurate dose distribution. To evaluate a system’s overall suitability, its clinical features also require consideration, such as imaging field of view

  7. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  8. TU-C-BRE-04: 3D Gel Dosimetry Using ViewRay On-Board MR Scanner: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L; Du, D; Green, O; Rodriguez, V; Wooten, H; Xiao, Z; Yang, D; Hu, Y; Li, H [Washington University in St Louis, St Louis, MO (United States)

    2014-06-15

    Purpose: MR based 3D gel has been proposed for radiation therapy dosimetry. However, access to MR scanner has been one of the limiting factors for its wide acceptance. Recent commercialization of an on-board MR-IGRT device (ViewRay) may render the availability issue less of a concern. This work reports our attempts to simulate MR based dose measurement accuracy on ViewRay using three different gels. Methods: A spherical BANG gel dosimeter was purchased from MGS Research. Cylindrical MAGIC gel and Fricke gel were fabricated in-house according to published recipes. After irradiation, BANG and MAGIC were imaged using a dual-echo spin echo sequence for T2 measurement on a Philips 1.5T MR scanner, while Fricke gel was imaged using multiple spin echo sequences. Difference between MR measured and TPS calculated dose was defined as noise. The noise power spectrum was calculated and then simulated for the 0.35 T magnetic field associated with ViewRay. The estimated noise was then added to TG-119 test cases to simulate measured dose distributions. Simulated measurements were evaluated against TPS calculated doses using gamma analysis. Results: Given same gel, sequence and coil setup, with a FOV of 180×90×90 mm3, resolution of 3×3×3 mm3, and scanning time of 30 minutes, the simulated measured dose distribution using BANG would have a gamma passing rate greater than 90% (3%/3mm and absolute). With a FOV 180×90×90 mm3, resolution of 4×4×5 mm3, and scanning time of 45 minutes, the simulated measuremened dose distribution would have a gamma passing rate greater than 97%. MAGIC exhibited similar performance while Fricke gel was inferior due to much higher noise. Conclusions: The simulation results demonstrated that it may be feasible to use MAGIC and BANG gels for 3D dose verification using ViewRay low-field on-board MRI scanner.

  9. Evaluation of the effects of sagging shifts on isocenter accuracy and image quality of cone-beam CT from kV on-board imagers.

    Science.gov (United States)

    Ali, Imad; Ahmad, Salahuddin

    2009-07-17

    To investigate the effects of sagging shifts of three on-board kV imaging systems (OBI) on the isocenter positioning accuracy and image quality of cone-beam CT (CBCT). A cubical phantom having a metal marker in the center that can be aligned with the radiation isocenter was used to measure sagging shifts and their variation with gantry angle on three Varian linacs with kV on-board imaging systems. A marker-tracking algorithm was applied to detect the shadow of the metal marker and localize its center in the two-dimensional cone-beam radiographic projections. This tracking algorithm is based on finding the position of maximum cross-correlation between a region-of-interest from a template image (including the metal marker) and the projections containing the shadow of the metal marker. Sagging shifts were corrected by mapping the center of the metal marker to a reference position for all projections acquired over a full gantry rotation (0-360 degrees). The sag-corrected radiographic projections were then used to reconstruct CBCT using Feldkamp back-projection. A standard quality assurance phantom was used to evaluate the image quality of CBCT before and after sagging correction. Sagging affects both the positioning accuracy of the OBI isocenter and the CBCT image quality. For example, on one linac, the position of the marker on the cone-beam radiographic projections depends on the angular view and has maximal shifts of about 2 mm along the imager x-direction (patient's cross-plane). Sagging produces systematic shifts of the OBI isocenter as large as 1 mm posterior and 1 mm left in patient coordinates relative to the radiation isocenter. Further, it causes spatial distortion and blurring in CBCT image reconstructed from radiographic projections that are not corrected for OBI sagging. CBCT numbers vary by about 1% in full-fan scans and up to 3.5% in half-fan scans because of sagging. In order to achieve better localization accuracy in image-guided radiation therapy

  10. Airborne VOC measurements on board the Zeppelin NT during the PEGASOS campaigns in 2012 deploying the improvement Fast-GC-MSD system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Julia Elisabeth

    2014-04-01

    Volatile organic compounds (VOCs) comprise a large number of different species, estimated to 10{sup 4}-10{sup 6}. They are emitted on the Earth's surface from a variety of biogenic and anthropogenic sources. VOCs are removed by multiple pathways from the atmosphere, by oxidation and finally by dry or wet deposition. Most primary emitted VOCs are non-polar and therefore have a low solubility in water. Oxidation facilitates efficient VOC removal by wet deposition. In the atmosphere the main photochemical VOC oxidation agent is the OH radical. As a consequence the polarity of the VOCs is increased and they can be removed faster. The oxidation of VOCs proceeds in several steps until the VOCs are deposited or are eventually oxidized to carbon dioxide. A downside of the VOCs oxidation process lies in the production of significant amounts ozone if nitrogen oxide is present which is a serious health hazard. Most of the VOC oxidation takes place in lower part of the atmosphere between the altitudes of 100 to 1000 m, which is only sparsely analyzed. Therefore, fast VOCs measurements by GC-MSD on board the Zeppelin NT offered new important insights in the distribution of VOCs. The measurements were performed within the PEAGSOS campaigns in the Netherlands and in Italy in 2012. For the implementation of the GC-MSD system (HCG) on board the Zeppelin it was reconstructed to enhance its performance and to meet aviation requirements. The system was optimized to measure VOCs ranging from C4 to C10 as well as oxygenated VOCs (OVOCs) with a detection limit below 10 ppt. The analyzed VOCs for both parts of the campaigns showed low mean concentration below 5 ppb for all VOCs. Especially, the mixing ratios of the primary emitted VOCs were very low with mean values lower than 200 ppt. Higher concentrations could be observed for the OVOCs with mean concentrations up to 5 ppb. The most abundant OVOCs apart from formaldehyde were methanol, ethanol, acetone and acetaldehyde.

  11. IEEE 1393 Spaceborne Fiber Optic Data Bus: A Standard Approach to On-Board Payload Data Handling Networks for the AIAA Space Technology Conference and Exposition "Partnering in the 21th Century"

    Science.gov (United States)

    Andrucyk, Dennis J.; Orlando, Fred J.; Chalfant, Charles H.

    1999-01-01

    The Spaceborne Fiber Optic Data Bus (SFODB) is the next generation in on-board data handling networks. It will do for high speed payloads what SAE 1773 has done for on-board command and telemetry systems. That is, it will significantly reduce the cost of payload development, integration and test through interface standardization. As defined in IEEE 1393, SFODB is a 1 Gb/s, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is highly reliable, fault tolerant, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. SFODB was developed jointly by DoD and NASA GSFC to meet the on-board data handling needs of Remote Sensing satellites. This jointly funded project produced a complete set of flight transmitters, receivers and protocol ASICS; a complete Development & Evaluation System; and, the IEEE 1393 standard.

  12. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity.

    Science.gov (United States)

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco-Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-07-16

    Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.

  13. A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8.

    Science.gov (United States)

    Fengler, Svenja; Spirer, Ina; Neef, Maren; Ecke, Margret; Nieselt, Kay; Hampp, Rüdiger

    2015-01-01

    The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  14. A Whole-Genome Microarray Study of Arabidopsis thaliana Semisolid Callus Cultures Exposed to Microgravity and Nonmicrogravity Related Spaceflight Conditions for 5 Days on Board of Shenzhou 8

    Directory of Open Access Journals (Sweden)

    Svenja Fengler

    2015-01-01

    Full Text Available The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes, this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  15. Characteristics of lightning, sprites, and human-induced emissions observed by nadir-viewing cameras on board the International Space Station

    Science.gov (United States)

    Farges, Thomas; Blanc, Elisabeth

    2016-04-01

    The Lightning and Sprites Observation (LSO) experiment was designed to test a new concept of nadir-viewing sprite measurement on board the International Space Station using spectral differentiation methods for lightning and sprite identification. It was composed of two calibrated cameras: one equipped with a narrowband filter at 763 nm to maximize the contrast between sprites and lightning, and the other to monitor lightning. The LSO was operated at night during 15 days from 2001 to 2004 during which 197 lightning flashes, several sprites, hundreds of gas flares, and tens of cities were analyzed. The main strength of this experiment was its high spatial resolution of about 400 m. The structural details of some lightning are thus observed highlighting complex systems. Some features such as the nonlinear increase of the lightning-illuminated cloud top area with the peak radiance and the radial decrease of the lightning flash radiance were quantified. The median area is 129 km2 with median minor and major axes of 12 and 16 km. Two methods of sprite identification are presented and applied to the most intense sprite events observed by LSO. The sprite diameter is 5 km and it is shifted of about 22 km from the center of the parent lightning. A ratio of 1.7% is deduced for lightning flashes between the radiances measured by both cameras. These observations should be useful for the preparation or the analysis of future space missions dedicated to nadir-viewing observations of sprites.

  16. The thin and medium filters of the EPIC camera on-board XMM-Newton: measured performance after more than 15 years of operation

    Science.gov (United States)

    Barbera, Marco; Gastaldello, Fabio; Sciortino, Luisa; Agnello, Simonpietro; Buscarino, Gianpiero; Collura, Alfonso; La Palombara, Nicola; Cicero, Ugo Lo; Sartore, Nicola; Tiengo, Andrea; Varisco, Salvatore; Venezia, Anna Maria

    2016-10-01

    After more than 15 years of operation of the EPIC camera on board the XMM-Newton X-ray observatory, we have reviewed the status of its Thin and Medium filters. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, Raman scattering, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Furthermore, we have investigated the status of the EPIC flight filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission. We both investigated repeated observations of single optically bright targets and performed a statistical analysis of the extent of loading versus visual magnitude at different epochs. We report the results of the measurements conducted up to now. Most notably, we find no evidence for change in the UV/VIS transmission of the back-up filters in ground tests spanning a 2 year period and we find no evidence for change in the optical transmission of the thin filter of the EPIC-pn camera from 2002 to 2012. We point out some lessons learned for the development and calibration programs of filters for X-ray detectors in future Astronomy missions.

  17. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity

    Science.gov (United States)

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco-Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity. PMID:25763699

  18. Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels on Board AKARI

    Science.gov (United States)

    Arimatsu, Ko; Onaka, Takashi; Sakon, Itsuki; Oyabu, Shinki; Ita, Yoshifusa; Tanabé, Toshihiko; Kato, Daisuke; Egusa, Fumi; Wada, Takehiko; Matsuhara, Hideo

    2011-08-01

    Mid-infrared images frequently suffer artifacts and extended point-spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the infrared camera (IRC) on board AKARI at four mid-infrared bands of the S7 (7 μm), S11 (11 μm), L15 (15 μm), and L24 (24 μm). Removal of the artifacts significantly improves the reliability of the reference data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, which consists of the deconvolution with the PSF and the convolution with an appropriate Gaussian. The appropriate removal of the artifacts, improved flat-fielding, and image reconstruction with the extended PSFs enable us to investigate detailed structures of extended sources in IRC mid-infrared images.

  19. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  20. Use of high frequency radiometer and altimeter on board AMSU-B, AMSR-E and Altika/SARAL for observations of the Antarctic ice sheet surface.

    Science.gov (United States)

    Adodo, Fifi; Picard, Ghislain; Remy, Frederique

    2016-04-01

    Snow surface properties quickly evolved according to local weather conditions, therefore are climate change indicator. These snow surface properties such as grain size, density, accumulation rate etc... are very important for evaluation and monitoring of the impact of global warming on the polar ice sheet. In order to retrieve these snowpack properties, we explore the high frequency microwave radiometer variable( Brightness Temperature (Tb)) on the Antarctic ice sheet on-board AMSU-B , AMSR-E in combination with the ALTIKA altimeter (37GHz) waveform parameters (Backscatter coefficient, Trailing edge Slope(TeS) and Leading edge Width(LeW)). We compare the radiometer brightness temperature to calculations with the DMRT- ML radiative transfer model which simulates brightness temperature in vertical and horizontal polarizations. With some assumptions, this combination allows a good retrieval of snowpack properties. We showed positive trend of the grains size on the Antarctic plateau especially at Dome C during the two last decades. This work will provide a higher accuracy of the estimation of snowpack surfaces properties and contribute to monitoring the ice sheet surface mass balance, well constraining of meteorological and glaciological models.

  1. First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques mission

    Science.gov (United States)

    Defer, Eric; Galligani, Victoria S.; Prigent, Catherine; Jimenez, Carlos

    2014-11-01

    Polarized scattering by frozen hydrometeors is investigated for the first time up to 157 GHz, based on the passive microwave observations of the Microwave Analysis and Detection of Rain and Atmospheric Structures (MADRAS) instrument on board the Indo-French Megha-Tropiques satellite mission. A comparison with time-coincident Tropical Rainfall Measurement Mission Microwave Imager records confirms the consistency of the coincident observations collected independently by the two instruments up to 89 GHz. The MADRAS noise levels of 1.2 K at 89 GHz and of 2.5 K at 157 GHz are in agreement with the required specifications of the mission. Compared to the 89 GHz polarized channels that mainly sense large ice particles (snow and graupel), the 157 GHz polarized channel is sensitive to smaller particles and provides additional information on the cloud systems. The analysis of the radiometric signal at 157 GHz reveals that the ice scattering can induce a polarization difference of the order of 10 K at that frequency. Based on radiative transfer modeling the specific signature is interpreted as the effect of mainly horizontally oriented ice cloud particles. This suggests that the effects of the cloud particle orientation should be considered in rain and cloud retrievals using passive radiometry at microwave and millimeter wavelengths.

  2. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    Science.gov (United States)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  3. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    Science.gov (United States)

    Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang

    1994-08-01

    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.

  4. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    CERN Document Server

    Gottardi, Luciano; Bruijn, Marcel P; Hartog, Roland den; Herder, Jan-Willem den; Jackson, Brian; Kiviranta, Mikko; van der Kuur, Jan; van Weers, Henk

    2016-01-01

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3 -12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum e?ciency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-...

  5. Surface Tension and Viscosity of the Ni-Based Superalloys LEK94 and CMSX-10 Measured by the Oscillating Drop Method on Board a Parabolic Flight

    Science.gov (United States)

    Wunderlich, Rainer K.; Fecht, Hans-Jörg; Lohöfer, Georg

    2017-02-01

    The surface tension and viscosity of the Ni-based superalloys LEK94 and CMSX-10 were measured by the oscillating drop method in a containerless electromagnetic processing device on board a parabolic flight airplane. Surface oscillations were recorded by 150 and 200 Hz frame rate digital cameras positioned in two perpendicular directions and by the inductive coupling between the oscillating sample surface and the oscillating circuit of the radio frequency heating and positioning generator. The surface tension as a function of temperature of LEK94 and CMSX-10 was obtained as σ( T) = 1.73 - 4.51 × 10-4 [ T—1656 K (1383 °C)] Nm-1 and σ( T) = 1.71 - 5.80 × 10-4 [( T—1683 K (1410 °C)] Nm-1, respectively. The viscosity at the liquidus temperatures as 9.8 and 7.8 mPa.s, respectively. In addition, some basic thermophysical properties such as solidus and liquidus temperatures, densities at room temperature, and thermal expansion in the solid phase are reported.

  6. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  7. An intercalibrated dataset of total column water vapour and wet tropospheric correction based on MWR on board ERS-1, ERS-2, and Envisat

    Science.gov (United States)

    Bennartz, Ralf; Höschen, Heidrun; Picard, Bruno; Schröder, Marc; Stengel, Martin; Sus, Oliver; Bojkov, Bojan; Casadio, Stefano; Diedrich, Hannes; Eliasson, Salomon; Fell, Frank; Fischer, Jürgen; Hollmann, Rainer; Preusker, Rene; Willén, Ulrika

    2017-04-01

    The microwave radiometers (MWRs) on board the European Remote Sensing Satellites 1 and 2 (ERS-1 and ERS-2) and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. We use a one-dimensional variational approach to derive TCWV from MWR observations and ERA-Interim background information. A particular focus of this study lies on the intercalibration of the three different instruments, which is performed using constraints on liquid water path (LWP) and TCWV. Comparing our MWR-derived time series of TCWV against TCWV derived from Global Navigation Satellite System (GNSS) we find that the MWR-derived TCWV time series is stable over time. However, observations potentially affected by precipitation show a degraded performance compared to precipitation-free observations in terms of the accuracy of retrieved TCWV. An analysis of WTC shows further that the retrieved WTC is superior to purely ERA-Interim-derived WTC for all satellites and for the entire time series. Even compared to the European Space Agency's (ESA) operational WTC retrievals, which incorporate in addition to MWR additional observational data, the here-described dataset shows improvements in particular for the mid-latitudes and for the two earlier satellites, ERS-1 and ERS-2. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001 (Bennartz et al., 2016).

  8. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  9. On-board orbit determination for low thrust LEO-MEO transfer by Consider Kalman Filtering and multi-constellation GNSS

    Science.gov (United States)

    Menzione, Francesco; Renga, Alfredo; Grassi, Michele

    2017-09-01

    In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.

  10. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, L., E-mail: l.gottardi@sron.nl [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Akamatsu, H.; Bruijn, M.P.; Hartog, R. den; Herder, J.-W. den; Jackson, B. [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Kiviranta, M. [VTT, Espoo (Finland); Kuur, J. van der; Weers, H. van [SRON Netherlands Institute for Space Research, Utrecht (Netherlands)

    2016-07-11

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3–12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  11. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Science.gov (United States)

    Gottardi, L.; Akamatsu, H.; Bruijn, M. P.; den Hartog, R.; den Herder, J.-W.; Jackson, B.; Kiviranta, M.; van der Kuur, J.; van Weers, H.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3-12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  12. Wastes disposal on board a ship. Apparatus to decompose and annihilate wet refuses bionically; Senjo no haikibutsu shori. Namagomi no bio bunkai shometsuki

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, S.

    1996-07-25

    A bionic refuse disposing and annihilating apparatus for wet refuses produced on board a ship was developed, and introduced in this paper. This apparatus uses a system that biomass as a decomposing medium is maintained dry in a disposal tank, and wet refuses are decomposed and annihilated by the biomass working only with water contained in the wet refuses themselves. The system uses a decomposing medium composed of a mixture of different kinds of organic matters mixed with various nutrients, and automatically controls absorption and exhalation of decomposing water without using a heater. Almost all of wet refuses decomposes and annihilates in twelve hours after having been charged in their original forms. The decomposing medium can be used continuously for six months to a year. Because of complete annihilation by the bionic effect, no residue is created. This system uses a normal-temperature decomposing and annihilating bionic technology, whose minimum temperature required for decomposition and annihilation is 10{degree}C or higher, and the highest permissible temperature is 75{degree}C. Dry and cool environment at about 20{degree}C is most suitable. Deodorizing function of the biomass itself as the decomposing medium suppresses odor generation. 3 figs.

  13. Selection of new innovation crystal for Mercury Gamma-ray and Neutron Spectrometer on-board MPO/BepiColombo mission.

    Science.gov (United States)

    Kozyrev, Alexander; Mitrofanov, Igor; Benkhoff, Johannes; Litvak, Maxim; McAuliffe, Jonathan; Mokrousov, Maxim; Owens, Alan; Quarati, Francesco; Shvetsov, Valery; Timoshenko, Gennady

    2015-04-01

    The Mercury Gamma-ray and Neutron Spectrometer (MGNS) was developed in Space Research Institute for detection the flux of neutron and gamma-ray from the Mercury subsurface on-board Mercury Polar Orbiter of ESA BepiColombo mission. The instrument consists of 3He proportional counters and organic scintillator for detection of neutron and also gamma-spectrometer based on scintillation crystal for detection of gamma-ray. For the gamma-ray spectrometer the LaBr3 crystal was selected, the best choice at the time of the instrument proposal in 2004. However, quite recently the European industry has developed the new crystal CeBr3, which could be much better than LaBr3 crystal for planetology. Such crystal with the necessary size of 3 inch became available in the stage of manufactory of Flight Spare Module of MGNS instrument. New CeBr3 crystal has much better signal-to-noise ratio than LaBr3 crystal in the energy band up to 3 MeV. Also, in the LaBr3 crystal, the important for planetology gamma-ray line of potassium at 1461 keV is overlapping with the background gamma-ray line of 138La isotope at 1473 keV. This CeBr3 crystal was integrated to MGNS instrument. We present the results of gamma-ray performance and environment tests of MGNS with CeBr3 crystal, and also comparison between LaBr3 and new CeBr3 crystals in context of space application for this instrument.

  14. Effects of on-board and dockside handling on the formation of biogenic amines in mahimahi (Coryphaena hippurus), skipjack tuna (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares).

    Science.gov (United States)

    Staruszkiewicz, Walter F; Barnett, James D; Rogers, Patricia L; Benner, Ronald A; Wong, Lynn L; Cook, John

    2004-01-01

    Consumer illnesses by scombroid poisonings have been a continuing problem for many years. The intoxications follow the ingestion of fish such as tuna and mahimahi that have undergone bacterial decomposition, leading to the formation of biogenic amines. Research studies have concluded that histamine is one of the indicators of scombrotoxic fish and that other amines, such as cadaverine, could be involved in the illnesses. Guidance for the handling of fish on board fishing vessels to prevent the production of scombrotoxic fish has been limited by a lack of data addressing changes that occur in fish from the water to delivery at dockside. In this study, the changes in selected biogenic amines were determined in mahimahi and tuna, which were captured and held in seawater at 25 to 35 degrees C for incubation times up to 18 h. The fillets from the treated fish were sectioned by transverse cuts and analyzed for histamine, cadaverine, and putrescine. Results showed that at 26 degrees C, more than 12 h of incubation were required before a histamine concentration of 50 ppm was reached in mahimahi. At 35 degrees C, 50 ppm histamine formed within 9 h. Similar results were found for skipjack and yellowfin tuna. Histamine concentrations exceeded 500 ppm within an additional 3 h of incubation in mahimahi. At both temperatures, an increase in the concentration of cadaverine preceded an increase in histamine levels. Changes in putrescine concentrations in the fish were less pronounced. The study also demonstrated that histidine decarboxylase activity was retained in some frozen samples of fish and could result in further increases in histamine on thawing.

  15. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, April Ann [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  16. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    Science.gov (United States)

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.

  17. Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Science.gov (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Hardgrove, C.; Stack, K. M.; Sanin, A. B.; Lisov, D.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Starr, R.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2016-05-01

    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the "Smooth Hummocky" unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5-2.5 wt % and 0.6-2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments.

  18. Comparison of Relative Humidity obtained from SAPHIR on board Megha-Tropiques and Ground based Microwave Radiometer Profiler over an equatorial station

    Science.gov (United States)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    A comparison has been made between the SAPHIR on board Megha-Tropiques (MT) derived Relative Humidity (RH (%)) with that derived from a ground based multi-frequency Microwave Radiometer Profiler (MRP) observations over an equatorial station Thiruvananthapuram (8.5(°) N and 76.9(°) E) for a one year period. As a first step, the validation of MRP has been made against the radiosonde for two years (2010 and 2011) during the Indian monsoon period July-September. This analysis shows a wet bias below 6 km and dry bias above. The comparison between the MRP and the MT derived RH has been made at five different altitudinal levels (0.75, 2.25, 4.0, 6.25 and 9.2 km range) strictly under clear sky condition. The regression analysis between the two reveals very good correlation (>0.8) in the altitudinal layer of 2.25 to 6.25 km. The differences between the two observations had also been explained interms of percentage of occurrence between MT and the MRP at each altitudinal layer. About 70-80% of the time, the difference in the RH is found to below 10% at first three layer. The RMSE of 2% is observed at almost all the height layers. The differences have been attributed to the different measurement and retrieval techniques involved in the ground based and satellite based measurements. Since MRP frequecy channels are not sensitive to small water vapor variabilities above 6 km, large differences are observed. Radiative Transfer computation for the channels of both MRP and SAPHIR will be carried out to understand the variabilities.

  19. Research of on-board mixed optical/electric switching of GEO broadband multimedia satellite%通信卫星光电混合交换技术研究

    Institute of Scientific and Technical Information of China (English)

    李瑞欣; 赵尚弘; 幺周石; 郑伟; 李勇军; 刘振霞

    2011-01-01

    On-board switching has been the development trend of satellite communication. There is electronic bottleneck in the development of on-board ATM switch, so the optical switch is the inevitable direction of future broadband multimedia satellite. The paper brings forward a scheme about on-board mixed optical/electronic switching of GEO, analyses the switching mode of the scheme, discusses the key techniques.%星上交换已成为卫星通信发展的趋势之一.星上ATM交换在发展过程中存在着电子瓶颈,星上光交换是未来宽带多媒体卫星的必然发展方向.提出了一种光电混合星上交换技术方案,对星上光交换的方式进行了分析,讨论了光电混合星上交换技术涉及的关键技术,对未来星上交换技术的发展进行了总结.

  20. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket

    Science.gov (United States)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.

    2016-11-01

    For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in

  1. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L [University of Heifelberg, Mannheim (Germany); Duke University Medical Center, Durham, NC (United States); Fudan University Shanghai Cancer Center, Shanghai (China); Bowsher, J; Yin, F [Duke University Medical Center, Durham, NC (United States); Duke University Medical Physics Graduate Program, Durham, NC (United States); Yan, S [Duke University Medical Physics Graduate Program, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise was included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by

  2. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    Science.gov (United States)

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO2) and nitrogen oxides (NOX) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km(-1) and 627 ± 54 g km(-1), respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km(-1). The OBD data suggested no improvement in NOX emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km(-1) because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO2 and NOX emissions were also constructed. The CO2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h(-1) to 10 km h(-1), the estimated CO2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NOX emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles.

  3. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    Science.gov (United States)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  4. Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta

    Science.gov (United States)

    Merouane, Sihane; Zaprudin, Boris; Stenzel, Oliver; Langevin, Yves; Altobelli, Nicolas; Della Corte, Vincenzo; Fischer, Henning; Fulle, Marco; Hornung, Klaus; Silén, Johan; Ligier, Nicolas; Rotundi, Alessandra; Ryno, Jouni; Schulz, Rita; Hilchenbach, Martin; Kissel, Jochen; Cosima Team

    2016-12-01

    Context. The COmetary Secondary Ion Mass Analyzer (COSIMA) on board Rosetta is dedicated to the collection and compositional analysis of the dust particles in the coma of 67P/Churyumov-Gerasimenko (67P). Aims: Investigation of the physical properties of the dust particles collected along the comet trajectory around the Sun starting at a heliocentric distance of 3.5 AU. Methods: The flux, size distribution, and morphology of the dust particles collected in the vicinity of the nucleus of comet 67P were measured with a daily to weekly time resolution. Results: The particles collected by COSIMA can be classified according to their morphology into two main types: compact particles and porous aggregates. In low-resolution images, the porous material appears similar to the chondritic-porous interplanetary dust particles collected in Earth's stratosphere in terms of texture. We show that this porous material represents 75% in volume and 50% in number of the large dust particles collected by COSIMA. Compact particles have typical sizes from a few tens of microns to a few hundreds of microns, while porous aggregates can be as large as a millimeter. The particles are not collected as a continuous flow but appear in bursts. This could be due to limited time resolution and/or fragmentation either in the collection funnel or few meters away from the spacecraft. The average collection rate of dust particles as a function of nucleo-centric distance shows that, at high phase angle, the dust flux follows a 1/d2comet law, excluding fragmentation of the dust particles along their journey to the spacecraft. At low phase angle, the dust flux is much more dispersed compared to the 1/d2comet law but cannot be explained by fragmentation of the particles along their trajectory since their velocity, indirectly deduced from the COSIMA data, does not support such a phenomenon. The cumulative size distribution of particles larger than 150 μm follows a power law close to r- 0.8 ± 0

  5. DREAMS: a payload on-board the ExoMars EDM Schiaparelli for the characterization of Martian environment during the statistical dust storm season

    Science.gov (United States)

    Molfese, Cesare; Esposito, Francesca; Debei, Stefano; Bettanini, Carlo; Arruego Rodríguez, Ignacio; Colombatti, Giacomo; Harri, Ari-Matty.; Montmessin, Franck; Wilson, Colin; Aboudan, Alessio; Mugnuolo, Raffaele; Pirrotta, Simone; Marchetti, Ernesto; Witasse, Olivier

    2015-04-01

    , the dust opacity, and the atmospheric electric properties close to the surface of Mars. It will fly in January 2016 on-board the Schiaparelli Entry, Descent and landing Demonstrator Module (EDM) of the ExoMars space mission. It is foreseen to land on Mars in late October 2016 during the statistical dust storm season. Therefore, DREAMS might have the unique chance to make scientific measurements to characterize the Martian environment in a dusty scenario also performing the first ever measurements of atmospheric electric field on Mars. The relationship between the process of dust entrainment in the atmosphere during dust events and the enhancement of atmospheric electric field has been widely studied in an intense field test campaign in the Sahara desert. In order to better characterize this physical process, we performed atmospheric and environmental measurements comparable to those that DREAMS will acquire on Mars. Preliminary results will be discussed. DREAMS is in a high development state. A first model has been delivered to ESA and has been integrated in the EDM Flight Model. Integration tests are on-going. The DREAMS Flight Model will be delivered at the end of March this year.

  6. The multi-viewing, multi-channel, multi-polarisation imager on board the future EUMETSAT Polar System - Second Generation and its application for the aerosol retrieval

    Science.gov (United States)

    Kokhanovsky, Alexander; Munro, Rose; Lang, Ruediger; Lindstrot, Rasmus; Huckle, Roger; Marbach, Thierry; Poli, Gabriele

    2017-04-01

    Atmospheric aerosol is a global phenomenon. Due to the small size of aerosol particles (typically, 0.1 - 10 micrometers) they are rarely observed by the naked eye. Nevertheless aerosol particles are present in atmospheric air in variable numbers (typically, 100-1000 particles per cubic centimeter of atmospheric air). The particles have different chemical composition, origin, shapes, and internal structure (e.g., dust particles covered by ice, etc.). They influence human health, air quality, climate, downwelling and upwelling radiation, clouds, and precipitation. It is therefore important to monitor aerosol properties on a global scale. Global scale information can only be provided by satellite observations and algorithms for the production of satellite-based aerosol products have been in use already for more than 40 years. In this work we present an update on the recently developed operational EUMETSAT aerosol retrieval algorithm for the Multi-viewing, multi-channel, multi-polarisation Imager (3MI) which will fly on board the future EUMETSAT Polar System Second Generation (EPS-SG), planned for launch in the 2021 timeframe. The 3MI is a two - dimensional push - broom radiometer dedicated to aerosol and cloud characterization for climate monitoring, air quality forecasting and numerical weather prediction with heritage from the POLDER instrument. The first three components of the Stokes vector of the reflected light (I, Q, and U) will be measured at 9 channels in the spectral range from 410 to 2130nm for up to 14 observation directions. Intensity measurements only will be performed at 763, 765, and 910nm. This enables the determination of the degree of linear polarization of reflected light and also the direction of the oscillations of the electric vector in the light beam. The 3MI design consists of a filter and polariser wheel rotating in front of the detectors. For design purposes the spectral channels have been split into VNIR and SWIR filters and polarisers with

  7. WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (∼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (∼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (∼0.5s). Note that the prior 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for ACFD

  8. A Rapid Model Fitting Tool Suite Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Instruments flown on board NASA missions often do not measure quantities of interest to scientists directly, but rather observable quantities. In addition,...

  9. Where lies the difficulty for China-produced products to be installed on board vessels?%中国船用产品上船难于上青天

    Institute of Scientific and Technical Information of China (English)

    杨培举

    2004-01-01

    In recent years,China's shipbuilding industry has witnessed rapid growth.It's reported that china has set the goal to grab 16% of the world market share with the annual output of shipbuilding reaching 10 million deadweight tonnage by 2005, and 24 million deadweight tonnage representing 35% of the world market share by 2015. In addition, over 80% of the marine equipment to be installed on board will be made in China by 2010, compared with the current ratio of 30%. Is it possible for China to realize this goal in less than six years? No wonder there lies a doubt.

  10. STCW公约对救助船员培训的影响与应用%The influence and application of the STCW convention to seafarers on board rescue vessels

    Institute of Scientific and Technical Information of China (English)

    李新华

    2013-01-01

    This paper gave a general introduction of the background and the main points of the Manila amendments to the STCW convention, and analyzed the influence and application for the training of seafarers on board rescue vessels.%  文中介绍了STCW公约马尼拉修正案产生的背景及修正内容,提出了履行公约对救助船员培训的相关影响及应用。

  11. Three validation methods of SCIAMACHY and MIPAS-E data with DOAS measurements obtained by the GASCOD/A4π spectrometer on board the Geophysica-M55 aircraft

    Science.gov (United States)

    Giovanelli, G.; Redaelli, G.; Petritoli, A.; Bortoli, D.; Kostadinov, I.; Ravegnani, F.

    2003-08-01

    The aim of this paper is to present three methods for the validation of the SCIAMACHY and MIPAS-E data using the UV/Vis. DOAS spectrometer, called GASCOD/A4π, installed on board the Geophysica M-55 aircraft, which can fly up to 20 km of altitude. The first method is the classic one of the cross-crossing that requires the temporal and spatial simultaneity of the measurements on board both the ENVISAT-1 satellite and the M55 aircraft. The second one is based on a Lagrangian approach, which allows for the identification of the best flight trajectory of the M55, on the basis of the dynamic and chemical "history" of the air masses at the aircraft altitude. In this case the comparison can be extended for longer time periods. The latter method is proposed to validate the tropospheric amounts of O3 and NO2. In fact, from SCIAMACHY data it can be possible to infer the tropospheric amounts of minor gases subtracting the stratospheric column, detected with limb measurements, from the total column obtained with subsequent nadir measurements. In the GASCOD/A4π data the tropospheric gases amounts are directly observed by means of the nadir measurements, if the flight altitude is close up the tropopause level. Especially the latter two methods can be consider innovative techniques in the field of satellite data validation.

  12. 卫星平台虚拟化--满足多种卫星移动通信需求的必然选择%Virtualizing the On-Board Platform for Multi-Purpose Mobile Satellite Communication Systems

    Institute of Scientific and Technical Information of China (English)

    王京; 赵明; 高镇

    2015-01-01

    The market for mobile satel ite communication is huge in China, but satel ite resources are very limited. A key issue in the development of mobile satel ite communication in China is the efficient utilization of the satel ite platform to satisfy the requirements of different military and public applications. Virtualization of the on-board platform is an effective way of addressing this issue. In this paper, we propose a virtualization design based on FFT. This design can be a reference for on research on-board platform virtualization.%认为虽然中国卫星移动通信市场巨大但卫星资源紧缺,因此充分利用有限的卫星平台,最大限度满足不同军民通信应用需求并支持多种传输体制,是中国发展卫星移动通信系统必须要解决的重要问题,而卫星平台虚拟化是解决这个矛盾的有效途径。基于此,提出了一种基于快速傅里叶变换(FFT)的虚拟化设计方案,为推动卫星平台虚拟化研究提供参考。

  13. LEO卫星网络中一种简洁的星上分布式路由协议%A Light Weight On-Board Distributed Routing Protocol for LEO Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    白建军; 卢锡城; 彭伟

    2005-01-01

    在具有星际链路的低地球轨道(LEO)卫星网络中,高度动态的网络拓扑和受限的星上资源为其路由协议设计带来很大的挑战.提出了一种简洁的星上分布式路由协议ODRP来应对这种挑战.在ODRP协议中,单层LEO星座被作为双层星座处理.根据星际链路动态特性和流量分布情况,各轨道面内位于一定位置的卫星节点被选作为轨道面发言人,从而实现简洁的分布式分层路由.实验结果表明,ODRP能够适应网络拓扑的动态变化,保证路由最优.尤其是在高负载情况下,能够有效降低分组丢失率.通过复杂性分析得知,与其他星上路由机制相比,ODRP具有较低的通信开销、计算开销和存储开销.%In LEO satellite networks with inter-satellite links, the highly dynamic topology and the limited on-board resources pose special challenges to routing protocol design. In this paper, a light weight on-board distributed routing protocol is proposed to cope with these challenges. For ODRP, the single layer LEO satellite constellation is considered as double-layer constellation. A satellite at special geographical position is selected as the plane speaker according to the dynamic characteristics of inter-satellite links and the distribution of traffic load carried by the network, consequently the idea of distributed hierarchical routing is realized. Experimental results show that ODRP has the adaptive abilities to deal with the dynamic topology of LEO satellite networks and guarantees the path's optimality, and especially can decrease the packet loss probability efficiently in case of high traffic load. Furthermore, results from the implementation complexity analysis demonstrate that the proposed protocol has lower onboard computational, storage and signaling requirements than other on-board routing schemes.

  14. Contribution to the study of the dynamic behaviour of a on-board rotor; Contribution a l'etude du comportement dynamique d'un rotor embarque

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, M.

    2003-12-15

    The aim of this work was the development of a model allowing to simulate the dynamical behaviour on an on-board rotor. The calculations of the different energies and virtual works of the different parts of a rotor submitted to a random movement have been made taking into account the different possible asymmetries of the shaft and of the discs. A simple model has been defined using the Rayleigh-Ritz method in order to study the basic phenomena. For the processing of real systems, a finite-element modeling has been developed. The nonlinear equations of the movement have been obtained using the application of Lagrange equations. The basic phenomena relative to the rotors dynamics with a moving stand have been studied for the simple model. Various analytical studies have been performed on simple movements: simple translation, sinusoidal translation, constant rotation, accelerated rotation. For all these movements, the deformation equations remain linear. On the contrary, for a simple sinusoidal rotation movement, parametric terms have to be entered in the equations. An instability study has been performed on this movement using the multiple scales method. This method has permitted to determine the instability areas. A step-by-step resolution has been used to check these instability areas with the Rayleigh-Ritz model. An experimental device has been made to test the model developed with the finite-element method. The main movement analyzed is the sinusoidal rotation one which seems to be the most interesting with respect to the phenomena described with the simple model. The adjustment of the resonance frequencies of the system has been performed by the adjustment of the bearings stiffness. The study of an on-board rotor with a flexible stand is thus not a priority. The adjustment of the damping performed on an angular shock study has shown that the obtained modeling is very good when the structural damping is distributed over the bearings. After adjustment, the

  15. Effects of temperature gradient in the growth of Si0.5Ge0.5 crystals by the traveling liquidus-zone method on board the International Space Station

    Science.gov (United States)

    Kinoshita, K.; Arai, Y.; Inatomi, Y.; Tsukada, T.; Miyata, H.; Tanaka, R.

    2016-12-01

    Si0.5Ge0.5 crystals were grown at two different temperature gradients on board the International Space Station (ISS) using the traveling liquidus-zone (TLZ) method and effects of temperature gradient on crystal quality were investigated. Although average axial Ge concentration profile was not affected by the temperature gradient, crystal quality was affected greatly. Single crystal length was shortened and constitutional supercooling (CS) is shown to occur more easily at higher temperature gradient. The calculated degree of CS based on the solute concentration profile in the melt and phase diagram data is about 4 times larger when the temperature gradient is twice, which supports the experimental results. Instability at high temperature gradient is unique to the TLZ method and is not common to other crystal growth methods such as the directional solidification method and Czochralski method.

  16. Design of On-Board Remote Alarm System Based on GSM Network%基于GSM网络的车载远程报警系统的设计

    Institute of Scientific and Technical Information of China (English)

    孟娜; 王帅; 陈文强; 潘之杰; 赵福全

    2011-01-01

    采用GSM技术设计了车载远程报警系统。该系统以微处理器为控制核心,利用传感器的报警信号,使GSM模块在发生警情的同时发送短信到指定的号码,并且通过CAN总线控制车身其它单元,有效地提高了汽车防盗性能。%The on-board remote alarm system is designed based on the GSM technology. With a MCU as its control core, this system uses the alarm signal of a sensor to make the GSM module send messages to the appointed number at the same time when it alarms. It can control the other body units through CAN bus, thus effectively improving the anti-theft performance of automobile.

  17. Development of the Vehicle Real-Time Running Status Monitoring and On-Board Diagnostic System%汽车实时运行状态监控及在线故障诊断系统的研制

    Institute of Scientific and Technical Information of China (English)

    潘可贤; 陈晓冰

    2009-01-01

    The vehicle real-time running status monitoring and on-board diagnostic system is designed to meet the need of diagnosing vehicle for private cars owners. The functions, such as the real-time data flow reading and recording, on-board diagnostic, voice reminding, displaying error code and corresponding content with liq-uid crystal displayer, data transferring via universal serial bus, are provided by this system. Furthermore, owner-drivers are able to know the running status of the vehicles, monitor whether their cars are in good condition, and then to locate malfunctioning parts via KWP1281/ISO9141/ISO14230(KWP20OO)/SAE J1850 VPW/SAE J1850 PWM/ISO15765 protocols to ensure safe driving and reduce the cost of maintenance.%针对当前私家车车主对汽车故障诊断的实际需求,提出汽车实时运行状态监控及在线故障诊断系统.该系统集成了汽车实时数据流读取和记录、故障诊断、语音提醒、故障码和故障内容LCD显示、USB数据传输等功能,完成了KWP1281/ISO9141/ISO14230(KWP2000)/SAE J1850 VPW/SAE J1850PWM/ISO15765协议的通信,使车主能够及时了解车辆的行驶状态,及时完成车辆运行监控、故障定位,以保证行车安全,并降低维修保养费用.

  18. Research of multi-stage charging method for on-board lithium battery of electric vehicles%电动汽车车载锂电池分段充电策略研究

    Institute of Scientific and Technical Information of China (English)

    陈超; 谢瑞; 何湘宁

    2011-01-01

    为了实现电动汽车(EV)车载锂电池快速充、放电,研究了电动汽车锂电池分段充电策略,给出了充电拓扑图.通过监控电池端电压和电流,采用了恒流、恒压和涓流3种充电方式结合的方法,控制功率变换器对电池进行智能充电.实验结果表明,利用分段充电方法可以在30 min内使电池端压达到额定值,并通过恒压充电使电池迅速得以充满.该研究为提高车载电池充电效率、缩短充电时间和保证充电安全奠定了基础.%In order to achieve the fast charging and discharging of the on-board lithium battery of electric vehicles (EV), the multi-stage charging method of the EV lithium battery was investigated and the charging circuit topology was presented. The method combined three charging methods ( constant-current method, constant-voltage method and low-current method) was used to control a power converter by monitoring the battery voltage and current for intelligent fast charging. The experimental results indicate that the battery voltage can reach the rated value in 30 minutes as being charged by the system, then the battery will soon be fully charged by using the constant-voltage method. The research lays the foundation for the improvement of the charging efficiency and the charging security of the on-board batteries.

  19. Application research on new technology for on-board medical waste pyrolysis%车载医疗垃圾热解处理新技术应用研究

    Institute of Scientific and Technical Information of China (English)

    王政; 韩俊淑; 吴丽华; 刘亚军

    2015-01-01

    目的:通过对医疗垃圾热解系统组成、垃圾热解工艺、烟气处理工艺理论探索,为车载垃圾热解处理研究提供理论基础.方法:综合运用了结构设计、理化分析、热力学原理、流体力学等原理阐述了热解处理系统、烟气净化系统结构构成和工艺特点.结果:将理论分析应用于车载化研究,提出了炉体结构、烟气净化系统结构车载化解决方案.结论:热解技术车载化切实可行,并可有效地应用于处理各种突发公共卫生事件产生的各种高危传染性废物,方便快捷地实现医疗垃圾的减量化、资源化和无害化的一体化处理,应用前景广阔.%Objective To explore the theories of medical waste pyrolysis system composition, waste pyrolysis process, flue gas treatment process and etc.Methods The composition and process of pyrolysis treatment system and flue gas cleaning system were studied with the theories of configuration design, physico-chemical analysis, thermodynamics, fluid mechanics and etc.Results The schemes were put forward for on-board pyrolysis furnace and flue gas cleaning system.Conclusion On-board medical waste pyrolysis system can be used to treat the infectious waste in public medical emergencies, and thus is worth popularizing practically.

  20. Error Analysis and On-Board Calibration of Magnetometer in Space Environment Exploration Satellite%空间环境探测卫星用磁强计误差分析及在线标定

    Institute of Scientific and Technical Information of China (English)

    杨照华; 余远金; 祁振强

    2012-01-01

    A magnetometer used in the sun-earth space exploration satellite is usually assembled at the tip of the boom by the action of space disturbance torque and maneuver, the installation matrix magnetometer of varies dramatically, which may lead to the low attitude determination accuracy. Based on the analysis of the magnetometer attitude determination errors, a 19 state high-fidelity measurement model of magnetometer is proposed. Combined with satellite attitude dynamics and kinematics, a 19 state Extended Kalman Filter is adopted to estimate installation matrix on-board and compensate magnetometer measurement. Then the innovative magnetometer measurement model is used to estimate satellite attitude. Finally the algorithm is validated by using the turntable experiment. Results of turntable experiment show that this method can estimate installation matrix errors under the computational requirement of On-board Computer and dramatically improve the accuracy of attitude determination and magnetometer error estimation.%用于探测日地空间磁环境的磁强计多数安装在伸杆的末端,长期受太阳辐射等空间环境干扰力矩以及机动等影响,磁强计安装矩阵随时间发生较大的变化,从而导致卫星定姿精度下降.为此,在分析空间环境干扰力矩和磁强计定姿误差特性的基础上,建立了19维高精度的磁强计误差模型,结合卫星的运动学和姿态动力学特性,采用EKF滤波方法对安装矩阵进行实时估计与修正补偿,并利用该磁强计模型实现卫星的姿态确定,最后利用实验进行验证.实验结果表明,该方法能够在满足星载计算机的计算量要求的同时,在线估计安装矩阵误差,显著提高了磁强计的误差估计精度与定姿精度.

  1. Self diagnosis of modern engine control systems - development stage and first experiences with On Board Diagnosis II (OBD) for the USA; Eigendiagnose moderner Motorsteuerungssysteme - Entwicklungsstand und erste Erfahrungen mit OBD II fuer USA

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O. [Bosch (R.) GmbH, Stuttgart (Germany); Mezger, M. [Bosch (R.) GmbH, Stuttgart (Germany)

    1994-12-31

    The legal requirements for the On Board Diagnosis II are partly very difficult to meet. The necessary development costs turned out to be much higher than had been assumed at the beginning. Possible solutions for requirements of the model year 94 -95 were demonstrated with test vehicles. A sufficient guarantee before the beginning of the series production can not be given. Hence a certain residual risk through serial divergence remains. The reason for this risk are the actual requirements. If the failure quota of components relevant for the exhaust gas emission exceeds a certain limit a recall action might be started, which will be very expensive. Thus an early or unjustified reaction of the diagnosis must be avoided. On the other hand the adjustment must have the necessary sensitivity to detect failures. During so-called ``Inuse-Tests`` the authorities stop specific vehicles on the streets in order to check the emission behaviour. If in the future the diagnosis lamp does not show any reaction when the exhaust gas limit has been exceeded, the electronic control device, where the threshold values are determined, must be exchanged for an improved one. (orig.) [Deutsch] Die gesetzlichen Forderungen zur On Board Diagnose II sind zum Teil extrem schwierig zu erfuellen. Der erforderliche Entwicklungsaufwand stellte sich als sehr viel hoeher dar als urspruenglich angenommen wurde. Loesungen der Forderungen fuer Modelljahr 94-95 wurden an Versuchsfahrzeugen nachgewiesen. Eine Absicherung auf ausreichend breiter Basis vor Serienanlauf ist kaum moeglich, so dass ein Restrisiko durch Serienstreuungen vorhanden bleibt. Dieses Risiko ist mit den geltenden Gewaehrleistungsforderungen begruendet. Wenn die Ausfallrate abgasrelevanter Komponenten eine bestimmte Schwelle ueberschreitet, droht eine Rueckrufaktion, die sehr teuer werden kann. Somit muss ein zu fruehes oder gar unberechtigtes Ansprechen der Diagnose vermieden werden. Eine zu unempfindliche Einstellung verbietet sich

  2. 基于改进混合卡尔曼滤波器的航空发动机机载自适应模型%Aeroengine on-board adaptive model based on improved hybrid Kalman filter

    Institute of Scientific and Technical Information of China (English)

    陆军; 郭迎清; 张书刚

    2011-01-01

    提出了基于改进混合卡尔曼滤波器的航空发动机机载自适应模型方法,即以机载非线性模型的输出作为分段线性卡尔曼滤波器的稳态基准值,将性能蜕化因子作为该滤波器的增广状态量进行在线估计,并反馈给机载非线性模型使其完成在线更新.同时,根据工作模式切换机制使该模型获得有效输出.通过将该方法应用于某型涡扇发动机进行一系列仿真表明,在全飞行包线内、不同工作状态以及性能蜕化严重的情况下,该模型能够始终与实际发动机相匹配,满足实际应用需求.%A method of establishing aeroengine on-board adaptive model was proposed based on improved hybrid Kalman filter(IHKF).The output of nonlinear on-board engine model(NOBEM) was regarded as the steady-state basic model of piecewise linear Kalman filter(PWKF),while its performance deterioration factor was regarded as the augmented state vector of PWKF for on-line estimation,and fed back to NOBEM for on-line updating.In addition,the switching logic of work mode was established,which could make the IHKF work better.By applying this method to a turbofan engine,a series of simulation results show that the model can always match the actual engine in the whole flight envelope,under different engine states and severe performance deterioration,thus meeting the needs of practical applications.

  3. Study of Lever-Arm Effect Using Embedded Photogrammetry and On-Board GPS Receiver on Uav for Metrological Mapping Purpose and Proposal of a Free Ground Measurements Calibration Procedure

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.

    2016-03-01

    Nowadays, Unmanned Aerial Vehicle (UAV) on-board photogrammetry knows a significant growth due to the democratization of using drones in the civilian sector. Also, due to changes in regulations laws governing the rules of inclusion of a UAV in the airspace which become suitable for the development of professional activities. Fields of application of photogrammetry are diverse, for instance: architecture, geology, archaeology, mapping, industrial metrology, etc. Our research concerns the latter area. Vinci-Construction- Terrassement is a private company specialized in public earthworks that uses UAVs for metrology applications. This article deals with maximum accuracy one can achieve with a coupled camera and GPS receiver system for direct-georeferencing of Digital Surface Models (DSMs) without relying on Ground Control Points (GCPs) measurements. This article focuses specially on the lever-arm calibration part. This proposed calibration method is based on two steps: a first step involves the proper calibration for each sensor, i.e. to determine the position of the optical center of the camera and the GPS antenna phase center in a local coordinate system relative to the sensor. A second step concerns a 3d modeling of the UAV with embedded sensors through a photogrammetric acquisition. Processing this acquisition allows to determine the value of the lever-arm offset without using GCPs.

  4. Formaldehyde chemistry in cometary ices: on the prospective detection of NH{sub 2}CH{sub 2}OH, HOCH{sub 2}OH, and POM by the on-board ROSINA instrument of the Rosetta mission

    Energy Technology Data Exchange (ETDEWEB)

    Duvernay, F.; Danger, G.; Theulé, P.; Chiavassa, T. [Aix-Marseille Université, CNRS, PIIM UMR 7345, F-13397 Marseille (France); Rimola, A., E-mail: fabrice.duvernay@univ-amu.fr, E-mail: albert.rimola@uab.cat [Universitat Autònoma de Barcelona (UAB), Departament de Química, E-08193 Bellaterra (Spain)

    2014-08-20

    The thermal reactivity of a water-dominated cometary ice analog containing H{sub 2}CO and NH{sub 3} is investigated by means of Fourier transform infrared spectroscopy, mass spectrometry, and B3LYP calculations. Three products are characterized by these techniques: aminomethanol (NH{sub 2}CH{sub 2}OH), methyleneglycol (HOCH{sub 2}OH), and polyoxymethylene (POM, HO-(CH{sub 2}-O) {sub n}-H). Their formation strongly depends on the initial NH{sub 3}/H{sub 2}CO ratio. In addition, the influence of the initial ice composition on the thermal stability of POM has also been investigated. It is shown that POM formed during warming of the ices consists of short-chain polymers (i.e., oligomers of formaldehyde HO-(CH{sub 2}-O) {sub n}-H, n < 5), which are volatile at temperatures higher than 200 K. This suggests that gas-phase detection by the ROSINA instrument on board the Rosetta mission would be the most appropriate method to detect POM. Moreover, the mass spectra presented in this work might help in the interpretation of data that will be recorded by this instrument. Finally, a new scenario to explain the distributed source of formaldehyde observed in comets is discussed.

  5. 低轨卫星系统星载多波束天线点波束设计及优化%Spot -beam Design and Optimization of On- board Multi -beam Antenna for LEO Satellite Systems

    Institute of Scientific and Technical Information of China (English)

    张旭; 吴潜

    2009-01-01

    星载多波束天线具有广阔的应用前景,尤其适合应用于低轨卫星系统.讨论了星载多波束天线点波束设计的方法,为平衡点波束各覆盖区域的接收增益,借鉴最优化理论思想,提出了一种点波束设计的方法,以全球星系统为例进行分析,结果表明该方法较典型的点波束设计方法具有更高的满意度.%Muhi - beam antenna is widely used in low earth orbit(LEO) satellite systems. Spot - beam de-sign of on - board multi - beam antenna is discussed, an optimized method adopting optimization theory for spot -beam design is proposed to balance the receiving gain of each spot -beam covering area, analysis of the optimized method for Globalstar system is given, and higher satisfaction of the proposed method is proved.

  6. Women on Boards and Corporate Social Responsibility

    Directory of Open Access Journals (Sweden)

    Eunjung Hyun

    2016-03-01

    Full Text Available A growing body of research suggests that having more women in the boardroom leads to better corporate social responsibility (CSR performance. However, much of this work views the CSR-enhancing effect of women directors as largely driven by their moral orientations and rarely considers other underlying mechanisms. Moreover, less explored are the firm-specific conditions under which such CSR-promoting roles of female directors might be performed more (or less effectively. In this paper, we seek to bridge this gap in the literature by (1 proposing an additional account for the positive influence of female independent directors on the firm’s CSR and (2 illuminating the organizational context in which female directorship is likely to translate into good CSR performance. We argue that women independent directors might take CSR issues more seriously than their male counterparts not only because of their stronger moral orientations, but also because they have reputational reasons to do so. Further, we suggest that female directors’ concerns about CSR-relevant matters are more (less likely to gain support from other members of the organization when their company is doing more (less business in the product markets where reputation for CSR is more (less vital for success. Using a sample of Standard & Poor’s (S&P 1500 index firms (2000–2009 and the data on their board composition and CSR ratings, we find strong support for our argument. We find that the number (or proportion of women independent directors is positively associated with a firm’s CSR ratings and that the strength of this relationship depends on the level of the firm’s consumer market orientation.

  7. New airBaltic owner on board

    Index Scriptorium Estoniae

    2011-01-01

    Transatlantic Holdings Company on ostnud 9,6 miljoni euro eest 59 110 airBalticu aktsiat. Läti majandusminister Artis Kampars soovib raskustesse sattunud lennufirma juhi Bertolt Flicki väljavahetamist. airBaltic plaanib koondamist. Riigikogu liige Arto Aas rõhutas, et airBalticu kadumine turult ei ole Eesti reisijate huvides, kuna ta on suuruselt kolmas lennukompanii Tallinna Lennujaamas

  8. Emergency medical equipment on board German airliners.

    Science.gov (United States)

    Hinkelbein, Jochen; Neuhaus, Christopher; Wetsch, Wolfgang A; Spelten, Oliver; Picker, Susanne; Böttiger, Bernd W; Gathof, Birgit S

    2014-01-01

    Medical emergencies often occur on commercial airline flights, but valid data on their causes and consequences are rare. Therefore, it is unclear what emergency medical equipment is necessary. Although a minimum standard for medical equipment is defined in regulations, additional material is not standardized and may vary significantly between different airlines. German airlines operating aircrafts with more than 30 seats were selected and interviewed with a 5-page written questionnaire between August 2011 and January 2012. Besides pre-packed and required emergency medical material, drugs, medical devices, and equipment lists were queried. If no reply was received, airlines were contacted another three times by e-mail and/or phone. Descriptive analysis was used for data presentation and interpretation. From a total of 73 German airlines, 58 were excluded from analysis (eg, those not providing passenger transport). Fifteen airlines were contacted and data of 13 airlines were available for analysis (two airlines did not participate). A first aid kit was available on all airlines. Seven airlines reported having a doctor's kit, and another four provided an "emergency medical kit." Four airlines provided an automated external defibrillator (AED)/electrocardiogram (ECG). While six airlines reported providing anesthesia drugs, a laryngoscope, and endotracheal tubes, another four airlines did not provide even a resuscitator bag. One airline did not provide any material for cardiopulmonary resuscitation (CPR). Although the minimal material required according to European aviation regulations is provided by all airlines for medical emergencies, there are significant differences in the provision of additional material. The equipment on most airlines is not sufficient for the treatment of specific emergencies according to published medical guidelines (eg, for CPR or acute myocardial infarction). © 2014 International Society of Travel Medicine.

  9. On-board target acquisition for CHEOPS

    Science.gov (United States)

    Loeschl, P.; Ferstl, R.; Kerschbaum, F.; Ottensamer, R.

    2016-07-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is the first ESA S-class and exoplanetary follow-up mission headed for launch in 2018. It will perform ultra-high-precision photometry of stars hosting confirmed exoplanets on a 3-axis stabilised sun-synchronous orbit that is optimised for uninterrupted observations at minimum stray light and thermal variations. Nevertheless, due to the satellites structural design, the alignment of the star trackers and the payload instrument telescope is affected by thermo-elastic deformations. This causes a high pointing uncertainty, which requires the payload instrument to provide an additional acquisition system for distinct target identification. Therefor a star extraction software and two star identification algorithms, originally designed for star trackers, were adapted and optimised for the special case of CHEOPS. In order to evaluate these algorithms reliability, thousands of random star configurations were analysed in Monte-Carlo simulations. We present the implemented identification methods and their performance as well as recommended parameters that guarantee a successful identification under all conditions.

  10. Atmosperic Science with VEM on board Veritas

    Science.gov (United States)

    Marcq, Emmanuel; Mueller, Nils; Tsang, Constantine; Kappel, David; Widemann, Thomas; Helbert, Joern; Smrekar, Suzanne

    2016-10-01

    Thermal brightness on Venus' night side is mainly modulated by the lower cloud layer extending from about 45 to 60 km in altitude, the most recent observations being the outstanding 2.3 µm images recorded by the IR2 camera onboard Akatsuki [Gibney, 2016]. The VEM multispectral imager (P.I.: J. Helbrt, DLR) onboard the proposed NASA VERITAS orbiter (P.I.: S. Smrekar, JPL) has the capability to observe these lower clouds. The VEM filter bands at 1.195, 1.310 and 1.510 µm will acquire very accurate images of the clouds: resolution in Phase II orbit after spatial binning will be about 20 km, which is close to the atmospheric blurring limit. This will lead to the acquisition of a large data set that allows for the study of the lower cloud morphology and climatology with good coverage in latitude, planetocentric longitude and local solar time.On the other hand, variations in the ratios of these three bands would help in constraining changes in composition, altitude and/or size distribution of the lower cloud particles [Barstow et al., 2012; Haus et al., 2014, 2015]. Such observations at small horizontal scales would be of great importance to microphysical models of Venus' clouds and haze system [McGouldrick et al., 2007]. Previous (Venus Express) or present (Akatsuki) observations of the lower clouds have proven the validity of these methods, but VEM onboard VERITAS will give an unprecedented coverage of the lower cloud horizontal structure on scales between 20 and 200 km in terms of spatial and temporal sampling, wavelength stability and signal-to-noise ratio.Tracking lower cloud motions as a proxy for wind measurements at a high spatial resolution would also be of great interest to mesoscale and general circulation models. Such a study is made challenging due to the fast zonal super-rotation so that clouds that are visible in the field of view usually cannot be observed 90 min later when VERITAS flies over the same region in its next orbit. However, the super-rotation breaks down for latitudes higher than 80°, so that cloud tracking would be possible in both north and south polar dipoles [Piccioni et al., 2007] well known for their complex and ever-changing dynamics.

  11. The XGS instrument on-board THESEUS

    Science.gov (United States)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  12. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places......, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces onboard. Anecdotal reports have related the development of “white feet” to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  13. On-Board Monitoring of Engine Oil

    Science.gov (United States)

    2011-04-01

    REPORT NUMBER(S) 21542 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES A Thesis...concentration* *Using techniques such as FTIR and wear particle analysis ( WPA ) Table 4: Level of significance for lubricant properties. Adapted from... distribution around the engine oil, while using less engine oil. By comparing the set-ups, it was possible to determine if the accuracy and precision of the

  14. On-board demux/demod

    Science.gov (United States)

    Sayegh, S.; Kappes, M.; Thomas, J.; Snyder, J.; Eng, M.; Poklemba, John J.; Steber, M.; House, G.

    1991-01-01

    To make satellite channels cost competitive with optical cables, the use of small, inexpensive earth stations with reduced antenna size and high powered amplifier (HPA) power will be needed. This will necessitate the use of high e.i.r.p. and gain-to-noise temperature ratio (G/T) multibeam satellites. For a multibeam satellite, onboard switching is required in order to maintain the needed connectivity between beams. This switching function can be realized by either an receive frequency (RF) or a baseband unit. The baseband switching approach has the additional advantage of decoupling the up-link and down-link, thus enabling rate and format conversion as well as improving the link performance. A baseband switching satellite requires the demultiplexing and demodulation of the up-link carriers before they can be switched to their assigned down-link beams. Principles of operation, design and implementation issues of such an onboard demultiplexer/demodulator (bulk demodulator) that was recently built at COMSAT Labs. are discussed.

  15. New airBaltic owner on board

    Index Scriptorium Estoniae

    2011-01-01

    Transatlantic Holdings Company on ostnud 9,6 miljoni euro eest 59 110 airBalticu aktsiat. Läti majandusminister Artis Kampars soovib raskustesse sattunud lennufirma juhi Bertolt Flicki väljavahetamist. airBaltic plaanib koondamist. Riigikogu liige Arto Aas rõhutas, et airBalticu kadumine turult ei ole Eesti reisijate huvides, kuna ta on suuruselt kolmas lennukompanii Tallinna Lennujaamas

  16. APXS on board Chandrayaan-2 Rover

    Science.gov (United States)

    Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.

    2012-07-01

    Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal electronics consists of a PCB having digital, power and rover interface electronics circuits, which are housed inside the Warm Electronics Box (WEB) mounted under the rover chassis where the temperature is maintained between -50°C to +70°C. Presently, we have completed the design verification model of the APXS payload and engineering model of the payload is in progress. The developed system has been tested using laboratory X-ray sources and observed an energy resolution of about 150eV at 5.9keV when the detector is cooled to -35°C. We also carried out the detection of X-ray fluorescence for some of the USGS standards for a fixed geometry of detector, source and sample, using ^{55}Fe and ^{241}Am X-ray sources. It is shown that the count rate of a given peak varies linearly with the concentration of the corresponding element. The detailed developments and results will be discussed at the conference.

  17. Women on board and firm performance

    NARCIS (Netherlands)

    Lückerath – Rovers, M.

    2010-01-01

    This study addresses the research question of whether companies with female directors on the board have a higher average performance than companies with no female directors. The debate about the low representation of women in the top management of companies involves both moral arguments (equality be

  18. US experiments flown on the Soviet satellite COSMOS 936

    Science.gov (United States)

    Rosenzweig, S. N.; Souza, K. A.

    1978-01-01

    Results of spaceborne experiments onboard the Cosmos 936 satellite are reported. Alterations in normal bone chemistry, muscle structure, and general physiology resulting from spaceflight are covered along with measurements of cosmic radiation and its potential hazard to man during prolonged spaceflights. Postflight activities involving the seven U.S. experiments are emphasized.

  19. The US Experiments Flown on the Soviet Biosatellite Cosmos 1887

    Science.gov (United States)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1990-01-01

    Cosmos 1887, a biosatellite containing biological and radiation experiments from the Soviet Union, the United States and seven other countries, was launched on September 29, 1987. One Rhesus monkey's feeder stopped working two days into the flight and a decision was made to terminate the mission after 12 1/2 days. The biosatellite returned to Earth on October 12, 1987. A system malfunction, during the reentry procedure, caused the Cosmos 1887 spacecraft to land approximately 1800 miles beyond the intended landing site and delayed the start of the postflight procedures by approximately 44 hours. Further information on the conditions at landing and postflight activities is included in the Mission Operations portion of this document. U.S. and U.S.S.R. specialists jointly conducted 26 experiments on this mission, including the postflight transfer of data, hardware and biosamples to the U.S.

  20. Astronaut Returns Space-Flown Flag to NRAO

    Science.gov (United States)

    2002-04-01

    A NASA Astronaut who carried a flag bearing the logo of the National Radio Astronomy Observatory (NRAO) on last month's Shuttle flight returned that flag to the observatory on Friday, April 12, at a ceremony in Socorro. Dr. John M. Grunsfeld, payload commander of the STS-109 flight, also addressed students at the New Mexico State Science Fair on Saturday, April 13, on the campus of New Mexico Tech in Socorro. Dr. John M. Grunsfeld: Click on image for larger view Dr. John M. Grunsfeld Grunsfeld, an astronomer who observed with NRAO's Very Large Array (VLA) radio telescope in 1991, carried the 3-by-5-foot NRAO flag aboard Columbia during the March 1-12 mission to service the Hubble Space Telescope. The NRAO flag, made by Socorro resident Dora Spargo, had been sent to the observatory's facilities in Socorro; Tucson, AZ; Green Bank, WV; and Charlottesville, VA, where NRAO employees signed it prior to the flight. "With our signatures on that flag, we all felt like we were riding along with John aboard the Shuttle," said NRAO Director Paul Vanden Bout. "We are proud that NRAO was represented on a mission that was so important to astronomy," Vanden Bout added. During the flight, Grunsfeld performed three of the five spacewalks in which crew members successfully upgraded the Hubble Space Telescope. The astronauts left the space observatory with a new power unit, a new camera and new solar arrays. The upgrades, said Grunsfeld, leave the orbiting telescope with "its discovery potential significantly increased." STS-109 was Grunsfeld's fourth space flight and his second visit to Hubble. A research astronomer who received his bachelor's degree in physics from MIT and a Ph.D from the University of Chicago in 1988, Grunsfeld was selected to the astronaut corps in 1992. His first space flight, in 1995, featured astronomical observations using the Astro observatory, a three-telescope facility aboard the Shuttle Endeavour. In 1997, Grunsfeld rode Atlantis on a 10-day mission to the Russian space station Mir. In 1999, he performed two space walks during a Discovery mission to install new instruments on Hubble. In 1991, while a senior research fellow at Caltech, Grunsfeld was the principal investigator for a series of VLA observations of a gamma-ray-emitting object, conducted at the same time the object was observed by the orbiting Compton Gamma Ray Observatory. "I still think fondly of my observations at the VLA," said Grunsfeld. During his visit to New Mexico, Grunsfeld formally presented the NRAO flag to the observatory, along with documentation of its flight aboard Columbia. He also addressed the awards ceremonies of the New Mexico State Science Fair. "We are particularly pleased that John's visit allowed him to speak to the science fair students," said Jim Ulvestad, NRAO's Assistant Director for New Mexico operations. "Those students heard from someone whose science training has literally taken him beyond the Earth," Ulvestad said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  1. Hemopoietic tissue in newts flown aboard Foton M3

    Science.gov (United States)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non-operated animals. The lack of pronounced blood changes in newts distinguishes them from rats and mice, which characterized marked differences either in cell content in peripheral blood or hemopoietic stem and committed cells in blood-forming tissues. Therefore taken together the data demonstrate that hemopoietic responses spaceflight factors of species from different taxonomic groups are dissimilar.

  2. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    Science.gov (United States)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  3. Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgravity-Results of an in vitro experiment on board of the Shenzhou-8 space mission

    Science.gov (United States)

    Paulsen, Katrin; Tauber, Svantje; Goelz, Nadine; Simmet, Dana Michaela; Engeli, Stephanie; Birlem, Maria; Dumrese, Claudia; Karer, Anissja; Hunziker, Sandra; Biskup, Josefine; Konopasek, Shalimar; Suh, Durie; Hürlimann, Eva; Signer, Christoph; Wang, Anna; Sang, Chen; Grote, Karl-Heinrich; Zhuang, Fengyuan; Ullrich, Oliver

    2014-01-01

    During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.

  4. Research on on-board distance measurement safety warning system based on DSP%基于DSP的车载测距安全预警系统研究

    Institute of Scientific and Technical Information of China (English)

    仇建华; 王建勇

    2014-01-01

    For the problems of traffic safety of the highway vehicle longitudinal collision accident , a on-board distance measurement safety warning system is designed, this system real-time acquisition obstacle’s movement before vehicle by laser radar sensor, using the high-speed digital signal processing DSP TMS320DM643 as the platform for primary data information processing, timely calculating and analysis the vertical distance between host vehicle and front vehicle whether meet the needs of the safety vehicle distance, using MC9S12XS128 MCU to complete the acquisition and processing parameters of vehicle operation and sound and light warning. The experimental results show that high reliability work and low cost price of this system has broad application prospects.%针对高等级公路车辆纵向碰撞事故频发的问题,设计了一种基于DSP的车载测距安全预警系统,该系统通过激光雷达测距传感器实时采集车辆前方障碍物运动状况,由TMS320DM643高速数字信号处理DSP进行主要的数据信息处理,适时解算和分析前方车辆与本方车辆之间的纵向车距是否满足安全车距的需要,利用MC9S12XS128单片机完成车辆行驶状态参数的采集处理及声光预警。实验结果表明,该系统工作可靠性高、价格成本低,具有广泛的应用前景。

  5. 车载超级电容储能系统间接电流控制策略%Indirect Current Control Strategy of On-Board Supercapacitor Energy Storage System of Railway Vehicle

    Institute of Scientific and Technical Information of China (English)

    赵坤; 王椹榕; 王德伟; 杨奇平; 游小杰

    2011-01-01

    This paper discusses the control strategy of energy management in single railway vehicle with a on-board supercapacitor energy storage system.First,the structure of the energy storage system is introduced.Second,the model of energy storage system is built and a method to design the current loop for bi-directional DC-DC converter for energy storage is proposed.Finally,an indirect current control strategy is established to ensure an optimal power flow of single railway vehicle.The simulation and the experimental results verify that the new control strategy can avoid the voltage fluctuation and regeneration failure.%主要探讨了单列车车载超级电容能量管理系统的控制方法。首先对车载超级电容储能系统进行介绍;然后建立超级电容储能系统的数学模型,给出了超级电容储能系统充放电电流控制环的设计方法,提出了一种车载超级电容储能系统间接电流能量管理控制策略;最后通过仿真和实验结果证明该控制策略可以有效地抑制受电弓处电压波动,防止再生失效。

  6. Research of On-Board Optical Switching Assembly Algorithm Based on Mixed Threshold and Round-Robin Scheme%基于Round-Robin方法的星载光交换混合门限组装算法研究

    Institute of Scientific and Technical Information of China (English)

    李瑞欣; 赵尚弘; 李勇军; 张晓燕; 康巧燕

    2013-01-01

    根据卫星光交换网络的高带宽、低丢包率和高链路利用率应用需求,结合现有的地面光交换组装算法,提出了一种新的基于混合门限和轮询方式的星载光交换组装算法.算法首先按照优先级缓存分组,再按照混合门限和轮询方式组装IP分组,减少突发数据包的空闲率,提高了链路利用率.理论分析与仿真证明该算法计算复杂度与轮询方式相同,突发数据包空闲率低于10_4,丢包率在负载为0.5时平均达到10-6,适用于星载光交换系统.%According to the high bandwidth, low packet-loss ratio, high channel utility requirements of satellite optical switching network, an on-board assembly algorithm based on mixed threshold and round-robin scheme is proposed combining the ground optical assembly algorithm. The algorithm caches the IP packet according to the parity, and assembles the packet according to the mixed threshold and round-robin scheme. Through the scheme, the padding ratio of burst is lowered. From the results of analysis and emulation, it is found that the complexity is the same as that of the round-robin method; the padding ratio of burst data packer is less than 10~4 when the load is 0.65, and the packet loss rate is 10-6 when the load is 0. 5. This algorithm meets the requirements of optical satellite communications.

  7. Development of waste and effluents management on board in the seismic ship operating in Brazilian seas; Desenvolvimento do programa de gestao de residuos solidos e efluentes a bordo de um navio de sismica operando em aguas brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Mauricio Duppre de [Okeanos Consultoria e Meio Ambiente Ltda. (Brazil); Derntl, Jose Renato; Pereira, Edisio; Ribeiro, Camila Castroviejo da Silva [GEOCOOP Cooperativa de Trabalho, Rio de Janeiro, RJ (Brazil); Uller, George Andre; Oliveira, Joao Luiz Martinez de [CGG do Brasil, Rio de Janeiro, RJ (Brazil); Miranda, Cristina Maschio de [Nautilus Cooperativa de Trabalho (Brazil)

    2004-07-01

    This work presents the results regarding CGG's Waste and Effluents Management Program between February 2003 and April 2004 on M/V CGG HARMATTAN. It main objective is to trace all waste and effluents since its generation until its final disposal. To implement this program CGG has two environmental technicians on board, whose are responsible for supervising the program, as well as educating, training, and optimizing waste and effluents segregation. Furthermore, the company also employs a consultant team to logistic management on shore; whose are responsible for executing, transferring, transporting and yours final disposing. Results show a monthly generation of 7.428 Kg and 97.3 m3 in average for waste and effluents respectively. Data indicates waste generation peaks during port calls. Waste tracing has improved along the year, allowing better control and resulting in value decreasing for port calls. Effluents are constantly generated in the same amount with monthly average of 50.2 m3 for bilge water, 41 m3 for sewage and 6.1 m3 for sludge. The percentage of non-recyclable waste sent to cleaner technology (co-processing and re-use) has been increasing along the year, replacing industrial landfill and incinerator use. Latest numbers already show the first results concerning it (2.2% re-used and 24,5% co-processed of total produced solid garbage). Re -used numbers are resulted from pioneer partnership between CGG and fishermen communities, for their original activity. The reached results and environmental indicators show that program efficiency has been evolving, considering logistic, economic, social and environmental aspects, constantly optimized with measures to increase control. (author)

  8. 我国国际邮轮乘务员跨文化适应问题探讨%On the Intercultural Adaptation of Chinese Attendants on-board International Cruise Vessels

    Institute of Scientific and Technical Information of China (English)

    朱常英

    2014-01-01

    Because of the rapid development of cruise tourism in China,more and more Chinese cruise attendants are employed on modern contemporary cruise ships. Those cruise vessels are like UN in miniature,so the life of cruise attendants,the cruise attendance services offered and managed on-board are of international styles. These pose great challenges to the Chinese attendants. Sampling the work and life experience of 11 Chinese cruise attendants,this article is aimed at presenting the major factors affecting their intercultural adaption abilities. Then it tries to explore some problems felt by the Chinese cruise attendants who have adapted themselves to cruise culture.%我国邮轮旅游业快速发展,越来越多的中国籍邮轮乘务员出现在各大国际邮轮。国际邮轮是一个国际化的社区,邮轮乘务员的工作和生活呈现国际化特色,这些对我国国际乘务员跨文化适应能力提出了很大挑战。本文结合在丽星和歌诗达邮轮上工作的11名中国籍邮轮乘务的工作和生活经历,阐述了我国国际邮轮乘务员跨文化适应能力的主要影响因素和跨文化适应的后续问题。

  9. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D; Wang, W; Jiang, B; Fu, D [Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin (China)

    2015-06-15

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications.

  10. 利用小波分析在轨识别空间目标轨道机动%Detection of Space Target Orbit Maneuver on Board by Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    苏建敏; 董云峰

    2012-01-01

    空间目标的轨道机动往往隐藏在测量噪声中,不容易被识别出来.轨道机动可以引起机械能的突变,用空间目标与航天器的单位质量机械能差作为机动识别的特征信号,不会引入航天器本身的定轨误差.用小波多尺度分解处理含噪声的特征信号,对分解后的数据利用算法识别是否存在机动.仿真结果表明,本文提供的方法能有效识别空间目标的轨道机动.%It is difficult to detect an orbit maneuver of space target with measurement noise.Orbit maneuver brings step of mechanical energy.Mechanical energy difference of unit mass between space target and spacecraft is treated as signal of maneuver detection,so spacecraft orbit determination error won't be added to the signal.In fact,the mechanical energy difference is only determinate by orbit radius of reference spacecraft and relative position and velocity between reference spacecraft and target.Wavelet analysis in differential scale was used to process the signal with noise.The signal has obviously step feature,and Harr wavelet function was selected in wavelet analysis because of its step feature which is same to the signal.Data after wavelet analysis was used to detect orbit maneuver.In the data process,a valve value is necessary.To some special orbit,we got the valve value through many simulations at first.The data process method which detect orbit maneuver of space target is verified by computer numerical simulation.The simulation shows that the correct rate of the detection of orbit maneuver raise when the maneuver level increase.The method can be used on board because it is automatic completely.

  11. 机载千伏级CBCT监测鼻咽癌IMRT摆位误差的分析%Analysis of Setup Errors of IMRT for Nasopharyngeal Carcinoma with On-board KV-CBCT

    Institute of Scientific and Technical Information of China (English)

    王树超; 张军宁; 邰国梅; 彭钦; 查燕燕; 任朋; 刘凯丽

    2012-01-01

    Objective To investigate the application of KV-cone beam CT ( CBCT ) to monitor variance and influence factors of the setup errors of fractionated intensity-modulated radiation therapyv IMRT ) for nasopharyngeal carcinoma. Methods 15 patients diagnosed with early nasopharyngeal carcinoma by pathology were selected and were treated by fractionated IMRT. Pa-tients were posed by the original positions every week in order to get fractional setup errors with on-board KV-CBCT. The mean values, standard deviations, 95 % confidence intervals ( CI ) of three dimensional and the horizontal rotation errors were calculat-ed. Analyze the effects of body mass index and weight loss on setup errors. Results The mean values of set up errors on ventral-dorsal, cranial-caudal, medio-lateral directions and rotation were -0. 1833 cm, -0. 0322 cm,0. 0967 cm, -0. 8333°. The dis-placements increased with the treatment progress along the ventral-dorsal direction, absolute values of the first setup errors, the system errors of the medio-lateral direction and the rotation errors in the patients with BMI≧25 were more obvious than those with BMI <25. Weight loss can result in the center of actual setup position shifting to the ventral direction and horizontal rotation coun-terclockwise. Conclusion The nasopharyngeal carcinoma patients with BMI ≧25 should be treated by adaptive radiation therapy. The treatment planning should be adjusted when the weight lost is over 7. 10% during the treatment course.%目的 探讨应用机载千伏级CBCT监测鼻咽癌患者调强放疗疗程中摆位误差的变化和影响因素.方法 选取经病理检查确诊的鼻咽癌早期患者15例,行调强放疗.患者每周按原始计划标志点摆位,利用机载KV-CBCT扫描获取摆位误差,每周计算所有患者在三维方向和水平面旋转摆位误差平均值、标准差及95%可信区间(CI);分析摆位误差随疗程进行的变化情况;探讨体重指数(BMI)和体重变化

  12. The Setup Errors of IMRT for Upper Esophageal Carcinoma with On-Board KV-CBCT%机载千伏级锥形束CT研究食管上段癌摆位误差

    Institute of Scientific and Technical Information of China (English)

    邰国梅; 蔡晶; 金建华

    2014-01-01

    目的:应用机载千伏级锥形束CT(KV-CBCT)监测食管上段癌调强放疗患者疗程中摆位误差的变化和影响因素。方法每周按治疗计划标志点对16例调强放疗食管癌患者摆位,利用机载KV-CBCT扫描获取摆位误差,计算在相同治疗阶段所有患者三维线性方向和水平面旋转方向摆位误差平均值、标准差及95%可信区间(CI);分析随疗程进行摆位误差的变化情况;探讨体重指数(BMI)和体重变化对摆位误差的影响。结果随疗程进行,摆位中心点向腹侧偏移明显。BMI≥25 kg/m2患者在垂直方向及水平面旋转方向首次摆位误差绝对值较BMI<25 kg/m2患者明显增大;BMI≥25 kg/m2患者在垂直方向及水平面旋转方向的系统误差较BMI<25 kg/m2患者明显增大;患者体重下降会引起摆位中心点往腹侧偏移和水平面逆时针旋转。结论在食管上段癌调强放疗中:(1)BMI≥25 kg/m2患者有必要进行自适应放疗;(2)放疗疗程中体重减少超过7.10%时,需要及时调整放疗计划。%Objective Using KV-cone beam CT (KV-CBCT) on IGRT to study the setup errors for upper esophageal carcinoma treated by fractionated intensity-modulated radiation therapy (IMRT). Methods Sixteen patients diagnosed with early upper esophageal carcinoma by pathology were selected. They were treated by fractionated IMRT. During the treatment courses, patients were posed by the original positions every week in order to get fractional setup errors with on-board KV-CBCT. The mean values, standard deviations, 95%confidence intervals (CI) of three dimensional and the horizontal rotation errors were calculated. The effects of body mass index (BMI) and weight loss on setup errors was analyzed. Results The displacements increased with the treatment progress along the ventral-dorsal direction. Absolute values of the first setup errors, the system errors of the ventral-dorsal direction and the horizontal

  13. 机载制氮系统中空纤维膜分离特性%Separation performance of hollow fiber membrane for on-board inerting gas generating system

    Institute of Scientific and Technical Information of China (English)

    冯诗愚; 卢吉; 刘卫华; 蒋军昌; 刘苏彦

    2012-01-01

    采用微元方法建立了机载制氮系统中空纤维膜数学模型,并使用龙格-库塔法对其进行了数值计算,与实验数据进行对比后显示,误差不超过10%.然后分析了单位膜面积进料量、膜丝(membrane fiber)内外压比和氧氮渗透比其对产品气氧体积分数和制氮效率的影响.结果表明:增加单位膜面积进料量虽然可提高制氮效率的增加,但是会显著降低产品气中氮的体积分数,因此需要采用合适的流程设计以克服此缺点.压比和氧气渗透系数的增加均会使氧体积分数与制氮效率减小,但是提高渗透比对制氮效率影响不大,因此对于气体分离过程是有利的.通过计算模型及实验数据,分析了中空纤维膜分离理想度随压比和温度的变化关系,结果显示压力对理想度影响较大,随着压力增加,实际分离过程与理论值偏差趋大,而温度对理想度影响较小.%The mathematical model of the hollow fiber membrane of on-board inert gas generation system (OBIGGS) is set up in term of the differential method, and solved by the Runge-Kutta method. The comparison between calculating results and experimental data published in literature reveals that the deviation is within 10%. Furthermore, this theoreti- cal model is employed to analyze the influence of the specific feed flux of membrane area, pressure ratio of membrane fiber, the separation factor and the permeability coefficient to the volume fraction of oxygen in production gas and the production efficiency of nitrogen. The study shows that though the increase of the specific feed flux of membrane area could positively promote the production efficiency of nitrogen, the volume fraction of oxygen re- duces sharply. Hence, an appropriate process of OBIGGS should be designed to overcome the disadvantage mentioned above. The increase of the pressure ratio and the permeability coefficient of oxygen will decrease the production efficiency of

  14. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

    Science.gov (United States)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.; Lee, S.; Chung, C.-Y.

    2016-02-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an

  15. Research on test case generation of on-board equipment based on UML 2.0 activity diagrams%基于UML2.0活动图的车载设备测试用例生成方法研究

    Institute of Scientific and Technical Information of China (English)

    靖焱林; 唐涛

    2011-01-01

    It was focused on the methodology of generating test cases for CTCS-2 on-board equipment based on UML 2.0 activity diagrams. The architecture and function of the on-board equipment was introduced. The paper proposed a formal definition of the activity diagram, described the design of test cases which included some rules for modeling activity with the purpose of testing formally defining of test case, testing covering rules, the test scenario generation based on the traversal algorithm of Depth First Search with rollbacks and the algorithm of test case generating. The test cases were generated by using the method proposed.%重点研究基于UML2.0活动图的CTCS-2级车载设备测试用例生成方法.介绍车载设备的构成和功能,对活动图进行形式化定义,阐述测试用例的设计,包括车载设备活动图建模规则、测试用例的形式化定义、测试覆盖准则的定义、基于深度优先搜索并且带回溯的遍历算法的测试场景生成,以及测试用例的生成算法,最后实现了测试用例生成.

  16. Revision of IVE model using on-board emission measurements for diesel vehicles and application of revised IVE model%利用柴油车车载排放测试对IVE模型的修正及模型应用

    Institute of Scientific and Technical Information of China (English)

    薛佳平; 张清宇; 田伟利

    2011-01-01

    IVE模型是国内外应用较为广泛的机动车排放模型之一,为了使该模型在计算机动车排放时更为符合当地实际情况,本文首先将13辆我国道路上典型柴油车的车载排放测试数据与IVE模型基本排放因子进行了对比研究,获得了模型基本排放因子的修正系数,然后将修正后的IVE模型应用于宁波市机动车污染物排放因子的计算,获得宁波市各类型车辆的排放因子.结果表明,模型基本排放因子与排放测试结果相接近的污染物顺序依次为CO、NOX、HC;宁波市机动车CO的启动排放因子远远高于其他污染物,相当于HC和NOX启动排放因子的20倍左右;宁波市机动车运行排放因子中,公交车污染物排放因子最大,其次是重型货车和乘用车,最后是轻型货车.%IVE model is one of the widely used international vehicle emission models. In order to make it more adaptive to vehicles in local area such as China, basic emission factors in IVE model are revised in this study. Firstly,basic emission factors of diesel vehicles in IVE model are compared with on-board emission measurements of 13 typical diesel vehicles, and revised coefficients are acquired. Then, revised IVE model is used to calculate vehicle emission factors in Ningbo. Results show that basic emission factors of CO in IVE model are mostly close to on-board emission measurements, following NOx and HC. Start-up emission factors of CO from vehicles in Ningbo are much higher than other pollutants, which are about 20 times HC and NOx. Running emission factors of bus are the highest, following heavy-duty truck, passenger car, and light-duty truck.

  17. 重型柴油机SCR后处理系统在线故障诊断功能的开发%Development of the On-board Diagnostics Function of SCR After-treatment System for Heavy-duty Diesel Engines

    Institute of Scientific and Technical Information of China (English)

    张人选; 张云龙; 帅石金

    2012-01-01

    According to the requirements of national regulation HJ 437-2008 on the on-board diagnostics ( OBD) of emissions for heavy-duty vehicle, the OBD functions of selective catalytic reduction after-treatment system based on both NO, and Adblue tests are developed for heavy-duty diesel engine, and verified by the hardware-in the-loop simulation test with its communication mode confirming to SAE J1939 standard.%根据国家法规HJ 437-2008中对重型车排放在线故障诊断(OBD)的要求,为重型柴油机分别开发了基于NOx检测和Adblue检测的尿素选择催化还原(SCR)后处理系统的OBD功能,并得到硬件在环仿真试验的验证,其通信模式符合SAE J1939标准.

  18. Analysis and research on inconsistency problem between section state reported by interlock and train location reported by on board equipment%对联锁报告区段状态和车载报告列车位置信息不一致问题的分析与研究

    Institute of Scientific and Technical Information of China (English)

    张友兵; 张波; 刘志刚

    2012-01-01

    CTCS-3级列控系统的列车走行累计误差如果过大,有可能造成联锁设备向RBC报告区段占用状态与车载设备向RBC报告列车位置之间存在信息不一致问题,导致列车运行效率降低,影响行车安全.本文针对该问题进行了数学建模,通过对模型的分析研究,说明了问题发生的原因,并提出了降低问题发生概率的方法.%In the CTCS-3, the accumulated error of the train running distance was inevitable when the train was running. If the accumulated error was too large, it was probable to cause the inconsistency problem between section state reported by interlock equipment and train location reported by on board equipment, reduce the train running efficiency and impact the traffic safety. In this paper, the mathematical model was built. With the theoretical analysis to the model, the occurrence reason of the problem was illustrated, the method of reducing the occurrence probability of this problem was put forward.

  19. 航天飞机G417载荷研制及油滴与水滴接触微重力实验%Development of G417 payload on board on space shuttle and an experiment of an oil drop contacting with a water drop

    Institute of Scientific and Technical Information of China (English)

    冯伟泉; 柯受全; 于东波; 黎厉伟

    2014-01-01

    In this paper, the G-417 payload on board of the space shuttle STS-64 mission by GAS approach is analyzed, along with the“oil drop and water drop contacting”experiment. Beijing Institute of Spacecraft Environment Engineering(BISEE) was responsible for the development of the G-417 payload. The development experiences and the flight experimental results may provide some guidance to the micro-gravity experiment to be implemented on the China’s space station.%文章介绍了曾经由航天飞机STS-64飞行任务搭载的编号为G417载荷的研制经验以及利用该载荷在航天飞机上开展的油滴与水滴接触微重力实验。北京卫星环境工程研究所承担了该载荷全部研制任务,其研制经验和飞行实验可为我国将来空间站开展微重力实验提供参考。

  20. The OMEGA Instrument on board Mars Express: First Results

    Science.gov (United States)

    Bellucci, G.; Altieri, F.; Bibring, J. P.; OMEGA Team

    OMEGA (Observatoire pour la Mineralogie, l'Eau, le Glace e l'Activité) is a visible and near infrared mapping spectrometer, operating in the spectral range (0.35 - 5.1 μm). Combining imagery and spectrometry, OMEGA is designed to provide the mineralogical and molecular composition of the surface and atmosphere of Mars through the spectral analysis of the diffused solar light and surface thermal emission. OMEGA will provide a global coverage at medium resolution (2 to 5 km) of the entire surface of Mars from altitudes 1500 to 4000 km, and high resolution (Fisica dello Spazio Interplanetario, Rome, Italy) and IKI (Institute for Space Research, Moscow, Russia). In this paper we present the first results after few months from starting of its observations.

  1. The ART-XC Instrument on Board the SRG Mission

    Science.gov (United States)

    Pavlinksy, M.; Akimov, V.; Levin, V.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovish, A.; Sunyaeve, R.; Churazov, E.; Sazonov, S.; Revnivtsev, M.; Lutovinov, A.; Molkov, S.; Kudelin, M.; Garanin, S.; Grigorovich, S.; Litvin, D.; Gubarev, M.; Ramsey, B.; Kilaru, K.; ODell, S. L.; Elsner, R.

    2012-01-01

    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in 2014 from Baikonur, by a Zenit rocket with a Fregat booster and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescopes . a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules with seven corresponding cadmium-telluride focal plane detectors. Each will operate over the approximate energy range of 6- 30 keV, with an angular resolution of <1 ', a field of view of 30 ' and an energy resolution about 10% at 14 keV. The NASA Marshall Space Flight Center (MSFC) will fabricate some of the mirror modules, to complement others fabricated by VNIIEF in Russia.

  2. Overall design of imaging spectrometer on-board light aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Zhongqi, H.; Zhengkui, C.; Changhua, C.

    1996-11-01

    Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraft imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.

  3. X-ray polarimetry on-board HXMT

    CERN Document Server

    Soffitta, Paolo; Tagliaferri, Gianpiero; Costa, Enrico; Pareschi, Giovanni; Basso, Stefano; Cotroneo, Vincenzo; Frutti, Massimo; Lazzarotto, Francesco; Muleri, Fabio; Rubini, Alda; Spandre, Gloria; Brez, Alessandro; Baldini, Luca; Bregeon, Jean; Minuti, Massimo; Matt, Giorgio; Frontera, Filippo

    2008-01-01

    The development of micropixel gas detectors, capable to image tracks produced in a gas by photoelectrons, makes possible to perform polarimetry of X-ray celestial sources in the focus of grazing incidence X-ray telescopes. HXMT is a mission by the Chinese Space Agency aimed to survey the Hard X-ray Sky with Phoswich detectors, by exploitation of the direct demodulation technique. Since a fraction of the HXMT time will be spent on dedicated pointing of particular sources, it could host, with moderate additional resources a pair of X-ray telescopes, each with a photoelectric X-ray polarimeter (EXP2, Efficient X-ray Photoelectric Polarimeter) in the focal plane. We present the design of the telescopes and the focal plane instrumentation and discuss the performance of this instrument to detect the degree and angle of linear polarization of some representative sources. Notwithstanding the limited resources, the proposed instrument can represent a breakthrough in X-ray Polarimetry.

  4. Distributed computing for autonomous on board planning and sequence validations

    Science.gov (United States)

    Ko, A. Y.; Alkalai, L.; Chau, S.; Cheung, K.; Tong, D.; Maldague, P. F.

    2002-01-01

    We propose a new conceptual approach to system-level autonomy that exploits in a synergistic way recent breakthroughs in three specific areas: automatic generation of embeddable planning and validation software, integration of telecommunications forecaster and planning tools, and fault-tolerant assignment of computing tasks to multiple processors.

  5. Robotics On-Board Trainer (ROBoT)

    Science.gov (United States)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  6. Using Games to Support the Curriculum: Getting Teachers on "Board"

    Science.gov (United States)

    Crews, Annalisa

    2011-01-01

    Research supports the use of games in public, academic, and school libraries as a way to engage patrons and students, and to help develop important skills. Games provide stories and information, presented in a new format. They encourage critical thinking and problem solving and accomplish objectives of curriculum frameworks and meet AASL Standards…

  7. GRAS radio occultation on-board of Metop

    Science.gov (United States)

    von Engeln, A.; Andres, Y.; Marquardt, C.; Sancho, F.

    2011-01-01

    The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.

  8. Hunting Multimessenger Transients with the IBIS Instrument on board INTEGRAL

    Science.gov (United States)

    Rodi, James; Bazzano, Angela; Ferrigno, Carlo; Mereghetti, Sandro; Natalucci, Lorenzo; Savchenko, Volodymyr; Ubertini, Pietro

    2017-08-01

    The growing number of detections of gravitational wave events and high-energy neutrinos has spurred searches for electromagnetic (EM) counterparts across the spectrum. Observations at X-ray/gamma-ray energies provide one of the best opportunities to detect an EM signature for one of these events. In the case of compact object mergers involving a neutron star, a GRB-like event may be detected, though the LIGO/VIRGO collaboration has yet to detect any such mergers. Also, GRBs are a possible origin for Ultra High Energy Cosmic Rays (UHECRs) and may be associated with high-energy neutrinos. The gamma-ray observatory INTEGRAL is well equipped to detect the EM counterparts of multimessenger transient events with its good sensitivity from X-rays to gamma-rays (up to ~10 MeV) combined with a large field-of-view (~400 cm2 with >50% sensitivity). At soft gamma-ray energies, it can also behave as an all-sky monitor as its high-energy detectors are unshielded from large parts of the sky. Hereafter, we discuss the main characteristics of the INTEGRAL/IBIS soft gamma-ray detector (PICsIT) and its sensitivity regarding the detection of EM counterparts of multimessenger transients above ~200 keV.

  9. Passivation Strategies on Board Airbus ds Leo Pcdus

    Directory of Open Access Journals (Sweden)

    Lapeña Emilio

    2017-01-01

    This paper deals with the different strategies followed in the Airbus DS LEO PCDUs regarding the implementation of the passivation function in several LEO missions with different architectures (DET and MPPT solar array power conditioning. In the selection of the solution implemented in the frame of every mission, a key driver is the degree of advance in the test performed over flight representative battery modules regarding their safe behavior when deeply depleted after a long period in orbit with the passivation applied over the spacecraft.

  10. On-Board GPS Clock Monitoring for Signal Integrity

    Science.gov (United States)

    2010-11-01

    Dyke, K. Kovach , J. Kraemer, J. Lavrakas, J. P. Fernow, J. Reese, and N. Attallah, 2003, “GPS Integrity Failure Modes and Effects Analysis,” in...California, USA (Institute of Navigation, Alexandria, Virginia), pp. 689-703. [9] K. Van Dyke, K. Kovach , J. Lavrakas, and B. Carroll, 2004

  11. Characterizing fluidic seals for on-board reagent delivery

    Science.gov (United States)

    Inamdar, Tejas; Anthony, Brian W.

    2013-03-01

    The reagent delivery mechanism in a point-of-care, HIV diagnostic, microfluidic device is studied. Reagents held in an aluminum blister pack are released on the opening of a fluidic seal. The fluidic seals, controlling the flow of reagents, are characterized to reduce anomalies in the desired flow pattern. The findings of this research can be divided into three categories - 1) bonding phenomenon 2) influence of seal pattern on flow and rupture mechanics and 3) process parameters which minimize flow anomalies. Four seal patterns - line hemisphere, line flat, chevron hemisphere and chevron flat were created and tested for reagent delivery using a flow sensor and a force gauge. Experiments suggest that one of the patterns - line-flat - inducted the fewest flow anomalies. A parameter scoping exercise of the seal manufacturing process parameters (temperature, time, pressure) was performed for the line flat seal. Temperature, time, pressure / gap and distance settings which minimize flow anomalies were found.

  12. 40 CFR 86.1806-01 - On-board diagnostics.

    Science.gov (United States)

    2010-07-01

    ..., following a request from the manufacturer, revise the size of the orifice to the smallest orifice feasible... checks for computer input components (input values within manufacturer specified ranges), and... battery system component. Possible battery system components requiring monitoring are: battery water level...

  13. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other factors of space flight change direction of biological processes, and show a possibility to get special kinds of bioproducts with new properties.

  14. On-Board Pressurization Systems for Sample Return Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To-date, the realization of high-performance liquid bipropellant rocket engines for ascent vehicle and sample return applications has largely been hindered by the...

  15. The K9 On-Board Rover Architecture

    Science.gov (United States)

    Bresina, John L.; Bualat, Maria; Fair, Michael; Washington, Richard; Wright, Anne

    2006-01-01

    This paper describes the software architecture of NASA Ames Research Center s K9 rover. The goal of the onboard software architecture team was to develop a modular, flexible framework that would allow both high- and low-level control of the K9 hardware. Examples of low-level control are the simple drive or pan/tilt commands which are handled by the resource managers, and examples of high-level control are the command sequences which are handled by the conditional executive. In between these two control levels are complex behavioral commands which are handled by the pilot, such as drive to goal with obstacle avoidance or visually servo to a target. This paper presents the design of the architecture as of Fall 2000. We describe the state of the architecture implementation as well as its current evolution. An early version of the architecture was used for K9 operations during a dual-rover field experiment conducted by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) from May 14 to May 16, 2000.

  16. GENDER ISSUES – WOMEN’S REPRESENTATION ON BOARDS

    Directory of Open Access Journals (Sweden)

    Elena CHIȚIMUȘ

    2014-11-01

    Full Text Available Corporate Governance is seen as a set of systems, rules, regulations that are in place in order to keep the company on a straight path and to give assurance to the shareholders that their investment is well protected. One of the instruments that are at the choice of the shareholders is the Board of Directors (BoD. Debates go around its role of monitoring and supervising, on obtaining an adding value board or a competitive advantage, on the changes that it has suffered along the years. This paper is a literature review on the diversity in gender, age and experience of the members of the board that have in their hands the power to bring value or destruction to companies. The study shows that are many contradictory results and opinions on the matter and that company’s performance is determined by many factors combined together, like a good mix of culture, experience, professionalism. Discrimination shouldn’t be made on gender, age, background, all persons should be given equal chances and stereotype should be fought more.

  17. Residual velocities in combustion experiments on board of sounding rockets

    Science.gov (United States)

    Juste, G. L.

    1996-12-01

    Most combustion experiments on microgravity conditions require extensive testing time, thus making necessary the use of sounding rockets, satellites and spatial laboratories. Sounding rockets and satellites offer some advantages over spatial laboratories, i.e. less strict safety requirements than those in manned flights, the cost of the experiment is also lower. In combustion experiments, the gas velocities inside test modules must be smaller than the characteristic velocity of the process. The initial spin stabilization of sounding rockets has been identified as a possible origin of residual velocities inside the aforementioned modules. The object of the present work is to study the gas residual velocity in the module designed by SENER for carrying out of combustion experiments in microgravity conditions in sounding rockets. Particle image velocimetry was used to measure these velocities. The study shows that, after the spin stabilization, a rapid slowing down of such velocities is produced, decreasing by 5 mm/s after 10 s and down to 0.1 mm/s after 40 s.

  18. Autonomous, On-board Processing for Sensor Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fuse high performance reconfigurable processors with emerging fault-tolerance & autonomous processing techniques for a 10-100x decrease in processing time. This...

  19. Using Games to Support the Curriculum: Getting Teachers on "Board"

    Science.gov (United States)

    Crews, Annalisa

    2011-01-01

    Research supports the use of games in public, academic, and school libraries as a way to engage patrons and students, and to help develop important skills. Games provide stories and information, presented in a new format. They encourage critical thinking and problem solving and accomplish objectives of curriculum frameworks and meet AASL Standards…

  20. The plant biotechnology flight: Is Africa on board?

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in .... systems, such as bacteria, yeast and animal cells ... 1986 Human growth hormone produced in tobacco and sunflower .... in Africa to rally and stimulate research and deve- ..... sustainability in Africa.

  1. Harmfulness Evaluation Method for On-Board Water Ballast Management

    Directory of Open Access Journals (Sweden)

    Željko Kurtela

    2009-01-01

    Full Text Available Having identified all the dominant factors and having puttogether a mosaic of all the factors resulting from a ship 's voyage,as well as a number of differently dimensioned criteria, theharmfulness evaluation method for water ballast managementon board has been elaborated. By careful analysis of the impactfactors to which status elements are adjoined, by the assignmentof harmfulness levels to the status elements, by determiningdifficulty factor values, by introduction of treatment methodsi.e. exchange of water ballast, certain characteristic managementscenarios according to ship type are developed. Cumulativescenarios provide insight into the total harmfulness ofwater ballast management. The introduction of a comprehensiveapproach results in the development of different scenariosapplicable to all ships. The established harmfulness evaluationmethod for water ballast management is applicable to all shiptypes, and it has been tested on various types of ships that weredischarging ballast in various ports worldwide.

  2. On-board Feature Extraction for Clutch Slippage Deviation Detection

    OpenAIRE

    2015-01-01

    Construction equipment companies continuously upgrade their products to meetcustomer demands, staying competitive with market challenges as well as improving sales and profits. With increased complexities in heavy duty machines today, up-time is considered an important aspect of the construction equipment business because it reduces warranty and service cost, while increasing sales and overall customer satisfaction. Therefore, a substantial amount of research is directed towards the developme...

  3. Experimenting Galileo on Board the International Space Station

    Science.gov (United States)

    Fantinato, Samuele; Pozzobon, Oscar; Sands, Obed S.; Welch, Bryan W.; Clapper, Carolyn J.; Miller, James J.; Gamba, Giovanni; Chiara, Andrea; Montagner, Stefano; Giordano, Pietro; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the feasibility of a dual frequency implementation (L1E1+L5E5a) in the same SDR platform.2)Qualification and test the GalileoGPS waveform using ground systems available at the NASA Glenn Research Center. Experimenters can have access to two SCaN Testbed ground based systems for development and verification: the Experimenter Development System (EDS) that is intended to provide initial opportunity for software testing and basic functional validation and the Ground Integration Unit (GIU) that is a high fidelity version of the SCaN Testbed flight system and is therefore used for more controlled final development testing and verification testing.3)Perform in-orbit validation and experimentation: The experimentation phase will consists on the collection of raw measurements (pseudorange, Carrier phase, CN0) in space, assessment on the quality of the measurements and the receiver performances in terms of signal acquisition, tracking, etc. Finally computation of positioning in space (Position, Velocity and time) and assessment of its performance.(Complete abstract in attached document).

  4. Investigations on-board the biosatellite Cosmos-83

    Science.gov (United States)

    Gazenko, O. G.; Ilyin, Eu. A.

    The program of the 5day flight of the biosatellite Cosmos-1514 (December 1983) envisaged experimental investigations the purpose of which was to ascertain the effect of short-term microgravity on the physiology, growth and development of various animal and plant species. The study of Rhesus-monkeys has shown that they are an adequate model for exploring the mechanisms of physiological adaptation to weightlessness of the vestibular apparatus and the cardiovascular system. The rat experiment has demonstrated that mammalian embryos, at least during the last term of pregnancy, can develop in microgravity. This finding has been confirmed by fish studies. The experiment on germinating seeds and adult plants has given evidence that microgravity produces no effect on the metabolism of seedlings and on the flowering stage.

  5. Intelligent on-board system for driving assistance

    Science.gov (United States)

    Rombaut, Michele; Le Fort-Piat, N.

    1995-09-01

    We present in this paper, an electronic copilot embedded in a real car. The system objective is to help the driver by sending alarms or warnings in order to avoid dangerous situtations. An onboard perception system based on CCD cameras and proprioceptive sensors is used ot provide information concerning the environment and the internal state of the vehicle. From this set of information, the copilot is able to analyze the situation and to generate adequate warnings to the driver according to the circumstances. The definition and the development of such a system deal with multisensor data fusion and supervision strategies. The framework of this work was the European Prometheus Pro-Art program. The electronic copilot has been integrated in a prototype vehicle called Prolab2. This French demonstrator integrates the works of nine research laboratories and two car companies: PSA and RENAULT. After a brief presentation of the global demonstrator, we present the two principal parts developed in our laboratory corresponding to the high level modules of the system: the dynamic data manager and the situation supervision.

  6. Leading School Change: Nine Strategies to Bring Everybody on Board

    Science.gov (United States)

    Whitaker, Todd

    2010-01-01

    Make positive and immediate changes in your school with the support of your entire staff. New from acclaimed speaker and bestselling author Todd Whitaker ("What Great Teachers Do Differently, Dealing with Difficult Parents"), Leading School Change provides principals, assistant principals, district superintendents, and other educators with…

  7. Survey of environmental biocontamination on board the International Space Station.

    Science.gov (United States)

    Novikova, Natalia; De Boever, Patrick; Poddubko, Svetlana; Deshevaya, Elena; Polikarpov, Nikolai; Rakova, Natalia; Coninx, Ilse; Mergeay, Max

    2006-01-01

    The International Space Station (ISS) is an orbital living and working environment extending from the original Zarya control module built in 1998. The expected life span of the completed station is around 10 years and during this period it will be constantly manned. It is inevitable that the ISS will also be home to an unknown number of microorganisms. This survey reports on microbiological contamination in potable water, air, and on surfaces inside the ISS. The viable counts in potable water did not exceed 1.0 x 10(2) CFU/ml. Sphingomonas sp. and Methylobacterium sp. were identified as the dominant genera. Molecular analysis demonstrated the presence of nucleic acids belonging to various pathogens, but no viable pathogens were recovered. More than 500 samples were collected at different locations over a period of 6 years to characterize air and surface contamination in the ISS. Concentrations of airborne bacteria and fungi were lower than 7.1 x 10(2) and 4.4 x 10(1) CFU/m3, respectively. Staphylococcus sp. was by far the most dominant airborne bacterial genus, whereas Aspergillus sp. and Penicillium sp. dominated the fungal population. The bacterial concentrations in surface samples fluctuated from 2.5 x 10(1) to 4.3 x 10(4) CFU/100 cm2. Staphylococcus sp. dominated in all of these samples. The number of fungi varied between 2.5 x 10(1) and 3.0 x 10(5) CFU/100 cm2, with Aspergillus sp. and Cladosporium sp. as the most dominant genera. Furthermore, the investigations identified the presence of several (opportunistic) pathogens and strains involved in the biodegradation of structural materials.

  8. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    The ldquoatmosphere-space interactions monitorrdquo (ASIM) is a payload to be mounted on one of the external platforms of the Columbus module of the International Space Station (ISS). The instruments include six video cameras, six photometers and one X-ray detector. The main scientific objective...

  9. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  10. The numerical simulation of liquid sloshing on board spacecraft

    NARCIS (Netherlands)

    Veldman, A.E.P.; Gerrits, J.; Luppes, R.; Helder, J.A.; Vreeburg, J.P.B.

    2007-01-01

    The subject of study is the influence of sloshing liquid on the dynamics of spacecraft. A combined theoretical and experimental approach has been followed. On the one hand, CFD simulations have been carried out to predict the combined liquid/solid body motion. Basically a volume-of-fluid (VOF) appro

  11. Autonomous & Adaptive Oceanographic Feature Tracking on Board Autonomous Underwater Vehicles

    Science.gov (United States)

    2015-02-01

    vehicles, riding dirt bikes in her backyard, and learning languages. Stephanie earned her Bachelor of Science Degree in Aerospace Engineering with a...Kalina, and Heather as my engineering friends who suffered through quals and classes with me in our first few years. I also owe a huge thanks to my family ...food supplies, and coastal human populations . Although a large portion of oil rises to the surface during a spill event to form a slick, over time (on

  12. Intelligent agents for training on-board fire fighting

    NARCIS (Netherlands)

    Bosch, K. van den; Harbers, M.; Heuvelink, A.; Doesburg, W. van

    2009-01-01

    Simulation-based training in complex decision making often requires ample personnel for playing various roles (e.g. team mates, adversaries). Using intelligent agents may diminish the need for staff. However, to achieve goal-directed training, events in the simulation as well as the behavior of key

  13. Autonomous On-Board Optical Navigation Beyond Earth Orbit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, navigation solutions are created by ground systems teams and then uploaded to vehicles operating beyond Earth orbit. However with the improvement of...

  14. US monkey and rat experiments flown on the Soviet Satellite Cosmos 1514

    Science.gov (United States)

    Mains, R. C. (Editor); Gomersall, E. W. (Editor)

    1986-01-01

    On December 14, 1983, the U.S.S.R. launched Cosmos 1514, an unmanned spacecraft carrying biological and radiation physics experiments from nine countries, including five from the United States. This was the fourth flight with U.S. experiments aboard one of the Soviet unmanned spacecraft. The Cosmos 1514 flight was limited to five days duration because it was the first nonhuman primate flight. Cosmos 1514 marked a significant departure from earlier flights both in terms of Soviet goals and the degree of cooperation between the U.S.S.R. and the United States. This flight included more than 60 experiments on fish, crawfish eggs, plants and seeds, 10 Wistar pregnant rats, and 2 young adult rhesus monkeys as human surrogates. United States specialist participated in postflight data transfer and specimen transfer, and conducted rat neonatal behavioral studies. An overview of the mission is presented focusing on preflight, on-orbit, and postflight activites pertinent to the five U.S. experiments aboard Cosmos.

  15. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    Science.gov (United States)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  16. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229

    Science.gov (United States)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)

    1997-01-01

    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  17. Propellant Management in Microgravity- Further Analysis of an Experiment Flown on REXUS-14

    Science.gov (United States)

    Strobino, D.; Zumbrunen, E.; Putzu, R.; Pontelandolfo, P.

    2015-09-01

    This paper is about the further analysis of an experiment named CAESAR (stands for Capillarity-based Experiment for Spatial Advanced Research): a sounding rocket experiment carried out by students of hepia within the REXUS program. The authors have launched on REXUS-14 a propellant management experiment based on capillarity to reliably confirm other ground-based cxperiments. In the framework of the present work, the authors present the comparison of CAESAR experimental data with theoretical profiles provided in literature. The objective of this flight was to place several Propellant Management Devices (PMD) in a microgravity environment and acquire images of the fluid distribution around them. The main element of the experiment, called a sponge, is a PMD for space vehicles, often used in satellites. This radial panel shaped device can be used at the bottom of a satellite tank to keep the propellant near the outlet. It is designed to work even if the vehicle undergoes small accelerations, for example during station-keeping maneuvers. The fluid is eccentric but stays on the sponge and near the outlet, so the injection system of the motor is continuously supplied with the propellant. As previously published, the authors have created a buoyancy test bench and have designed another system by magnetic levitation to perform the same experiment on earth. These systems are easier to use and less expensive than a sounding rocket, a parabolic flight or a drop tower (i.e. other system to obtain microgravity on earth), so they will be very useful to make progress in this particular domain of science. They will also allow universities with small funds to work within this spatial field. A previous publication showed, from a qualitative point of view, a good agreement between experiments and theory; however in this paper quantitative comparisons are given. With this demonstrated, hepia can validate its buoyancy test facility with real flight tests.

  18. The effect of microgravity on the development of plant protoplasts flown on Biokosmos 9

    Science.gov (United States)

    Iversen, T.-H.; Rasmussen, O.; Gmünder, F.; Baggerud, C.; Kordyum, E. L.; Lozovaya, V. V.; Tairbekov, M.

    An experiment using plant protoplasts has been accepted for the IML-1 Space Shuttle mission scheduled for 1991. Preparatory experiments have been performed using both fast and slow rotating clinostats and in orbit to study the effect of simulated and real weightlessness on protoplast regeneration. Late access to the space vehicles before launch has required special attention since it is important to delay cell wall regeneration until the samples are in orbit. On a flight on Biokosmos 9 (``Kosmos-2044'') in September 1989 some preliminary results were obtained. Compared to the ground control, the growth of both carrot and rapeseed protoplasts was decreased by 18% and 44% respectively, after 14 days in orbit. The results also indicated that there is less cell wall regeneration under micro-g conditions. Compared to the ground controls the production of cellulose in rapeseed and carrot flight samples was only 46% and 29% respectively. The production of hemicellulose in the flight samples was 63% and 67% respectively of that of the ground controls. In both cases all samples reached the stage of callus development. The peroxidase activity was also found to be lower in the flight samples than in the ground controls, and the number of different isoenzymes was decreased in the flight samples. In general, the regeneration processes were retarded in the flight samples with respect to the ground controls. From a simulation experiment for IML-1 performed in January 1990 at ESTEC, Holland, regenerated plants have been obtained. These results are discussed and compared to the results obtained on Biokosmos 9. Protoplast regeneration did not develop beyond the callus stage in either the flight or the ground control samples from the Biokosmos 9 experiment.

  19. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites].

    Science.gov (United States)

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M

    1990-01-01

    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  20. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions.

    Science.gov (United States)

    Du, Brian; Daniels, Vernie R; Vaksman, Zalman; Boyd, Jason L; Crady, Camille; Putcha, Lakshmi

    2011-06-01

    Efficacy and safety of medications used for the treatment of astronauts in space may be compromised by altered stability in space. We compared physical and chemical changes with time in 35 formulations contained in identical pharmaceutical kits stowed on the International Space Station (ISS) and on Earth. Active pharmaceutical content (API) was determined by ultra- and high-performance liquid chromatography after returning to Earth. After stowage for 28 months in space, six medications aboard the ISS and two of matching ground controls exhibited changes in physical variables; nine medications from the ISS and 17 from the ground met the United States Pharmacopeia (USP) acceptance criteria for API content after 28 months of storage. A higher percentage of medications from each flight kit had lower API content than the respective ground controls. The number of medications failing API requirement increased as a function of time in space, independent of expiration date. The rate of degradation was faster in space than on the ground for many of the medications, and most solid dosage forms met USP standard for dissolution after storage in space. Cumulative radiation dose was higher and increased with time in space, whereas temperature and humidity remained similar to those on the ground. Exposure to the chronic low dose of ionizing radiation aboard the spacecraft as well as repackaging of solid dosage forms in flight-specific dispensers may adversely affect stability of pharmaceuticals. Characterization of degradation profiles of unstable formulations and identification of chemical attributes of stability in space analog environments on Earth will facilitate development of space-hardy medications.